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Abstract. We study a local-global principle for polynomial equations with coefficients in a finite
field and solutions restricted in a rank-one multiplicative subgroup in a function field over this finite

field. We prove such a local-global principle for all sufficiently large characteristics, and we show that

the result should hold in full generality under certain reasonable hypothesis related to the existence of
large multiplicative subgroups of finite fields avoiding linear relations. We give a method for verifying

the latter hypothesis in specific cases, and we show that it is a consequence of the classical Artin

primitive root conjecture. In particular, this function field local-global principle is a consequence of
GRH. We also discuss the relation of these problems with a finite field version of the Manin-Mumford

conjecture.

1. Introduction

Let K be a global field, S be a finite set of places of K containing Archimedean ones (if any),

and OS be the ring of S-integral elements in K. For any ring R, let R× be the group of units in R.

Given a positive integer n, a polynomial f ∈ OS [X1, . . . , Xn] and a subgroup Γ ⊆ O×S , we consider the

following conditions (here, Γn is the n-th cartesian power of Γ):

(Lf,Γ) For every non-zero ideal a ⊆ OS there exists (x1, . . . , xn) ∈ Γn such that f(x1, . . . , xn) ∈ a.

(Gf,Γ) There exists (x1, . . . , xn) ∈ Γn such that f(x1, . . . , xn) = 0.

The condition (Lf,Γ) can be seen as a local vanishing condition, while (Gf,Γ) is a global one. A natural

question is whether (Lf,Γ) implies (Gf,Γ), and the purpose of this note is to make some progress on

this matter in the positive characteristic case.

As an interpretation of an old conjecture of Skolem, the implication (Lf,Γ)⇒ (Gf,Γ) was proposed

by Harari and Voloch (Remark 2.5 in [5]) in the case where f is a linear form. In the case where K

is a number field and f has total degree one and involves at most two monomials, this implication is

implicitly proved by Skolem [13]. When K is a global function field with constant field Fq, the second

author (immediate consequences of Theorem 1 in [14] and of Theorem 2 in [15]) proves (Lf,Γ)⇒ (Gf,Γ)

under some additional hypotheses on f ; those hypotheses always fail when f has constant coefficients,

i.e. f ∈ Fq[X1, . . . , Xn], and involves at least three monomials. In the present work we investigate

the implication (Lf,Γ) ⇒ (Gf,Γ), precisely in the case where f has constant coefficients and has an

arbitrary number of monomials.

Remark 1. Consider the condition (L∗
f,H) (resp. (G∗

f,H)) obtained from (Lf,Γ) (resp. (Gf,Γ)) by

replacing the subgroup Γn ⊆ (O×S )n with a subgroup H ⊆ (O×S )n. Under the assumption that H is

cyclic such that the subset of O×S consisting of those elements appearing as some component of some
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element in H generates a subgroup of O×S with rank at most one, Bartolome, Bilu and Luca (Theorem

1.2 in [2]) prove the implication (L∗
f,H) ⇒ (G∗

f,H) in the number field case. Using an essentially

different argument, the second author (Corollary 2 in [16]) generalizes this result to any global field.

Our main result on the local-global principle (Theorem 1.1 below) relies on the following condition,

where m is a positive integer, q is a prime power, and r is a positive integer relatively prime to q:

Cond(m, q, r): For any (a1, . . . , am) ∈ Fmq such that
∑m
i=1 ai 6= 0, we have

∑m
i=1 aiξ

ei
r 6= 0 for every

(e1, . . . , em) ∈ Zm, where ξr ∈ (Falg
q )× is a primitive r-th root of unity.

We need some more notation to state our main result. If K is a global function field with constant

field Fq and Γ ⊆ O×S is a subgroup, we let Fq(Γ) be the minimal subfield of K containing both Fq and

Γ. Also, we denote by Tor(Γ) the torsion subgroup of Γ. Consider the following condition:

(Lf,Γpr ) For every prime ideal p ⊆ OS , there exists (x1, . . . , xn) ∈ Γn such that f(x1, . . . , xn) ∈ p.

Clearly we have (Lf,Γ) ⇒ (Lf,Γpr ) and (Gf,Tor(Γ)) ⇒ (Gf,Γ). Note that in the case where Γ is finite,

the implication (Lf,Γpr ) ⇒ (Gf,Γ) ⇔ (Gf,Tor(Γ)) is trivial since any nonzero element in K cannot lie

in infinitely many prime ideals of OS . With this trivial case excluded, the next result addresses a

local-global principle which is more precise than the conjectural implication (Lf,Γ)⇒ (Gf,Γ) discussed

above, in the case where K is a global function field and f has constant coefficients.

Theorem 1.1. Suppose that K is a global function field with constant field Fq. Let Γ ⊆ O×S be a rank-

one subgroup, n be a positive integer and f ∈ Fq[X1, . . . , Xn]. Then (Lf,Γpr ) ⇒ (Gf,Tor(Γ)) provided

that Cond(m, q, r) holds, where m is the number of monomials appearing in the expansion of∏
(τ1,...,τn)∈Tor(Γ)n

f(τ1X1, . . . , τnXn),

and r is a positive integer larger than the cardinality of residue field of the global field Fq(Γ) at any

w ∈ ΣFq(Γ) lying below some place in S.

This theorem is proved in Section 5. We may remove the hypothesis on Cond(m, q, r) if we could

establish the following statement for all positive integers m and prime powers q:

Conjecture (Conj(m, q)). The condition Cond(m, q, r) holds for infinitely many positive integers r

relatively prime to q.

Statements similar to Conj(m, q) have already attracted the attention of researchers, specially in

the form “large multiplicative subgroups of finite fields must satisfy some additive relation”, see for

instance [1] and the references therein.

It is thus natural to investigate to what extent we can establish Conj(m, q). Note that Conj(2, q)

holds; indeed, for any (a1, a2) ∈ F2
q with a1 6= −a2, the quotient −a1a2 is a non-trivial (q− 1)-th root of

unity and thus cannot be a r-th root of unity provided that gcd(q− 1, r) = 1; thus Cond(2, q, r) holds

for such r. The case of m = 3 is established unconditionally in the following result.
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Theorem 1.2. Suppose that m ≤ 3. Then both Cond(m, 2t, 4kt + 1) and Cond(m, q, q
2k+1

2 ) hold for all

natural numbers k, t, and odd prime powers q. Hence, for m ≥ 3 we have that Conj(m, q) holds for

all prime powers q.

We prove 1.2 in Section 2, based on a study of Fermat curves.

Let us recall Artin’s primitive root conjecture (APRC): for every non-square positive integer a, the

following statement should hold:

APRC(a) There are infinitely many primes ` such that a generates (Z/`Z)×.

The relevance of APRC in our context is due to the following result.

Theorem 1.3. Let m be a positive integer, let p be a prime and let q = pt with t ≥ 1. If there is a

prime ` ≥ mt satisfying that p generates (Z/`Z)×, then Cond(m, q, `) is true. In particular, APRC(p)

implies Conj(m, q) for all m and for all q power of p.

After the work of Gupta and Murty [4], Murty and Srinivasan [11] and finally by Heath-Brown

(Corollary 2 in [6]), we know that APRC(p) holds for all but at most two prime numbers p. Moreover,

Hooley [8] showed that the generalized Riemann hypothesis (GRH) for certain Dedekind zeta functions

implies a sharp form of APRC, namely, that for every non-square positive integer a there is a set of

primes S with positive natural density in the primes such that a generates (Z/`Z)× for each prime

` ∈ S. These results towards APRC, together with Theorem 1.1 and Theorem 1.3, yield the next

consequence for the local-global principle:

Theorem 1.4. For all primes p with at most two exceptions (hence, for all sufficiently large primes p),

the following local-global principle holds:

Let K be a global function field with constant field Fq of characteristic p. Let Γ ⊆ O×S be a rank-one

subgroup, let n be a positive integer and let f ∈ Fq[X1, . . . , Xn]. Then (Lf,Γpr )⇒ (Gf,Tor(Γ)).

Moreover, GRH implies that the local-global principle holds without restrictions on the character-

istic.

While there is no prime p for which it is unconditionally known that APRC(p) holds, the next result

permits the verification of Conj(m, q) for any given m and q after a finite amount of computation which

finds an odd prime ` validating the hypothesis in the following statement.

Theorem 1.5. Let m be a positive integer, and q = pt be a prime power with p prime. Suppose that

there is an odd prime ` > mt such that p generates (Z/`2Z)×. Then Cond(m, q, `k) is true for all

k ≥ 1, hence Conj(m, q) holds.

One can ask if the hypothesis in Theorem 1.5 is expected to be satisfied, so that a finite computation

is enough to successfully verify Conj(m, q). In fact, this is the case as we now explain:

Recall that a prime number ` is called a Wieferich prime to the base a if a`−1 ≡ 1 mod `2. In this

terminology, the hypothesis in Theorem 1.5 always holds under the assumption that for any prime

p, there are infinitely many non-Wieferich primes ` to base p such that p generates (Z/`Z)×. This
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assumption is implied by two well-known conjectures in analytic number theory. First, it is widely

believed that the set of Wieferich primes to any given basis has natural density zero; see [10]. Moreover,

the result of Hooley on APRC mentioned above shows that under GRH we have a positive proportion

of primes ` for which p is a primitive root modulo `. Therefore, assuming GRH and the sparseness of

Wieferich primes, one may always verify Conj(m, q) by using Theorem 1.5. For the sake of concreteness,

here is a simple numerical example:

Let us check that Conj(4, 9) holds. In the notation of Theorem 1.5 we have m = 4, p = 3, q = 9,

t = 2, and we need to find a prime ` > mt = 16 such that p = 3 generates (Z/`2Z)×. The relevant

information for the first few primes ` > 16 is in the following table:

` 17 19 23 29
#(Z/`2Z)× 272 342 506 812

#〈3〉 272 342 253 812

Thus, we can take ` = 17, 19 or 29 to conclude that Conj(4, 9) holds. (Instead of checking of 3 is a

primitive root modulo `2 for primes ` > 16, we could have checked if 3 is a primitive root modulo `

and then verify if it is modulo `2 – the previous heuristic suggests that this approach is more efficient

in general.)

We prove both Theorem 1.3 and Theorem 1.5 in Section 3.

There is also a connection between our Conj(m, q) and the Manin-Mumford conjecture. The latter

conjecture does not have an obvious analogue over finite fields (note that we do not mean global

function fields) because all algebraic points of a semi-abelian variety A defined over Fq are torsion.

However, Poonen proposed an analogue for the Manin-Mumford conjecture over finite fields, based on

the idea that for a semi-abelian variety A/Fq one should consider a point in A(Falg
q ) as non-torsion

whenever its order is ‘large’ in a precise way. See Section 4 in [18] or Conjecture 4.2 in Section 4

below for the precise statement of Poonen’s conjecture. In Section 4 we prove Theorem 4.4, which

roughly says that a much weaker version of Poonen’s conjecture implies the following stronger version

of Conj(m, q), where m is a positive integer and q is a prime power:

Conjecture (sConj(m, q)). There is a set of primes L (depending on m and q) with natural density 1

in the primes such that the condition Cond(m, q, `) holds for all ` ∈ L.

Here, we recall that the (natural) density of a set of primes P (in the primes) is the following

quantity, provided that it exists

lim
t→+∞

#P ∩ [1, t]

π(t)

where π(t) is the number of prime numbers up to t.

2. Conj(m, q) and Fermat Curves

This section is devoted to prove Theorem 1.2. Our approach using Fermat curves originates in the

work of Yekhanin (c.f. Lemma 5, Theorem 6 and Corollary 7 in [19]). See also the appendix in [1].

For every i ∈ N, we denote by µ(i) ⊆ (Falg
q )× the finite subgroup generated by a primitive i-th root

of unity.



A LOCAL-GLOBAL PRINCIPLE 5

Lemma 2.1. Suppose that n ≤ 3 and let a1, . . . , an ∈ F∗q . Then every Fq4-rational point on the Fermat

hypersurface in Pn−1 defined by
∑n
i=1 aiX

q+1
i = 0 is actually Fq2-rational.

Proof. We can assume that n = 3, for otherwise the result can be easily checked. Note that each

ai ∈ F∗q is a (q + 1)-th power of elements in Fq2 . So we may further assume that ai = 1 for each i.

Denote by V ⊆ P2 the Fermat curve defined by
∑3
i=1X

q+1
i = 0. Letting [x1 : x2 : x3] ∈ V (Fq4) we

note that [xq
2

1 : xq
2

2 : xq
2

3 ] ∈ V (Fq4). For clarity, we assume that xi ∈ Fq4 for each i.

It suffices to show that [x1 : x2 : x3] = [xq
2

1 : xq
2

2 : xq
2

3 ] in P2. Assume that this is false. Then there

is a unique line L in P2 passing through [x1 : x2 : x3] and [xq
2

1 : xq
2

2 : xq
2

3 ], and it is parameterized as

[sx1 + txq
2

1 : sx2 + txq
2

2 : sx3 + txq
2

3 ] with [s, t] ∈ P1. The line L is contained in V as the following

calculation shows:
3∑
i=1

(sxi + txq
2

i )q+1 =

3∑
i=1

(sxi + txq
2

i )(sqxqi + tqxq
3

i )

=sq+1
3∑
i=1

xq+1
i + stq

3∑
i=1

xq
3+1
i + sqt

(
3∑
i=1

xq+1
i

)q
+ tq+1

(
3∑
i=1

xq+1
i

)q2

=0 + stq
3∑
i=1

xq
3+1
i + 0 + 0 = 0,

where the last equality holds since
(∑3

i=1 x
q3+1
i

)q
=
∑3
i=1 x

q4+q
i =

∑3
i=1 x

1+q
i = 0. However, V is a

Fermat curve of degree q + 1, thus it cannot contain a line, and we obtain a contradiction. �

Note that F∗q ⊆ µ( q
4−1
q+1 ) ⊆ F∗q4 .

Proposition 2.2. Suppose that n ≤ 3. Let x1, . . . , xn ∈ µ( q
4−1
q+1 ) and a1, . . . , an ∈ F∗q satisfy

∑n
i=1 aixi =

0. Then x1, . . . , xn reduce to the same element in the quotient µ( q
4−1
q+1 )/F∗q .

Proof. Letting y1, . . . , yn ∈ F∗q4 such that xi = yq+1
i for each i, we see that [y1, . . . , yn] is an Fq4 -rational

point on the hypersurface in Pn−1 defined by
∑n
i=0 aiX

q+1
i = 0. By Lemma 2.1, we have for each i

that yi
y1
∈ F∗q2 , whence xi

x1
= ( yiy1 )q+1 ∈ F∗q . �

Corollary 2.3. Suppose that n ≤ 3. Let a1, . . . , an ∈ F∗q satisfy
∑n
i=1 ai 6= 0. When q is even, we put

G = µ(q2 + 1); when q is odd, we put G = µ( q
2+1
2 ). Then there is no (x1, . . . , xn) ∈ Gn such that∑n

i=1 aixi = 0.

Proof. Assume that for some (x1, . . . , xn) ∈ Gn we have
∑n
i=1 aixi = 0. Since G ⊆ µ( q

4−1
q+1 ) for any

prime power q, Proposition 2.2 implies that we may further suppose for all i that xi ∈ F∗q . It follows

that xi = (xq−1
i )

q+1
2 xi = x

q2+1
2

i = 1 when q is odd, and that x2
i = (xq−1

i )q+1x2
i = xq

2+1
i = 1, i.e. xi = 1,

when q is even. This contradicts the assumption
∑n
i=1 ai 6= 0. �

Proof of Theorem 1.2.

Fix a natural number k and a prime power q. If q is even, we put G = µ(q2k + 1); if q is odd, we

put G = µ( q
2k+1

2 ). By definition of Cond(m, q, i) and µ(i), Corollary 2.3 yields the desired result since

a1, . . . , am ∈ F∗qk satisfy
∑m
i=1 ai 6= 0. �
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3. Conj(m, q) and primitive roots

In this section we prove Theorem 1.3 and Theorem 1.5. Both are obtained from a more general

result, for which it will be convenient to introduce the following hypothesis for pt, `k prime powers and

m a positive integer:

Hyp(m, pt, `k): p is a primitive root modulo `k, and ` > mgcd(t,`2−`).

Theorem 3.1. Let m, t, k be positive integers, and let p, ` be primes. If Hyp(m, pt, `k) holds, then

Cond(m, q, `k) holds.

Before proving Theorem 3.1, let us first deduce Theorem 1.3 and Theorem 1.5 from it.

Proof of Theorem 1.3. Since p is a primitive root modulo the prime ` and ` > mt ≥ mgcd(t,`2−`),

the hypothesis Hyp(m, q, `) in Theorem 3.1 is satisfied, and hence Cond(m, q, `) holds. �

Recall the following elementary fact.

Lemma 3.2. Let ` be an odd prime. If a is a primitive root modulo `2, then it is a primitive root

modulo `k for all integers k ≥ 1.

Proof of Theorem 1.5. Assume, as in the statement, that there is a prime ` > mt ≥ mgcd(t,`2−`)

such that p generates (Z/`2Z)×. Fix a natural number k ≥ 1. By Lemma 3.2 we get that p generates

(Z/`kZ)×. Hence the hypothesis Hyp(m, q, `k) in Theorem 3.1 is satisfied, and then Cond(m, q, `k)

holds. �

To prove Theorem 3.1, we need the next two elementary lemmas, the first of which is well-known.

Lemma 3.3. The cyclotomic polynomial Φm(x) ∈ Z[x] factors in Fq[x] as a product of distinct ir-

reducible polynomials all of which have degree equal to the order of q in the multiplicative group

(Z/mZ)×, where, m is a positive integer relatively prime to the prime power q .

Lemma 3.4. Let k be a field, P ∈ k[X] a polynomial and N a positive integer. Let R ∈ k[X] be

the remainder of P divided by XN − 1. The number of monomials in R is at most the number of

monomials in P .

Proof. By induction. Noting that R = P whenever degP < N , we assume the truth of this lemma in

the case where degP < d and prove it when degP = d, where d ≥ N . Letting ad ∈ k× be the leading

coefficient of P , we note that P0(X) = P (X)− adXd−N (XN − 1) is either the zero polynomial or has

degree less than d. We also observe that the number of monomials in P0 is no more than that in P .

By the induction hypothesis, the number of monomials in the remainder of P0(X) divided by XN − 1

is at most that in P0, which is no more than that in P as observed. Noting that R(X) is also the

remainder of P0(X) divided by XN − 1, we finish the proof. �

Proof of Theorem 3.1. The desired conclusion holds trivially when m = 1. Assume that Hypothesis

Hyp(m, q, `k) is satisfied for certain positive integer m ≥ 2, prime powers q = pt and `k. We note that

` cannot divide t, for otherwise one would have ` > mgcd(t,`2−`) ≥ m` ≥ 2`, a contradiction. This gives

gcd(t, `k − `k−1) = gcd(t, `2 − `).
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Suppose that Cond(m, q, `k) fails, i.e., for some (a1, . . . , am) ∈ Fmq with
∑m
i=1 ai 6= 0 we have

(3.1)

m∑
i=1

aiξ
ei
`k

= 0

for some (e1, . . . , em) ∈ Zm, where ξ`k ∈ (Falg
q )× is a primitive `k-th root of unity. For each prime-to-`

integer 0 ≤ e ≤ `k − 1, let fe be the unique integer such that 0 ≤ fe ≤ `k − 1 and efe ∈ 1 + `kZ; we

define the auxiliary polynomials

Pe(X) =

m∑
i=1

aiX
eife ∈ Fq[X].

Using (3.1) we see that Pe(ξ
e
`k) = 0 for each prime-to-` integer 0 ≤ e ≤ `k − 1.

Since p generates the finite abelian group (Z/`kZ)× with cardinality `k−`k−1, the order of q = pt in

(Z/`kZ)× is `k−`k−1

d , where d = gcd(t, `k−`k−1) = gcd(t, `2−`) as noted in the beginning of this proof.

By Lemma 3.3, the cyclotomic polynomial Φ`k factors as a product of d distinct irreducible polynomials

over Fq. As each root of Φ`k in Falg
q is ξe for some prime-to-` integer 0 ≤ e ≤ `k − 1, there are d

prime-to-` integers 0 ≤ n1 < · · · < nd ≤ `k − 1 such that Φ`k divides the product Pn1
· · ·Pnd

over Fq.

Let R ∈ Fq[X] be the reminder obtained when we perform the Euclidean division of (Pn1
· · ·Pnd

) (X)

by X`k − 1 in Fq[X]. Since R(1) = (Pn1
· · ·Pnd

)(1) = (
∑m
i=1 ai)

d 6= 0, we note that R is not the zero

polynomial. Also, by Lemma 3.4, the number of monomials appearing in R is no more than that in

Pn1
· · ·Pnd

, and thus is at most md. Since Φ`k(X) divides both Pn1
· · ·Pnd

and X`k − 1 in Fq[X], it

follows that Φ`k divides the nonzero polynomial R, i.e. there is some nonzero polynomial Q ∈ Fq[X]

such that R = QΦ`k . Since R has degree at most `k−1 and Φ`k has degree `k−1(`−1), it implies that

Q has degree at most `k−1 − 1. Noting that

Φ`k(X) = X`k−1(`−1) +X`k−1(`−2) + · · ·+X`k−1

+ 1,

we see that the expression

R(X) = Q(X)X`k−1(`−1) +Q(X)X`k−1(`−2) + · · ·+Q(X)X`k−1

+Q(X)

involves no cancellation among terms. From this, we observe that R has at least ` monomials. Since

` > md, this is a contradiction to the fact that at most md monomials appear in R. This shows that

Cond(m, q, `k) holds. �

4. Finite field analogue of the Manin-Mumford conjecture

In this section, we connect Poonen’s analogue of the Manin-Mumford conjecture over finite fields

with our conjecture sConj(m, q), which is a much stronger version of Conj(m, q). We begin by recalling

the statement of the Manin-Mumford conjecture over number fields, which is now a theorem:

Theorem 4.1. Let K be a number field, let A/K be a semi-abelian variety, and let X/K be a closed

sub-variety of A. Let Z be the union of all translates of positive-dimensional semi-abelian sub-varieties

of A defined over Kalg and contained in X. Then at most finitely many points x ∈ (X rZ)(Kalg) are

torsion.
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A first version of this was proved by Raynaud [12] in the case when X is a curve of genus g > 1

embedded in an abelian variety, and since then the result has been extended in a number of ways. The

version stated here is due to Hindry (cf. Théorème 2 in [7]). See [17] for a survey on this subject.

As promised in the introduction, let us recall the following finite field analogue of the Manin-

Mumford conjecture proposed by Poonen (see Section 4 in [18]).

Conjecture 4.2. Let k be a finite field, let A/k be a semi-abelian variety, and let X/k be a closed sub-

variety of A. Let Z be the union of all translates of positive-dimensional semi-abelian sub-varieties of

A defined over kalg and contained in X. Then there is a positive constant c > 0, depending on A and

X, such that for all x ∈ (X r Z)(kalg) we have

#〈x〉 > (#κx)c,

where 〈x〉 ⊂ A(kalg) is the cyclic subgroup generated by x, and κx is the smallest field extension of k

such that x ∈ A(κx).

One way to think about this conjecture is that, although all Falg
q -rational points in A are torsion, one

should see points of ‘large’ order as the finite field analogue of non-torsion points. From this point of

view, Conjecture 4.2 is analogous to the Manin-Mumford conjecture over number fields. Remarkably,

the Manin-Mumford conjecture over number fields is now a theorem (and there are analogous results

over function fields, see for instance [9]), while Conjecture 4.2 remains open.

For our purposes, the following weaker version of Conjecture 4.2 will suffice:

Conjecture 4.3. Let k be a finite field, let A/k be a semi-abelian variety, and let X/k be a closed sub-

variety of A. Let Z be the union of all translates of positive-dimensional semi-abelian sub-varieties of

A defined over kalg and contained in X. Then, depending on A and X, there is a positive function

F (t) defined on Z≥1 satisfying for every ε > 0 that F (t) = O(tε) as t goes to the infinity, such that for

all x ∈ (X r Z)(kalg) we have

(4.1) #〈x〉 > [κx : k]2

F ([κx : k])
,

where 〈x〉 ⊂ A(kalg) is the cyclic subgroup generated by x, and κx is the smallest field extension of k

such that x ∈ A(κx).

To derive Conjecture 4.3 from Conjecture 4.2, just note that #κx = (#k)[κx:k] and take F (t) =

t2(#k)−ct, which tends to zero as t goes to the infinity. This exponentially decaying property is not

necessary for our application, where we only have to require that F (t) does not grow too fast; for

instance, candidates of type F (t) = (log t)b (with positive constants b) make the bound (4.1) useful.

To the best of our knowledge, however, even this much weaker Conjecture 4.3 remains open, although

substantial progress has been achieved by Voloch in the case A = G2
m, see the main Theorem in [18].

We remark that the exponent 2 in (4.1) is critical in Voloch’s work.

The main result in this section is the following:
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Theorem 4.4. Let m be a positive integer and q be a power of a prime. Suppose that Conjecture 4.3

holds for k = Fq and any torus A with dimension < m. Then sConj(m, q) holds.

Before proving this result, we need the following lemmas.

Lemma 4.5. Let K be an algebraically closed field, and let S be a semi-abelian variety embedded in

a torus Grm/K. Then S is a torus.

Proof. There is a maximal torus subgroup T ⊆ S such that A = S/T is an abelian variety. On the

other hand T is also a sub-torus of Grm and the quotient Grm/T is affine. Since A embeds into Grm/T ,

we conclude that A is a point. �

Lemma 4.6. Let r ≥ 2 be an integer. Let a1, . . . , ar ∈ Fq be non-zero, and let X/Fq be the sub-variety

of Grm/Fq defined by

X : a1x1 + . . .+ arxr = 1.

Let Z be the union of all translates of positive-dimensional semi-abelian sub-varieties of Grm contained

in X and defined over Falg
q . Let Z ′ be the union of sub-varieties of X ⊆ Grm defined by the vanishing

of a (proper, non-empty) sub-sum of a1x1 + . . .+ arxr. Then Z ⊆ Z ′.

Proof. Up to a multiplicative translation, we can assume that ai = 1 for each i (because they are

non-zero), so X is given by x1 + . . . + xr = 1. Let G be a translate of some positive-dimensional

(proper) semi-abelian sub-variety T ⊂ Grm contained in X and defined over Falg
q . By Lemma 4.5, we

have T ' Gkm for some 1 ≤ k < r. It suffices to show for any b = (b1, . . . , br) ∈ G(Falg
q ) that some

proper non-empty sub-sum of the bi vanishes. Since G = b ·T , there are rational functions fi ∈ Falg
q (y),

1 ≤ i ≤ r, defining a rational map f = (fi)1≤i≤r : P1 99K T which restricts to an embedding of

Gm ⊆ P1 into T , and since T is an algebraic group and b · T = G ⊂ X, we have for each positive

integer n that

(4.2) b1f
n
1 + . . .+ brf

n
r = 1.

As f is non-constant, some fi must have a pole at p ∈ P1 \ Gm. Let I ⊆ {1, . . . , r} be the subset of

indices i such that the order of pole for fi at p is maximal over i ∈ {1, . . . , r}. Noting that the right

hand side of (4.2) has no poles, we look at the Taylor expansion of both sides of (4.2) at p, and find∑
i∈I

biα
n
i = 0,

where αi ∈ (Falg
q )× is the first non-zero coefficient of the power series expansion of fi at p. Choosing

a suitable positive integer n we conclude
∑
i∈I bi = 0. Note that I is non-empty by construction, and

it is a proper subset of {1, . . . , r} because
∑r
i=1 bi = 1. �

We also need the following result of Erdös and Murty (Theorem 1 in[3]).

Theorem 4.7. Let f(t) be a positive function tending to 0 as t grows. Let a > 1 be an integer. Let P
be the set of prime numbers ` satisfying that the order of a in (Z/`Z)× is greater than `

1
2 +f(`). Then

P has density 1 in the primes.
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Proof of Theorem 4.4. For any positive integer n, it follows from relabeling and scaling that sConj(n, q)

is equivalent to the following statement: There is a set of primes L (depending on m and q) with natural

density 1 in the primes such that the for any (a1, . . . , an−1) ∈ Fn−1
q with

∑n−1
i=1 ai 6= 1, the equation∑n−1

i=1 aixi = 1 has no solutions in the group µ(`) of `-th roots of unity in Falg
q .

Assume that Conjecture 4.3 holds for k = Fq and any torus A with dimension < m. We desire to

show that sConj(m, q) holds; the case where m = 1 is trivial. By induction on m, we can assume that

sConj(n, q) holds for all n < m.

Write r = m − 1 and let (a1, . . . , ar) ∈ Frq be such that
∑r
i=1 ai 6= 1. Let X0 be the sub-variety of

Grm defined by
∑r
i=1 aixi = 1; let Z0 be the union of all translates of positive-dimensional semi-abelian

sub-varieties of Grm defined over Falg
q and contained in X0. Note that 1 ∈ (Grm \X0)(Falg

q ).

Let F (t) be the positive function on Z≥1 coming from Conjecture 4.3 specialized to the case where

(k,A,X) = (Fq,Grm, X0). Replacing F (t) by max{F (n) : 1 ≤ n ≤ t} if necessary, we can assume

without loss of generality that F (t) is non-decreasing (keeping the bound (4.1) valid and the property

that for every ε > 0 we have F (t) = O(tε) as t goes to the infinity).

Consider the function

f(t) =
log(max{1, F (t)} · log t)

log t

which tends to 0 as t goes to the infinity because F (t) = O(tε) for every ε > 0. Let P be the set of

primes ` such that q has order larger than

`
1
2 +f(`) = `

1
2 max{1, F (`)} log `

in (Z/`Z)×. By Theorem 4.7 we know that P has density 1 in the primes.

Now we show for any ` ∈ P that

(4.3) µ(`)r ∩ (X0 r Z0)(Falg
q ) = ∅..

Indeed, under Conjecture 4.3, we have for all x ∈ (X0 r Z0)(Falg
q ) that

#〈x〉 > [κx : Fq]2

F ([κx : Fq])
.

Suppose that for some ` ∈ P the set µ(`)r ∩ (X0 r Z0)(Falg
q ) is not empty and contains some element

x. Then we would derive the following contradiction

` = #〈x〉 > [κx : Fq]2

F ([κx : Fq])
>
`max{1, F (`)}2(log `)2

F (`)
≥ `max{F (`),

1

F (`)
}(log `)2 ≥ `(log `)2,

where the first equality is due to the condition 1 /∈ X0(Falg
q ), and the second inequality is deduced as

follows: Lemma 3.3 gives that [κx : Fq] equals the order of q modulo `, hence

`
1
2 max{1, F (`)} log ` < [κx : Fq] < `

which, together with the fact that F is non-decreasing, yields the desired inequality. This proves (4.3).

It remains to claim that there is a set of primes P ′ of density 1 such that for all ` ∈ P ′ we have

(4.4) µ(`)r ∩ Z0(Falg
q ) = ∅.,



A LOCAL-GLOBAL PRINCIPLE 11

since then for every ` in the set of primes P ∩ P ′ having density 1, we have

µ(`)r ∩X0(Falg
q ) = ∅,

i.e. sConj(m, q) holds. By Lemma 4.6, Z0 is contained in the union of sub-varieties of X0 ⊆ Grm defined

by the vanishing of of
∑
i∈I aixi over all (finitely many) non-empty (proper) subsets I ( {1, . . . , r}.

It suffices to show that for every such I there is a set of primes P ′I with density 1 such that for

all ` ∈ P ′I there is no common solution for
∑
i∈I aixi = 0 and

∑r
i=1 aixi = 1 (equivalently, for∑

i∈{1,...,r}rI aixi = 1 and
∑r
i=1 aixi = 1) over µ(`), for then we can let P ′ =

⋂
I({1,...,r} P ′I since

the intersection of finitely many sets of primes with density 1 also has density 1. Since #I ≤ r < m

and #({1, . . . , r} r I) ≤ r − 1 < m − 1, the induction hypothesis guarantees that both sConj(#I, q)

and sConj(#({1, . . . , r} r I) + 1, q) holds. Note that since
∑r
i=1 ai 6= 1, we have either

∑
i∈I ai 6= 0

or
∑
i∈{1,...,r}rI ai 6= 1. By the first sentence of this proof, we therefore conclude that the desired P ′I

always exists. This finishes our proof. �

5. Proof of Theorem 1.1

For the purposes of this section, a monomial means a product of variables in a polynomial ring

(the empty product gives the monomial 1 by convention), while a term is a monomial multiplied by a

non-zero coefficient.

Lemma 5.1. Suppose that K is a global function field with constant field Fq, Let Γ ⊆ O×S be a finitely

generated subgroup and let Φ ⊆ Γ be a free subgroup such that Γ = {τφ : τ ∈ Tor(Γ), φ ∈ Φ}; note

that such Φ always exists (as Γ is finitely generated abelian of rank 1), and that Tor(Γ) ⊆ Fq. Let

f ∈ Fq[X1, . . . , Xn] and define

g =
∏

(τ1,...,τn)∈Tor(Γ)n

f(τ1X1, . . . , τnXn) ∈ Fq[X1, . . . , Xn].

Let m be the number of terms appearing in g after expanding it, and let h ∈ Fq[Y1, . . . , Ym] be the

linear form obtained by formally replacing the monomials in g by new variables Yi and keeping the

respective coefficients. Suppose that (Lh,Φpr )⇒ (Gh,{1}) holds. Then (Lf,Γpr )⇒ (Gf,Tor(Γ)) holds.

Proof. From Γ = {τφ : τ ∈ Tor(Γ), φ ∈ Φ}, it follows that (Lf,Γpr ) implies (Lg,Φpr ), and that (Gg,{1})

implies (Gf,Tor(Γ)). On the other hand, by construction of h we see that (Lg,Φpr ) implies (Lh,Φpr ), and

that (Gh,{1}) implies (Gg,{1}). This finishes the proof. �

Proposition 5.2. Let K be a global function field of characteristic p with constant field Fq. Let Φ ⊆ O×S
be an infinite cyclic subgroup, and let m be a positive integer. Then for any positive integers m and

every linear form h ∈ Fq[X1, . . . , Xm] which has m monomials, we have (Lh,Φpr ) ⇒ (Gh,{1}) provided

that Cond(m, q, r) holds, where r is a positive integer larger than the cardinality of residue field of the

global field Fq(Φ) at any w ∈ ΣFq(Φ) lying below some place in S.

Proof. Let h =
∑m
i=1 aiXi for certain a1, . . . , am ∈ F×q . Suppose that (Gh,{1}) fails, that is,

∑m
i=1 ai =

h(1, . . . , 1) 6= 0. It suffices to show that (Lh,Φpr ) fails. By the assumption that Cond(m, q, r) holds, since
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i=1 ai 6= 0, we have

∑m
i=1 aiξ

ei
r 6= 0 for every (e1, . . . , em) ∈ Zm, where ξr ∈ (Falg

q )× is a primitive

r-th root of unity.

Let γ ∈ K×rFq generate Φ. We note that Fq(Φ) = Fq(γ) and that the extension K/Fq(Φ) is finite.

Consider the Fq-isomorphism of fields Fq(T ) ' Fq(Φ) given by T 7→ γ. Let F ∈ Fq[T ] be the minimal

polynomial of ξr over Fq. Under this isomorphism, the irreducible polynomial F corresponds to a place

w0 ∈ ΣFq(Φ). Since the residue field of Fq(Φ) at w0 contains ξr, the cardinality of this residue field

must exceed r, and hence the property of r ensures that w0 does not lie below any place in S. Let P

be the maximal ideal associated to a place v0 ∈ ΣK above w0 ∈ ΣFq(Φ). Then we have v0 /∈ S and

thus P ⊂ OS is a prime ideal.

Now we show that (Lh,Φpr ) fails by proving that for all (e1, . . . , em) ∈ Zm we have
∑m
i=1 aiγ

ei /∈ P.

Suppose that
∑m
i=1 aiγ

ei ∈ P for some (e1, . . . , em) ∈ Zm. Then
∑m
i=1 aiγ

ei lies in P ∩ Fq(Φ) and

hence vanishes at w0. The Fq-isomorphism of fields Fq(T ) ' Fq(Φ) given by T 7→ γ shows that the

rational function
∑m
i=1 aiT

ei lies in the ideal generated by F in Fq[T, T−1]. Since F (ξr) = 0, we deduce

that
∑m
i=1 aiT

ei vanishes at ξr. This contradicts to Cond(m, q, r) and finishes our proof. �

Proof of Theorem 1.1. This follows from the previous two results. �
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