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Abstract. For every number field k, we construct an affine algebraic surface X over k with a
Zariski dense set of k-rational points, and a regular function f on X inducing an injective map
X(k) → k on k-rational points. In fact, given any elliptic curve E of positive rank over k, we can
take X = V × V with V a suitable affine open set of E. The method of proof combines value
distribution theory for complex holomorphic maps with results of Faltings on rational points in
sub-varieties of abelian varieties.

1. Introduction

1.1. Results. It is not known whether there is a bivariate polynomial f ∈ Q[x1, x2] inducing an
injective function Q × Q → Q. According to Remarque 10 in [7] (which dates back to 1999)
the existence of such an f was first asked by Harvey Friedman, and Don Zagier suggested that
f = x71 + 3x72 should have this property. In the direction of a positive answer to Friedman’s
question, we prove an injectivity result for bivariate polynomial functions on elliptic curves; in fact,
our polynomial functions are very close to Zagier’s suggestion.

Theorem 1.1. Let k be a number field. Let a, b ∈ k with 4a3 + 27b2 6= 0 and consider the smooth
affine curve C ⊆ A2

k defined over k by the equation

y2 = x3 + ax+ b.

Let α, β, γ ∈ k with α, β 6= 0 and γ /∈ {−1, 0, 1}. Let n ≥ 9 be a positive integer such that the only
n-th root of unity in k is 1. Define the morphism P : C → A1

k by P (x, y) = αx+ βy and define the
morphism f : C × C → A1

k by

f((x1, y1), (x2, y2)) = P (x1, y1)
n + γ · P (x2, y2)

n = (αx1 + βy1)
n + γ(αx2 + βy2)

n.

We have the following:

(i) The map C(k)→ k induced by P on k-rational points is injective away from finitely many
points of C(k).

(ii) Let U ⊆ C be any non-empty Zariski open set defined over k such that the function U(k)→ k
induced by P is injective. Then the function U(k) × U(k) → k induced by f is injective
away from finitely many k-rational points of U(k)× U(k).

The previous theorem will be obtained in Section 4 as an application of Theorem 3.2 together
with Theorem 2.1 and Proposition 3.1.

A striking consequence of Theorem 1.1 is the following phenomenon: For every number field
k there is an affine algebraic variety X of dimension greater than 1 (in fact, a surface) with a
morphism f : X → A1

k defined over k such that the k-rational points of X are dense in X, and
nonetheless f induces an injective function X(k)→ k on k-rational points. More precisely, we have
the following consequences of Theorem 1.1. We refer to Section 4 for details.
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Corollary 1.2. Let k be a number field and let E be an elliptic curve over k of positive Mordell-Weil
rank. There is a non-empty affine open set V ⊆ E defined over k and a morphism f : V ×V → A1

k
also defined over k such that the k-rational points of the affine surface V × V are dense, and f
induces an injective map V (k)× V (k)→ k on k-rational points.

Corollary 1.3. Let C ⊆ A2
Q be the affine curve defined over Q by y2 = x3 + x − 1. Let f be the

polynomial function on C × C defined by

f((x1, y1), (x2, y2)) = (x1 + y1)
9 + 2(x2 + y2)

9.

In the real topology, the Q-rational points of the algebraic surface C×C are dense in C(R)×C(R),
and the latter is homeomorphic to R2.

Furthermore, the function C(Q)× C(Q)→ Q induced by f is injective away from finitely many
Q-rational points of C × C.

We recall that Poonen observed (cf. Remark 1.5 in [19]) that one cannot expect to prove a positive
answer to Friedman’s question by purely local considerations. On the other hand, Corollary 1.3
shows that one cannot expect to prove a negative answer by a local argument over R either. This
is because the real points of the surface C × C form a real surface homemorphic to R2, and the
rational points of it are dense in the real topology.

An important tool in our approach is the concept of strong uniqueness function for holomorphic
maps from C to complex elliptic curves, which we introduce and study in Section 2. Then we apply
them in Section 3 to explicitly compute the Zariski closure of rational points in certain varieties
associated to injectivity problems.

Since we work with elliptic curves, the relevant varieties in our arguments appear as sub-varieties
of abelian varieties. Results of Faltings allow us to study the rational points of these varieties
provided that we can explicitly compute the (translates of) positive dimensional abelian varieties
contained in them. It is at this point where strong uniqueness functions are used, together with
results of Green [13] on holomorphic maps to Fermat varieties.

Regarding effectivity, our constructions are mostly effective and explicit (as Corollary 1.3 shows).
The only source of ineffectivity comes from finiteness results of Faltings, in two ways:

The proof of item (i) of Theorem 1.1 uses Faltings’s theorem for curves [8], for which no effective
proof is known at present. Nevertheless, in concrete examples we can conveniently choose the coef-
ficients α, β in order to obtain a completely effective and explicit construction by a local argument.
This is precisely what we do in the proof of Corollary 1.3 in Section 4.

The proof of item (ii) of Theorem 1.1 uses Faltings’s theorem on rational points of sub-varieties
of abelian varieties [9, 10]. No effective proof is known at present. This result asserts that if A is
an abelian variety over a number field k and X is a sub-variety of A defined over k, then all but
finitely many k-rational points of X belong to translates of non-trivial abelian varieties contained
in X. In our case, we explicitly describe the relevant translates of abelian varieties, and the only
ineffectivity that remains in the argument comes form the finitely many exceptional k-rational
points. Nevertheless, the number of exceptional k-rational points can be explicitly bounded using
results due to Rémond [20, 21]. Thus, for instance, the number of exceptional points in Corollary
1.3 can be explicitly bounded, although it is not clear how to compute these points.

1.2. Previous work. As far as we know, our results give the first unconditional progress on
Friedman’s question over Q and number fields. Besides this, there are two other results conditional
on standard conjectures in Diophantine Geometry:

In 1999, Cornelissen [7] observed that the 4-terms abc-conjecture [4] implies that polynomials
of the form xn + 3yn induce injections Q × Q → Q if n is odd and large enough. The basic idea
is that failure of injectivity gives rise to a non-degenerate solution of the 4-term Fermat equation
an + 3bn = cn + 3dn where the 4-terms abc-conjecture can be applied. Cornelissen also proved an
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unconditional analogue over function fields, where the 4-terms abc-conjecture can be replaced by a
theorem of Mason.

In 2010, Poonen [19] proved that the Bombieri-Lang conjecture on rational points of surfaces of
general type also implies a positive answer to Friedman’s question.

Let us briefly recall the main ideas in Poonen’s work [19]. He observed that when f(x, y) ∈ Q[x, y]
is homogeneous, it induces an injective map Q×Q→ Q if and only if the Q-rational points of the
projective surface Z = {f(x0, x1) = f(x2, x3)} ⊆ P3

Q lie in the line L = {x0 = x2, x1 = x3} ⊆ Z.

For general f with deg(f) ≥ 5, the Bombieri-Lang conjecture for surfaces implies that the Q-
rational points of the surface Z are algebraically degenerate; i.e. they are contained in a proper
Zariski closed set of Z. However, this is not enough for injectivity as the Zariski closure of the
rational points in Z might contain other components besides L. While it is unclear how to exactly
compute the Zariski closure of the rational points even under the Bombieri-Lang conjecture, Poonen
managed to produce a suitably ramified cover of Z to get rid of those other components (if any),
leading to a new polynomial f0(x, y) ∈ Q[x, y] of larger degree which has the desired injectivity
property conditional on the Bombieri-Lang conjecture. Poonen’s construction effectively depends
on the Zariski closure of the rational points of Z. Thus, the construction of f0 would be effective
if one can effectively determine the locus of rational points in Z, but unfortunately no algorithm is
known for this (not even under the Bombieri-Lang conjecture).

Our approach of course owes some ideas to the work of Cornelissen (e.g. the use of 4-terms Fermat
equations as part of the construction) and Poonen (e.g. to formulate the injectivity problem as a
problem about rational points in varieties). However, there are a number of crucial differences. For
instance, in our context we need to consider higher dimensional varieties —not just surfaces— and
we need to explicitly determine the Zariski closure of the relevant rational points. Our method for
computing this Zariski closure pertains to the theory of value distribution of complex holomorphic
maps.

1.3. Additional motivation. Besides arithmetic interest, there are other motivations in the lit-
erature for studying bivariate polynomial injections.

In 1895, Cantor [5] showed that the polynomial

f1(x, y) =
1

2
(x+ y)(x+ y + 1) + y

defines a bijection Z≥0 × Z≥0 → Z≥0 and used this fact to prove that Z2
≥0 is countable. The

polynomial f2(x, y) = f1(y, x) has the same property, and its is an old open problem whether f1
and f2 are the only two polynomials inducing a bijection Z≥0 × Z≥0 → Z≥0. In 1923, Fueter
and Polya [11] proved that this is the case among quadratic polynomials. In 1978, the result was
extended to polynomials of degree at most 4 by Lew and Rosenberg [17, 18].

Bivariate injections Z×Z→ Z are known as storing functions in computability theory. Cornelis-
sen [7] extended this notion to a model-theoretic context by introducing the concept of positive
existential storing; his study of Friedman’s question was developed in this setting.

More recently, the topic of bivariate polynomial injections has received attention for crypto-
graphic purposes. Boneh and Corrigan-Gibbs [3] developed a new commitment scheme (among
other applications) motivated by the conjecture that some bivariate polynomial f ∈ Q[x1, x2] such
as Zagier’s polynomial x71 + 3x72 defines an injective map Q2 → Q. Attacks on this commitment
scheme have been studied by Wang and Zhang [22].

2. Strong uniqueness functions on elliptic curves

Let M be the field of (possibly transcendental) complex meromorphic functions on C. We recall
that a polynomial P (x) ∈ C[x] is said to be a uniqueness polynomial if the equation P (f1) = P (f2)
with f1, f2 ∈M non-constant implies f1 = f2. On the other hand, a polynomial P (x) ∈ C[x] is said
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to be a strong uniqueness polynomial if the equation P (f1) = cP (f2) with f1, f2 ∈M non-constant
and c ∈ C× implies f1 = f2 (in particular, it implies c = 1). Uniqueness polynomials and strong
uniqueness polynomials are a classic topic in value distribution theory of holomorphic maps, and
there is abundant literature on this subject, see for instance [1, 2, 12, 15].

Non-constant elements of M are the same as holomorphic maps from C to P1, and by Picard’s
theorem the only other algebraic curves admitting non-constant holomorphic maps from C are
elliptic curves. Let us introduce a notion of (strong) uniqueness function for the latter setting; such
functions will naturally arise in our study of arithmetic injectivity problems.

Let E be a complex elliptic curve. A rational function P ∈ K(E) is a uniqueness function on
E if the equation P (f1) = P (f2) with f1, f2 : C → E non-constant holomorphic maps implies
f1 = f2. On the other hand, a rational function P ∈ K(E) is a strong uniqueness function on E
if the equation P (f1) = cP (f2) with f1, f2 : C → E non-constant holomorphic maps and c ∈ C×
implies f1 = f2 (in particular, it implies c = 1). It turns out that every complex elliptic curve
admits strong uniqueness functions of a very simple kind.

Theorem 2.1. Let E be an elliptic curve over C, choose a Weierstrass equation y2 = x3 +Ax+B
for E and define the rational functions x, y ∈ K(E) as corresponding coordinate projections. Let
α, β ∈ C be non-zero, and consider the non-constant rational function P = αx+βy ∈ K(E). Then
P is a strong uniqueness function on E.

Remark 2.1. The conditions α 6= 0 and β 6= 0 are necessary: For any complex elliptic curve E and
any non-constant holomorphic map f1 : C→ E we have

x(f1) = x([−1] ◦ f1) and y(f1) = −1 · y([−1] ◦ f1).

Remark 2.2. The conditions α 6= 0 and β 6= 0 are necessary even if we work with uniqueness
functions. This is clear for β = 0. For α = 0 we can choose the elliptic curve E with affine equation
y2 = x3 + 1. We consider the automorphism u of E defined by (x, y) 7→ (εx, y) with ε a primitive
cubic root of 1. Let us take any non-constant holomorphic map f1 : C→ E and define f2 = u ◦ f1.
Then y(f1) = y(u ◦ f1).

Remark 2.3. If Q is a strong uniqueness polynomial for M and P is a uniqueness function on an
elliptic curve E, then Q ◦ P is a strong uniqueness function on E. Thus, Theorem 2.1 together
with standard results in the theory of strong uniqueness functions, allow one to construct strong
uniqueness functions on E of arbitrarily large degree.

Remark 2.4. After learning about this work, Michael Zieve managed to prove (private commu-
nication) that if E is given in Weierstrass form as in Theorem 2.1 with coordinates x and y,
then “most” polynomials P (x, y) ∈ C[x, y] give strong uniqueness functions on E. Thus, strong
uniqueness functions are abundant. The linear case given in Theorem 2.1 suffices for our purposes,
although a more general description of strong uniqueness functions on elliptic curves might be
useful for other diophantine problems. For instance, see [6] for diophantine applications of strong
uniqueness polynomials on P1, and see [2] for a detailed analysis of uniqueness polynomials for com-
plex rational functions (rather than complex meromorphic functions) and a discussion of related
diophantine problems.

In preparation for the proof of Theorem 2.1, we record here the following simple lemma.

Lemma 2.2. Let E be an elliptic curve over C.

(a) Let θ : C→ E be a non-constant holomorphic map. Then θ is surjective.
(b) Let ψ : C→ E×E be a non-constant holomorphic map with algebraically degenerate image.

Then the image of ψ is exactly the translate of an elliptic curve subgroup of E × E.
4



Proof. For (a), let us choose a uniformization q : C→ E and a holomorphic lift θ̃ : C→ C satisfying

q ◦ θ̃ = θ. The entire function θ̃ has at most one exceptional value in C by Picard’s theorem, hence
θ is surjective.

Item (b) is a special case of the literature around Bloch’s conjecture (proved by Kawamata [16]).
Namely, the Zariski closure of the image of ψ must be the translate of an abelian sub-variety, hence,
an elliptic curve as the dimension is 1.

However, this case admits a direct proof: The Zariski closure of the image of ψ is an algebraic
curve Y in E × E of geometric genus g = 1 (g = 0 is excluded by the Riemann-Hurwitz theorem,
and g ≥ 2 is excluded by Picard’s theorem). The only non-constant maps between elliptic curves
are translates of isogenies, so, applying the two obvious projections E × E → E we conclude that
Y is the translate of an elliptic curve subgroup of E × E. By part (a), ψ is surjective onto Y . �

For a complex elliptic curve E we denote its neutral element by 0E .

Proof of Theorem 2.1. Let c ∈ C× and let f1, f2 : C → E be non-constant holomorphic maps
satisfying P ◦ f1 = c ·P ◦ f2. Observe that both P ◦ f1, P ◦ f2 ∈M are non-constant. We will prove
that f1 = f2, which implies c = 1.

Let us define the holomorphic map

φ : C→ E × E, φ(z) = (f1(z), f2(z)).

We observe that φ does not have Zariski dense image in E×E. This is because P : E → P1 induces
a finite morphism P × P : E ×E → P1 × P1, and the condition P ◦ f1 = c · P ◦ f2 implies that the
image of φ is contained in the pull-back of {([s : ct], [s : t]) : [s : t] ∈ P1} ⊆ P1 × P1 under P × P .

Therefore φ has algebraically degenerate image in E ×E. By part (b) of Lemma 2.2, φ surjects
onto an algebraic curve Y ⊆ E × E which is the translate of an elliptic curve subgroup in E × E.

We claim that that (0E , 0E) ∈ Y , i.e. that Y is in fact an elliptic curve subgroup of E×E. This
is because the only pole of P = αx+ βy occurs at 0E , which is in the image of both f1 and f2 by
part (a) of Lemma 2.2. Since P ◦ f1 = c · P ◦ f2 with c ∈ C×, it follows that

f−11 (0E) = f−11 (P−1(∞)) = (P ◦ f1)−1(∞) = (P ◦ f2)−1(∞) = f−12 (P−1(∞)) = f−12 (0E)

which is non-empty. This proves (0E , 0E) ∈ Y .
Therefore, the image of φ = (f1, f2) : C→ E × E is an elliptic curve subgroup Y ⊆ E × E, and

by considering the projections p1, p2 : E × E → E we see that Y is isogenous to E.
Fix an isogeny v : E → Y and let uj = pj ◦ v ∈ End(E) for j = 1, 2. Since v is étale, there is a

holomorphic map h : C → E that lifts φ via v in the sense that φ = v ◦ h. Since φ = (f1, f2), we
observe that fj = pj ◦ φ = pj ◦ v ◦ h = uj ◦ h for j = 1, 2. It suffices to show u1 = u2.

For a suitable lattice Λ ⊆ C (depending on our choice of Weierstrass equation for E), the
associated Weierstrass function ℘ ∈ M induces an explicit uniformization of w : C → E, as it
satisfies (

1

2
℘′(z)

)2

= ℘(z)3 +A℘(z) +B.

The uniformization w : C→ E is determined by ℘ in the sense that

(2.1) x ◦ w = ℘ and y ◦ w =
1

2
℘′.

There are non-zero complex numbers λ1, λ2 ∈ C× lifting the endomorphisms u1 and u2 via w, so
that (uj ◦w)(z) = w(λj · z). It suffices to prove λ1 = λ2, as this will show u1 = u2, hence, f1 = f2.

We recall that the Laurent expansions of ℘(z) and ℘′(z) near z = 0 are

℘(z) =
1

z2
+
∑
j≥1

cjz
2j and ℘′(z) =

−2

z3
+
∑
j≥1

2jcjz
2j−1

5



for suitable complex numbers cj ∈ C. Let us choose a lift h̃ : C → C of the holomorphic map

h : C→ E via the uniformization w, so that h = w ◦ h̃. Since h : C→ E is surjective (cf. item (a)

in Lemma 2.2) we can choose the holomorphic lift h̃ : C→ C in such a way that 0 is in its image.
The various maps under consideration are summarized in the following diagram, in the case of the
x-coordinate:

C h̃ //

h
��

φ

��

fj

##

C
·λj //

w

��

C
℘ //

w

��

C

E
v //

uj

88Y
pj // E

x

BB

Recalling that P = αx+ βy and that fj = uj ◦ h, the condition P ◦ f1 = c · P ◦ f2 becomes

α · x ◦ u1 ◦ h+ β · y ◦ u1 ◦ h = cα · x ◦ u2 ◦ h+ cβ · y ◦ u2 ◦ h.
From the relation (uj ◦ h)(z) = (uj ◦ w ◦ h̃)(z) = w(λj · h̃(z)) together with (2.1), we deduce

α · ℘(λ1 · h̃(z)) +
β

2
· ℘′(λ1 · h̃(z)) = cα · ℘(λ2 · h̃(z)) +

cβ

2
· ℘′(λ2 · h̃(z)).

Since 0 is in the image of h̃ : C → C, we have that the image of h̃ contains a neighborhood of
0 ∈ C. From the previous relation we deduce that the following holds for the complex variable z in
a neighborhood of 0 :

α · ℘(λ1 · z) +
β

2
· ℘′(λ1 · z) = cα · ℘(λ2 · z) +

cβ

2
· ℘′(λ2 · z).

Considering the coefficients of z−3 and z−2 in the Laurent expansion near z = 0, we deduce

βλ−31 = cβλ−32 and αλ−21 = cαλ−22 .

Recall that c, α, β, λ1, λ2 are non-zero complex numbers. We finally deduce

λ1 =
β

α
· αλ

−2
1

βλ−31

=
β

α
· cαλ

−2
2

cβλ−32

= λ2.

�

3. Arithmetic results

If X and Y are algebraic varieties over a field k we write X × Y for X ×k Y , and the diagonal
in X ×X is denoted by ∆X .

The following proposition is an application of Faltings’s theorem for rational points on curves of
genus at least 2 and the notion of uniqueness function. The proof can be useful to illustrate the
ideas in the proof of our main injectivity results for products of elliptic curves (cf. Theorem 3.2).

Proposition 3.1. Let k be a number field. Let E be an elliptic curve over k and let P ∈ k(E) be
a uniqueness function defined over k. Let V ⊆ E be the locus where P is regular. The function
V (k)→ k induced by P is injective away from finitely many points of V (k).

Proof. Using the morphism P × P : V 2 → A2
k, we let Z ⊆ V × V be defined by (P × P )∗∆A1

k
. Let

Z ⊆ E2 be the Zariski closure of Z and observe that Z − Z consists of finitely many points. We
note that Z is a finite union of curves of geometric genus at least 1. Indeed, ∆A1

k
is a divisor on

A2
k, so Z = (P ×P )∗∆A1

k
is a divisor on V × V since it is the pull-back of a divisor under the finite

morphism P × P . Hence, Z and Z have pure dimension 1. Let C be a geometrically irreducible
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component of Z. The normalization map ν : C̃ → C composed with each of the two coordinate
projections E2 → E shows that the geometric genus of C (which is the genus of C̃) is not 0, by
Riemann-Hurwitz.

Let us note that the diagonal ∆E ⊆ E2 is one of the irreducible components of Z, because
∆V ⊆ V 2 is contained in Z.

We claim that the only irreducible component of Z of geometric genus 1 is ∆E . In fact, let Y be
any irreducible component of Z with geometric genus 1, then there is a non-constant holomorphic
map h : C → E2 whose image is contained in Y (e.g. consider the normalization of Y as a lattice
quotient of C). We write h = (h1, h2) with hj : C → E holomorphic and at least one of them

non-constant. Let us observe that P ◦ h1 = P ◦ h2 because Y is a component of Z and Z − Z
consists of finitely many points. It follows that both h1 and h2 are non-constant, and since P is a
uniqueness function we deduce that h1 = h2. Hence Y = ∆E .

Finally, note that we must prove that only finitely many pairs (x, y) ∈ (V 2 − ∆E)(k) satisfy
P (x) = P (y), which is the same as proving that only finitely k-rational points of Z lie outside
∆E . The result follows by Faltings’s theorem for curves [8] and our previous computation of the
geometric genus of the components. The fact that we used the geometric genus rather than the
arithmetic genus is crucial; Faltings’s theorem is for smooth projective curves of genus at least 2,
so we apply it to the normalization of the components of Z other than ∆E . The geometric genus
is by definition the genus of these normalizations. �

The following is our main tool for proving the injectivity results stated in the introduction.

Theorem 3.2. Let k be a number field. Let E be an elliptic curve over k and let P ∈ k(E) be a
strong uniqueness function defined over k. Let U ⊆ E be a non-empty Zariski open subset of E
defined over k satisfying that P is regular on U and that the function U(k) → k induced by P is
injective. Let n ≥ 9 be a positive integer such that the only n-th root of unity in k is 1. Let γ ∈ k
be different from −1, 0, and 1. Let f : U × U → A1

k be the morphism defined over k by

f(q1, q2) = P (q1)
n + γ · P (q2)

n.

The function U(k)× U(k)→ k induced by f is injective away from finitely many k-rational points
of U × U .

Remark 3.1. The function P required by Theorem 3.2 exists for every choice of E; our Theorem
2.1 gives an assortment of them. Furthermore, Proposition 3.1 shows that the open set U required
by Theorem 3.2 always exists. Nevertheless, in concrete cases one might explicitly construct such
an open set U by other means such as a local argument, cf. the proof of Corollary 1.3 in Section 4
for instance.

Proof of Theorem 3.2. Let Z ⊆ U4 be the pull-back of ∆A1
k

by the morphism f × f : U4 → A2
k.

Since f × f is dominant and U4 is irreducible, Z is a divisor in U4 defined over k. Also, we have
∆U2 ⊆ Z.

It suffices to show that all but finitely many k-rational points of Z are contained in ∆U2 .
Let Z be the Zariski closure of Z in E4. Let D = Z − Z. Note that the Zariski closure of

∆U2 ⊆ U4 = U2 × U2 in E4 is precisely ∆E2 . It suffices to show that Z − (D ∪∆E2) contains at
most finitely many k-rational points.

By Faltings’s theorem on sub-varieties of abelian varieties [9, 10], the (finitely many) irreducible
components of the Zariski closure of Z(k) are translates of abelian sub-varieties of E4 defined over
k. Let Y be any of these irreducible components with strictly positive dimension. It suffices to
show that Y ⊆ D ∪∆E2 , and we will prove this by contradiction.

For the sake of contradiction, let us suppose that Y is not contained in D ∪∆E2 . Since Y is the
translate of a positive-dimensional abelian sub-variety of E4, there is a non-constant holomorphic
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map h : C → Y with Zariski dense image (this can be seen by realizing Y as a quotient of Cd by
some lattice, and considering a holomorphic map to Cd with Zariski dense image). As Y is not
contained in D ∪∆E4 , we can write h = (h0, h1, h2, h3) with hj : C → E holomorphic for each j,
satisfying:

(i) Not all the hj are constant.
(ii) (h0, h1) 6= (h2, h3) as holomorphic maps C→ E2, since Y is not included in ∆E2 .

(iii) The compositions P ◦ hj are well-defined elements of M , since Y is not contained in D.
(iv) The following equation holds in M :

(P ◦ h0)n + γ · (P ◦ h1)n = (P ◦ h2)n + γ · (P ◦ h3)n

since Y ⊆ Z and Z = (f × f)∗∆A1
k
.

By (i) and symmetry of the conditions (possibly replacing γ by 1/γ), we may assume that h0 is
non-constant. Hence P ◦ h0 is non-constant.

We claim that P ◦ h2 is not the zero constant. For otherwise, (iv) would give

(3.1) (P ◦ h0)n + γ · (P ◦ h1)n − γ · (P ◦ h3)n = 0

so that the holomorphic map [P ◦ h0 : P ◦ h1 : P ◦ h3] : C → P2 would have image contained
in a Fermat curve of degree n ≥ 9. Such a curve has genus at least 28, so our holomorphic map
is constant by Picard’s theorem. This means that there are complex numbers c1, c3 ∈ C with
P ◦h1 = c1 ·P ◦h0 and P ◦h3 = c3 ·P ◦h0. Furthermore, not both c1 and c3 are equal to 0, because
of (3.1) and the fact that h0 is non-constant. We consider the two cases:

• If c1 6= 0 then h1 is non-constant. We get h1 = h0 and c1 = 1 because P is a strong
uniqueness function. From (3.1) we get (1 + γ)(P ◦ h0)n = γ · (P ◦ h3)n where γ 6= 0 and
1 + γ 6= 0. Since P is a strong uniqueness function and h0 is non-constant, we deduce
h3 = h0. This gives 1 + γ = γ, impossible.
• If c3 6= 0 then h3 is non-constant. We get h3 = h0 and c3 = 1 because P is a strong

uniqueness function. From (3.1) we get (1− γ)(P ◦ h0)n = −γ · (P ◦ h1)n and similarly we
deduce h1 = h0. This gives 1− γ = −γ, impossible.

This contradiction proves that P ◦ h2 is not the zero constant.
We now claim that there is no c ∈ C× for which P ◦h2 = c ·P ◦h0. For the sake of contradiction,

suppose there is such a c. Then h2 is non-constant because h0 is non-constant, and since P is
a strong uniqueness function we deduce h0 = h2 and c = 1. Therefore P ◦ h2 = P ◦ h0. By
item (iv) and the condition γ 6= 0 we deduce (P ◦ h1)n = (P ◦ h3)n. If h1 or h3 is non-constant,
so is the other and we deduce that they are equal because P is a strong uniqueness function;
this would contradict item (ii) because we already know h0 = h2. Therefore both h1 and h3 are
constant. If h1, h3 are the same constant function, then we again get a contradiction with (ii),
so they are different constant functions given by two different points q1, q3 ∈ E respectively. We
observe that q1, q3 ∈ U(k) because Y (k) is Zariski dense in Y , which is not contained in D. Since
P is injective on U(k), our hypothesis on n (the only n-th root of unity in k is 1) shows that
(P ◦ h1)n = P (q1)

n 6= P (q3)
n = (P ◦ h3)n, and we obtain a contradiction. This proves that there is

no c ∈ C× for which P ◦ h2 = c · P ◦ h0.
Let us define the holomorphic map H : C→ P3 by

H = [P ◦ h0 : P ◦ h1 : P ◦ h2 : P ◦ h3]

and observe that it is non-constant because P ◦ h0 is non-constant while P ◦ h2 is not of the form
c · P ◦ h0 for any c ∈ C (the cases c = 0 and c 6= 0 are covered by the two previous claims).
Furthermore, we observe that the image of H is contained in the Fermat surface F ⊆ P3 defined by

(3.2) xn0 + γ · xn1 − xn2 − γ · xn3 = 0.
8



We recall that γ 6= 0 and n ≥ 9. By a result of Green [13] (see also [14]) the image of H must be
contained in one of the “obvious” lines of F determined by a vanishing 2-terms sub-sum of (3.2).
Since P ◦ h2 is not of the form c · P ◦ h0 for any c ∈ C, this only leaves the following possibilities:

• P ◦h0 = λ ·P ◦h1 with λn = −γ. This gives that h1 is non-constant, and since P is a strong
uniqueness function we would get h1 = h0 and λ = 1. This is not possible since γ 6= −1.
• P ◦ h0 = λ ·P ◦ h3 with λn = γ. This gives that h3 is non-constant, and since P is a strong

uniqueness function we would get h3 = h0 and λ = 1. This is not possible since γ 6= 1.

This is a contradiction. Therefore Y must be contained in D ∪∆E2 . �

4. Applications

We can now use the results of Sections 2 and 3 to prove the results stated in the introduction.

Proof of Theorem 1.1. Let E be the projective closure of C, then E is an elliptic curve over k. Note
that P ∈ k(E) is a strong uniqueness function defined over k, by Theorem 2.1. Furthermore, P is
regular on C ⊆ E, and we see that item (i) of Theorem 1.1 follows from Proposition 3.1.

Item (ii) of Theorem 1.1 follows from Theorem 3.2. �

Proof of Corollary 1.2. We choose a short Weierstrass equation for E and then we apply Theorem
1.1 to the corresponding affine curve C ⊆ E. By item (i) of Theorem 1.1 we can shrink C to get
an open set U as required by item (ii). Deleting finitely many k-rational points from U we get the
desired open set V . �

Proof of Corollary 1.3. The elliptic curve E of affine equation y2 = x3 + x− 1 has Cremona label
248c1. The group E(Q) is isomorphic to Z, generated by the point (1, 1). In the real topology, we
note that E(R) is connected, hence E(Q) is dense in E(R) (its closure in the one-dimensional real
Lie group E(R) is open).

Consider the morphism P : C → A1
Q given by P (x, y) = x + y. We claim that P induces an

injective map on real points C(R) → R. If not, we would have two different points q1, q2 ∈ C(R)
such that the line through them has slope −1. Hence, for some q ∈ C(R) (between q1 and q2) the
line tangent to C(R) at q has slope −1. However, it is a simple computation to check that the slope
of any non-vertical tangent of C(R) has absolute value larger than 1.91. In particular, no tangent
to C(R) can have slope −1, which proves injectivity on real points.

Since P induces an injective function C(R)→ R, it also induces an injective function C(Q)→ Q.
Thus, we can apply item (ii) of Theorem 1.1 with U = C. �
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[8] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Inventiones mathematicae 73.3 (1983):

349-366.
[9] G. Faltings, Diophantine approximation on abelian varieties. Annals of Mathematics 133.3 (1991) 549-576.
[10] G. Faltings, The general case of S. Lang’s conjecture. In Barsotti Symposium in Algebraic Geometry, Perspec.

Math, vol. 15, pp. 175-182. 1994.
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