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The goal of this note (and my talk) is to discuss descriptions of the Diophantine
sets of global fields and their rings of integers. By [4] and [10], a set in Z is
Diophantine if and only if it is listable in the sense of recursion theory; I’ll refer
to this result as the DPRM theorem. This gives a complete description of the
Diophantine sets of Z, implying that Hilbert’s tenth problem is unsolvable.

Rings of integers. The analogue of DPRM for rings of S-integers in a global
function field (S a non-empty finite set of places) follows from [5] and [23].

The analogue of the DPRM for the rings of integers OK of a number field K is
known for: CM fields and certain degree 4 extensions [7, 6]; K with exactly one
complex place [16, 21, 24]; K contained in one of the previous fields [20].

Towards the general case, the series of papers [18, 2, 22] culminated in the
following elliptic curve criterion by Poonen and Shlapentokh: Suppose that for
every cyclic extension of prime degree L/F of number fields there is an elliptic
curve E defined over F such that rk(E(L)) = rk(E(F )) > 0. Then for every
number field K, the Diophantine sets and the listable sets of OK are the same.

Mazur and Rubin [13] verified the elliptic curve criterion conditionally on a con-
jecture on Shafarevich-Tate groups. Alternatively, using non-vanishing theorems
for L-functions [8, 14], Ram Murty and I proved [15] that the criterion is satisfied
under the rank part of Birch and Swinnerton-Dyer conjecture:

Theorem 1 (Murty-Pasten). Suppose that (certain) elliptic curves over number
fields E/F satisfy that the L-function L(s, E) is automorphic and:

• (Parity conjecture) ords=1L(s, E) ≡ rk(E(F )) mod 2
• (Analytic rank 0 BSD) If χ is a Hecke character of F corresponding to a

finite extension L/F and if L(1, E/F, χ) 6= 0, then E(L)χC = 0.

Then the Poonen-Shlapentokh elliptic curve criterion is satisfied, and for every
number field K, the analogue of DPRM for OK holds.

Global fields. Hilbert’s tenth problem for Fq(z) is undecidable [17, 25], while it is
open for Q. Nevertheless, the question of whether in a global field K Diophantine
sets and listable sets are the same, remains open in all cases.

The analogue of DPRM holds for Q if and only if Z is Diophantine in Q. In the
direction of the latter, Koenigsmann proved [9] that Z admits a ∀∃∃...∃-positive
definition in Q, so that it only remains to eliminate one universal quantifier.

However, Mazur conjectured that if X/Q is a projective variety then the topo-
logical closure of X(Q) in X(R) has only finitely many connected components
[11, 1]. This would imply that Z is not Diophantine in Q. There is a lesser
known version of Mazur’s topological conjecture over number fields (including non-
Archimedean places) with analogous non-Diophantineness implications [12, 19]:

Conjecture 2 (Mazur). Let K be a number field, v ∈MK , and X/K a projective
variety. For x ∈ X(Kv), let Zx ⊆ X be the limit of the Zariski closure of X(K)∩U
in X, as U varies over v-neighborhoods of x. Then {Zx : x ∈ X(Kv)} is finite.
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Mazur’s conjecture is specific to the number field case and the analogue for
global function fields is false, as the following example shows:

Example 3 (cf. [17, 3]). Let p > 2 be prime. The sets A = {zpn : n ≥ 0} and
B = {λ + z + zp... + zp

n

: n ≥ 0 and λ ∈ Fp} are Diophantine in K = Fp(z).
(They are images of K-rational points of certain curve X defined over K.)

Proximity functions and heights. Let K be a global field. Let X/K be a
projective variety with CD+(X/K) its set of effective Cartier divisors. Fix a
choice of Weil functions λD,v : X(K̄)−D → R for D ∈ CD+(X/K) and v ∈MK .

Let S ⊆ MK be a finite set of places and let D ∈ CD+(X/K). The proximity
function to D relative to S is mX,S(D,−) :=

∑
v∈S λD,v(−), and the height rel-

ative to D is hX,D(−) :=
∑
v∈MK

λD,v(−). Both are functions X(K̄) − D → R.

One has the trivial inequality mX,S(D,x) ≤ hX,D(x) + O(1) for x ∈ X(K̄) −D,
and the central problem in Diophantine approximation is to establish non-trivial
inequalities between the proximity function and the height of rational points. Let
me formulate a conjecture trying to formalize the hope that the proximity function
contributes non-trivially to the height. Details will appear elsewhere.

Conjecture 4. Let K be a global field and let S 6= ∅ be a finite set of places of K.
Let X,Y be projective varieties over K. Let D ∈ CD+(X/K) and let f : X → Y
be a K-morphism. Suppose that for all E ∈ CD+(Y/K), the height hX,f∗E is

unbounded on X(K) − (D + f∗E). Then there exists E0 ∈ CD+(Y/K) such that
mX,S(f∗E0,−) is unbounded on X(K)− (D + f∗E0).

Here is a summary of some results:

Theorem 5. The case Y = P1 implies the general case in Conjecture 4, and in the
number field setting Conjecture 2 implies Conjecture 4. In addition, Conjecture 4
holds unconditionally if X is a curve or an abelian variety.

The relevance of Conjecture 4 in our setting is justified by the following.

Theorem 6. Assume Conjecture 4. Then:

(i) Z is not Diophantine in Q.
(ii) Fp[z] is not Diophantine in Fp(z).
(iii) {zn : n ≥ 1} is not Diophantine in Fp(z).

Observe that Example 3 is consistent with Conjecture 4: The curve X has maps
f, g : X → P1 defined over K = Fp(z) such that f(X(K)) = A and g(X(K)) = B.
Take S = {vz} the z-adic place. Let Y0, Y1 be the homogeneous coordinates in P1.
For f we take the divisor E0 = {Y1 = 0} and for g we take E0 = {Y p1 −Y1+z = 0}.
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for rings of integers. J. Théor. Nombres Bordeaux 17 (2005), no. 3, 727-735.

2



[3] G. Cornelissen, K. Zahidi, Topology of Diophantine sets: remarks on Mazur’s conjectures.
Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999),

253-260, Contemp. Math., 270, Amer. Math. Soc., Providence, RI, 2000.

[4] M. Davis, H. Putnam, J. Robinson, The decision problem for exponential diophantine equa-
tions. Ann. of Math. (2) 74 1961 425-436.

[5] J. Demeyer, Recursively enumerable sets of polynomials over a finite field are Diophantine.

Invent. Math. 170 (2007), no. 3, 655-670.
[6] J. Denef, Diophantine sets over algebraic integer rings. II. Trans. Amer. Math. Soc. 257

(1980), no. 1, 227-236.

[7] J. Denef, L. Lipshitz, Diophantine sets over some rings of algebraic integers. J. London
Math. Soc. (2) 18 (1978), no. 3, 385-391.

[8] S. Friedberg, J. Hoffstein, Nonvanishing theorems for automorphic L-functions on GL(2).

Ann. of Math. (2) 142 (1995), no. 2, 385-423.
[9] J. Koenigsmann, Defining Z in Q. Ann. of Math. (2) 183 (2016), no. 1, 73-93.

[10] J. Matijasevich, The Diophantineness of enumerable sets. (Russian) Dokl. Akad. Nauk SSSR
191 1970 279-282.

[11] B. Mazur, The topology of rational points, Exper. Math. 1 (1992), no. 1, 35-45.

[12] B. Mazur, Open problems regarding rational points on curves and varieties, Galois repre-
sentations in arithmetic algebraic geometry (Durham 1996), London Math. Soc. Lect. Note

Ser. 254 (1998), 239-265.

[13] B. Mazur, K. Rubin, Ranks of twists of elliptic curves and Hilbert’s tenth problem. Invent.
Math. 181 (2010), no. 3, 541-575.

[14] K. Murty, R. Murty, Non-vanishing of L-functions and applications. (English summary)
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