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Abstract. We study some problems about powerful values of polynomials over number fields, such

as giving uniform bounds for the number of consecutive squareful values of squarefree polynomials, or

the higher exponent analogue of the M squares problem. We show that a Diophantine conjecture of
Vojta implies complete answers to these problems, and we show unconditional analogues for function

fields and complex meromorphic functions. Some of these results have consequences in logic related

to Hilbert’s tenth problem, and we also explore these.
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1. Introduction

Let n ≥ 2 be an integer, and recall that an integer N is called n-powerful if for each prime p dividing
N one has that pn divides N (N is allowed to be negative or zero). If N is 2-powerful we just say that
N is powerful; in the literature such numbers are also known as squareful numbers. Extending this
concept, let K be a number field and let n ≥ 2 be an integer. We say that x ∈ K is n-powerful if for
every non-zero prime p in OK with ordp(x) > 0 we have ordp(x) ≥ n. If x is 2-powerful we just say
that x is powerful or squareful. Observe that, if x ∈ K is a n-th power, then it is n-powerful.

In this work we investigate powerful values of polynomials and we are mainly concerned about
uniform bounds on the number of consecutive powerful values of a polynomial. For example, let
us consider squareful values of squarefree polynomials (polynomials without repeated factors). Let
F ∈ Z[s] be a squarefree polynomial of degree n ≥ 2. If F is monic and n = 2 then F takes infinitely
many squareful values at integer arguments, as proved in [35]. On the other hand, results in op. cit.
suggest that squareful values of F should be rare when n ≥ 3 (indeed, finitely many under the ABC
conjecture, and even under the assumption that F has at least 3 simple roots as predicted in [29]).
In either case, the distribution of squareful values of F seems to strongly depend on the particular F .
However, our results provide evidence for the following:
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Conjecture 1.1. Let K be a number field. If F ∈ K[s] is a monic squarefree polynomial of degree
n ≥ 2 then F cannot take squareful values at M consecutive integers, where M is some constant that
may depend on n and K, but which is uniform on F .

Let us consider a similar situation. If F ∈ Q[s] is a polynomial of degree n ≥ 2 of the form
F = (s+ ν)n then all the numbers F (b) for b ∈ Q are n-th powers, in particular they are n-powerful.
Conversely, one may ask if checking that F (b) is an n-th power (or alternatively, n-powerful) for several
b ∈ Q is enough to conclude that F is of the form (s + ν)n for some ν ∈ Q. This problem has been
addressed by other authors, see for example [8] and [25]. However, due to some reasons coming from
logic (more precisely, trying to establish certain improvements of the unsolvability of Hilbert’s tenth
problem, see below) it is desirable to have a uniform converse; the number of such b for which one
needs to check if F (b) is an n-th power (or n-powerful) should not depend on F . More generally, if K
is a number field one may ask

Question 1.2 (Pow(n,K)). Let n ≥ 2 be an integer. Is it true that there exists an integer constant
M = M(n,K) depending only on n and K with the following property?

If a monic polynomial F ∈ K[s] of degree n is such that F (1), . . . , F (M) are n-powerful then
F (s) = (s+ ν)n for some ν ∈ K.

Similar questions with K replaced by the ring of integers of a number field (in particular Z) can also
be asked, but as far as we know the current state of knowledge on such problems is very limited. One
can also ask a (apparently) simpler question by replacing the condition ‘n-powerful’ by ‘n-th power’.

A positive answer for Pow(n,K) (or even the simpler question for n-th powers) implies a positive
answer to the following higher exponents version of Buchi’s problem for A a number field or the ring
of integers of a number field (see [20])

Question 1.3 (BP(n,A)). Let n ≥ 2 be an integer. Is it true that there exists an integer constant
M = M(n,A) with the following property?

Suppose that u1, . . . , uM is a sequence of n-th powers in A such that the n-th differences of the ui
are constant and equal to n!. Then there is an element ν ∈ A such that ui = (i+ ν)n for i = 1, . . . ,M .

In this paper we show that certain conjecture by Vojta on Diophantine approximation for number
field extensions of bounded degree implies a general statement on powerful values of polynomials
over number fields (Theorem 2.1), which in particular allows us to give positive answers to the above
problems (under Vojta’s conjecture). We prove unconditional analogues of these results in the function
field and meromorphic cases (see Theorem 2.4 below). In this study, the Osgood-Vojta analogy between
Nevanlinna theory and Diophantine approximation played a central role, as we were first able to
approach the case of functions and then we translated our results to number fields – here, one needs
Vojta’s conjecture as a substitute for the second main theorem with truncated counting functions for
ramified coverings of C with bounded degree.

Let us state the conjecture of Vojta that we will use. For this we need to introduce some notation.

Let K/Q be a number field. Let hK be the height on K̄ relative to K, and for x ∈ K̄∗ write N
(1)
K (x)

for the truncated counting function (of zeros). If x ∈ K̄ then we define dK(x) to be the logarithmic

discriminant of x over K (see [32] or section 4 below for precise definitions of hK , N
(1)
K and dK).

Conjecture 1.4 (Vojta). Let b1, . . . , bq be distinct elements of K and let n ≥ 1 be an integer. For
every ε > 0 there exists a constant Cε depending on ε (and the previous data) such that the inequality

(q − 2− ε)hK(x) ≤ dK(x) +

q∑
j=1

N
(1)
K (bj − x) + Cε

holds for all x ∈ K̄ with [K(x) : K] ≤ n and x 6= bj for 1 ≤ j ≤ q.

As we already mentioned, this conjecture is analogous to a result for meromorphic functions, namely,
a version of the second main theorem for finite ramified coverings of C. Also, Conjecture 1.4 can be
seen as a generalization of the ABC conjecture, see [32] for further details.

Questions Pow(n,K) and BP(n,A) were the actual motivation for this manuscript. They have a
history that goes back to the early seventies, which we now briefly recall.
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The starting point is the following question by Büchi (see [14] and [16]), arising as an attempt to
improve the negative answer to Hilbert’s tenth problem given by Matiyasevic in 1970 after the work
of J. Robinson, M. Davis and H. Putnam (see [15])

Question 1.5. Is it true that there exists an integer constant M with the following property?
Suppose that u1, . . . , uM is a sequence of integer squares such that the second differences of the ui

are constant and equal to 2, that is

ui+2 − 2ui+1 + ui = 2, i = 1, . . . ,M − 2.

Then there is an integer ν ∈ Z such that ui = (i+ ν)2 for i = 1, . . . ,M .

For example, if we take the first differences of the sequence 62, 232, 322, 392 we obtain 493, 495, 497
and taking differences again we get 2, 2, but our starting sequence does not consist of squares of
consecutive integers (this shows that if such M exists, then M ≥ 5). The problem of answering
question 1.5 is known as ‘Büchi’s problem’ or the ‘M squares problem’.

Büchi believed that M = 5 should work, but to the best of our knowledge this problem is still open
(and no counterexample for M = 5 has been found). Nevertheless, Vojta [31] showed in 2000 that the
Bombieri-Lang conjecture (on the locus of rational points) implies that Büchi’s problem has a positive
answer (for some M ≥ 8). Furthermore, Vojta’s conditional result also applies to the analogue of
question 1.5 over number fields.

We refer the reader to [20] for a survey on the literature related to this problem and analogues of
it over different structures.

The generalization of Büchi’s problem stated above (question BP(n,A)) is due to Pheidas and
Vidaux, see [21] where consequences in Logic are studied.

Observe that BP(2,Z) is nothing but Büchi’s question 1.5 and one expects this to have a positive
answer, as suggested by the work of Vojta mentioned above and by extensive numerical evidence (see
[3, 4, 5, 24, 30]). However, when n > 2 there is no evidence towards a positive or negative answer
to BP(n,Z) other than analogies with function fields and meromorphic functions, where some results
are known (see [19], [1] and the discussion after Corollary 2.11 below). Thus our positive answer to
Pow(n,K) (and hence BP(n,A)) under Vojta’s conjecture can be seen as the first arithmetic evidence
towards a positive answer to BP(n,Z) for general n.

Going back to Büchi’s original motivation for question 1.5, one may ask if the generalizations and
analogues addressed in this work have consequences in Logic. This is indeed the case. Roughly
speaking, when one solves an analogue or generalization of Büchi’s problem for some ‘reasonable’ ring
A, then one is able to define multiplication in A in a positive existential way over a language L related
to the arithmetic of A but without multiplication. If, moreover, some analogue of Hilbert’s tenth
problem is known to be unsolvable for A (over a suitable language) then this leads to an undecidability
result for the positive existential theory of A over L. We explore these consequences for function fields,
meromorphic functions and number fields making use of the corresponding analogues to question
Pow(n,K) that we study in each case.

Throughout the paper we only consider powerful values of monic polynomials. For applications in
logic this is enough, but it would be interesting to consider non-monic polynomials under reasonable
hypothesis (such as no common factor among all coefficients). The techniques introduced in this work
should have something to say in the general case, but it is not clear to the author if one would still
have uniform results.

2. Main results

Let us first state our main result in the case of number fields.

Theorem 2.1. Assume Conjecture 1.4. Let K be a number field and let n ≥ 2 and 2 ≤ µ ≤ n be
integers. Define

M =

{
2n2 + 9n+ 1 if µ = n
2µn2 + (2µ+ 1)n+ 1 in general

in the sense that if we do not assume µ = n then we use the second value for M . Let b1, . . . , bM ∈ K
be distinct. Define E as the set of monic polynomials F ∈ K[s] of degree n such that all irreducible
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factors of F have multiplicity strictly less than µ, and such that for each 1 ≤ k ≤M the number F (bk)
is µ-powerful. Then E is finite.

Theorem 2.1 will be proved in section 4. We think about E as the set of exceptions to the rule ‘if F
takes powerful values too many times then F has factors with high exponents’. However, if we restrict
our attention to the case bk = k in Theorem 2.1 then we can get rid of the set E obtaining:

Corollary 2.2. Assume Conjecture 1.4. Let K be a number field and let n ≥ 2. There is an integer
constant M0 depending only on n and K such that the following holds:

Let F ∈ K[s] be a monic polynomial of degree n such that the numbers F (1), . . . , F (M0) are µ-
powerful for some integer 2 ≤ µ ≤ n. Then F has a factor with exponent at least µ.

Proof. It is enough to show that there is such an M0 depending only on K, n and µ (because 2 ≤ µ ≤ n
so once n is fixed we have only finitely many possible µ). Thus, fix K, n and µ with 2 ≤ µ ≤ n. In
the notation of Theorem 2.1 put bk = k for 1 ≤ k ≤ M . Note that if F ∈ E and F (1), . . . , F (M + r)
are µ-powerful then Fj(s) := F (s + j) ∈ E for each 0 ≤ j ≤ r. As E is finite and its cardinality
only depends on K, n and µ we conclude that there is some constant M0 ≥M depending only on K,
n and µ such that if F ∈ E then some of the numbers F (1), . . . , F (M0) is not µ-powerful. Thus, if
F ∈ K[s] is a monic polynomial of degree n such that the numbers F (1), . . . , F (M0) are µ-powerful
then F cannot be in E, which implies that some factor of F has exponent at least µ. �

Observe that in Theorem 2.1 one has M(n) �K,µ n
2 (under Vojta’s conjecture) while in 2.2 we

are unable to predict what the value of M(n) should be. If one is willing to assume strong effective
versions of Conjecture 1.4, then it would be possible to give a bound for M in Corollary 2.2. On the
other hand, one can assume weaker versions of Conjecture 1.4 and still get the existence of M (at the
price of losing the explicit bound) in Theorem 2.1, which would be enough to obtain Corollary 2.2.
We leave the discussion on these variations to the reader.

In analogy with number fields, if L is the function field of a curve over an algebraically closed field,
n ≥ 2 is an integer and f ∈ L, then we say that f is n-powerful if all the zeros of f have multiplicity
at least n (note that n is not required to be attained and there is no assumption on the poles of f). If
f is 2-powerful we just say that f is powerful or squareful. Observe that if f is an n-th power then it
is n-powerful. We make similar definitions for meromorphic functions on C.

We introduce some notation that will be used to state our results for function fields and meromorphic
functions.

Notation 2.3. Let K, B, L and g be one of the following

• K is an algebraically closed field of characteristic zero, B is a smooth projective curve over K
with genus g, and L is the function field of B, or

• K = C, B = C and L is the field of complex meromorphic functions on C. In this case we put
g = 1 for convenience.

In either case, we say that an element a ∈ L is constant if a ∈ K, otherwise it is non-constant.

Our main result for function fields and meromorphic functions is

Theorem 2.4. Let L/K and g be as in notation 2.3. Let F ∈ L[s] be a monic polynomial of degree
n ≥ 2 with some non-constant coefficient, that is, F /∈ K[s]. Let λ ≤ n be an integer such that no
irreducible factor of F has multiplicity strictly larger than λ in the factorization of F in L[s]. Define

M =

{
2n2 + 4(g + 1)n+ 1 if λ = n
2(λ+ 1)n(n+ g) + 1 in general.

Suppose that we have b1, b2, . . . , bM , distinct elements in K, such that F (bj) is µ-powerful for each
1 ≤ j ≤ M and some fixed µ ≥ λ. Then µ = λ and F = GH for some monic polynomials G ∈ K[s]
and H ∈ L[s] such that the largest exponent in the factorization of H as a product of irreducible
polynomials is exactly λ.

This theorem will be proved in section 3. For applications, the following consequence (analogue to
Theorem 2.1) will be enough, but we remark that the somewhat more technical Theorem 2.4 is simpler
to prove.
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Corollary 2.5. Let L/K and g be as in notation 2.3. Let n ≥ 2 and 2 ≤ µ ≤ n be integers. Define

M =

{
2n2 + 4(g + 1)n+ 1 if µ = n
2µn(n+ g) + 1 in general.

in the sense that if we do not assume µ = n then we use the second value for M . Let b1, . . . , bM ∈ K
be distinct elements of the constant field. Define E as the set of monic polynomials F ∈ L[s] of degree
n such that all irreducible factors of F have multiplicity strictly less than µ, and such that for each
1 ≤ k ≤ M the function F (bk) ∈ L is µ-powerful. Then E ⊆ K[s], that is, all F ∈ E have constant
coefficients.

Proof. If µ = n then let F ∈ E and suppose F has some non-constant coefficient. Put λ = µ and use
the previous theorem to conclude that F has some factor with exponent exactly λ. This is not possible
as F ∈ E. Therefore, F must have constant coefficients.

For the general case 2 ≤ µ ≤ n, put λ = µ−1 and let F ∈ E. If F has some non-constant coefficient,
then the previous theorem leads to a contradiction as λ 6= µ. �

An equivalent formulation more amenable for our applications (and analogue to Corollary 2.2) is
the following:

Corollary 2.6. Let L/K and g be as in notation 2.3. Let n ≥ 2 and 2 ≤ µ ≤ n be integers. Define
M as in Corollary 2.5. Then the following holds:

Let F ∈ L[s] be a monic polynomial of degree n with some non-constant coefficient such that F (b)
is µ-powerful for at least M values of b ∈ K. Then F has a factor with exponent at least µ.

We remark that in the case of function fields, the assumption of zero characteristic cannot be
dropped as the next example shows (see [22], or [2] for extensions of this example).

Example 2.7. Set L = F̄p(x) = F̄p(P1
F̄p

), for p > 2. The polynomial

F (s) =

(
s+

xq + x

2

)2

−
(
xq − x

2

)2

∈ L[s]

only represents squares as s ranges in Fq ⊆ F̄p for q a power of p, but F has non-constant coefficients
and one can show that it is not of the form (s + ν)2. Thus, a uniform M as in Corollary 2.6 cannot
exist for µ = n = 2 in this case.

Choosing suitable values for the parameters in the previous results leads to different statements
that can be of interest. Here we focus on the extremal cases µ = 2 and µ = n.

For number fields, from Corollary 2.2 we get

Corollary 2.8. Assume Conjecture 1.4. Let K be a number field and let n ≥ 2. There are integer
constants M0,M1 depending only on n and K such that the following holds:

• If F ∈ K[s] is a monic squarefree polynomial of degree n, then not all the numbers F (1), ...,
F (M0) are squareful. Hence, F cannot take M0 consecutive squareful values, where M0 is
uniform on all such F .

• If F ∈ K[s] is a monic polynomial of degree n such that all the numbers F (1), ..., F (M1) are
n-powerful, then F = (s+ ν)n for some ν ∈ K.

In particular, Conjecture 1.4 implies Conjecture 1.1 and a positive answer to Pow(n,K). The
following corollary provides the first evidence towards generalizations of Büchi’s problem to higher
exponents in the case of Z.

Corollary 2.9. Let A be an integrally closed subring of a number field K (A = K is allowed).
Conjecture 1.4 implies a positive answer to BP(n,A) for all n ≥ 2.

Proof. If A = K is a number field, this follows directly from the second item of Corollary 2.8; one can
show that there is a monic polynomial F ∈ K of degree n such that F (j) = uj . For general A one
uses the fact that A is integrally closed to conclude that the corresponding ν is in A. Details are left
to the reader. �
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Next we turn our attention to function fields and meromorphic functions. In this case we can
conclude an unconditional analogue of Corollary 2.8, whose formulation is left to the reader (for our
purposes, we will focus on a refined analogue of the second item of Corollary 2.8).

The next result would follow immediately from Corollary 2.6 over algebraically closed fields, but
we need a slightly more general version for later applications. For this, if L/K is a function field in
one variable with constant subfield K (and K is not necessarily algebraically closed), we define the
concept ‘n-powerful’ using valuations as for number fields.

Corollary 2.10. Let L be the function field of a geometrically irreducible curve of genus g over a
field K of characteristic zero which is algebraically closed in L, or let L be the field of meromorphic
functions over K = C and put g = 1. Let n ≥ 2 and put M = 2n2 + 4(g+ 1)n+ 1. Then the following
holds:

If F ∈ L[s] is a monic polynomial of degree n such that F (1), . . . , F (M0) are n-powerful then either
F = (s+ ν)n for some ν ∈ L or F has constant coefficients (i.e F ∈ K[s]).

Proof. For meromorphic functions and function fields with algebraically closed base field K, the con-
clusion follows by letting µ = n in Corollary 2.6. For the general case (in the function field setting), let
L′ be the extension of scalars of L/K to K̄. Note that if f ∈ L is n-powerful then it is n-powerful in
L′, and observe that the genus g is invariant under base change because we are in characteristic zero.
Thus, in the situation of the statement, either F ∈ K̄[s] or there is some ν ∈ L′ such that F = (s+ν)n

(by Corollary 2.6). In the first case, F ∈ K[s] because K is algebraically closed in L and F ∈ L[s]. In
the second case, note that F ∈ L[s] and F = sn + nνsn−1 + . . .+ νn hence ν ∈ L. �

As for number fields, one obtains:

Corollary 2.11. Let L be the function field of a geometrically irreducible curve over a field K of
characteristic zero algebraically closed in L, or let L be the field of meromorphic functions over K = C,
and let n ≥ 2 be an integer. The analogue of BP(n,A) for A = L (for sequences with some ui non-
constant, otherwise it is trivial) has a positive answer with M(n)�L n

2.

We remark that Corollary 2.11 for n = 2 was proved by Vojta in 2000 [31]. The first result in
this direction for n > 3 was a positive answer to BP(3,C[x]), established by Pheidas and Vidaux in
2008 [23]. Then in 2011, in an earlier (unpublished) version of this work1 we gave a positive answer
to BP(n,L) with L a function field in characteristic zero and n ≥ 2. Some months later, during the
preparation of this paper, Corollary 2.11 was proved independently in [2]2 using a technique completely
different from ours – they manage to generalize the approach by Pheidas and Vidaux involving systems
of differential equations, from [23]. The approach in [2] is interesting in its own right as it works
simultaneously for p-adic meromorphic functions, although it is not clear whether it can be adapted
to attack questions on powerful values (the technique seems to be well suited only for studying n-th
powers) and it cannot be extended to number fields because it strongly uses derivation. The bound
for M(n) obtained in [2] is also polynomial in n but it is slightly weaker than the bound in Corollary
2.11 – they obtain M(n)�L n

5.
As we already mentioned, Büchi’s motivation to state the M squares problem came from logic.

Indeed, he realized that a positive answer to question 1.5 together with the undecidability of the
positive existential theory of Z (which we call H10) would imply a very strong undecidability result
for diagonal quadratic forms over Z. As we explained in the introduction, our results have consequences
related to undecidability through the definability of multiplication over weak languages, extending the
program initiated by Büchi. In the discussion below, all the languages have equality.

Theorem 2.12. Assume Conjecture 1.4. Let K be a number field and let R be an integrally closed
subring of K. Let P be a unary predicate symbol and fix one of the following interpretations over R:

• P (x) means ‘x is an n-th power in R’ for some fixed n ≥ 2,
• P (x) means ‘x is a power in R’,

1The preprint is available on http://arxiv.org/abs/1107.4019. In that earlier version of this paper, we already

considered questions on powerful values, although only in the case of function fields and using a less accurate technique

which became the present approach after several refinements.
2I would like to express my gratitude to the authors of [2] for kindly sending to me their preprint before publication.
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• P (x) means ‘x is n-powerful’ for some fixed n ≥ 2.

Define the language L = {0, 1,+, P} where 0, 1,+ are interpreted in the usual way over R. Then
multiplication is positive existential L-definable in R. That is, there exists a positive existential L-
formula µ[x, y, z] such that, if a, b, c ∈ R then c = ab if and only if R satisfies µ[a, b, c].

We remark that in the above theorem the notion of x ∈ R being (n-)powerful is relative to K, since
it is defined in terms of valuations, but the notion of being an n-th power is relative to R.

The proof of Theorem 2.12 does not involve new ideas and can be deduced from Corollary 2.8
essentially following the original approach by Büchi. We give details in section 5.

A direct consequence is the following.

Corollary 2.13. Assume Conjecture 1.4. Let K, R, and P be as in Theorem 2.12. Let Lr = {0, 1,+, ·}
be the language of rings (with the usual interpretations). Suppose that the positive existential theory of
R over Lr is undecidable. Then the positive existential theory of R over L = {0, 1,+, P} is undecidable.

Corollary 2.13 may be applied in several situations, as long as some analogue of H10 has been
established in the corresponding case. See [28] for a very complete exposition on Hilbert’s tenth
problem for subrings of number fields and related topics.

In order to make clear (for non specialists) the meaning of Corollary 2.13 for Diophantine problems,
let us give two consequences of Corollary 2.13 in terms of systems of Diophantine equations over Z
(similar results hold whenever Corollary 2.13 can be applied, but we state them in this special case for
the sake of concreteness).

Corollary 2.14. Assume Conjecture 1.4. Fix an integer n ≥ 2. There is no algorithm to solve the
following decision problem:

Given B1, . . . , Bs ∈ Z[x1, . . . , xr], diagonal forms of degree n, and given c1, . . . , cs ∈ Z, decide
whether or not there is some v ∈ Zr such that Bi(v) = ci for each 1 ≤ i ≤ s.

It is easy to see that the decision problem stated in the previous corollary is a particular instance
of the decision problem presented in the next corollary (which is immediate from Corollary 2.13 and
H10).

Corollary 2.15. Assume Conjecture 1.4. Let P ⊆ Z be one of the following sets of integers

• the set of n-th powers for some fixed n ≥ 2,
• the set of powers,
• the set of n-powerful integers for some fixed n ≥ 2.

There is no algorithm to solve the following decision problem:
Given a system (S) of first degree equations with integer coefficients in the unknowns x1, . . . , xr

(S) :


a11x1 + a12x2 + . . .+ a1rxr = b1

a21x1 + a22x2 + . . .+ a2rxr = b2

...

as1x1 + as2x2 + . . .+ asrxr = bs

and given a set of indices I ⊆ {1, 2, . . . , r}, decide whether or not there exists v = (v1, . . . , vr) ∈ Zr
such that v is a solution for (S) and vi ∈ P for each i ∈ I.

That is, Vojta’s Conjecture 1.4 implies that the problem of solving systems of linear equations over
Z (or even deciding the existence of solutions) becomes undecidable if we require that some (or all)
variables are squareful or powers (or more generally, n-powerful or n-th powers for fixed n).

As in the case of number fields, we can use our arithmetic results for function fields and meromorphic
functions in order to obtain consequences in logic.

Theorem 2.16. Let L be the function field of a geometrically irreducible curve over a field K of
characteristic zero which is algebraically closed in L, or let L be the field of meromorphic functions
and K = C. Let R be an integrally closed K-subalgebra of L containing some element transcendental
over K. Let P be a unary predicate symbol and fix an interpretation for it as in Theorem 2.12. Let
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α be a unary function symbol interpreted as x 7→ u · x for some fixed u ∈ R transcendental over K.
Consider the language L = {0, 1,+, P, α} where 0, 1,+ are interpreted in the usual way over R. Then
multiplication is positive existential L-definable on R.

The proof of Theorem 2.16 goes along the same lines as the proof of Theorem 2.12. We will indicate
the main details in the last section. Some results on the direction of Theorem 2.16 are known; we refer
the reader to [20] for an exposition of results when P (x) means ‘x is a square’ over several structures.
If P (x) is interpreted as ‘x is a power’, some cases have been studied, see [10].

As in the number field case a direct consequence is:

Corollary 2.17. Let K, L, R, P , α and u be as in Theorem 2.16. Define the language Lr,α =
{0, 1,+, ·, α} and consider the obvious interpretations on R (interpret α as in Theorem 2.16). Suppose
that for some language L∗ extending Lr,α the positive existential theory of R over L∗ is undecidable.
Let L∗P be the language obtained from L∗ by replacing the symbol · by P . Then the positive existential
theory of R over L∗P is undecidable.

This result is applicable, for example, when L∗ = Lr,α and R = C[x] or R = R(x), by results of
Denef [9]. The literature on analogues of Hilbert’s tenth problem for subrings of function fields is
wide – for instance, we refer the reader to [11], [18] and [34] for more cases where Corollary 2.17 can
be applied. We remark that although Hilbert’s tenth problem is open for C(x) and for the field of
meromorphic functions over C, one can obtain undecidability if we take L∗ a suitable enlargement of
Lr,α. For example, one obtains undecidability of the positive existential theory of C(x) if we include
a unary predicate symbol ‘ord’ for elements vanishing at zero, so that in this case we can also apply
Corollary 2.17.

The next sections contain the proofs of our main results. We consider first the case of function fields
and meromorphic functions (which is simpler), and then the number field situation. We hope that this
order of presentation will help to clarify the main ideas. At the end of this paper, we include a short
section to explain the proof of the consequences in logic, following Büchi’s ideas.

3. Value distribution on extensions of bounded degree

3.1. Function fields. In this section we recall the basic results on function fields that we need for the
proof of Theorem 2.4. We focus on value distribution for algebraic extensions of bounded degree.

Let K be an algebraically closed field of characteristic zero. Let B,B′ be smooth projective curves
over K and let π : B′ → B be a non-constant morphism. Write L = K(B) and L′ = K(B′), so that π
corresponds to the algebraic extension L′/L.

In our application, L will be a fixed function field and L′ will range among all algebraic extensions
of L of bounded degree. Thus, all the definitions below are understood to be relative to B, even if the
notation makes no reference to it.

For f ∈ L′ non-constant and α ∈ P1(K) define the height of f relative to α by

hL′/L,α(f) = hL′,α(f) =
1

[L′ : L]

(
number of pre-images of α by f : B′ → P1 counting multiplicities

)
.

We put hL′,α(f) = 0 for f constant. We always have hL′,α(f) > 0 for f non-constant.
We define the truncated counting function in a similar way but ignoring multiplicities;

N
(1)
L′/L,f (α) = N

(1)
L′,f (α) =

1

[L′ : L]

(
number of pre-images of α by f : B′ → P1 ignoring multiplicities

)
.

Observe that we can take B′ = B and π = IdB so that the height and the truncated counting
function are defined for f ∈ L.

The following proposition is clear. We call it first main theorem by analogy with Nevanlinna theory.

Proposition 3.1 (First main theorem). For f ∈ L′ non constant and α, β ∈ P1(K) we have

hL′,α(f) = hL′,β(f) =
1

[L′ : L]
deg(f) > 0

where deg(f) is the degree of f : B′ → P1.
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So we can define the height of f ∈ L′ to be

hL′(f) =
deg(f)

[L′ : L]
.

where deg(f) = 0 for f constant. Moreover, given finite extensions of function fields L′′ − L′ − L
corresponding to a B-morphism of smooth projective curves τ : B′′ → B′ we have

hL′′/L(τ∗f) = hL′/L(f)

for any f ∈ L′ and α ∈ P1(K). Therefore the height is compatible with field extensions (however, the
truncated counting function is not). This observation shows that for f algebraic over L = K(B), one
has a well defined number

h(f) := hL′(f)

where L′ is any finite extension of L containing f . We call h(f) the height of f .
Since the truncated counting function depends on field extensions (due to ramification) we fix the

notation

N
(1)
f (α) = N

(1)
L(f),f (α).

That is, given f algebraic over L, the truncated counting function is considered with respect to the
field L(f) unless specified in a different way.

Next two results are elementary.

Lemma 3.2. Let f, g be algebraic over L = K(B). Then

h(f + g) ≤ h(f) + h(g) and h(fg) ≤ h(f) + h(g).

Lemma 3.3. Let f, g algebraic over L = K(B) and assume that f and g are Galois conjugates. Then
h(f) = h(g).

Lemma 3.4. Let G = H1 · · ·Hc with Hj ∈ L[s] distinct monic irreducible of degree dj. Let ∆ be the
discriminant of G. Let fj be a root of Hj and let d =

∑
j dj. Then

h(∆) ≤ 2(d− 1)

c∑
j=1

djh(fj).

Proof. Let g1, . . . , gd be the the roots of G in L̄, counting multiplicities. Then

∆ =

 ∏
1≤i<j≤d

(gi − gj)

2

.

By Lemma 3.2, first applied to the exponent 2, then to the product and then to each difference (gi−gj),
we obtain

h(∆) ≤ 2(d− 1)

d∑
k=1

h(gk)

and the result follows by Lemma 3.3. �

Lemma 3.5. Let f be algebraic over L = K(B) and non-constant, let H ∈ L[s] be its (monic) minimal
polynomial and let ∆ ∈ L be the discriminant of H. Let L′ = L(f) and let π : B′ → B be a morphism
of smooth projective curves associated to the field extension L′/L. Let p ∈ B and let q1, . . . , qr ∈ B′ be
the points above p. If f is regular at all the qi then the coefficients of H are regular at p. If moreover
∆ does not vanish at p then f can vanish at most at one qi0 , in which case ordqi0 (f) = ordpH(0).

Proof. The claims in this lemma are classical results regarding valuations and field extensions. The
proofs can be found, for example, in [27]. Alternatively, see the proof of Lemma 3.17 below. �

The following well-known result can be considered as an analogue of the second main theorem with
truncated counting functions (from Nevanlinna theory) for algebraic extensions of bounded degree.
The proof is easy and we include it for the sake of completeness.
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Theorem 3.6. Let π : B′ → B be a non-constant morphism of smooth projective curves over K, write
L = K(B) and L′ = K(B′), and let f ∈ L′ be non-constant. Let b1, . . . , bq ∈ P1(K) be distinct points.
Then

(q − 2)h(f) ≤ degRπ
[L′ : L]

− χ(B) +

q∑
j=1

N
(1)
L′,f (bj)

where χ(−) denotes the Euler characteristic and Rπ ∈ Div(B′) is the ramification divisor of π.

Proof. Riemann-Hurwitz formula applied to π gives

χ(B′) = [L′ : L]χ(B)− degRπ

Similarly, applying the (topological version of the) Riemann-Hurwitz formula to the map f : B′ → P1

we get

χ(B′) = 2 deg(f)−
∑

p∈P1(K)

(deg(f)−#f−1(p)) ≤ 2 deg(f)−
q∑
j=1

(deg(f)−#f−1(bj))

= (2− q) deg(f) + [L′ : L]

q∑
j=1

N
(1)
L′,f (bj)

where # denotes the cardinality of a set. Therefore

[L′ : L]χ(B)− degRπ = (2− q) deg(f) + [L′ : L]

q∑
j=1

N
(1)
L′,f (bj)

and the result follows. �

The particular case B′ = B, π = Id (or directly from Riemann-Hurwitz) gives

Corollary 3.7. Let B be a smooth projective curve over K of genus g. Write L = K(B) and let
b1, . . . , bq ∈ P1(K) be distinct points. Let f ∈ L be non-constant. Then

(q − 2)h(f) ≤ 2(g − 1) +

q∑
j=1

N
(1)
L′,f (bj).

The term deg(Rπ)/[L′ : L] in Theorem 3.6 is not convenient for our purposes, so we will bound it in
terms of heights. We introduce the notation e(x|p) for the ramification index (the morphism of curves
mapping x to p will be clear from the context). We will use the following classical result

Lemma 3.8. Let f be algebraic over L = K(B) with (monic) minimal polynomial

H(s) = sd + cd−1s
d−1 + . . .+ c1s+ c0 ∈ L[s].

Then ∑
p∈B

min{0, ordpcd−1, . . . , ordpc0} = dh(f).

Proof. See Proposition 4 p.49 [13]. In our situation there are no archimedean places, so that the
constants c1, c2 in op. cit. are equal to 1. �

Lemma 3.9. Let f be algebraic over L = K(B) and let L′ = L(f). Let π : B′ → B be a morphism
of smooth projective curves such that L′ = K(B′) and such that π corresponds to L′/L. Let d = [L′ :
L] = deg(π) and let Rπ ∈ Div(B′) be the ramification divisor. Then

deg(Rπ)

[L′ : L]
≤ (3d− 2)h(f).

Proof. 3 Let Dπ ∈ Div(B′) be the different divisor associated to the branched covering π. Let Sf be
the set of points in B lying below poles of f . Let A ⊆ K(B) = L be the ring of functions regular away

3The author would like to express his gratitude to Julie Wang for suggesting this proof. Before this suggestion, the

bound in Lemma 3.9 had a quadratic dependence on d instead of linear.
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from Sf . Let H = sd + ad−1s
d−1 + . . .+ a0 be the minimal polynomial of f over L and observe that

H ∈ A[s] by Lemma 3.5. We use Corollary 2 in p.56 of [27] to compute

degRπ = degDπ =
∑
p∈B

∑
p′∈π−1(p)

ordp′(DL′/L)

≤
∑
p∈Sf

∑
p′∈π−1(p)

(e(p′|p)− 1) +
∑

p∈B−Sf

∑
p′∈π−1(p)

ordp′(H
′(f))

≤
∑
p∈Sf

(d− 1) +
∑

p∈B−Sf

∑
p′∈π−1(p)

max{0, ordp′(H
′(f))}

≤ (d− 1) deg(f)∞ +
∑
p′∈B′

max{0, ordp′(H
′(f))}

= d(d− 1)h(f) + deg(H ′(f))0 = d(d− 1)h(f) + dh(H ′(f)).

Note that H ′(f) = dfd−1 +(d−1)ad−1f
d−2 + . . .+a1 therefore, looking at poles and using the previous

lemma we find

dh(H ′(f)) =
∑
p′∈B′

−min{0, ordp′(H
′(f))}

≤
∑
p′∈B′

−min{0, ordp′(df
d−1), ordp′((d− 1)ad−1f

d−2), . . . , ordp′(a1)}

≤ (d− 1)
∑
p′∈B′

−min{0, ordp′(f)}+
∑
p′∈B′

−min{0, ordp′(1), ordp′(ad−1), . . . , ordp′(a0)}

= (d− 1)
∑
p′∈B′

−min{0, ordp′(f)}+ d
∑
p∈B
−min{0, ordp(ad−1), . . . , ordp(a0)}

= (d− 1) deg(f)∞ + d2h(f) = d(2d− 1)h(f).

Therefore
degRπ ≤ d(d− 1)h(f) + d(2d− 1)h(f) = d(3d− 2)h(f).

�

Remark 3.10. The above bound is not optimal (for example, take π = Id) but the proof works without
major modifications for meromorphic functions and number fields.

Therefore, we arrive to the following version of the second main theorem:

Theorem 3.11. Let B be a smooth projective curve over K of genus g, let d ≥ 1 be an integer
and let b1, . . . , bq ∈ P1(K) be distinct points. For all non-constant f algebraic over L = K(B) with
[L(f) : L] ≤ d, the following inequality holds

(q − 3d)h(f) ≤
q∑
j=1

N
(1)
f (bj) + 2(g − 1).

3.2. Meromorphic functions on finite ramified coverings of C. We refer the reader to [6], [7],
[26] and [33] for some standard facts in this section. Let π : B′ → C be a finite ramified covering of
Riemann surfaces of degree d. We always assume that such B′ is connected. WriteM(B′) for the field
of meromorphic functions of B′. Define

B′(r) = {z ∈ B′ : |π(z)| < r}
B′ 〈r〉 = {z ∈ B′ : |π(z)| = r}

and consider the measure

dσ =
1

deg π
π∗
dθ

2π

on B′ 〈r〉. Given a non-constant meromorphic map f : B′ → C and α ∈ C we define

mf (α, r) =

∫
B′〈r〉

log+ 1

|f − α|
dσ
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and for α =∞ we define

mf (∞, r) =

∫
B′〈r〉

log+ |f |dσ.

An analytic divisor on B′ is a formal sum of points on B′ with integer coefficients and possibly infinite
support, such that its support is finite when restricted to B′(r) for any r. Given an analytic divisor
D =

∑
b∈B′ nbb on B′, we define the counting function

ND(r) =
1

deg π

 ∑
b∈B′(r)−π−1(0)

nb log
r

|π(b)|
+

∑
b∈π−1(0)

nb log r

 .

If f is a non-constant meromorphic function on B′ and D is a divisor on P1
C = C∞ then one can define

the analytic divisor f∗D and the counting function

Nφ(D, r) = Nf∗D(r).

Moreover, we let Nram(π)(r) be the counting function for the ramification divisor of π (which is an
analytic divisor).

If α ∈ C∞ and f is a non-constant meromorphic function on B′ then the analytic divisor f∗α is
effective (looking at α as a divisor) which means that it has non-negative coefficients. Let (f∗α)red be
the analytic divisor obtained by replacing all the strictly positive coefficients by 1. Then we define the
truncated counting function by

N
(1)
f,B′(α, r) = N(f∗α)red(r).

Finally, given f a non-constant meromorphic function on B′ define its height by

Tf (r) = mf (∞, r) +Nf (∞, r)

which is a function of r > 0. In order to include constant functions, we define Tc(r) = 0 for any
constant function c. If B′′ → B′ → C are finite ramified coverings and f is a meromorphic function on
B′, then we can pull-back f to a meromorphic function on B′′ which we also denote by f (only when
this notation is not confusing). As in the function field case, it is easy to see that Tf (r) is the same
when computed on B′ or B′′. Therefore, given f algebraic over M(C) the height Tf (r) of f is well
defined (one realizes f as a meromorphic function on some finite ramified covering of C).

However, given f algebraic over M(C) the truncated counting function of f may depend on the

realization of f as meromorphic function on some Riemann surface. We define N
(1)
f (α, r) to be the

truncated counting function of f realized as a meromorphic function on some B′ such that M(B′) =

M(C)(f) (note that N
(1)
f (α, r) is well defined).

The first main theorem in this context is

Theorem 3.12. Let f be a non-constant meromorphic function on B′ and let α ∈ C∞. Then

mf (α, r) +Nf (α, r) = Tf (r) +O(1)

where O(1) remains bounded as r →∞.

Unlike the function field case, this is not an obvious fact (see the references indicated at the beginning
of this section).

We need the following results about Tf (r)

Lemma 3.13 (compare with Lemma 3.2). Let f, g be algebraic over M(C). Then we have

Tf+g(r) ≤ Tf (r) + Tg(r) +O(1)

and

Tfg(r) ≤ Tf (r) + Tg(r) +O(1).

Proof. This is a straightforward computation. One verifies similar inequalities for mf (∞, r) and
Nf (∞, r) separately, and the result follows from the definition of Tf (r). Details are left to the
reader. �
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Lemma 3.14 (compare with Lemma 3.3). Let π : B′ → C be a finite ramified covering and let
σ : B′ → B′ be a covering automorphism. Then for any non-constant f ∈ M(B′) we have Tσ∗f (r) =
Tf (r). In particular, T•(r) is invariant under Galois conjugation.

Proof. This is clear from the definitions of mf (∞, r) and Nf (∞, r). Indeed, Galois invariance holds
for m•(∞, r) and N•(∞, r) individually. �

Lemma 3.15 (compare with Lemma 3.4). Let G = H1 · · ·Hc with Hj ∈ M(C)[s] distinct monic
irreducible of degree dj. Let fj be a root of Hj and let d =

∑
j dj. Then

T∆(r) ≤ 2(d− 1)

c∑
j=1

djTfj (r) +O(1)

where ∆ ∈M(C) is the discriminant of G.

Proof. The proof is the same as in the function field setting (Lemma 3.4), except for the bounded error
term coming from Lemma 3.13. �

The next lemma is used to prove an analogue of Lemma 3.5.

Lemma 3.16. Let f be algebraic over M(C), non-constant with monic minimal polynomial H, and
let π : B′ → C be a ramified covering such that M(B′) = M(C)(f). For z0 ∈ C not a zero of the
discriminant of H and not a pole of any coefficient of H, let Hz0 ∈ C[s] be the polynomial obtained by
evaluating the coefficients of H at z0. Let Sz0 be the set of roots of Hz0 . Then f restricts to a bijective
map π−1(z0)→ Sz0 .

Proof. Since the discriminant of H does not vanish at z0 we have that #Sz0 = deg π, so it is enough
to show surjectivity. Let x ∈ Sz0 , then one can construct a finite ramified covering π′ : B′′ → C and
g ∈ M(B′′) such that H(g) = 0, M(B′′) =M(C)(g) and g(w) = x for some w ∈ π′−1(z0). Since we
have a M(C)-isomorphism u : M(B′′) → M(B′) defined by u(g) = f , we get a bi-holomorphic map
h : B′ → B′′ commuting with π and π′ such that f = g ◦ h (see Theorem 3.1 in [12]). Then x is in the
image of π−1(z0)→ Sz0 . �

We have:

Lemma 3.17. Let f be algebraic overM(C) and non-constant, let H ∈M(C)[s] be its monic minimal
polynomial and let ∆ ∈M(C) be the discriminant of H. Let π : B′ → C be a finite branched covering
such that M(B′) =M(C)(f). Let p ∈ C and let q1, . . . , qr ∈ B′ be the points above p. If f is regular
at all the qi then the coefficients of H are regular at p. Moreover, if ∆ does not vanish at p then f can
vanish at most at one qi0 , in which case ordqi0 (f) = ordpH(0).

Proof. This is similar to Lemma 3.5, and we include it for the sake of completeness.
That the coefficients of H are regular at p is clear after we express the coefficients of H in terms of

the Galois conjugates of f .
By the previous lemma, the map π is unramified above p and moreover f takes distinct values at

the qi. Thus, at most one of the ordqi(f) can be non-zero (and hence positive because f is regular
above p).

If all the ordqi(f) are zero, then 0 is not in the image of f restricted to {qi}i = π−1(p). Thus, by
the previous lemma, 0 is not one of the d zeros of Hp (the complex polynomial obtained by evaluating
the coefficients of H at p), and we get that ordpH(0) = 0. Taking any i0 proves the result in this case.

Now suppose that there is some (and hence, a unique) index such that ordqi0 (f) > 0. Write

H(s) = sd + cd−1s
d−1 + . . .+ c0. Then we have H(0) = c0, and since 0 is in the image of f restricted

to {qi} = π−1(p) we conclude that 0 is one of the d distinct roots of Hp. Therefore c0(p) = 0 and
c1(p) 6= 0 (since Hp has no repeated zeros). Finally, consider

(fd−1 + π∗cd−1f
d−2 + . . .+ π∗c1)f = −π∗c0,

and recall that all the ci are regular at p. We get

ordqi0 (f) = ordqi0π
∗c0 = ordpc0 = ordpH(0),

where the second equality holds because π is unramified above p. �
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Let us introduce the following notation; if X(r), Y (r) are functions on r > 0 we write X(r). ≤ .Y (r)
if one has X(r) ≤ Y (r) for r outside a set of finite measure.

The following version of the second main theorem is a corollary of McQuillan’s tautological inequality
(see Corollary 29.7 in [33] and use Theorem 3.6 in the case Tf (r)� log r)

Theorem 3.18. Let B′ be a finite branched covering of C, let f be a meromorphic function on B′ and
let b1, . . . , bq be distinct points in C∞. Let ε > 0. Then

(q − 2− ε)Tf (r). ≤ .
q∑
j=1

N
(1)
f,B′(bj , r) +Nram(π)(r).

In the classical case B = C, π = Id one gets

Theorem 3.19. Let f be a meromorphic function on B and let b1, . . . , bq be distinct points in C∞.
Let ε > 0. Then

(q − 2− ε)Tf (r). ≤ .
q∑
j=1

N
(1)
f (bj , r).

For our application, we want to replace the ramification term in the second main theorem by some
expression depending on the height of f . First we need an analogue of Lemma 3.8.

Lemma 3.20. Let f be algebraic over M(C) with monic minimal polynomial

H(s) = sd + cd−1s
d−1 + . . .+ c1s+ c0 ∈M(C)[s].

Then

Nc(∞, r) +mc(∞, r) = dTf (r) +O(1)

where Nc(∞, r) is the counting function of the analytic divisor

D =
∑
p∈C

min{0, ordpcd−1, . . . , ordpc0}p

and

mc(∞, r) =

∫
C〈r〉

log max{1, |cd−1|, . . . , |c0|}
dθ

2π
.

Proof. Let γ : B′′ → C be a branched covering such that M(B′′) is the splitting field of H, and let
φ1, . . . , φd ∈ M(B′′) be the Galois conjugates of f . The same argument as in the (quoted) proof of
Lemma 3.8 gives

Nc(∞, r) =

d∑
j=1

Nφj
(∞, r).

On the other hand, using Lemma 1 p. 47 [13] pointwise on B′′ 〈r〉 we get

mc(∞, r) =
1

deg γ

∫
B′′〈r〉

log max{1, |γ∗cd−1|, . . . , |γ∗c0|}γ∗
dθ

2π

=
1

deg γ

∫
B′′〈r〉

log

d∏
j=1

max{1, |φj |}γ∗
dθ

2π
+O(1)

=

d∑
j=1

1

deg γ

∫
B′′〈r〉

log max{1, |φj |}γ∗
dθ

2π
+O(1)

=

d∑
j=1

mφj
(∞, r) +O(1)
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where the error term is bounded in absolute value by (log 2)d. Therefore we get

Nc(∞, r) +mc(∞, r) =

d∑
j=1

Nφj
(∞, r) +

d∑
j=1

mφj
(∞, r) +O(1)

=

d∑
j=1

Tφj (r) +O(1) = dTf (r) +O(1).

�

Lemma 3.21. Let f be algebraic over M(C) and let π : B′ → C be a finite ramified covering such
that M(B′) =M(C)(f). Let n = deg(π). Then for all ε > 0 we get

Nram(π) ≤ (3n− 2)Tf (r) +O(1).

Proof. The proof of this result goes along the same lines as the proof of Lemma 3.9, but using Lemma
3.17 instead of Lemma 3.5, and Lemma 3.20 instead of Lemma 3.8. The error term also has a con-
tribution coming from an application of the first main theorem when we compute the height of H ′(f)
using poles instead of zeros. Details are left to the reader. �

Thus we conclude

Theorem 3.22. Let d ≥ 1 be an integer and let b1, . . . , bq ∈ C∞ be distinct points. Let f be algebraic
over M(C), non-constant and with [M(C)(f) : M(C)] ≤ d. For all ε > 0 the following inequality
holds

(q − 3d− ε)Tf (r). ≤ .
q∑
j=1

N
(1)
f (bj , r).

3.3. Proof of Theorem 2.4. Let us recall the notation introduced before Theorem 2.4. Let K, B, g
and L be one of the following

• K is an algebraically closed field of characteristic zero, B is a smooth projective curve over K
with genus g, and L is the function field of B, or

• K = C, B = C and L is the field of complex meromorphic functions on C. In this case we can
set g = 1 for notational convenience (actually, the second main theorem of Nevanlinna theory
suggests that for any ε > 0 we can think about g as g = 1 + ε).

In either case, if B′ → B is a branched covering then we denote by K(B′) the field of meromorphic
functions on B′, which is a field extension of L via the pull-back induced by B′ → B.

The purpose of this section is proving Theorem 2.4. We begin with

Lemma 3.23. Let H(s) = s+ a ∈ L[s] with a ∈ L non-constant. There are at most

W :=

{
max{3, 4g} in the function field case,

4 in the meromorphic case

values of b ∈ K such that H(b) has only multiple zeros.

Proof. Let b1, . . . , bq ∈ K be distinct elements such that H(bj) only has multiple zeros for each j. In
the function field case, Corollary 3.7 gives

(q − 2)h(a) ≤ 2(g − 1) +

q∑
j=1

N (1)
a (−bj)

≤ 2(g − 1) +
1

2

q∑
j=1

h−bj (a) = 2(g − 1) +
q

2
h(a)

where we used the fact that a+ bj only has multiple zeros for each j. So we conclude

q ≤ 4 +
4(g − 1)

h(a)
.
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Since a ∈ L is non-constant we have h(a) ≥ 1 by Lemma 3.1. Thus, when g = 0 we get q ≤ 3, and
when g ≥ 1 we get q ≤ 4g. The meromorphic case goes along the same lines using Theorem 3.19
instead of Corollary 3.7. �

The next lemma reduces the proof of Theorem 2.4 to the proof of a simpler statement.

Lemma 3.24. It suffices to prove Theorem 2.4 under the additional hypothesis that F cannot be
factored as F = GH for some H ∈ L[s] and some G ∈ K[s] of degree at least 1 in s.

Proof. First we note that if F satisfies the hypothesis in Theorem 2.4 then F cannot be factored as
F = G(s)H(s) with G ∈ K[s] and H ∈ L[s] linear on s with a non-constant coefficient. Indeed, F (bi)
is powerful if and only if H(bi) is powerful or G(bi) = 0, and therefore such an F can be powerful for
at most

W + degG ≤W + (n− 1) < M

values of s ∈ K (with W as in the previous lemma), contrary to the value of M in the statement of
Theorem 2.4.

Suppose now that Theorem 2.4 is proved under the additional requirement; we will deduce the
general case from this. For our argument below, it will be useful to write M(n) for the value of M
in the statement of Theorem 2.4 because we will consider different degrees n (although the field L is
fixed).

Given F satisfying the hypotheses of Theorem 2.4 suppose that we can factor it as F = GH for
some G ∈ K[s] and some H ∈ L[s], and moreover assume that G is the largest (in degree) such factor.
We can further assume that G,H are monic as polynomials on s and that H is not linear on s (by the
first paragraph of this proof). Write

H = sn
′
+ · · ·+ b1s

n′−1 + b0, bj ∈ L
and note that G ∈ K[s] has degree n− n′. Since G can vanish at most for n− n′ values of s ∈ K, we
know that H(s) is µ-powerful in L for at least

M(n)− (n− n′) ≥M(n′)

values of s in K, with µ ≥ λ ≥ λ′ where λ′ = min{n′, λ} ≤ n′. Observe that no irreducible factor of
H can have multiplicity larger than λ′ in the factorization of H.

Therefore, by maximality of G, we can apply to H the version of the theorem that we are assuming
as proved. Therefore we must have µ = λ′ and hence λ = µ = λ′ (because µ ≥ λ ≥ λ′), and moreover
we also conclude that some irreducible factor of H has multiplicity exactly λ′ = λ.

Finally we conclude that the theorem holds for F , namely, µ = λ and F = GH with monic
polynomials H ∈ L[s] and G ∈ K[s] such that the largest exponent in the factorization of H in L[s] is
exactly λ.

�

Now we fix some F satisfying the hypotheses in Theorem 2.4. We factor

F = Hm1
1 . . . Hmc

c

where Hj ∈ L[s] are distinct, monic, irreducible and non-constant on s of degree dj . By the above
lemma, we can further assume that Hj /∈ K[s], that is, each Hj has at least one non-constant coefficient.

We define d =
∑c
j=1 dj and m+ = maxjmj ≤ λ. With this notation, we want to show

(1) m+ = λ = µ

(observe that we already know m+ ≤ λ ≤ µ). Let ∆ ∈ L be the discriminant of G =
∏
j Hj and write

Hj(s) = sdj + cdj−1,js
dj−1 + . . .+ c1js+ c0j

with cij ∈ L the coefficients of Hj (hence, for fixed j not all the cij are constant).
For each 1 ≤ j ≤ c, let φj be a zero of Hj and let πj : Bj → B be a branched covering such that

Lj := K(Bj) = L(φj). Note that each φj is non-constant since Hj has some non-constant coefficient
and observe also that dj = [Lj : L] because Hj are irreducible.

If z0 ∈ B is not a zero of ∆ and all the φj are regular above p then we say that z0 is good, otherwise it
is bad. Finally, define Θ to be the (analytic) divisor of bad points on B, without counting multiplicities.
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Observe that all the non-zero coefficients of Θ are 1 by definition. Recall that in the meromorphic case
NΘ(r) stands for the counting function of Θ; in the function field case we let NΘ = deg Θ.

In the function field case, Theorem 3.11 gives

(2) (M − 3d)h(φj) ≤ (M − 3dj)h(φj) ≤
M∑
k=1

N
(1)
φj

(bk) + 2(g − 1)

and in the meromorphic case, Theorem 3.22 yields for every ε > 0

(3) (M − 3d− ε)Tφj
(r) ≤ (M − 3dj − ε)Tφj

(r). ≤ .
M∑
k=1

N
(1)
φj

(bk, r).

We want an upper estimate for truncated counting functions in terms of heights.

Lemma 3.25. In the function field case we have

M∑
k=1

c∑
j=1

djN
(1)
φj

(bk) ≤ M

µ

c∑
j=1

mjdjh(φj) + dNΘ

and in the meromorphic case we have

M∑
k=1

c∑
j=1

djN
(1)
φj

(bk, r) ≤
M

µ

c∑
j=1

mjdjTφj
(r) + dNΘ(r) +O(1).

Proof. Let [bk] be the divisor of the point bk in P1(K), and write

φ∗j [bk] =
∑
w∈Bj

nj,w,bkw

that is, nj,w,bk = ord+
w(φj − bk). Observe that for fixed j and w, at most one of the nj,w,bk is non-zero

(bk are distinct), hence, for each z ∈ B we have

M∑
k=1

c∑
j=1

∑
w∈π−1

j (z)

min{1, nj,w,bk} =

c∑
j=1

∑
w∈π−1

j (z)

M∑
k=1

min{1, nj,w,bk}

≤
c∑
j=1

∑
w∈π−1

j (z)

1 ≤
c∑
j=1

dj = d

therefore for all z ∈ B

(4)

M∑
k=1

c∑
j=1

∑
w∈π−1

j (z)

min{1, nj,w,bk} ≤ d.

Let z0 be good, in particular all cij are regular at z0 (by lemmas 3.5 and 3.17). Let Hjz0 be the
complex polynomial obtained by evaluating the coefficients of Hj at z0 and observe that Hjz0 does
not have repeated roots and for i 6= j the polynomials Hiz0 and Hjz0 do not share roots (since ∆ does
not vanish at z0). It follows that for given k only one of the Hj0(bk) ∈ L can have a zero at z0, which
happens if and only if F (bk) has a zero at z0 (all the cij are regular at z0). By lemmas 3.5 and 3.17
we have some index j0 such that

mj0nj0,w0,bk = mj0ordz0Hj0(bk) =

c∑
j=1

mjordz0Hj(bk) = ordz0F (bk).

Therefore
µmin{1, nj0,w0,bk} = µmin{1,mj0nj0,w0,bk} = µmin{1, ordz0F (bk)}

≤ ordz0F (bk) = mj0nj0,w0,bk
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because ordz0F (bk) = 0 or ordz0F (bk) ≥ µ by hypothesis. For fixed k we can have nj,w,bk > 0 for at

most one pair (j, w) with w ∈ π−1
j (z0), so we obtain

c∑
j=1

∑
w∈π−1

j (z0)

min{1, nj,w,bk} ≤
1

µ

c∑
j=1

∑
w∈π−1

j (z0)

mjnj,w,bk .

Thus, adding over k we conclude that for z0 ∈ B good

(5)

M∑
k=1

c∑
j=1

∑
w∈π−1

j (z0)

min{1, nj,w,bk} ≤
1

µ

M∑
k=1

c∑
j=1

mj

∑
w∈π−1

j (z0)

nj,w,bk .

If we use (5) when z0 ∈ B is good and (4) when z0 ∈ B is bad, then the lemma follows just by
adding over all z0 ∈ B. We include the computation in the function field case; the steps in the case of
meromorphic functions are exactly the same.

Let δz = 0 if z is good and δz = 1 if z is bad. In the function field case we have

M∑
k=1

c∑
j=1

djN
(1)
φj

(bk) =

M∑
k=1

c∑
j=1

∑
z∈B

∑
w∈π−1

j (z)

min{1, nj,w,bk}

≤ 1

µ

M∑
k=1

c∑
j=1

mj

∑
z∈B

∑
w∈π−1

j (z)

nj,w,bk +

M∑
k=1

c∑
j=1

∑
z∈B

δz
∑

w∈π−1
j (z)

min{1, nj,w,bk}

≤ 1

µ

M∑
k=1

c∑
j=1

mj

∑
z∈B

∑
w∈π−1

j (z)

nj,w,bk +
∑
z∈B

δzd =
1

µ

M∑
k=1

c∑
j=1

mjdjhbk(φj) + dNΘ

and we conclude using the first main theorem. �

Using Lemma 3.4 one finds

NΘ ≤ 2(d− 1)

c∑
j=1

djh(φj) +

c∑
j=1

deg φ∗j∞ = (2d− 1)

c∑
j=1

djh(φj)

in the function field case, and similarly in the meromorphic case we use Lemma 3.15 to get

NΘ(r) ≤ 2(d− 1)

c∑
j=1

djTφj
(r) +

c∑
j=1

djNφj
(∞, r) +O(1) ≤ (2d− 1)

c∑
j=1

djTφj
(r) +O(1).

Now we use the previous two inequalities together with inequalities (2), (3) (added over j with weight
dj) and Lemma 3.25 to conclude(

M − m+

µ
M − 3d− d(2d− 1)

) c∑
j=1

djh(φj) ≤ 2d(g − 1), and

(
M − m+

µ
M − 3d− ε− d(2d− 1)

) c∑
j=1

djTφj
(r). ≤ .0

in the function field an meromorphic cases respectively. For function fields observe that
∑c
j=1 djh(φj) ≥

c ≥ 1, and for meromorphic functions note that
∑c
j=1 djTφj (r)� log r as r →∞, so that we get(

1− m+

µ

)
M ≤

{
3d+ d(2d− 1) + 2d(g − 1) for function fields

3d+ d(2d− 1) + ε for meromorphic functions.

Using the convention g = 1 + ε for meromorphic functions (and perhaps using a different ε), we get

(6)

(
1− m+

µ

)
M ≤ 2d(d+ g) = 2(d− 1)d+ 2(g + 1)d

in both cases. We have the following simple claim
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Claim 3.26. One has n+ 1 ≥ m+ + d.

Proof. Let j0 be an index such that mj0 = m+, then

n =
∑

mjdj ≥ m+dj0 +
∑
j 6=j0

dj ≥ m+ + dj0 − 1 +
∑
j 6=j0

dj = m+ − 1 + d.

�

Assuming that equation (1) fails for our F , one has λ < µ or m+ < λ. Suppose first that µ ≥ λ+ 1,
then

1− m+

µ
≥ 1− m+

λ+ 1
≥

{
d

n+1 if λ = n
1

λ+1 in general

where we used the previous claim for the first case. Secondly, if λ ≥ m+ + 1 and we use the bound
µ ≥ λ to obtain

1− m+

µ
≥ 1− m+

λ
≥

{
d−1
n if λ = n

1
λ in general.

where one notes that d ≥ 2 (otherwise F would be an n-th power but in this case m+ < λ ≤ n). So,
in either case (λ < µ or m+ < λ) we use inequality (6) to conclude

M ≤
(

1− m+

µ

)−1

2d(d+ g) ≤


2(n+ 1)(d+ g) ≤ 2n2 + 2(g + 1)n+ 2g if µ > λ = n

2nd+ 2(g + 1)n d
d−1 ≤ 2n2 + 4(g + 1)n if m+ < λ = n

2(λ+ 1)n(n+ g) in general

which gives

M ≤

{
2n2 + 4(g + 1)n if λ = n

2(λ+ 1)n(n+ g) in general.

This is a contradiction with the actual value of M (for meromorphic functions let ε → 0+ so that
g → 1+). Therefore m+ = λ = µ which proves equation (1), finishing the proof of Theorem 2.4.

4. Diophantine approximation on extensions of bounded degree

4.1. Algebraic points of the line. In this section we present some results and conjectures on Dio-
phantine approximation along the same lines as our presentation of preliminary results on value dis-
tribution and Nevanlinna theory for function fields and meromorphic functions.

Given a number field L we write ML for the set of (normalized) places of L, which can be written
as the disjoint union of the set of non-archimidean valuations M0

L and the set of archimidean valuation
M∞L . Elements of M0

L can be identified with maximal ideals P ⊆ OL while the elements of M∞L can be
identified with embeddings σ : L → C (here, the pairs of complex conjugate non-real embeddings are
identified as just one embedding). For x ∈ L, if P ∈M0

L we write vP(x) = ordP(x) for the normalized
P-adic valuation, while for σ ∈M∞L we write vσ(x) = − log |σ(x)| (here, | · | is the usual absolute value
on C). In any case vp(0) = +∞, but we will always avoid this case for simplicity. Given L/K finite
and P ∈M0

L, we write

degP = log #
OL
P

and given σ ∈M∞L we write

deg σ =

{
1 if σ is real

2 otherwise.

We can extend deg additively to formal sums of places (divisors). This notion of degree is borrowed
from Arakelov geometry and it is convenient for our discussion.

In general, if F is a real valued function, we write F+ = max{0, F}.
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From now on we fix a base number field K and consider finite extensions of it. Let x ∈ K̄∗ (x 6= 0)
and choose L/K a finite extension such that x ∈ L. Define the counting function

NK(x) =
1

[L : K]

∑
P∈M0

L

v+
P(x) degP

and the proximity function

mK(x) =
1

[L : K]

∑
σ∈M∞L

v+
σ (x) deg σ.

They are non-negative quantities that do not depend on the choice of L, and should be seen as
‘proximity/counting functions of zeros’. For x ∈ K̄∗ define the normalized height by

hK(x) = mK(x) +NK(x).

Given x ∈ K̄∗ we define the truncated counting function by

N
(1)
K (x) =

1

[K(x) : K]

∑
P∈M0

L

min{1, v+
P(x)} degP.

Note that this definition uses the field K(x) and not just any finite extension L/K containing x.
We record here some facts that will be used in the proof of Theorem 2.1.

Lemma 4.1 (see lemmas 3.2, 3.13). For x, y,∈ K̄ we have

hK(xy) ≤ hK(x) + hK(y) +O(1) and hK(x+ y) ≤ hK(x) + hK(y) +O(1)

where the implicit constants do not depend on x or y.

Lemma 4.2 (see lemmas 3.3, 3.14). The height hK on K̄∗ is invariant under the action of Gal (K̄/K).

Lemma 4.3 (see lemmas 3.4, 3.15). Let G = H1 · · ·Hc with Hj ∈ K[s] distinct monic irreducible of
degree dj and let ∆ be the discriminant of G. Let xj ∈ K̄ be a root of Hj and let d =

∑
j dj. Then

hK(∆) ≤ 2(d− 1)

c∑
j=1

djhK(xj) +O(1)

where the implied constant depends on the numbers dj but does not depend on the particular Hj or xj.

Proof. The proof is the same as in the case of function fields and meromorphic functions. We leave
the details to the reader. �

Lemma 4.4. Let b ∈ K and x ∈ K̄. Let H ∈ K[s] be the monic minimal polynomial of x over K. Let
p be a non-zero prime in OK and let P1, . . . ,Pr be the primes in OK(x) above p. Then

r∑
i=1

ordP(x− b) degP = ordpH(b) deg p.

Proof. This follows from Proposition 8.7 in [17] and the fact that NK(x)/K(b−x) = H(b) (where NL/K
stands for the norm of the extension L/K). �

Lemma 4.5 (See lemmas 3.5, 3.17). Let L = K(x) for x algebraic over K with monic minimal
polynomial H ∈ K[s] and write ∆ for the discriminant of H. Let p be a non-zero prime in K and let
P1, . . . ,Pr be the primes in OL lying above p. If x is regular at the Pi then the coefficients of H are
regular at p. Moreover, if ∆ does not vanish at p then x can vanish at most at one Pi0 , and we have:

• if x does not vanish above p then ordPx = ordpH(0) = 0 for each P|p;
• if x indeed vanishes at some (hence unique) Pi0 then one has degPi0 = deg p and ordPi0

x =

ordpH(0).

We remark that the second item is not only a statement about ramification; we can have degP >
deg p for each P|p even if p does not ramify in L.



POWERFUL VALUES OF POLYNOMIALS 21

Proof. Most of the proof follows from classical facts that can be found, for instance, in [27]. We include
a proof just to clarify the last point of the statement. Note that the computations are essentially the
same as in the meromorphic counterpart of this lemma.

That the coefficients of H are regular (i.e. integral) at p is clear after we express them in terms of
the Galois conjugates of x.

For the second part, assume that ∆ does not vanish at p. By the previous lemma with b = 0 we get

(7)

r∑
i=1

ordPi(x) degPi = ordp(H(0)) deg p

and since all the terms are non-negative we conclude that H(0) vanishes at p if and only if x vanishes
at some Pi (observe that H(0) 6= 0 in OK since H is irreducible). If x does not vanish at any Pi then
the result is clear, so, without loss of generality we assume that x vanishes at P1. Since ∆ does not
vanish at p we obtain that H mod p is separable. But c0 = H(0) = 0 mod p (because x vanishes at
P1) so we get that c1 does not vanish at p. In particular c1 does not vanish at P1. Then the equation

x(xd−1 + cd−1x
d−2 + . . .+ c1) = −c0 = −H(0),

the fact that all the ci are regular at p and the assumption x = 0 mod P1 show that

ordP1x = ordP1H(0) = e(P1|p)ordpH(0) ≥ ordpH(0)

where e(P1|p) is the ramification index of P1 above p. Also, note that the embedding OK/p→ OL/P1

implies degP1 ≥ deg p. So, we conclude from equation (7) (and the fact that all the terms in (7) are
non-negative) that ordP1x = ordpH(0), degP1 = deg p and moreover ordPix = 0 for i > 1. �

For L/K finite let DL/K be the different of OL/OK . Define

dK(L) =
1

[L : K]

∑
P∈M0

L

ordP(DL/K) degP

and for x ∈ K̄ define the logarithmic discriminant

dK(x) = dK(K(x)).

For the convenience of the reader, let us recall the conjecture of Vojta that we will need (see
Conjecture 2.3 in [32], or Conjecture 25.3.b in [33]). This conjecture is analogue to theorems 3.6 and
3.18.

Conjecture 4.6 (Vojta). Let b1, . . . , bq be distinct elements of K and let n ≥ 1 be an integer. For
every ε > 0 there exists a constant Cε depending on ε (and the previous data) such that the inequality

(q − 2− ε)hK(x) ≤ dK(x) +

q∑
j=1

N
(1)
K (x− bj) + Cε

holds for all x ∈ K̄ with [K(x) : K] ≤ n and x 6= bj for 1 ≤ j ≤ q.

We remark that this formulation is slightly different to the statement in [32]. Our simpler definition
of the truncated counting function does not take poles into account. However, since the bj have a
bounded number of poles, this contribution is absorbed by the error term leading to our formulation.

For our purposes, the logarithmic discriminant appearing in Conjecture 4.6 is not convenient and
we need a bound for it in terms of heights.

Lemma 4.7 (see lemmas 3.9, 3.21). Let K be a number field. Let x ∈ K̄ and write d = [K(x) : K].
Then

dK(x) ≤ (3d− 2)hK(x) +O(1)

where the implicit constant depends on K and the number [K(x) : Q] but not on the particular x.
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Proof. Write L = K(x) and let H = sd + ad−1s
d−1 + . . . + a0 ∈ K[s] be the minimal polynomial of

x over K. Let Sx be the set of places in K above which x has poles, let Tx be the set of places in L
lying above S and let A = S−1

x OK . Note that H ∈ A[s] by Lemma 4.5. We have

[L : K]dK(x) =
∑

P∈M0
L

ordP(DL/K) degP.

We claim that ∑
P∈Tx

ordP(DL/K) degP =
∑
P∈Tx

(e(P|p)− 1) degP +O(1)

where p is a prime of K below P and the error term depends only on the numbers d and [K : Q].
Indeed, if p is a rational prime with p > d and P−p−p is a tower of primes corresponding to L−K−Q,
then the residue characteristic at P is coprime to e(P|p) ≤ d and thus ordP(DL/K) = e(P|p)− 1. For
the remaining cases, note that we have at most [L : Q]d primes P of L lying above a rational prime
p ≤ d, each of them satisfying NP ≤ p[L:Q] ≤ d[L:Q], and for each such P we use the bounds (cf. p.58
[27])

e(P|p)− 1 ≤ ordP(DL/K) ≤ e(P|p)− 1 + ordP(e(P|p))

together with

ordP(e(P|p)) ≤ e(P|p)ordp(e(P|p)) ≤ [L : Q]
log d

log p

to conclude the claimed equality with an error term at most

[L : Q]d · log d[L:Q] · [L : Q]
log d

log 2
, where [L : Q] = [K : Q]d.

From here, the proof continues along the same lines as in Lemma 3.9, as we just need to bound∑
P∈Tx

(e(P|p)− 1) degP +
∑

P∈ML−Tx

ordP(DL/K) degP.

Instead of Lemma 3.8 one has to use Proposition 4 in p.49 of [13]. The only difference with the case of
function fields is that the coefficients of the derivative of H are jaj and not aj , so there is a contribution
to the height coming from the j’s, but it is easily absorbed by the error term. �

4.2. Proof of Theorem 2.1. This section is devoted to prove Theorem 2.1. We begin with a reduction

Lemma 4.8. With the notation as in Theorem 2.1 let M ′ = M−n and E′ the set of monic polynomials
F ∈ K[s] of degree n such that all irreducible factors of F have multiplicity strictly less than µ, and
such that for each 1 ≤ k ≤ M ′ the number F (bk) is non-zero and µ-powerful. Then it is enough to
show that E′ is finite.

Proof. If one proves this restricted form of Theorem 2.1 then we can apply it to all subsets of size M ′

in {b1, . . . , bM}. As a polynomial of degree n has at most n zeros, each F ∈ E belongs to some of the

several E′ that we obtain (there are at most
(
M
M ′

)
such sets E′). Since each E′ is finite, so is E. �

Thus we work under the assumptions and notation from the previous lemma. We must show that
E′ is finite.

Let F ∈ E′ and factor F as F = Hm1
1 · · ·Hmc

c where Hj ∈ K[s] are monic, irreducible, non-constant
and distinct. Write dj = degHj , d =

∑
j dj and let ∆ be the discriminant of

∏
j Hj . By hypothesis we

have m+ ≤ µ−1 where m+ := maxjmj . For each j let φj ∈ K̄ be a root of Hj and define Kj = K(φj).
Let S be the (finite) set of places on K consisting of

• the places at infinity,
• the poles of all the bk, and
• the places above which two or more bk meet.
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Note that φj 6= bk for all j, k because F (bk) 6= 0 for each k, thus, assuming Conjecture 4.6 and using
Lemma 4.7 we have that for every ε > 0 there is a constant Cε not depending on F (and hence not
depending on φj) such that for each j

(8) (M ′ − 3d− ε)hK(φj) ≤ (M ′ − 3dj − ε)hK(φj) ≤
M ′∑
k=1

N
(1)
K,S(bk − φj) + Cε

where N
(1)
K,S is defined as N

(1)
K but omitting the contribution of the places above S (this contribution

can be absorbed by Cε because S is fixed, and is independent of φj). It is important to keep in
mind that Cε is a constant depending on ε, K, all the bk, S and the number n (which is a bound for
[K(φj) : K]), but the point is that Cε does not depend on the particular F or φj as long as F ∈ E′.

We need an upper bound for the truncated counting functions. For this, let Θ be the reduced
effective divisor on B = SpecOK supported on the points p ∈ B such that p ∈ S, or ∆ vanishes at p,
or some φj has a pole above p (we call such p bad points, otherwise p is good).

Lemma 4.9. We have

M ′∑
k=1

c∑
j=1

djN
(1)
K,S(bk − φj) ≤

M ′

µ

c∑
j=1

mjdjhK(φj) + ddeg Θ +O(1)

where the error depends just on K and n, but not on the particular F ∈ E′, and hence not on the φj’s.

Remark 4.10. Since this lemma might be useful for some other applications, it worths noticing that
it is unconditional; it does not depend on Conjecture 4.6.

Proof. Write M0
j = M0

Kj
and let Tj ⊆ M0

j be the set of places above S. By definition of S and N
(1)
K,S

we have

N
(1)
K,S(bk − φj) =

1

dj

∑
p∈M0

K−S

Kj∑
P|p

min{1, nj,k,P} degP

where
∑Kj

P|p denotes a sum extended over all primes in OKj
dividing p, and

nj,k,P = ord+
P(bk − φj), for P ∈M0

j − Tj .

If p ∈M0
j −S then no pair of the bk agree at p by definition of S; more precisely, they are regular at p

and have distinct reductions modulo p. Thus, for given φj and P ∈M0
j − Tj we see that at most one

nj,k,P is non-zero (and hence positive) as k varies. Therefore, for p ∈M0
K − S we get

M ′∑
k=1

c∑
j=1

Kj∑
P|p

min{1, nj,k,P}degP =

c∑
j=1

Kj∑
P|p

M ′∑
k=1

min{1, nj,k,P}degP

≤
c∑
j=1

Kj∑
P|p

degP =

c∑
j=1

Kj∑
P|p

f(P|p) deg p ≤
c∑
j=1

dj deg p = ddeg p

where f(P|p) is the degree of the extension of residue fields κP/κp. Thus for p ∈M0
K − S we have

(9)

M ′∑
k=1

c∑
j=1

Kj∑
P|p

min{1, nj,k,P}degP ≤ ddeg p.

Observe that for p good one has that the discriminant of each Hj is non-zero at p; indeed, H1 · · ·Hc

has no repeated roots in the algebraic closure of the residue field κp, so the same holds for each Hj .
For p good and given 1 ≤ k ≤M ′, 1 ≤ j ≤ c we use Lemma 4.5 (with H(s) = Hj(s+bk), x = φj−bk

which is allowed since p is good) to conclude that there exists P0|p in M0
j such that

(10) ordpHj(bk) deg p =

Kj∑
P|p

ordP(φj − bk) degP = ordP0
(φj − bk) degP0
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where

ordP(φj − bk) =

{
ordpHj(bk) for P = P0

0 for P ∈M0
j ,P|p,P 6= P0

and moreover degP0 = deg p if ordP(φj − bk) > 0.
Since p is good, by Lemma 4.5 one knows that the coefficients of each Hj are regular at p. Moreover,

since ∆ does not vanish at p the Hj do not share zeros at p. This implies that given 1 ≤ k ≤ M ′ we
have some 1 ≤ j0 ≤ c such that

mj0ordpHj0(bk) =

{
ordpF (bk) if j = j0

0 otherwise.

Therefore, given p good and 1 ≤ k ≤M ′ we have some 1 ≤ j0 ≤ c and for this index j0 we have a prime
P0 ∈ Kj0 dividing p with the above properties, which allows us to perform the following computation
(some of the steps are explained below):

c∑
j=1

mj

Kj∑
P|p

ordP(φj − bk) degP =

c∑
j=1

mjordpHj(bk) deg p By (10)

= mj0ordpHj0(bk) deg p = ordpF (bk) deg p

≥ µmin{1, ordpF (bk)}deg p = µmin{1,mj0ordpHj0(bk)} deg p

= µmin{1, ordpHj0(bk)} deg p

= µmin{1, ordpHj0(bk)} degP0 (∗)

= µmin{1, ordP0
(φj0 − bk)} degP0 = µ

c∑
j=1

Kj∑
P|p

min{1, ordP(φj − bk)}degP.

Observe that the inequality from the second line to the third line of the above computation is exactly
the point where we use the hypothesis that for every bk the number F (bk) is n-powerful (and we also
used the assumption that p is good, hence ordpF (bk) ≥ 0 because all the bk and coefficients of Hj ’s
are regular at p). Let us justify (∗); as explained before, if ordpHj0(bk) > 0 then φj0 − bk vanishes
above p and hence degP0 = deg p. On the other hand, if ordpHj0(bk) = 0 then the equality in (∗) just
states 0 = 0 and is trivially true.

If p is good then both φj and bk are regular at the primes P ∈ M0
j lying above p so that nj,k,P =

ordP(φj − bk), and we conclude

µ

c∑
j=1

Kj∑
P|p

min{1, nj,k,P}degP ≤
c∑
j=1

mj

Kj∑
P|p

nj,k,P degP

which implies that for p good we have

(11)

M ′∑
k=1

c∑
j=1

Kj∑
P|p

min{1, nj,k,P} degP ≤ 1

µ

M ′∑
k=1

c∑
j=1

mj

Kj∑
P|p

nj,k,P degP.

Finally we can conclude in the same way as for function fields and meromorphic functions. We include
the computation for the sake of completeness. For p ∈ M0

K − S put δp = 0 if p is good and δp = 1
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otherwise. With this notation, using the inequalities (9) and (11) we get

M ′∑
k=1

c∑
j=1

djN
(1)
K,S(bk − φj) =

M ′∑
k=1

c∑
j=1

∑
p∈M0

K−S

Kj∑
P|p

min{1, nj,k,P} degP

≤ 1

µ

M ′∑
k=1

c∑
j=1

mj

∑
p∈M0

K−S

Kj∑
P|p

nj,k,P degP +

M ′∑
k=1

c∑
j=1

∑
p∈M0

K−S

Kj∑
P|p

δp min{1, nj,k,P} degP

≤ 1

µ

M ′∑
k=1

c∑
j=1

mjdjNK(bk − φj) +
∑

p∈M0
K−S

δp

M ′∑
k=1

c∑
j=1

Kj∑
P|p

min{1, nj,k,P} degP

≤ 1

µ

M ′∑
k=1

c∑
j=1

mjdjNK(bk − φj) +
∑

p∈M0
K−S

δpddeg p

≤ 1

µ

M ′∑
k=1

c∑
j=1

mjdjhK(bk − φj) +
∑

p∈M0
K−S

δpddeg p ≤ M ′

µ

c∑
j=1

mjdjhK(φj) + ddeg Θ +O(1)

where the error term comes form an application of Lemma 4.1. This finishes the proof. �

From now on it is implicit that the error terms may depend on K, b1, . . . , bM ′ , the integer n and
the real number ε > 0, but they do not depend on the particular F ∈ E′ (and in particular, the error
terms do not depend on φj , Hj , dj or ∆). We leave to the reader the task of verifying that this is
indeed the case –dependences of error terms are explicitly stated in each of our previous lemmas and
inequalities. Since K, b1, . . . , bM ′ and n are fixed but ε > 0 still has to be chosen, we will only indicate
explicitly the dependence of the error terms on ε.

Next we give an upper bound for deg Θ

Lemma 4.11. We have

deg Θ ≤ (2d− 1)

c∑
j=1

djhK(φj) +O(1).

Proof. As S is fixed, the contribution to deg Θ coming from places in S can be absorbed in a bounded
error term. Let Sj ⊆M0

K be the set of places lying below poles of φj , we have

deg Θ ≤
c∑
j=1

∑
p∈Sj

deg p +NK(∆) +O(1) ≤
c∑
j=1

∑
p∈Sj

deg p + hK(∆) +O(1)

where the sum counts for poles of the φj and NK(∆) counts for zeros of ∆. Note that

c∑
j=1

∑
p∈Sj

deg p ≤
c∑
j=1

djhK(φ−1
j ) =

c∑
j=1

djhK(φj)

because hK(x−1) = hK(x) for x ∈ K̄∗, and finally we conclude by Lemma 4.3. �

By inequality (8), Lemma 4.9 and Lemma 4.11 we have((
1− m+

µ

)
M ′ − (2d2 + 2d+ ε)

) c∑
j=1

djhK(φj) ≤ Oε(1).

Similar to the case of functions, one has

1− m+

µ
≥

{
d−1
n if µ = n

1
µ in general.
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Observe that in the first case d− 1 ≥ 1, for otherwise d = 1 and this forces µ > m+ = n ≥ µ, which is
not possible. Now recall that

M ′ = M − n =

{
2n2 + 8n+ 1 if µ = n

2µn(n+ 1) + 1 in general

(in the sense that if we are not assuming µ = n then we use the second value for M ′) so that if we
assume µ = n then

M ′
(

1− m+

µ

)
− (2d2 + 2d+ ε) ≥ (2n2 + 8n+ 1)

d− 1

n
− (2d2 + 2d+ ε)

=
d− 1

n
+ (d− 1)

(
2n+ 8−

(
2d+ 4 +

4

d− 1

))
− ε ≥ 1

n
− ε

and in general (i.e. 2 ≤ µ ≤ n)

M ′
(

1− m+

µ

)
− (2d2 + 2d+ ε) ≥ (2µn(n+ 1) + 1)

1

µ
− (2d2 + 2d+ ε) ≥ 1

µ
− ε ≥ 1

n
− ε.

Thus, in either case we conclude (
1

n
− ε
) c∑
j=1

djhK(φj) ≤ Oε(1)

and fixing any ε < 1/n (say ε = 1/(n+ 1)) we see that the quantity
c∑
j=1

djhK(φj)

is bounded from above uniformly for F ∈ E′. As the degrees dj of the φj are also uniformly bounded
by n we use Northcot’s theorem to conclude that E′ is finite, finishing the proof of Theorem 2.1.

Remark 4.12. In several applications one uses Northcot’s theorem only for points of a fixed number
field having bounded height, but for this application it is crucial that Northcot’s theorem works for
points of bounded degree and bounded height, without fixing the field.

5. Logic

First we give a proof of Theorem 2.12.

Proof. Write ∆(n) for the n-th iterate of the operator ∆{ui}Mi=1 = {ui+1−ui}M−1
i=1 . Assuming Conjec-

ture 1.4, the second item of Theorem 2.8 implies that the positive-existential L-formula Ψ[u1, . . . , uM0
] ∧

1≤i≤M0

P (ui)

 ∧ (∆(n){ui}i = {n!}i
)

is satisfied for {ui}i ⊆ R if and only if there is some ν ∈ K such that uj = (j + ν)n for each j. As R
is integrally closed in K, one actually has ν ∈ R. Observe that

∆(n−1){(j + ν)n}j = ∆(n−1){jn + njn−1ν}j =

{
n!j +

n!(n− 1)

2
+ n!ν

}
j

in particular

∆(n−1){(j + ν)n}nj=1 = n! +
n!(n− 1)

2
+ n!ν.

Therefore, the formula

Φ[x, y] : ∃{ui}M0
i=1Ψ[u1, . . . , uM0

] ∧
(
n!x+

n!(n− 1)

2
= ∆(n−1){uj}nj=1

)
∧ y = u1

defines the function x 7→ y = xn in a positive-existential way over the language L. At this point,
defining multiplication in a positive existential way is standard, see for example [21]. We indicate here
the main steps:
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Let Pn ⊆ Z[x] be the set of polynomials with integer coefficients of degree at most n. Pn is a free
Z module of rank n + 1 and the polynomials xn, (x + 1)n, . . . , (x + n)n are linearly independent. So,
there are integers a0, . . . , an, b with b 6= 0 depending only on n such that

bx2 = a0x
n + a1(x+ 1)n + . . .+ an(x+ n)n.

This relation allows one to define x 7→ y = x2 with a positive existential L-formula over R. Then one
can define multiplication xy = z by observing that xy = z ⇔ x2 + 2z + y2 = (x+ y)2. �

One last remark on this argument; the desired conclusion follows from the fact that one can express
the function x 7→ xn. Note that the language L might allow one to say a priori that some element
u ∈ R is an n-th power (in the case that P is interpreted in this way), however, this is very different
to being able to express the function x 7→ xn.

Finally, the proof of Theorem 2.16 is very similar to the above proof but one has to be careful
with the case of constant coefficients. The straightforward adaptation of the previous argument (using
Corollary 2.10 instead of 2.8) would give a positive existential L-definition $[x, y] of the relation

y = xn or x, y ∈ K.

Then the formula

$[x, y] ∧$[αx, αny]

(here n is fixed and αn = αα · · ·α n times) gives a positive existential definition for y = xn, and the
rest of the argument is the same.
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[2] T. An, H. Huang, J. Wang, Generalized Büchi’s problem for algebraic functions and meromorphic functions, Math-

ematische Zeitschrift, Springer, DOI 10.1007/s00209-012-0997-9.
[3] D. Allison, On square values of quadratics, Math. Proc. Camb. Philos. Soc. 99, no. 3, 381-383 (1986).

[4] A. Bremner, On square values of quadratics, Acta Arith. 108, no. 2, 95-111 (2003).
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