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Abstract. Büchi’s n-th power problem on Q asks whether there exist an integer M such that the

only monic polynomials F ∈ Q[X] of degree n satisfying that F (1), . . . , F (M) are n-th power rational
numbers, are precisely of the form F (X) = (X+c)n for some c ∈ Q. In this paper, we study analogues

of this problem for algebraic function fields of positive characteristic. We formulate and prove an

analogue (indeed, such a formulation for n > 2 was missing in the literature due to some unexpected
phenomena), which we use to derive some definability and undecidability consequences. Moreover, in

the case of characteristic zero we extend some known results by improving the bounds for M (from

quadratic on n to linear on n).
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1. Introduction and main results

In the seventies, J. R. Büchi investigated the following logic problem on simultaneous representation

by quadratic forms, motivated by Matiyasevich’s negative solution to Hilbert’s tenth problem (after

the work of Davis, Putnam and Robinson) [7]:

Büchi’s undecidability problem. Does there exists an algorithm for the following decision problem?

Given diagonal quadratic forms Qj(x1, . . . , xn) = aj1x
2
1 + . . . + ajnx

2
n (for j = 1, . . . ,m) with integer

coefficients, and given b = (bj)j ∈ Zm, decide whether or not there is a tuple of integers a ∈ Zn such

that for each j = 1, . . . ,m we have Qj(a) = bj.

More precisely, Büchi formulated an arithmetic problem which, if true, would imply that the previous

problem has a negative answer. See [6, 8, 9] for more details. The arithmetic problem formulated by

Büchi is the following.
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Büchi’s squares problem I. Does there exist an absolute constant M satisfying the following? If

x2
1, . . . , x

2
M is a sequence of integer squares with second differences equal to 2 (i.e. x2

n+2−2x2
n+1+x2

n = 2

for 1 ≤ n ≤M − 2), then there is an integer c such that x2
n = (n+ c)2 for 1 ≤ n ≤M .

This problem can be (equivalently) reformulated as follows.

Büchi’s squares problem II. Does there exist a positive integer M such that the only monic poly-

nomials of degree two F ∈ Z[X] satisfying that F (1), . . . , F (M) are integer squares, are precisely of

the form F (X) = (X + c)2 for some c ∈ Z ?

We stress that the key point of this problem (and in all subsequent variations of it) is the uniformity

of M : this constant is independent of F . Indeed, it was believed by Büchi that M = 5 should work.

Since then, Büchi’s squares problem has attracted the attention of researchers not only because of the

applications in logic, but also as an interesting diophantine problem in its own right. The existence

of such an M is still an open question (even Büchi’s suggestion M = 5 remains open!). However,

two conditional results in the direction of a positive solution are known: Vojta [21] proved that the

Bombieri-Lang conjecture in the case of surfaces implies a positive solution, and Pasten [11] proved

that a version of the abc conjecture for number fields implies a positive solution too (and even to a

higher exponents generalization).

Analogues of these problems for other structures have also been investigated. An appropriate

formulation of Büchi’s squares problem for meromorphic functions and function fields in characteristic

zero was proposed and solved by Vojta in the same work cited above [21]. An alternative proof

for rational functions in characteristic zero, along with a study of the consequences in logic, was

given by Pheidas and Vidaux in [14]. Actually, in [14] the case of rational functions in positive

characteristic was also considered, but an unfortunate mistake was found by the first author, due to an

unexpected behavior in positive characteristic (see [15] for counterexamples and the corrected results).

This unexpected phenomenon is explained in more detail in Section 4 below. The statement of Büchi’s

squares problem for rational functions in positive characteristic turned out to be more subtle, but

logic consequences could still be obtained from it as in the case of characteristic zero with only minor

adaptations (see [15]). Büchi’s squares problem for function fields in positive characteristic was later

solved (and used to derive the expected undecidability results) by Shlapentokh and Vidaux in [18].

On the other hand, it is natural to extend Büchi’s squares problem to higher exponents and, of

course, to investigate the consequences in logic of a positive solution for it. This was first addressed in

[16] where Büchi’s n-th powers problem was formulated for Z, C(t) and similar rings. The only results

on Büchi’s n-th powers problem for Z (and number fields) beyond the case of squares are the results of

[11] which are conditional to a version of the abc conjecture. However, much (unconditional) progress

has been achieved in Büchi’s n-th powers problem for meromorphic functions and function fields in

characteristic zero, and the following result surveys most of what is known (see [1, 10, 11]):

Theorem A (Büchi’s problem in characteristic zero). Let K be a function field in one variable over

an algebraically closed field k of characteristic zero, or let K be the field of meromorphic functions

over k = C. Let n ≥ 2 be an integer. There is a constant M depending only on K and n such that the

following holds:

Suppose that F ∈ K[X] r k[X] is a monic polynomial of degree n such that F (b) is an n-th power

in K for at least M values of b in k. Then F itself is an n-th power in K[X].
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More precisely, in [1] it is obtained M �K n5 and their proof also works for p-adic meromorphic

functions, while in [11] it is obtained M �K n2 using a different approach, and the result also holds

for questions on µ-powerful values of F (i.e. all the zeros of F (b) have multiplicity at least µ) rather

than n-th powers. The consequences in logic were also investigated in [11]. Let us point out that the

first work going beyond the case of squares is [17] where the case of cubes for the ring C[t] was solved.

However, Büchi’s n-th powers problem for one variable function fields in positive characteristic

remained mysterious. Even an appropriate formulation of it for n > 2 was unclear due to several

unexpected examples of degree n polynomials taking n-th power values in the spirit of [15], but with

unknown general pattern (see [1] for some families of such examples in higher exponents). Note,

however, that some partial results are known; power values (with higher exponents) of quadratic

polynomials have been studied by Garcia-Fritz [4] including the case of positive characteristic, while

Hensley’s problem in positive characteristic was first considered by Shlapentokh and Vidaux [18], and

later solved by Wang [23] when the exponent n is large enough with respect to the genus of the function

field (avoiding exceptional examples). (For the convenience of the reader, let us recall that Hensley’s

problem for n-th powers asks about polynomials of the specific form F (X) = (X + a)n− b taking n-th

power values. For n = 2 it is equivalent to Büchi’s squares problem, while for n > 2 it is weaker than

Büchi’s n-th powers problem. We remark that the positive characteristic case of Hensley’s problem for

higher exponent n solved in [23] works for n ≥ (3 +
√

1 + 8g)/2 where g is the genus of the function

field, and it does not cover the case of squares from [15, 18].)

We prove the following theorem, which provides this missing analogue of Büchi’s n-th powers prob-

lem for function fields in positive characteristic.

Theorem 1. Let K be a function field in one variable of genus gK over an algebraically closed field k

of characteristic p > 0. Let n ≥ 2 be an integer and assume that

p > M := 4n(n− 1) max{gK − 1, 0}+ 11n2 − 10n− 3.

For any monic polynomial F ∈ K[X] r k[X] of degree n, the following are equivalent:

(i) F (1), F (2), . . . , F (M) are n-th powers in K,

(ii) F (m) is an n-th power in K for each m = 1, 2, . . ., and

(iii) F is an n-th pseudo-power (see below).

Again, the crucial point here is the uniformity of M . The notion of an n-th pseudo-power will be

defined (in a constructive way) in Section 4. For instance, at the end of Section 4 we will show that, if

F ∈ K[X] is monic of degree two and has some non-constant coefficient, then F is a 2-nd pseudo-power

if and only if it factors in the form F = (X − f)(X − fpr ) for some f ∈ K r k and r ≥ 0. From

this special case, it follows that Theorem 1 with n = 2 implies the main results of [15] and [18] (with

different value of M). At the end of Section 4 we will also make Theorem 1 explicit in the cubic case.

The equivalence of the items (ii) and (iii) in Theorem 1, which makes no mention to M , is insufficient

for applications in logic (at least in the context of Büchi’s problem). However, that (ii) is equivalent to

(iii) seems to be of independent arithmetic interest, as it gives a simple characterization of the monic

degree n polynomials F (X) ∈ K[X] satisfying that F (1), F (2), ... are n-th powers.

The proof of Theorem 1 has two main ingredients. First, we use value distribution (Nevanlinna

theory) to prove a general theorem for function fields (Theorem 3 below), which in the case of charac-

teristic zero improves previously known bounds, and in the case of positive characteristic gives a partial

result towards Büchi’s n-th powers problem under some restrictions (these restrictions precisely avoid
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the exceptional examples discussed above). The second ingredient is a detailed study of factorizations

of polynomials whose coefficients belong to a function field of positive characteristic (see Section 4),

which allows us to characterize in a simple way all the exceptional examples, leading to the notion

of n-th pseudo-power. This approach is new, and indeed it gives a new proof of the known case for

squares.

In the case of squares, the consequences in logic of [15, 18] in positive characteristic are derived by a

slight modification of Büchi’s original strategy. Also, in the case of higher exponents and characteristic

zero (or even for number fields), analogous consequences in logic are deduced from Büchi’s problem

by a generalization of Büchi’s approach (see [16, 11]). However, deducing consequences in logic from

Theorem 1 in the spirit of Büchi’s original approach is not straightforward, and a more subtle analysis

is necessary. Indeed, these applications in logic lead us to prove a criterion for an n-th pseudo-power

to be an actual n-th power (see Porposition 5.7) which can be useful in other contexts. Our main

application of Theorem 1 in logic is Theorem 5.1 below (a definability result), but it requires some

notational conventions before stating it, see Section 5. However, at this point we can mention the

following application to undecidability (which uses work of Pheidas [13]).

Theorem 2. Let n ≥ 2 be an integer, let p > 11n2 − 10n − 3 be a prime and let q be a power of p.

There is no algorithm for solving the following decision problem:

Given a system S consisting of equations of the form

a1X
n
1 + a2X

n
2 + . . .+ arX

n
r = b

with coefficients ai, b in Fp[t], decide whether or not S has a solution in Fq(t).

This can be stated roughly as follows: Fix any integer n ≥ 2 and p, q as above. There is no algorithm

for the problem of deciding if a variety defined over the field Fp(t) by Fermat-like equations of degree

n (as above) has an Fq(t)-rational point or not.

The exceptional examples from [15], that initially seemed to be problematic, turned out to be a

useful tool. Indeed, they have applications outside the context of Büchi’s problem and constitute one

of the main technical tools in [12], yielding uniform definability results. We hope that Theorem 1 can

be useful in this direction too, since it gives a complete characterization of these exceptional examples

for higher exponents, not only squares.

Finally, we state our main theorem for one variable function fields.

Theorem 3. Let K be a function field of genus gK over an algebraically closed field k, and let C be

the associated smooth projective curve. Let n ≥ 2 and M be positive integers with

M > 4nmax{gK − 1, 0}+ 11n− 3.

Let F ∈ K[X] r k[X] be a monic polynomial of degree n. Write F = PH where P ∈ k[X] is

monic, H ∈ K[X] is monic and H is not divisible by any non-constant polynomial in k[X]. Let

G1, . . . , G` ∈ K[X] be the distinct monic irreducible factors of H and let k1, . . . , k` ≥ 1 be such that

H =
∏`
j=1G

kj
j . Furthermore, if the characteristic p of K is positive, then we assume that for each

1 ≤ j ≤ ` the polynomial Gj is separable over K and Gj /∈ Kp[X]. Let µ ≥ maxj kj be an integer and

let β1, . . . , βM be distinct elements of k.

If for each 1 ≤ i ≤ M the zero multiplicity of F (βi) ∈ K at every point p ∈ C(k) is divisible by µ

(with the convention that µ divides ∞), then µ = k1 = · · · = k` and H = Gµ, where G = G1 · · ·G`.
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Remark. (1) This result implies Theorem A in the case of function fields, with the improved

constant M �K n. Indeed, if F (βi) is an n-th power in K then the zero multiplicity of F (βi)

at every point p ∈ C(k) is divisible by µ.

(2) The extra condition in the case of positive characteristic cannot be dropped. For instance, say

that the characteristic of K is p > 0, let f ∈ K be non-constant and let n ≥ 2 be an integer

not divisible by p. For any r ≥ 1 define the polynomial

Fr(X) = (X − f)n−1(X − fp
rφ(n)

) ∈ K[X]

where φ is the Euler function. A straightforward computation using Euler’s congruence shows

that Fr(b) is an n-th power for pr values of b in k (namely, for any b with bp
r

= b) although

all irreducible factors of Fr have multiplicity < n. Taking r large we see that no uniform M

as in Theorem 3 can work for the polynomials Fr; the problem is that these polynomials have

irreducible factors X − fprφ(n)

in Kp[X].

The paper is structured as follows. We will recall some definitions and basic results of the Nevanlinna

theory (i.e. value distribution) for function fields and prove key Lemmas in Section 2. The proof of

Theorem 3 will be given in Section 3. Then we will give a more accurate discussion of the positive

characteristic case and prove Theorem 1 in Section 4. Finally, Section 5 is devoted to the consequences

in logic of Theorem 1.

2. Preliminaries on value distribution

In this section we present some preliminary results on value distribution in algebraic function fields

in one variable. A crucial concept in this context is the notion of height, recalled below. For a more

detailed exposition on heights (in a more general context) the reader can consult chapters III and IV

of [5].

Let K be an algebraic function field of one variable over an algebraically closed field k of charac-

teristic p ≥ 0. Let C be the smooth projective curve defined over k associated to K and write g for

the genus of K (or equivalently, of C).

We first define valuations and height functions on the function field K. For each point p ∈ C(k),

we may choose a uniformizer tp to define a normalized order function vp := ordp : K→ Z∪ {∞} at p.

For f ∈ K, the (relative) height is defined by

hK(f) :=
∑

p∈C(k)

−min{0, vp(f)}

that is, the degree of the pole divisor of f (which is equal to the degree of the zero divisor of f whenever

f is not the zero function). For x = [x0:...:xn] ∈ Pn(K) (taking representatives xi ∈ K) the projective

height is defined by

hK(x) :=
∑

p∈C(k)

−min{vp(x0), ..., vp(xn)}

which is independent of the choice of the representative vector (x0, ..., xn) ∈ Kn+1. Note that for

f ∈ K we have hK(f) = hK([1:f ]).

For the remaining of this section, we think about K as fixed, and consider algebraic extensions of

it. Denote by K̄ the algebraic closure of K. Let α ∈ K̄ be a non-constant element. Let L be an

algebraic extension of K containing α, let CL be a smooth projective curve over k of genus gL such
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that L = k(CL) and let πL : CL → C be the corresponding morphism. For each q ∈ CL(k), the

normalized order function vq : L→ Z ∪ {∞} satisfies the relation

vq(f) = eqvp(f) for f ∈ K,(1)

where p = q|K, vp : K→ Z∪{∞} is the normalized valuation attached to p, and eq is the ramification

index of πL : CL → C at q. Hence,

[L : K] · vp(f) =
∑

q∈π−1
L (p)

vq(f)(2)

for f ∈ K. The absolute height of the element α ∈ K̄ is defined by

h(α) :=
1

[L : K]
hL(α) =

1

[L : K]

∑
q∈CL(k)

−min{0, vq(α)},

where we recall that L/K is chosen so that it contains α. It is known that the absolute height of

α is independent of the choice of L, see for instance [5], Chapter II, Section 1 (this follows from the

definition and the relation (1)). Interpreting the height as the degree of the pole divisor (on a suitable

curve) gives the following elementary, though fundamental, properties of heights which we will use

repeatedly in our computations.

Proposition 2.1. For f, g ∈ K̄ we have h(f + g) ≤ h(f) + h(g) and h(fg) ≤ h(f) + h(g). If f 6= 0

we also have h(1/f) = h(f). Moreover, if b ∈ k and f + b 6= 0 (in particular, for f non-constant) then

h(f + b) = h(f).

We remark that under our notation, hK(f) = h(f) for f ∈ K. For x = [α0, ..., αn] ∈ Pn(K̄) the

absolute projective height is given by

h(x) :=
1

[L : K]
hL([α0:...:αn])

which is independent of the choice of αi and L, as long as all the αi belong to L.

Let A(X) = anX
n + an−1X

n−1 + · · ·+ a1X + a0 ∈ K[X] with an 6= 0. Denote by

vp(A) := min{vp(a0), ..., vp(an)} for p ∈ C(k).

The height of A is defined by

h(A) := hK([a0:...:an]) = −
∑

p∈C(k)

vp(A).

We recall that Gauss’s lemma in this context says that

vp(AB) = vp(A) + vp(B),(3)

where A and B are in K[X] and p ∈ C(k). Consequently, we have that

h(AB) = h(A) + h(B).(4)

If we further assume that A is an irreducible polynomial in K[X] and let α ∈ K̄ be a zero of A, then

h(A) = degA · h(α)(5)

because all the roots of A are conjugated over K and have the same height. Let S̃ be a finite subset

of CL(k) and β be a non-zero element in L. The truncated counting function with respect to S̃ over

L is defined by

N̄L,S̃(β) :=
∑

q∈CL(k)rS̃

min{1, v+
q (β)},
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where v+
q (β) := max{0, vq(β)}. This function counts the number of zeros (without taking multiplicity

into account) of β on CL, excepting possible zeros in S̃. In particular, since the height of a non-zero

β is also equal to the degree of its zero divisor, one has the often useful inequality

N̄L,S̃(β) ≤ hL(β).

The normalized truncated counting function with respect to S̃ is given by

N̄S̃(β) :=
1

[L : K]
N̄L,S̃(β).

With this normalization one has N̄S̃(β) ≤ h(β). We recall the truncated second main theorem for

function fields in arbitrary characteristic (this is the special case of Theorem 1 in [22] with m = 1,

n = 1, f0 = f , f1 = 1 and Li = X − biY ).

Theorem 2.2. Let p ≥ 0 be the characteristic of K, S be a set containing a finite number of points

of C(k) and b1, ..., bq be distinct elements in k. If f ∈ K r kKp, then

(q − 2)hK(f) ≤
q∑
i=1

N̄S(f − bi) + 2gK − 2 + |S|.

In our applications we will fix K and apply a version of the second main theorem to some α

algebraic over K, hence we need to keep track of the genus of the field K(α). Recall the following from

Proposition 3.11.1 in [19].

Proposition 2.3. Let CL be a smooth projective curve over k of genus gL such that its function field,

L := k(CL), is a finite extension of K. Assume that {α1, ..., αm} is a basis of L/K such that all

αi ∈ L(D) for some divisor D ∈ Div(CL). Then

gL − 1 ≤ [L : K] · (gK − 1) + degD.

Proposition 2.4. Let α be a non-constant algebraic element over K with [K(α) : K] = m. Denote

by L = K(α) and let CL be a smooth projective curve over k of genus gL such that L = k(CL). Then

gL − 1 ≤ m(gK − 1) + (m− 1)hL(α).

Proof. Since [K(α) : K] = m, the collection {1, α, α2, ..., αm−1} is a basis of K(α)/K. Then the divisor

D in Proposition 2.3 can be taken as D := (m− 1)(α)∞ where (α)∞ denotes the divisor of poles of α

in CL. Taking degrees and recalling the definition of the height, we see that

degD = (m− 1) deg(α)∞ = (m− 1)hL(α).

The assertion then follows directly from Proposition 2.3. �

The previous results lead to the following version of the second main theorem for algebraic functions

with bounded degree that is better suited for our applications.

Theorem 2.5. Let α be a non-constant algebraic over K, let L = K(α) and assume that α is not a

p-th power in L if the characteristic p of K is positive. Let m = [L : K], let CL be the corresponding

smooth projective curve and let S̃ be a finite set of points in CL(k). Let b1, ..., bq be distinct elements

in k. Then

(q − 2m)h(α) ≤
q∑
i=1

N̄S̃(α− bi) + 2(gK − 1) +
1

m
|S̃|.
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Proof. We apply Theorem 2.2 to f = α ∈ L with S = S̃ (using L instead of K in the theorem) to get

(q − 2)hL(α) ≤
q∑
i=1

N̄L,S̃(α− bi) + 2gL − 2 + |S̃|.

Using Proposition 2.4 we find

(q − 2)hL(α) ≤
q∑
i=1

N̄L,S̃(α− bi) + 2m(gK − 1) + 2(m− 1)hL(α) + |S̃|.

Dividing by m we obtain

(q − 2)h(α) ≤
q∑
i=1

N̄S̃(α− bi) + 2(gK − 1) + 2(m− 1)h(α) +
1

m
|S̃|,

hence the result. �

The condition of α /∈ Lp when p > 0 can be formulated as follows.

Proposition 2.6. Suppose that the characteristic p of K is positive. Let α /∈ k be algebraic over K

and let L = K(α). Let P (X) ∈ K[X] be the monic minimal polynomial of α over K. Then P (X) is

not in Kp[X] if and only if α is not a p-th power in L.

Proof. Write P = Xd + cd−1X
d−1 + . . .+ c1X + c0 with ci ∈ K. If P ∈ Kp[X] then for each i we take

bi ∈ K with ci = bpi . Let H = Xd + bd−1X
d−1 + . . .+ b1X + b0 ∈ K[X] and let β ∈ K̄ be a root of H.

Then we have the equation

βd + bd−1β
d−1 + . . .+ b1β + b0 = 0

and taking p-th powers we get P (βp) = 0. Hence βp is a Galois conjugate of α. Let σ be a K-

automorphism of K̄ taking βp to α, then u = σ(β) has the property that up = α (hence K(α) ⊆ K(u))

and moreover H(u) = 0 (hence [K(u) : K] ≤ degH = degP = [K(α) : K]). Therefore K(α) = K(u)

and we see that α = up is a p-th power in K(α).

Conversely, if α is a p-th power in K(α) then we let v ∈ K(α) be such that α = vp. Note

that K(α) = K(v), so the minimal polynomials of v and α have the same degree d. Let H =

Xd + bd−1X
d−1 + . . .+ b1X + b0 ∈ K[X] be the minimal polynomial of v over K and observe that

vd + bd−1v
d−1 + . . .+ b1v + b0 = H(v) = 0,

thus, taking p-th powers we see that α is a root of the polynomial

Q = Xd + bpd−1X
d−1 + . . .+ bp1X + bp0 ∈ Kp[X].

Since Q is monic of degree d = degP and Q(α) = 0, we conclude that P = Q. Therefore P ∈
Kp[X]. �

Finally, we turn our attention to some lemmas specific to our applications. Let A ∈ K[X] be a

monic separable (i.e. without repeated roots) polynomial. Consider the factorization A = A1 · · ·Am
where Ai are distinct monic separable irreducible polynomials in K[X]. Let uj ∈ K̄ (1 ≤ j ≤ degA)

be the roots of A and note that they are pairwise distinct. Let ∆A(ui) =
∏
j 6=i(ui − uj). With this

notation, we have the following two lemmas.

Lemma 2.7. With the assumptions listed above, for each 1 ≤ j ≤ degA we have

h(∆A(uj)) ≤ (2 deg(A)− 2) max
1≤i≤degA

{h(ui)}.
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Proof. Without loss of generality we may assume that j = 1. By Proposition 2.1

h(∆A(u1)) = h

∏
i 6=1

(u1 − ui)

 ≤ degA∑
i=2

h(u1 − ui)

≤
degA∑
i=2

(h(u1) + h(ui)) ≤ (2 degA− 2) max
1≤i≤degA

{h(ui)}.

�

Lemma 2.8. We keep the notation and assumptions from above, concerning A, the Ai and the uj.

Suppose that α = u1 is a root of A1 and that α /∈ k. Let L = K(α) and π : CL → C be the finite

ramified covering corresponding to the field extension K ⊆ L. We have the following.

(i) ∆A(α) belongs to L and it is not zero.

(ii) Let q be a point in CL(k) such that vq(∆A(α)) = 0, vq(α) ≥ 0 and vq(A) ≥ 0. Suppose that

vq(α−β) > 0 for some β ∈ K. Then vq(A1(β)) = vq(α−β) and vq(Ai(β)) = 0 for each i 6= 1.

Consequently, vq(α− β) ≥ vp(A1(β)) > 0 and vp(Ai(β)) = 0 for each i 6= 1, where p = π(q).

Proof. We can assume that u1, . . . , ur are the roots of A1 and recall that they are distinct. Evaluating

the identity

A′1(X) =

r∑
j=1

∏
i∈{1,...,r}r{j}

(X − ui)

at X = u1 we find

A′1(u1) =

r∏
j=2

(u1 − uj).

Observe that

A2(u1) · · ·Am(u1) =
∏
j>r

(u1 − uj)

(empty products are taken as 1). From the last two displayed equations and recalling the definition of

∆A(α) we obtain

∆A(α) = A′1(α)A2(α) · · ·Am(α).(6)

Since the Ai’s are over K, this expression shows that ∆A(α) is in L. Moreover, it is not zero as the

Ai’s are distinct irreducible separable polynomials. Assertion (i) is concluded.

For (ii), we first note that since all the Ai’s are monic polynomials and vq(1) = 0, we have that

vq(Ai) ≤ 0 for all q ∈ CL(k). Then the assumption vq(A) ≥ 0 implies that vq(Ai) = 0 for all i by (3).

This is equivalent to say that all the coefficients of the Ai’s are regular at q. Therefore, vq(Ai(α)) ≥ 0

and vq(A′i(α)) ≥ 0 for 1 ≤ i ≤ m, since vq(α) ≥ 0. Consequently, as vq(∆A(α)) = 0, we have

vq(A′1(α)) = vq(A2(α)) = · · · = vq(Am(α)) = 0(7)

by (6). We also note that vq(β) ≥ 0 since vq(α) ≥ 0 and vq(α− β) > 0. Therefore,

vq(Ai(α)−Ai(β)) ≥ vq(α− β) > 0 for 1 ≤ i ≤ m(8)

because Ai(α)−Ai(β) is a multiple of α−β with an element regular at q. As Ai(β) = Ai(α)−(Ai(α)−
Ai(β)), (7) and (8) imply that vq(Ai(β)) = 0 for 2 ≤ i ≤ m. Similarly, as A1(α) = 0, we can write

A1(β) = A′1(α)(β − α) +
A′′1(α)

2
(β − α)2 + · · · .
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Since vq(A′1(α)) = 0 by (7), this implies that vq(A1(β)) = vq(α − β). The rest of the result follows

from (1). �

3. Proof of main result for function fields

The purpose of this section is to prove Theorem 3.

Proof of Theorem 3. We keep the notation from the statement of the theorem. Let λi = P (βi) ∈ k

for each 1 ≤ i ≤ M and define M ′ = M + 1 − n. Relabeling the βi if necessary, we can assume that

all the λi are non-zero for 1 ≤ i ≤ M ′ (indeed, degP ≤ n − 1 so it can have at most n − 1 distinct

zeros). Let αi for 1 ≤ i ≤ degG be zeros of G; these are pairwise distinct thanks to our assumption

that the Gj are separable polynomials. Without loss of generality we assume that α := α1 is a zero

of G1 and h(α) ≥ h(αi) for 1 ≤ i ≤ degG. Let L = K(α), m = [L : K] and let π : CL → C be

the ramified covering associated to the extension K ⊆ L. By Lemma 2.8 applied to A = G (which is

allowed since G does not have repeated roots) we see that ∆G(α) is a non-zero element of L (hence

defines a function on CL), so we can define the set

S̃ = {q ∈ CL(k) : vq(α) < 0, or vq(∆G(α)) > 0, or vq(G) < 0}

which is finite. Then

1

m
|S̃| ≤ h(α) + h(∆G(α)) + h(G) ≤ (3 degG− 1)h(α)(9)

where the first inequality uses the interpretation of the height of h(∆G(α)) as the (suitably normalized)

degree of the divisor of zeros of ∆G(α), and the second inequality is due to Lemma 2.7 and to

h(G) =
∑̀
j=1

h(Gj) ≤ degG · h(α)

which follows from (4), (5), and the assumption that α has maximal height among the zeros of G.

Suppose that k1 < µ. We first show that if q ∈ CL(k) r S̃ and vq(α − βi) > 0 for some fixed i

between 1 and M ′, then vq(α−βi) ≥ 2. After this is proved, we will derive a contradiction using value

distribution. This contradiction will show that k1 = µ.

By Lemma 2.8 (again with A = G), we have that vp(Gj(βi)) = 0 for j 6= 1 and vq(α − βi) ≥
vp(G1(βi)) > 0 where p = π(q). Since each of the zeros (in C) of F (βi) = λi

∏`
j=1Gj(βi)

kj has

multiplicity divisible by µ for each 1 ≤ i ≤M , and since the λi are non-zero constants for 1 ≤ i ≤M ′,
we see that

vq(α− βi) ≥ vp(G1(βi)) =
1

k1
vp(F (βi)) ≥

µ

k1
> 1.

Consequently, vq(α − βi) ≥ 2 whenever q ∈ CL(k) r S̃ and vq(α − βi) > 0, as we claimed. In partic-

ular, recalling that the truncated counting function N̄L,S̃ counts zeros on CL away from S forgetting

multiplicities, while the height hL equals the degree of the zero divisor (counting multiplicities) we

find that for each i

N̄S̃(α− βi) =
1

m
N̄L,S̃(α− βi) ≤

1

2m
hL(α− βi) =

1

2
h(α− βi).



BÜCHI’S PROBLEM IN POSITIVE CHARACTERISTIC 11

If p > 0, our additional assumption G1 /∈ Kp[X] implies that α is not in Lp, by Proposition 2.6. Then

we can use Theorem 2.5 (for any p ≥ 0), the previous inequality, and (9) to get

(M ′ − 2m)h(α) ≤
M ′∑
i=1

N̄S̃(α− βi) + 2(gK − 1) +
1

m
|S̃|

≤ 1

2

M ′∑
i=1

h(α− βi) + 2(gK − 1) + (3 degG− 1)h(α)

=

(
M ′

2
+ 3 degG− 1

)
h(α) + 2(gK − 1)

where the last equality is due to Proposition 2.1. Therefore, since h(α) ≥ 1/m, n ≥ m and degG ≤ n
we obtain (

M − n+ 1

2
− 5n+ 1

)
≤ 2(gK − 1)

h(α)
≤ 2nmax{gK − 1, 0}

which implies M ≤ 4nmax{gK − 1, 0}+ 11n− 3. This contradicts the actual value of M so we must

have µ = k1.

If ` = 1 then we are done. Otherwise, we now let F1 = P
∏`
j=2G

kj
j . Then F = Gµ1F1. Since each

of the zeros of F (βi) has multiplicity divisible by µ for each 1 ≤ i ≤ M , this expression implies that

each of the zeros of F1(βi) also has multiplicity divisible by µ for each 1 ≤ i ≤ M . Therefore, we can

repeat the previous argument to conclude that k2 = µ. This inductive process will lead to the fact

that kj = µ for each j, as we wanted. �

4. Generalized Büchi’s problem in positive characteristic

In this section we use Theorem 3 to solve the higher exponents generalization of Büchi’s problem

in function fields of positive characteristic. Let us first discuss on the meaning of Büchi’s problem in

this case.

The classical Büchi’s problem over Z roughly says the following: For certain uniform M , if a monic

polynomial of degree two F ∈ Z[X] satisfies that F (1), . . . , F (M) are squares, then F is a square.

The analogous statement for a one variable function field K over an algebraically closed field of

characteristic zero (which is a theorem) cannot be stated exactly in this way because if F has constant

coefficients then trivially all the values F (1), F (2), . . . are squares, so this exceptional case should be

taken into account. This leads to the statement: For certain uniform M , if a monic polynomial of

degree two F ∈ K[X] satisfies that F (1), . . . , F (M) are squares, then F has constant coefficients or F

is a square.

For function fields K in positive characteristic p > 0 (say, p odd) the situation becomes worse.

Of course p > M for otherwise 1, . . . ,M are not distinct in the field, but there are other non-trivial

issues. For example the polynomial F = (X − fpr )(X − f) ∈ K[X] (with f ∈ K non-constant) has

non-constant coefficients and if r > 0 then it is not a square. However F (1), F (2), . . . are squares

(provided that p > 2) because for m = 1, 2, . . . one has

F (m) = (m− fp
r

)(m− f) = (m− f)p
r+1.

The point is that there are no other exceptions as proved in [15, 18], so the correct statement is: For

certain uniform M , if a monic polynomial of degree two F ∈ K[X] satisfies that F (1), . . . , F (M) are

squares, then F has constant coefficients or F = (X−fpr )(X−f) with r ≥ 0 and f ∈ K non-constant

(note that with r = 0 we recover the case when F is a square).
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It is not difficult to produce other exceptional cases for the higher exponents analogue of Büchi’s

problem in positive characteristic (see [1]). With this consideration in mind, it becomes clear that a

satisfactory solution in this context should provide an explicit description of all exceptional cases, and

this is the purpose of this section.

First we need to introduce some notation. Let K be a function field of genus g over an algebraically

closed field k of characteristic p > 0. Given a polynomial G = adX
d + . . . + a1X + a0 ∈ K[X] and a

positive integer w we define

G[w] = awdX
d + . . .+ aw1 X + aw0 .

If W = (w1, w2, . . . , wr) is a tuple of positive integers then we define

G[W ] = G[w1]G[w2] · · ·G[wr]

(in practice, we will only use the case when the integers wi are powers of p). For W a tuple as above

we also define its length |W | = w1 + . . .+ wr. This notation has the following convenient feature.

Proposition 4.1. Let G ∈ K[X] be a polynomial and let W = (w1, . . . , wr) be a tuple of positive

integers whose coordinates wi are powers of p. Then for m = 1, 2, . . . (i.e. for m in the prime subfield

of k) we have

G[W ](m) = G|W |(m)

(where G|W | just denotes the polynomial G to the power |W |).

Proof. Since wi are powers of p, and m belongs to the prime subfield of k we have mwi = m. Hence

G[W ](m) =
∏
i

G[wi](m) =
∏
i

G[wi](mwi) =
∏
i

G(m)wi = G(m)|W |.

�

We need the following two auxiliary lemmas.

Lemma 4.2. Let H ∈ K[X] be a polynomial of degree n and suppose that p - n. Consider the sequence

of polynomials

H,H [p], H [p2], H [p3], . . .

A polynomial in this sequence is irreducible over K if and only if all of them are irreducible over K.

Proof. It suffices to show that H is irreducible if and only if H [p] is irreducible. If H is reducible, say

H = H1H2 with H1, H2 ∈ K[X] of degree at least 1, then we have H [p] = H
[p]
1 H

[p]
2 because taking

p-th powers defines a field map σp : K→ K and the coefficients of these polynomials are in K.

Conversely, suppose that H is irreducible. Let L be the splitting field of H and let G be the Galois

group of H (that is, of L/K). Let α1, . . . , αn ∈ L be the roots of H and note that they are distinct,

since H is irreducible and p - n. Then the roots of H [p] are αp1, . . . , α
p
n ∈ L and they are pairwise

distinct (indeed, σp is injective as it is a field map). Hence, to show that H [p] is irreducible it suffices

to show that G acts transitively on the set {αpj}j . Given indices i, j let τ ∈ G be such that αi = τ(αj);

this is possible since H is irreducible so that G acts transitively on the roots of H. Taking p-th powers

we get αpi = τ(αj)
p = τ(αpj ) because τ is compatible with multiplication. This proves that G acts

transitively on the roots of H [p]. �

Lemma 4.3. Given H ∈ K[X] with some non-constant coefficient, there exist a unique integer i ≥ 0

and a unique G ∈ K[X] such that G /∈ Kp[X] and H = G[pi]. Moreover, if H is irreducible, then G is

irreducible.
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Proof. For the existence, it suffices to show that if f ∈ K is non-constant then there is some i and

g ∈ K \Kp such that f = gp
i

(then we apply this to the coefficients of H). But this follows from the

fact that the extension K/k(f) is finite, hence, only finitely many terms in the sequence {f1/pi}i≥0

can belong to K because [k(fp
i

) : k(f)] = pi (alternatively, one can give a proof using valuations).

The uniqueness is clear because the map K → K given by x 7→ xp is injective. Finally, the claim

about irreducibility follows from the identity (H1H2)[p] = H
[p]
1 H

[p]
2 for hi ∈ K[X] (already used in the

first part of the proof of Lemma 4.2). �

The next result gives a way to write polynomials in K[X] which is convenient for our purposes and

can be of independent interest.

Proposition 4.4. Let F ∈ K[X] be a monic polynomial with some non-constant coefficient (that is,

F /∈ k[X]). Then F can we written as

F = P

c∏
i=1

G
[Wi]
i

where

• P ∈ k[X] is monic (possibly P = 1),

• Gi ∈ K[X] are distinct, monic, irreducible polynomials with some coefficient in KrKp (hence,

each Gi has some non-constant coefficient), and

• Wi are tuples whose coordinates are powers of p with non-negative exponent.

Moreover, if degF < p then this way of writing F is unique up to rearranging the factors G
[Wi]
i and

permuting the coordinates of each Wi.

Proof. Write F = PH1 · · ·Ht with P ∈ k[X] the monic polynomial of largest degree that divides F ,

and Hj ∈ K[X] monic irreducible for each j. Lemma 4.3 applied to each Hj gives an irreducible

polynomial Gj ∈ K[X] with some coefficient not in Kp such that Hj = G
[pnj ]
j for certain nj ≥ 0.

Rearranging terms and relabeling the Gj if necessary, we get the desired factorization (the tuples Wi

are obtained by grouping together the factors G
[pnj ]
j that have the same Gj).

Finally, we prove uniqueness when degF < p. Let us compare two such factorizations:

P

c∏
i=1

G
[Wi]
i = F = P̄

c̄∏
j=1

Ḡ
[W̄j ]
j

Each Gi and each Ḡi is irreducible with some non-constant coefficient, and P and P̄ are monic with

constant coefficients, hence P = P̄ by unique factorization in K[X]. If wia is a coordinate of Wi then

G
[wia]
i is irreducible by Lemma 4.2 (here we use degF < p, so that p does not divide the degree of any

factor of F ) and similarly for factors of the form Ḡ
[w̄jb]
j where w̄jb is a coordinate of W̄j . Therefore

each G
[wia]
i is equal to some Ḡ

[w̄jb]
j and conversely, again because K[X] is UFD. By Lemma 4.3 and

the assumption that each Gi and each Ḡj has some coefficient not in Kp, uniqueness follows. �

We refer to the expression F = P
∏c
i=1G

[Wi]
i provided by the previous proposition as Frobenius

factorization of F .

For uniqueness, the requirement degF < p cannot be dropped. For instance the polynomial Xp−fp

has two different Frobenius factorizations (X − f)[W ] = (Xp − f)[(p)] where W = (1, . . . , 1) has p

coordinates (here, f ∈ K r Kp so that Xp − f is irreducible). In our application the condition

degF < p will hold, thus we will have uniqueness.
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Definition 4.5. Let µ be a positive integer. A monic polynomial F ∈ K[X] with some non-constant

coefficient is said to be a µ-th pseudo-power if for some Frobenius factorization of F , each of the tuples

Wi appearing in this factorization has length |Wi| divisible by µ.

Note that if F is a µ-th pseudo-power it does not need to be true that all the Frobenius factorizations

satisfy the above condition. For instance, F = (X − f)p+1 is a (p + 1)-st pseudo-power because

F = (X − f)[W ′] where W ′ = (1, . . . , 1) has p+ 1 coordinates, although F = (X − f)[(1)](Xp − f)[(p)]

(here, f ∈ K r Kp). However, in our application we will have uniqueness, so that one can check

whether F is a µ-th pseudo-power or not just by looking at one Frobenius factorization.

The motivation for the previous definition comes from the following fact.

Proposition 4.6. Let F ∈ K[X] be a monic polynomial with some non-constant coefficient. Then

(1) If F is a µ-th power then it is also a µ-th pseudo-power.

(2) If F is a µ-th pseudo-power then F (m) is a µ-th power in K for each m = 1, 2, 3, . . . (that is,

for each m in the prime subfield of k).

Proof. For Item (1) we have to construct a suitable Frobenius factorization of F . Let H ∈ K[X]

be such that F = Hµ. Consider any Frobenius factorization H = P
∏c
i=1G

[Wi]
i . Let W ′i be the

concatenation of µ copies of Wi. Then F = Pµ
∏c
i=1G

[W ′i ]
i is a Frobenius factorization of F and µ

divides each |Wi|.
For Item (2), we take a Frobenius factorization F =

∏c
i=1G

[Wi]
i such that µ divides all the numbers

|Wi|. Note that Proposition 4.1 gives

F (m) = P (m)
∏
i

Gi(m)|Wi|.

Since P (m) ∈ k is always a µ-th power (as k is algebraically closed) and µ divides each |Wi|, we

conclude that F (m) is a µ-th power in K. �

The concept of µ-th pseudo-power is relevant in our situation because of Theorem 1, which solves

the generalized Büchi problem in positive characteristic. The item (2) of Proposition 4.6 already proves

part of the equivalences in Theorem 1, and for the convenience of the reader we recall the part that

remains to be proved.

Theorem 4.7. Let n ≥ 2 be an integer and assume that p > M where

M = 4n(n− 1) max{g− 1, 0}+ 11n2 − 10n− 3.

For any monic polynomial F ∈ K[X] of degree n with some non-constant coefficient, if we have that

F (1), F (2), . . . , F (M) are n-th powers in K, then F is an n-th pseudo-power.

Before proceeding to the proof we need an auxiliary result.

Lemma 4.8. Let f ∈ K r Kp. If g = 0 set N = 3 and if g ≥ 1 set N = 4g. Then there are at most

N values of b ∈ k such that b+ f ∈ K has all its zeros with multiplicity strictly larger than 1.

Proof. Suppose that b1, . . . , bq ∈ k are distinct and that for each j all the zeros of bj+f have multiplicity

at least 2. Since the truncated counting function N̄ counts zeros without considering multiplicity, while

the height h takes multiplicity into account, we find for any finite set of points S ⊆ C(k)

N̄S(f + bj) ≤
1

2
h(f + bj) =

1

2
h(f)
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(the last equality by Proposition 2.1). Taking S empty in Theorem 2.2 we have

(q − 2)h(f) ≤
q∑
j=1

N̄(f + bj) + 2g− 2 ≤ q

2
h(f) + 2g− 2

which gives (q − 4)h(f) ≤ 4(g− 1). Since h(f) ≥ 1 we get

q − 4 ≤ 4

h(f)
(g− 1)

{
≤ 4(g− 1) if g ≥ 1

< 0 if g = 0

and the result follows. �

Proof of Theorem 4.7. Assume that F (m) are n-th powers in K for 1 ≤ m ≤ M . Consider the

Frobenius factorization of F (note that n < M < p, hence we have uniqueness)

F = P

c∏
i=1

G
[Wi]
i

and define the polynomial

F0 =

c∏
i=1

G
|Wi|∗
i ∈ K[X]

where |Wi|∗ ∈ {0, 1, 2, . . . , n − 1} is the residue of |Wi| modulo n, which is a non-negative integer

(possibly 0) strictly less than n. Let n0 be the degree of F0, then

n0 ≤
∑
i

(n− 1) · degGi ≤ (n− 1)n.

Observe that the integers |Wi| − |Wi|∗ are divisible by n, so we can define the polynomial

H =

c∏
i=1

G
(|Wi|−|Wi|∗)/n
i ∈ K[X].

Note that H(λ) 6= 0 for all λ ∈ k because the Gi do not have constant roots. Set M ′ = M+1−n. Since

M < p, there exist distinct elements b1, . . . , bM ′ in the prime field of k such that P (b1), . . . , P (bM ′) ∈
k×. Then Proposition 4.1 shows that for each bj we have

F0(bj)H
n(bj) =

c∏
i=1

G
|Wi|
i (bj) =

c∏
i=1

G
[Wi]
i (bj) =

1

P (bj)
F (bj)

and it follows that each F0(bj) is an n-th power in K, because each F (bj) is an n-th power by assumption

and each P (bj) is in k.

Suppose that |Wi|∗ 6= 0 for some i (in particular, n does not divide |Wi|). Then 1 ≤ n0 = degF0

and F0 is a separable polynomial since n0 < M < p. Moreover, recall that each Gi has some coefficient

not in Kp by definition of Frobenius factorization (see Proposition 4.4). Let us consider two cases:

when n0 = 1 and when n0 ≥ 2.

In the first case F0(X) = X + f for some f ∈ KrKp and each F0(bj) = bj + f is an n-th power, in

particular each one of them has all its zeros with multiplicity at least n ≥ 2. Lemma 4.8 implies that

M ′ ≤ max{3, 4g}.
In the second case degF0 = n0 ≥ 2. Recall that F0(bj) is an n-th power for each 1 ≤ j ≤M ′ which

implies that all the zeros of each F0(bj) have multiplicity divisible by n. Taking µ = n in Theorem 3

(which is allowed since n > |Wi|∗ for each i) we see that we cannot have M ′ > 4n0 max{g − 1, 0} +

11n0 − 3, for otherwise the theorem would give n = |Wi|∗ for each non-zero |Wi|∗, a contradiction.
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In both cases we conclude

M ′ ≤ 4n0 max{g− 1, 0}+ 11n0 − 3

which contradicts the actual value of M in Theorem 4.7 because n0 ≤ (n− 1)n. Therefore |Wi|∗ = 0

for each i, hence F is an n-th pseudo-power. �

This also concludes the proof of Theorem 1.

To conclude our discussion on Theorem 1, let us make its statement explicit in the cases n = 2 and

n = 3, as promised in the introduction.

Quadratic polynomials. Suppose that F ∈ K[X] is a monic quadratic polynomial with some non-

constant coefficient and p > 2. Then F is a 2-nd pseudo-power if and only if F = (X − f)[(pr,ps)] =

(X − fpr )(X − fps) for some f ∈ K r Kp and some integers r ≥ s ≥ 0. This is the same as saying

that F = (X − hpm)(X − h) for some h ∈ K r k and m ≥ 0 (indeed, take h = fp
s

and m = r − s).
Therefore, in the case of quadratic polynomials Theorem 1 specializes to the main result of [15] and

[18], with the following improved value of M :

M(g) = 8 max{g− 1, 0}+ 21.

Cubic polynomials. Let F ∈ K[X] be a monic cubic polynomial with some non constant coefficient

and suppose p 6= 3. One can see (from the definition) that F is a 3-rd pseudo-power if and only if one

of the following holds:

• F = (X − λ)(X − f)[pr,ps] = (X − λ)(X − fpr )(X − fps) with λ ∈ k, f ∈ K r Kp and some

integers r ≥ s ≥ 0 satisfying pr + ps ≡ 0 mod 3.

• F = (X − f)[pr,ps,pt] = (X − fpr )(X − fps)(X − fpt) with f ∈ K r Kp and some integers

r ≥ s ≥ t ≥ 0 satisfying pr + ps + pt ≡ 0 mod 3.

The value of M in Theorem 1 with n = 3 is

M(g) = 24 max{g− 1, 0}+ 66.

We remark that no case of Theorem 1 with n ≥ 3 was previously known.

5. Consequences in logic

Let κ be a field of characteristic p > 0 and let k be its algebraic closure. In the following, t denotes

a transcendental element over κ (hence over k). In this section we apply Theorem 1 to the rational

function field k(t), and deduce some consequences in logic for κ(t). From now on, we write K = k(t).

As usual, the symbol |= means that a structure satisfies a formula. Let n ≥ 2 be an integer and

let Pn be a unary predicate symbol. We interpret Pn in κ(t) as follows: For f ∈ κ(t), Pn(f) holds in

κ(t) (i.e. κ(t) |= Pn(f)) if and only if f is an n-th power in κ(t). We remark that Pn allows us to

express that f ∈ κ(t) is an n-th power of some element, but we cannot a priori express an n-th root

of f (hence, we cannot take n-th powers just by using Pn).

Let us consider the language Lt,n = {0, 1,+,=, Pn, t·} where t· is a unary function symbol. Then we

can make κ(t) into an Lt,n-structure by interpreting Pn as indicated above, and t· as the multiplication

by the indeterminate t ∈ κ(t). Note that multiplication of arbitrary elements of κ(t) is not part of

the language. Our main application in logic of the notion of pseudo-powers and Theorem 1 is the

following.
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Theorem 5.1. There is a positive-existential Lt,n-formula µn[x, y, z] with free variables x, y, z and

depending only on n, such that if the characteristic of κ is

p > M := 11n2 − 10n− 3

then µn defines the multiplication in κ(t), that is

κ(t) |= µn[f, g, h] if and only if fg = h.

Note that the formula is uniform on p. A similar result holds for other function fields of positive

characteristic upon choosing a suitable interpretation of the symbol t· as multiplication by a uniformizer

at a given prime (but the formula will also depend on the genus) and for integrally closed κ-sub algebras

of κ(t) containing t. For clarity of the exposition we just consider κ(t).

This theorem is the higher exponents generalization of the main logic result of [18] (which was for

n = 2). However, our proof is different and, indeed, it gives a new proof in the case n = 2.

As a remarkable application of Theorem 5.1, we conclude from [13] (see also [20]):

Corollary 5.2. If p > M and q is a power of p, then the positive existential theory of Fq(t) over the

language Lt,n is undecidable. Hence, there is no algorithm to solve the following decision problem:

Given a system S of finitely many equations of the form

a1X
n
1 + a2X

n
2 + . . .+ arX

n
r + c1Y1 + . . .+ ckYk = b

with coefficients ai, ci, b in Fp[t] and unknowns Xi, Yi, decide whether or not S has a

solution in Fq(t).

Proof. In [13] it is shown that the positive existential theory of Fq(t) over the language Lt is undecid-

able, where Lt = {0, 1, t,+, ·,=} it the language of rings augmented with a constant symbol t for the

transcendental variable t ∈ Fq(t). Our language Lt,n can be used to define t in a positive existential

way by t ·1, and Theorem 5.1 shows that we can also define the multiplication · in a positive existential

way over Lt,n provided that p > M . Therefore, the positive existential theory of Fq(t) over Lt,n is

undecidable.

Given a positive existential Lt,n-formula Θ without free variables, we can write systems of equations

S1, . . . , Sr of the type given in the statement of this corollary, such that Fq(t) |= Θ if and only if at

least one of the Si has a solution in Fq(t). Indeed, write Θ as a disjunction of positive existential

Lt,n-formulas where ∨ is not used, and replace each variable U under a condition of the type Pn(U)

by Xn for a new variable X. After this observation, the consequence about undecidability of systems

of equations follows. �

To deduce Theorem 2 from Corollary 5.2 is standard, and we do it at the end of this section.

Similar undecidability consequences can be obtained for other structures. For instance for κ[t]

(which is an integrally closed κ-sub algebra of κ(t) containing t) by using results of Denef [3] – details

are left to the reader.

The proof of Theorem 5.1 relies on the understanding of how the Frobenius factorization interacts

with the following family of operators defined for integers `:

(10) (·)(`) : K[X]→ K[X], F 7→ F(`) = t` degFF (X/t`).

Explicitly, the operator acts on coefficients as follows:

(a0X
n + a1X

n−1 + . . .+ an−1X + an)(`) = a0X
n + t`a1X

n−1 + . . .+ t(n−1)`an−1X + tn`an.

We begin by recording some facts about these operators.
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Lemma 5.3. For each `, the operator (·)(`) is an automorphism of K[X] as multiplicative K-monoid

(by which we mean that it fixes K and preserves multiplication). Moreover it preserves degrees, and

the rule ` 7→ (·)(`) defines an injective group homomorphism Z→ AutK−MonK[X].

In particular:

Lemma 5.4. For each `, we have that H ∈ K[X] is irreducible if and only if H(`) is irreducible.

Lemma 5.5. Let G1, . . . , Gc ∈ K[X] be monic irreducible polynomials of degree d1, . . . , dc respectively.

Let d = d1 + . . . + dc and assume that d ≤ p − 2. Then for some 1 ≤ ` ≤ d + 1, we have that each

(Gi)(`) is irreducible and either it has some coefficient in K r Kp, or it is the polynomial X.

Proof. Write Gi = Xdi +ai,1X
di−1 + . . .+ai,(di−1)X+ai,di and let d+ = max di. For each 1 ≤ j ≤ d+

define the set

Rj = {v0(ai,j) : 1 ≤ i ≤ c and ai,j 6= 0} ⊆ Z

where v0 denotes the vanishing order at t = 0 (recall that ai,j ∈ K). Consider the set of residue classes

R̃ =

d+⋃
j=1

j−1 ·Rj mod p ⊆ Z/pZ

which is well defined because d+ < p, and observe that R̃ contains at most d =
∑
di elements.

Therefore, there is ` ∈ {1, 2, . . . , d + 1} such that ` mod p does not belong to −R̃. Hence, ` + R̃

does not contain 0, which means that for every j ≥ 1 we have that v0(t`jai,j) is not divisible by p (in

particular t`jai,j /∈ Kp), unless ai,j = 0. The only polynomial which is monic, irreducible and all of its

coefficients but the leading one are zero, is the polynomial X, so the result follows. �

It will be convenient to introduce the following slight variation of the concept of pseudo-power.

Definition 5.6. We say that a monic polynomial F ∈ K[X] is an n-th almost-power if it is either an

n-th pseudo-power or it belongs to k[X].

Proposition 5.7. Let F ∈ K[X] be a monic polynomial of degree n ≤ p − 2. Then F(`) is an n-th

almost-power for each 1 ≤ ` ≤ n+ 1 if and only if F is an n-th power (that is, F = (X + f)n for some

f ∈ K).

Proof. Apply the previous lemma to the collection of all monic irreducible factors Gj of F . Thus, there

is some 1 ≤ `0 ≤ n+1 such that each (Gj)(`0) is irreducible and either it is X or it has some coefficient

in KrKp. Hence, the Frobenius factorization of F(`0) has exponents of the form Wi = (1, 1, . . . , 1) (if

any) and has P = Xh for some h ≥ 0. Note that this Frobenius factorization is unique because p > n.

We have two cases: F(`0) has coefficients in k or it has some coefficient not in k. The first case leads to

F(`0) = Xn (because P = Xh) while the second case means that F(`0) is an n-th pseudo-power (recall

that F(`0) is an n-th almost-power by assumption). The latter case implies that actually there is only

one Wi = (1, . . . , 1) with exactly n components and moreover P = 1 (because the degree of F(`0) is n).

In either case F(`0) is an n-th power, and applying (·)(−`0) we conclude that F is an n-th power. The

converse follows from Item (1) of Proposition 4.6 and the multiplicativity of the operators (·)(`). �

With this at hand we can proceed to the proof of Theorem 5.1. First note that we can freely use

the following in our positive existential Lt,n-formulas, and still obtain formulas of this type that only

depend on n:
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• Subtraction (indeed, terms with negative signs can be moved to the other side of the equation

where they appear).

• Multiplication by specific integers that only depend on n. For instance 3x is short-hand for

x+ x+ x, and similarly we can use 2nx.

• Any constant, relation or function that has been already defined by a positive existential

Lt,n-formula that only depends on n.

The basic strategy is the same as the one originally devised by Büchi in the case of squares for Z:

Step 1. Reduce the problem to find a positive existential Lt,n-formula πn[x, y] (depending only on n)

that defines the n-th power map f 7→ fn in κ(t). That is, κ(t) |= πn[f, g] if and only if g = fn

in κ(t).

Step 2. Use the solution to Büchi’s problem to find such formula πn[x, y]. Note that πn[x, y] is required

to define the graph of the n-th power map, not just its image (unlike the predicate Pn); here

is the main complication of the proof.

The first step is fairly standard (see for instance [11]): if we have such a formula πn[x, y] then we can

take n-th powers in our positive existential Lt,n-formulas. Note that there are integers a 6= 0, a0, . . . , an

depending only on n such that the following formal identity holds

aT 2 = a0T
n + a1(T + 1)n + . . .+ an(T + n)n

because the (T + i)n (0 ≤ i ≤ n) form a Z-linearly independent set inside the Z-module of polynomials

in T with integers coefficients and degree at most n. Indeed, computing the Wronskian determinant

(which in this case is essentially a Vandermonde determinant) one sees that the polynomials (T + i)n

(0 ≤ i ≤ n) form a basis of the Q-vector space of polynomials in Q[T ] of degree at most n.

It follows that we can use the squaring map in our positive existential Lt,n-formulas, and now the

formula µn[x, y, z] can be constructed by observing that in any domain of characteristic different from

2 one has

(x+ y)2 = x2 + 2z + y2 if and only if z = xy.

On the other hand, the second step (finding πn[x, y]) requires a different technique and has not been

done in the literature for n > 2 in positive characteristic. The reason is that it was not clear what was

the correct formulation of Büchi’s problem in this setting, as explained in the introduction. Now we

proceed to construct πn[x, y], by first constructing several intermediate formulas and studying their

properties.

Consider the formula

(11) p[u1, . . . , un, w1, . . . , wn] :

n∧
i=1

(ui = in + in−1w1 + . . .+ iwn−1 + wn).

This formula satisfies:

Claim 5.8. Given f1, . . . , fn, a1, . . . , an ∈ κ(t) we have that κ(t) |= p[f1, . . . , fn, a1, . . . , an] if and only

if fi = F (i) for each 1 ≤ i ≤ n, where F (X) = Xn + a1X
n−1 + . . . + an ∈ κ(t)[X]. Moreover, fixing

the fi uniquely determines the ai and conversely.

This follows from the fact that the Vandermonde determinant is invertible and n < p.

Let ∆(j) be the j-th forward difference operator on sequences of length at least j+1 (with coordinates

in an abelian group), which is inductively defined as follows: if s is a sequence of length at least 1 we
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set ∆(0)s = s, and if s = (s1, . . . , sn) is a sequence of length at least j + 2 (with j ≥ 0) we set

∆(j+1)s =
(

(∆(j)s)2 − (∆(j)s)1, . . . , (∆
(j)s)n−j − (∆(j)s)n−j−1

)
where (∆(j)s)i denotes the i-th coordinate of ∆(j)s. For instance, if s = (s1, . . . s4) we have ∆(1)s =

(s2 − s1, s3 − s2, s4 − s3) and ∆(2)s = (s3 − 2s2 + s1, s4 − 2s3 + s2).

We will need the following basic properties of difference operators. Although these properties are

well-known we could not find references, hence, we include proofs.

Lemma 5.9. Let k ≤ d < N be positive integers. Let A be a commutative ring with unit. If f(X) ∈
A[X] has degree d and leading coefficient a ∈ A, then there is a polynomial g(X) ∈ A[X] of exact

degree d− k and leading coefficient

d(d− 1) · · · (d− k + 1)a

satisfying

∆(k)(f(1), . . . , f(N)) = (g(1), . . . , g(N − k)).

Proof. Note that if f(X) ∈ A[X] is a polynomial of degree d ≥ 1 with leading coefficient a, then

f(X + 1) − f(X) is a polynomial of degree d − 1 with leading coefficient da. We also observe that

applying ∆(k) to a sequence is the same as applying ∆(1) a total of k times. These two remarks give

the result. �

Proposition 5.10. Let A be an integral domain, and if charA = 0 we assume that A contains Q. Let

j ≥ 0 and N ≥ j + 1 be integers. Let s1, . . . , sN be elements in A. Assume that there is a polynomial

Q(X) ∈ A[X] of exact degree d such that

∆(j)(s1, . . . , sN ) = (Q(1), . . . , Q(N − j)).

We further assume that (d + j)! 6= 0 in A. Then there is a polynomial P (X) ∈ A[X] of exact degree

d + j such that si = P (i) for each 1 ≤ i ≤ N . Moreover, if p and q are the leading coefficients of P

and Q, then

q = (d+ j)(d+ j − 1) · · · (d+ 1)p

(for j = 0 this product is empty and we set it as 1).

Proof. For j = 0 there is nothing to prove. Let us first prove the result for j = 1. Write Q(X) =

qXd + qd−1X
d−1 + . . .+ q0 and note that for 1 ≤ i ≤ N

si − s1 =

i−1∑
m=1

Q(m) =

i−1∑
m=1

(qmd + qd−1m
d−1 + . . .+ q0) =

q

d+ 1
id+1 + h(i)

where h(X) is a polynomial of degree at most d which depends only onQ, and satisfies h(1) = −q/(d+1)

(this condition is obtained by setting i = 1, and note that by assumption d+ 1 is invertible). Here, we

used the well-known formulas for power sums

i∑
m=1

mr =
ir+1

r + 1
+ (lower degree terms)

(see for instance Theorem 3, p.384 [2]) that can be applied thanks to our assumption (d + j)! 6= 0 in

A. The result for j = 1 follows, taking

(12) P (X) =
q

d+ 1
Xd+1 + h(X) + s1.
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The general case is proved by induction. Assume that the result is proved for j = `. Let (si)
N
i=1

be a sequence satisfying all the hypotheses of the result for j = ` + 1. Consider the new sequence

s′i = si+1 − si for 1 ≤ i ≤ N ′ = N − 1. We have N ′ ≥ `+ 1,

∆(`)(s′i)i = ∆(`+1)(si)i = (Q(1), . . . , Q(N − (`+ 1))) = (Q(1), . . . , Q(N ′ − `))

and (d + `)! 6= 0 (because (d + ` + 1)! 6= 0). Hence, by induction hypothesis there is a polynomial Q′

of degree d + ` with s′i = Q′(i). Now we use the case j = 1 (already proved) applied to the sequence

(si)i which satisfies

∆(1)(si)i = (s′i)i = (Q′(1), . . . , Q′(N ′)) = (Q′(1), . . . , Q′(N − 1)).

We obtain a polynomial P of degree deg(Q′) + 1 = d+ `+ 1 such that si = P (i) for 1 ≤ i ≤ N . The

relation between leading coefficients also holds (using the induction hypothesis and (12)), proving the

result. �

If we write an equality between sequences in our formulas, we mean the conjunction of all the

coordinatewise equalities. With this notation we can define the positive existential Lt,n-formula

b[u1, . . . , uM ] :

(
M∧
i=1

Pn(ui)

)
∧∆(n)(u1, . . . , uM ) = (n!, . . . , n!)

with M as in the statement of Theorem 5.1. Note that this value of M is the same as in Theorem 1

with g = 0.

Claim 5.11. We have that κ(t) |= b[f1, . . . , fM ] if and only if all the fi are n-th powers in κ(t) and

there is a monic polynomial F ∈ κ(t)[X] of degree n such that fi = F (i) for each 1 ≤ i ≤ M . The

polynomial F is uniquely determined by the conditions fi = F (i) for 1 ≤ i ≤ M and it is an n-th

almost-power in K[X].

Proof. First assume that κ(t) |= b[f1, . . . , fM ]. The existence of F ∈ κ(t)[X] monic of degree n with

F (i) = fi follows from the previous proposition by taking A = κ(t), si = fi, j = n, d = 0 and Q(X) =

n! (note that (d + j)! = n! 6= 0 because p > M > n) because κ(t) |= ∆(n)(f1, . . . , fM ) = (n!, . . . , n!).

The polynomial F is unique because M > n. Additionally, we have that each fi is an n-th power in

κ(t) because κ(t) |=
∧M
i=1 Pn(fi).

We still have to show that F is an n-th almost-power. Note that all the fi are n-th powers in K

because they are n-th powers in κ(t). Hence, Theorem 1 implies that either F ∈ k[X] or F is an n-th

pseudo-power in K[X]. In either case we get that F is an n-th almost-power in K[X] (see Definition

5.6).

Conversely, suppose that all the fi are n-th powers in κ(t) and there is a monic polynomial F ∈
κ(t)[X] of degree n such that fi = F (i) for each 1 ≤ i ≤M . The clause

∧M
i=1 Pn(fi) is satisfied because

the fi are n-th powers. The clause ∆(n)(f1, . . . , fM ) = (n!, . . . , n!) is satisfied by Lemma 5.9 because

fi = F (i) and F is a monic polynomial of degree n. �

Recall that M > n. Now we see that the formula (see (11))

B[u1, . . . , uM , w1, . . . , wn] : b[u1, . . . , uM ] ∧ p[u1, . . . , un, w1, . . . , wn]

has the following property: if κ(t) |= B[f1, . . . , fM , a1, . . . , an] then the polynomial F = Xn+a1X
n−1+

. . .+ an ∈ κ(t)[X] is an n-th almost-power in K[X] and fi = F (i) for each 1 ≤ i ≤ M . In particular,

the formula

A[w1, . . . , wn] : ∃u1 · · · ∃uMB[u1, . . . , uM , w1, . . . , wn]
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satisfies the following: if κ(t) |= A[a1, . . . , an] then the polynomial F = Xn+a1X
n−1+. . .+an ∈ κ(t)[X]

is an n-th almost-power in K[X]. Now consider the formula

A`[w1, . . . , wn] : A[t` · w1, t
2` · w2, . . . , t

n` · wn]

defined for ` a positive integer, where tr· denotes the symbol t· repeated r times. It follows that

if κ(t) |= A`[a1, . . . , an] then F(`) (defined in (10)) is an n-th almost-power in K[X], where F =

Xn + a1X
n−1 + . . .+ an ∈ κ(t)[X].

Consider the positive existential Lt,n-formula

(13) P [w1, . . . , wn] :

n+1∧
`=1

A`[w1, . . . , wn]

Claim 5.12. Let a1, . . . , an ∈ κ(t). We have that κ(t) |= P [a1, . . . , an] if and only if the polynomial

F = Xn + a1X
n−1 + . . . + an ∈ κ(t)[X] is of the form F = (X + ν)n for some ν ∈ κ(t). This ν is

given by a1 = nν.

Proof. If κ(t) |= P [a1, . . . , an] then by our discussion on A` we see that each F(`) is an n-th almost-

power in K[X], for each 1 ≤ ` ≤ n+ 1. By Proposition 5.7 we conclude that there is ν ∈ K such that

F = (X + ν)n. Since

Xn + a1X
n−1 + . . .+ an = F = (X + ν)n = Xn + nνXn−1 + . . .+ νn

we see that a1 = nν, hence, ν ∈ κ(t).

Conversely, if Xn + a1X
n−1 + . . .+ an = F = (X + ν)n with ν ∈ κ(t) then each F(`) is monic and

it is an n-th power in κ(t)[X]; more concretely

F(`) = (X + t`ν)n.

Hence F(`)(i) is an n-th power in κ(t) for each ` and each i. In particular (see Claim 5.11) we get that

κ(t) |= P [a1, . . . , an]. �

After all this analysis, we can use the formulas p and P (see (11) and (13)) to finally define the

positive existential Lt,n-formula

πn[x, y] : ∃w1 · · · ∃wn∃u1 · · · ∃unP [w1, . . . , wn] ∧ p[u1, . . . , un, w1, . . . , wn] ∧ y = u1 ∧ w1 + n = nx.

Claim 5.13. Let f, g ∈ κ(t). We have κ(t) |= πn[f, g] if and only if g = fn.

Proof. Suppose that κ(t) |= πn[f, g]. We see that there is a polynomial F = (X + ν)n = Xn +

w1X
n−1 + . . . + wn ∈ κ(t)[X] with ν ∈ κ(t) (by Claim 5.12) such that the variables ui appearing in

πn[f, g] satisfy F (i) = ui for 1 ≤ i ≤ n (by Claim 5.8). In particular, since the clauses g = u1 and

w1 + n = nf hold, we see that g = F (1) = (1 + ν)n and nν + n = nf , from which we obtain g = fn.

Conversely, if g = fn, then we define ν = f − 1 and F = (X + ν)n. Let ai ∈ κ(t) (for 1 ≤ i ≤ n) be

defined by F = Xn+a1X
n−1 + . . .+an. With this notation, πn[f, g] holds in κ(t) by choosing wi = ai

and ui = F (i), for 1 ≤ i ≤ n. The verification is immediate from Claim 5.8 and Claim 5.12. �

As explained before (see the discussion after Proposition 5.7), this claim concludes the proof of

Theorem 5.1.

Finally, we present a proof of Theorem 2, using Corollary 5.2.
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Proof of Theorem 2. Consider a system of equations S as in Corollary 5.2. For each i one can introduce

new variables Xi,1, Xi,2, . . . , Xi,n and define the diagonal form of degree n

Di =
1

n!
∆(n−1)(Xn

i,1, X
n
i,2, . . . , X

n
i,n) ∈ Fp[Xi,1, Xi,2, . . . , Xi,n]

which is well-defined because p > M > n (here is a slight abuse of notation: strictly speaking we wrote

a sequence of length 1 whose only term is our form Di). We claim that Di is universal in Fq(t), i.e. it

represents all the elements in Fq(t). Indeed, by Lemma 5.9 applied to the polynomial Xn (with d = n,

a = 1 and k = n− 1) we have the identity (here, X is a variable)

Di(X,X + 1, . . . , X + n) = X + b

for certain b ∈ Fp. Hence, given f ∈ Fq(t) we have

Di(f − b, f − b+ 1, . . . , f − b+ n) = f

which proves that Di is universal in Fq(t).
Let us substitute, in each equation of S, the variable Yi by the form Di and call S′ the new system.

Since Di is universal in Fq(t), we see that S′ has a solution if and only if S has a solution (there is

nothing special about Di; any universal diagonal form of degree n would work).

If we have an algorithm A for the decision problem stated in Theorem 2 then we could apply it to

S′ and decide whether or not S′ has solutions in Fq(t). Hence we would be able to decide whether or

not S has solutions in Fq(t). After Corollary 5.2 this is not possible for all such systems S, and we

conclude that the algorithm A cannot exist. This proves Theorem 2. �
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