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Abstract. For any family of elliptic curves over the rational numbers with fixed j-invariant, we
prove that the existence of a long sequence of rational points whose x-coordinates form a non-trivial
arithmetic progression implies that the Mordell-Weil rank is large, and similarly for y-coordinates.
We give applications related to uniform boundedness of ranks, conjectures by Bremner and Mohanty,
and arithmetic statistics on elliptic curves. Our approach involves Nevanlinna theory as well as
Rémond’s quantitative extension of results of Faltings.

1. Introduction

It is an open problem whether the ranks of elliptic curves over Q are uniformly bounded. Various
heuristics have been developed in support of uniform boundedness [1, 27, 31, 32, 37, 46]. Also,
the second author has shown [28] that a conjecture of Lang in diophantine approximation implies
uniform boundedness of ranks for families of elliptic curves with a fixed j-invariant. In the direction
of unboundedness, it is known that elliptic curves over a global function field such as Fp(t) can have
arbitrarily large rank even if one considers quadratic twists families [38, 43] and examples over Q
with remarkably large rank are known [8]. It is natural to look for a mechanism forcing the rank
of elliptic curves over Q to be large, and certain patterns on rational points seem to achieve this.

Given an elliptic curve E over Q, an x-arithmetic progression is a sequence P1, ..., PN of Q-rational
points on E having their x-coordinates in arithmetic progression for some choice of Weierstrass
equation y2 = x3 + ax2 + bx+ c for E. A y-arithmetic progression on E is defined similarly. Such
sequences are said to be non-trivial if the resulting arithmetic progression in x or y coordinates is
non-constant. These definitions are in fact independent of the choice of Weierstrass equation.

Bremner [5] has conjectured that rational points of an x-arithmetic progression on an elliptic
curve E over Q tend to be linearly independent in the Mordell-Weil group. The conjecture is
motivated by numerous examples, as well as theoretical evidence such as [6] where it is shown that
for a quadratic twist family over Q, the elliptic curves of rank 1 have x-arithmetic progressions
of uniformly bounded length. See also [7, 14, 26, 41, 42] and the references therein for further
examples supporting Bremner’s conjecture.

In this work we prove Bremner’s conjecture for families of elliptic curves with fixed j-invariant,
in particular, for quadratic twist families. Given an elliptic curve E over Q, we let βx(E) be the
maximal length of a non-trivial x-arithmetic progression of rational points in E, and βy(E) is
defined similarly for y-arithmetic progressions. We prove

Theorem 1.1. Let j0 ∈ Q. There is an effectively computable constant c(j0) > 0 that only depends
on j0, such that for every elliptic curve E over Q with j-invariant equal to j0 we have

1 + rankE(Q) ≥ c(j0) · log max{βx(E), βy(E)}.
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In this work, by “effectively computable” we always mean that an explicit closed formula can be
obtained after some calculation. For instance, in Theorem 1.1 we can take

(1.1) c(j0) =
1

8046 (209 + max{log(1 + logH(j0)), 255 + log (2 + log(1 + logH(j0)))})
where H(j0) is the naive height, namely H(a/b) = max{|a|, |b|} for coprime integers a, b with
b 6= 0. Although it should be clear from the formula that we did not try to numerically optimize
this estimate, let us remark that this value for c(j0) is satisfactory in the aspect that it is of the
order of magnitude of 1/(log logH(j0)), so, it tends to 0 extremely slowly.

We prove that (1.1) is admissible for Theorem 1.1 in Section 6.5 using (among other tools) a
comparison between the Theta height and the Faltings height of abelian varieties [30].

It turns out that arithmetic progressions on elliptic curves not only relate to the rank. We also
prove that the (algebraic) torsion points do not have arbitrarily long patterns of this type.

Theorem 1.2. Let E be an elliptic curve over Qalg with a given Weierstrass equation. The set of x-
coordinates of the torsion points of E(Qalg) does not contain arbitrarily long non-trivial arithmetic
progressions. The same holds for y-coordinates. A bound for the length of such progressions can be
effectively computed from the j-invariant of E.

Heuristically, these results are consistent with the fact that the group structure on elliptic curves
is incompatible with the additive structure of the affine line via the x or y-coordinate maps.

Theorems 1.1 and 1.2 (cf. Section 6.4) are special cases of Theorem 6.1 which concerns ellip-
tic curves over number fields and more general patterns on algebraic points, not just arithmetic
progressions on x or y-coordinates of rational points. Our proof of Theorem 6.1 heavily uses Nevan-
linna’s value distribution theory for complex holomorphic maps in order to compute the Kawamata
locus of certain sub-varieties of abelian varieties. This will allow us to apply Rémond’s quantitative
version of Faltings’ theorem on rational points of sub-varieties of abelian varieties (cf. [10, 11, 34]),
which will be our main tool to control x and y-arithmetic progressions on elliptic curves.

Let us now discuss some applications of Theorem 1.1. Given an elliptic curve E over Q and a
squarefree integer D, we let E(D) be the quadratic twist of E by D. The number of distinct prime
factors of D is denoted by ω(D). From Theorem 1.1 and standard rank bounds we deduce

Corollary 1.3 (cf. Sec. 7.1). Given an elliptic curve E over Q, there is an effectively computable
constant C(E) > 0 such that for every squarefree integer D we have

max{βx(E(D)), βy(E
(D))} ≤ C(E)ω(D)+1.

In connection with conjectures on uniform boundedness of ranks, Theorem 1.1 directly gives

Corollary 1.4. Let j0 ∈ Q. Suppose that the elliptic curves over Q of j-invariant equal to j0 have
uniformly bounded Mordell-Weil rank. Then there is a number N(j0) only depending on j0 with the
following property: For each elliptic curve E over Q with j-invariant equal to j0 we have

max{βx(E), βy(E)} ≤ N(j0).

We remark that, in view of [28], the assumption that elliptic curves over Q with a fixed j-invariant
have uniformly bounded Mordell-Weil rank, is implied by a conjecture of Lang on the error terms
in Diophantine approximation.

Mohanty [24, 25] conjectured that there is a uniform bound for the length of x and y-arithmetic
progressions on Mordell elliptic curves An : y2 = x3 + n with n ∈ Z sixth-power free. Mohanty in
fact made the stronger conjecture that βx(An) and βy(An) are at most 4, but this was disproved for
y-arithmetic progressions by Lee and Velez [20]. Several constructions as well as extensive numerical
searches have been carried out looking for long x or y-arithmetic progressions on Mordell elliptic
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curves (cf. [42] and the references therein), but the record continues to be x-arithmetic progressions
of length 4 and y-arithmetic progressions of length 6 as found by Lee and Velez [20].

Mohanty’s conjecture on uniform boundedness of x and y arithmetic progressions on Mordell
elliptic curves remains open. In support of this conjecture besides the search for examples, the first
author used extensions of methods by Bogomolov and Vojta to show that the case of y-arithmetic
progressions follows from the Bombieri-Lang conjecture for surfaces of general type [13]. In addition,
let us remark that Corollary 1.4 with j0 = 0 gives

Corollary 1.5. The uniform boundedness conjecture for ranks of elliptic curves over Q with j-
invariant equal to 0 implies Mohanty’s conjecture for both x and y-arithmetic progressions.

Theorem 1.1 also allows us to prove unconditionally that Mohanty’s conjecture holds on average,
in the sense that the average τ -moments of βx(An) and βy(An) are finite for certain τ > 0.

Theorem 1.6 (cf. Sec. 7.2). For x > 0 let S(x) be the set of sixth-power free integers n with
|n| ≤ x. There are absolute constants τ,M > 0 such that for all x > 1 we have

1

#S(x)

∑
n∈S(x)

max{βx(An), βy(An)}τ < M.

The proof of Theorem 1.6 combines Theorem 1.1 with results of Fouvry [12] on upper bounds
for the average size of 3-isogeny Selmer groups for Mordell elliptic curves, which in turn relies on
the Davenport-Heilbronn theorem on 3-torsion of class groups of quadratic fields. See [2] for the
exact computation of the average size of the 3-isogeny Selmer groups of Mordell elliptic curves.

More generally, Theorem 1.1 allows us to study arithmetic statistic questions related to βx(E)
and βy(E) provided that we have good control on Selmer groups. Indeed, given a positive integer
m and an elliptic curve E over Q we have the exact sequence

(1.2) 0→ E(Q)/mE(Q)→ Sm(E)→X(E)[m]→ 0

where Sm(E) is the m-Selmer group and X(E)[m] is the m-torsion of the Shafarevich-Tate group.
The classical proof of the Mordell-Weil theorem shows that Sm(E) is finite, and from (1.2) we have

mrankE(Q) ≤ # (E(Q)/mE(Q)) ≤ #Sm(E).

Therefore, estimates for the size of m-Selmer groups give bounds for exponential functions of the
rank, and we remark that there are several strong results in the literature for the arithmetic statistics
for the size of m-Selmer group of elliptic curves. This is well-suited for our applications, as Theorem
1.1 (and, more generally, Theorem 6.1) bounds the maximal length of an arithmetic progression in
terms of an exponential function of the rank. For applications along these lines, it is crucial that
our lower bound for the rank in Theorem 1.1 is logarithmic; see Section 7 for details.

As the literature on arithmetic statistics of m-Selmer groups of elliptic curves is abundant and
growing, we will only focus on the particularly convenient case of the elliptic curves Bn defined by
y2 = x3 − n2x. These elliptic curves are associated to the classical “congruent number problem”.
Here, results of Heath-Brown [17] allow us to control all the average moments of βx(Bn) and βy(Bn).

Theorem 1.7 (cf. Sec. 7.3). Let Q(x) be the set of odd squarefree integers n with 1 ≤ n ≤ x. Let
k > 0. There is a constant M(k) > 0 depending only on k such that for all x > 1 we have

1

#Q(x)

∑
n∈Q(x)

max{βx(Bn), βy(Bn)}k < M(k).

Let us mention that x-arithmetic progressions on the elliptic curves Bn are studied in detail in [6]
under the assumption rankBn(Q) ≤ 1 and in [41] for a specific sub-family arising from an elliptic
surface of rank 3. The study in [6] is motivated by a connection with the problem of existence of
a 3× 3 magic square formed by different integer squares [36].
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2. Review of Nevanlinna theory

In this section we set up the notation regarding Nevanlinna theory for holomorphic maps into
complex projective varieties. Specially, we introduce the counting, proximity and height functions.
We also recall the fundamental properties of these functions, including the First and Second Main
Theorems. All the results in this section are standard and we include them for later reference. See
for instance [45] for proofs and more general versions of the results in this section.

2.1. Definitions. Let X be a smooth projective variety over C (we will identify the algebraic
variety X with the complex manifold X(C) if no confusion can arise). Let D be a divisor on X and
for each point x ∈ X we let φD,x be a local equation for D. The support of D is suppD. Given a
complex holomorphic map f : C→ X with image not contained in suppD, we define for r ≥ 0

nX(f,D, r) =
∑
|z|≤r

ordz(f
∗φD,f(z)).

For each r the sum is finite. The counting function is

NX(f,D, r) =

∫ r

0
(nX(f,D, t)− nX(f,D, 0))

dt

t
+ nX(f,D, 0) log r

=
∑

0<|z|≤r

ordz(f
∗φD,f(z)) log

r

|z|
+ ord0(f∗φD,f(z)) log r.

If f(0) /∈ suppD, then the counting function takes the simpler form

NX(f,D, r) =

∫ r

0
nX(f,D, t)

dt

t
.

A Weil function for D is a function λX,D : X − suppD → R satisfying that for each x ∈ X
there is a complex neighborhood Ux ⊆ X of x and a continuous function αx : Ux → R such that
λX,D(y) = − log |φD,x(y)|+αx(y) for all y ∈ Ux−suppD. It is a standard result that Weil functions
for D exist, and they are unique up to a bounded continuous function on X − suppD.

With f : C→ X and D as before and a choice of Weil function λX,D, the proximity function is

mX(f,D, r) =

∫ 2π

0
λX,D (f(r · exp(iθ)))

dθ

2π
.

The function mX(f,D,−) : R≥0 → R is well-defined up to adding a bounded function.
The Nevanlinna height of f with respect to D is the function TX(f,D,−) : R≥0 → R defined by

TX(f,D, r) = NX(f,D, r) +mX(f,D, r).

Due to the choice of Weil function in mX(f,D,−), we have that TX(f,D,−) is well defined up to
a bounded function of r.

2.2. Basic properties. Let us briefly recall some of the fundamental properties of the counting,
proximity, and height functions. We use Landau’s notation u(x) = O(v(x)) for functions u, v :
R≥0 → C with v positive valued, to indicate that there is a constant M independent of x such that
for all x > 0 we have |u(x)| ≤M · v(x).

Lemma 2.1. Let X be a smooth complex projective variety and f : C→ X a holomorphic map.

• (Additivity) Let D1, D2 be divisors on X such that the image of f is not contained in
suppD1 ∪ suppD2. Let a, b ∈ Z. Then for all r > 0 we have

NX(f, aD1 + bD2, r) = aNX(f,D1, r) + bNX(f,D2, r)

mX(f, aD1 + bD2, r) = amX(f,D1, r) + bmX(f,D2, r) +O(1)

TX(f, aD1 + bD2, r) = aTX(f,D1, r) + bTX(f,D2, r) +O(1)
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where the error terms are independent of r.
• (Effectivity) Let D be an effective divisor on X such that the image of f is not contained

in suppD. Then for all r ≥ 1 we have

NX(f,D, r) ≥ 0, mX(f,D, r) ≥ O(1), TX(f,D, r) ≥ O(1)

where the error terms are independent of r.
• (Functoriality) Let Y be a smooth complex projective variety, D a divisor on Y and let
γ : X → Y be a morphism. If the image of γ ◦ f is not contained in suppD, then

NX(f, γ∗D, r) = NY (γ ◦ f,D, r)
mX(f, γ∗D, r) = mY (γ ◦ f,D, r) +O(1)

TX(f, γ∗D, r) = TY (γ ◦ f,D, r) +O(1)

where the error terms are independent of r.

Lemma 2.2 (Ample height property). Let X be a smooth complex projective variety. Let f : C→ X
be a holomorphic map. Let D be an ample divisor on X such that the image of f is not contained
in suppD. If f is non-constant, then TX(f,D, r) grows to infinity.

Lemma 2.3 (First Main Theorem). Let X be a smooth complex projective variety and let f : C→ X
be a holomorphic map. Let D1, D2 be linearly equivalent divisors on X such that the image of f is
not contained in suppD1 ∪ suppD2. Then TX(f,D1, r) = TX(f,D2, r) +O(1).

2.3. Truncated counting functions. When D is an effective reduced divisor on X and the image
of f : C→ X is not contained in suppD, we define

n
(1)
X (f,D, r) = #{z ∈ C : |z| ≤ r and f(z) ∈ suppD}

and the truncated counting function

N
(1)
X (f,D, r) =

∫ r

0

(
n

(1)
X (f,D, t)− n(1)

X (f,D, 0)
) dt
t

+ n
(1)
X (f,D, 0) log r.

We note that N
(1)
X (f,D, r) ≥ 0 for r ≥ 1. In general, the truncated counting function does not

respect additivity. It is useful to observe that for an effective reduced divisor D on X and a
holomorphic map f : C→ X whose image is not contained in suppD, for all r ≥ 1 we have

(2.1) 0 ≤ N (1)
X (f,D, r) ≤ NX(f,D, r) ≤ TX(f,D, r) +O(1)

where the last estimate is due to the effectivity property of mX(f,D, r).

2.4. Second Main Theorem. Let us state the Second Main Theorem of Nevanlinna theory in the
case of holomorphic maps to a curve X. For functions u, v : R≥0 → R, the notation u(r) ≤exc v(r)
means that u(r) ≤ v(r) holds for r outside a subset of R≥0 of finite Lebesgue measure. Similarly
for u(r) =exc v(r). In addition, for v positive valued we use Landau’s notation u(x) = o(v(x)) to
indicate that limx→∞ u(x)/v(x) = 0.

Theorem 2.4 (Second Main Theorem, see Theorem 23.2 [45]). Let X be a smooth projective
curve. Let K be a canonical divisor on X and let A be an ample divisor on X. Let α1, ..., αq ∈ X
be different points. Let f : C → X be a holomorphic map different from the constant function αj
for each j, with image not contained in the support of K and A. We have

TX(f,K, r) +

q∑
j=1

TX(f, αj , r) ≤exc
q∑
j=1

N
(1)
X (f, αj , r) +O (log max{1, TX(f,A, r)}) + o(log r).
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When f is constant, the result is trivial. If f is non-constant, then the statement takes a simpler
form, as the image of f is not contained in the support of any divisor.

Due to Picard’s theorem, the theorem is non-trivial only when X has genus 0 or 1. We remark
that a general second main theorem for algebraic varieties is still conjectural and pertains to the
general setting of Vojta’s conjectures, but we will only need the case of curves in this work.

2.5. Meromorphic functions on C. The case of X = P1 will be particularly relevant for us.
Here we identify the Riemann sphere C∞ = C ∪ {∞} with P1 so that C corresponds to the affine
chart {[1 : α] : α ∈ C} ⊆ P1 and ∞ corresponds to [0 : 1] ∈ P1.

Let M be the field of complex meromorphic functions on C. Under the previous identifications,
a function h ∈ M can be seen as a holomorphic map h : C → P1. In this way, given h ∈ M and
a point α ∈ C∞ we can define N(h, α, r), m(h, α, r), T (h, α, r), and N (1)(h, α, r) in the obvious
way using the corresponding holomorphic map h : C → P1 (the subscript P1 is omitted as in this
context it is clear). Furthermore, we define

T (h, r) = T (h,∞, r)
and we observe that for any choice of α ∈ C, the First Main Theorem gives

T (h, r) = T (h, α, r) +O(1)

as functions of r > 0, provided that h is not the constant function α. Also, since −2∞ is a canonical
divisor on P1, the Second Main Theorem takes the form

(2.2) (q − 2 + o(1))T (h, r) ≤exc
q∑
j=1

N (1)(h, αj , r)

where α1, ..., αq ∈ P1 are different points and h ∈ M a meromorphic function different from the
constant function αj for each j (the error term can be made more precise if necessary).

3. Preliminary lemmas on holomorphic maps

3.1. Comparison of counting functions. The next lemma will allow us to compare counting
functions of various sorts.

Lemma 3.1. Let n1(r), n2(r) : Rr≥0 → Z≥0 be functions whose points of discontinuity form a
discrete set. Define

Ni(r) =

∫ r

0
(ni(t)− ni(0))t−1dt+ ni(0) log r

for i = 1, 2. If n1(r) ≤ n2(r) for all r ≥ 0, then N1(r) ≤ N2(r) +O(1).

Proof. By linearity, we may assume that n1(r) = 0 for all r, and we need to show that N2(r) is
bounded from below by a constant. It suffices to consider r ≥ 1, in which case we have

N2(r) =

∫ r

0
(n2(t)− n2(0))

dt

t
+ n2(0) log r ≥

∫ 1

0
(n2(t)− n2(0))

dt

t
.

The last quantity is a constant. �

3.2. Holomorphic maps to elliptic curves.

Lemma 3.2. Let E be a complex elliptic curve and let α ∈ E. Let f : C → E be a non-constant
holomorphic map. Then

TE(f, α, r) =exc (1 + o(1))NE(f, α, r) =exc (1 + o(1))N
(1)
E (f, α, r).

Furthermore, for every effective non-zero divisor D we have

TE(f,D, r) =exc (1 + o(1))NE(f,D, r).
6



Proof. A canonical divisor for E is D = 0, and the divisor α is ample. By the Second Main Theorem

TE(f, α, r) ≤exc N (1)
E (f, α, r) +O(log max{1, TE(f, α, r)}) + o(log r).

As f is transcendental, the error term is o(TE(f, α, r)). The first part follows from (2.1). The second
part is deduced by additivity and the fact that positive degree divisors on curves are ample. �

3.3. Meromorphic functions arising from elliptic curves. We will be considering meromor-
phic functions h ∈ M that can be written in the form h = g ◦ φ with E an elliptic curve over C,
φ : C→ E holomorphic, and g : E → P1 a rational function. Meromorphic functions h of this type
have better value distribution properties than general meromorphic functions.

Lemma 3.3. Let E be a complex elliptic curve, g : E → P1 a non-constant morphism of degree d,
and φ : C→ E a non-constant holomorphic map. Let h = g ◦ φ ∈M and let α ∈ P1. We have

(3.1) N(h, α, r) =exc (1 + o(1))T (h, r)

and

(3.2) N (1)(h, α, r) =exc

(
#g−1(α)

d
+ o(1)

)
T (h, r).

Proof. By functoriality of the counting function we have

N(h, α, r) = N(g ◦ φ, α, r) = NE(φ, g∗α, r).

By Lemma 3.2 and functoriality of the height

NE(φ, g∗α, r) =exc (1 + o(1))TE(φ, g∗α, r) = (1 + o(1))T (h, α, r).

which proves (3.1).
For z0 ∈ C we have φ(z0) ∈ g−1(α) if and only if h(z0) = α. Together with Lemma 3.2, this gives

N (1)(h, α, r) =
∑

β∈g−1(α)

N
(1)
E (φ, β, r) =exc (1 + o(1))

∑
β∈g−1(α)

TE(φ, β, r).

The divisor g∗(∞) on E is ample of degree d, hence, it is numerically equivalent to the divisor d ·β
for any given point β ∈ E. Lemma 3.2 in [22] allows us to compare the height for two effective,
ample, numerically equivalent divisors, and we get

d · TE(φ, β, r) = TE(φ, d · β, r) +O(1) = (1 + o(1))TE(φ, g∗(∞), r)

from which we deduce∑
β∈g−1(α)

TE(φ, β, r) =
1

d

∑
β∈g−1(α)

d · TE(φ, β, r) =
1

d

∑
β∈g−1(α)

(1 + o(1))TE(φ, g∗(∞), r)

=

(
#g−1(α)

d
+ o(1)

)
TE(φ, g∗(∞), r) =

(
#g−1(α)

d
+ o(1)

)
T (h, r).

This proves (3.2). �

3.4. GCD counting functions. Given non-constant meromorphic functions h1, h2 ∈M we define

nGCD(h1, h2, r) =
∑
|z|≤r

min{ord+
z (h1), ord+

z (h2)}.

The GCD counting function is

NGCD(h1, h2, r) =

∫ r

0
(nGCD(h1, h2, t)− nGCD(h1, h2, 0))

dt

t
+ nGCD(h1, h2, 0) log r.
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From Lemma 3.1 and the effectivity for proximity functions we deduce the trivial GCD bound

NGCD(h1, h2, r) ≤ N(hj , 0, r) ≤ T (hj , 0, r) +O(1) = T (hj , r) +O(1), for j = 1, 2.

There are several works in the literature on the problem of improving this trivial bound for the
GCD counting function under various assumptions, see for instance [29, 23, 21]. For our purposes,
the following will suffice.

Lemma 3.4. Let α1, ..., αq ∈ C be distinct and let h1, h2 ∈M be different non-constant meromor-
phic functions. We have

q∑
j=1

NGCD(h1 − αj , h2 − αj , r) ≤ T (h1, r) + T (h2, r)−NGCD(1/h1, 1/h2, r) +O(1).

Proof. For z ∈ C and each j we have

min{ord+
z (h1 − αj), ord+

z (h2 − αj)} ≤ ord+
z (h1 − h2)

and

min{ord+
z (1/h1), ord+

z (1/h2)} ≤ ord+

(
1

h1
− 1

h2

)
.

Let H = (h1, h2) : C → P1 × P1 and let ∆ ⊆ P1 × P1 be the diagonal. From the previous order
estimates and the definition of the various counting functions involved, it follows that

NGCD(1/h1, 1/h2, r) +

q∑
j=1

NGCD(h1 − αj , h2 − αj , r) ≤ NP1×P1(H,∆, r).

Let π1, π2 : P1 × P1 → P1 be the projections onto the two factors respectively. On P1 × P1 we have
the linear equivalence ∆ ∼ π∗1∞+ π∗2∞, and we get

NP1×P1(H,∆, r) ≤ TP1×P1(H,∆, r) +O(1) effectivity

= TP1×P1(H,π∗1∞+ π∗2∞, r) +O(1) First Main Theorem

= TP1×P1(H,π∗1∞, r) + TP1×P1(H,π∗2∞, r) +O(1) additivity

= T (h1, r) + T (h2, r) +O(1) functoriality.

�

4. Arithmetic progressions of holomorphic maps

4.1. Bound for arithmetic progressions. In this section we prove

Theorem 4.1. Let E be an elliptic curve over C and let g : E → P1 be a non-constant morphism
of degree d. Let M ≥ 2 be an integer and for j = 1, 2, ...,M let φj : C → E be non-constant
holomorphic maps. Define the meromorphic functions fj = g ◦ φj ∈ M . Suppose that there are
F1, F2 ∈ M with F2 not the zero function, and pairwise distinct complex numbers a1, ..., aM ∈ C
such that fj = F1 + ajF2 for each j. Then M ≤ 10d2 − 4d.

The result will be applied in Section 6 in a case where the functions f1, ..., fj are distinct (not
necessarily consecutive) terms of an arithmetic progression in M .
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4.2. Pole computation.

Lemma 4.2. Let us keep the notation and assumptions of Theorem 4.1. Let ε > 0. There are
indices i1 6= i2 in {1, 2, ...,M} and a Borel set U ⊆ R≥0 of infinite Lebesgue measure such that for
all r ∈ U we have T (fi2 , r) ≤ T (fi1 , r) and(

1− 2

M
− ε
)

max
1≤j≤M

T (fj , r) ≤ NGCD(1/fi1 , 1/fi2 , r) ≤ T (fi1 , r) +O(1).

Proof. Given z0 ∈ C, we note that if some of the fj = F1 + ajF2 has a pole at z0, then F1 or F2

has a pole at z0. As the complex numbers aj are different, for all 1 ≤ j ≤ M with at most one
exception we get that

ordz0(fj) = min{ordz0F1, ordz0F2} = min
1≤i≤M

ordz0fi < 0.

Therefore, ∑
i<j

nGCD(1/fi, 1/fj , r) =
∑
|z|≤r

∑
i<j

min{ord+
z (1/fi), ord+

z (1/fj)}

≥
∑
|z|≤r

(
M − 1

2

)
max

1≤i≤M
ord+

z (1/fi).

It follows that for each 1 ≤ i0 ≤M we have∑
i<j

nGCD(1/fi, 1/fj , r) ≥
(
M − 1

2

)
n(fi0 ,∞, r).

By Lemma 3.1 and Lemma 3.3, for any given ε > 0 we get∑
i<j

NGCD(1/fi, 1/fj , r) ≥
(
M − 1

2

)
N(fi0 ,∞, r) ≥exc

(
M − 1

2

)
(1− ε)T (fi0 , r).

Since i0 is arbitrary, we get∑
i<j

NGCD(1/fi, 1/fj , r) ≥exc
(
M − 1

2

)
(1− ε) max

1≤i≤M
T (fi, r).

The first sum has
(
M
2

)
terms. A contradiction argument shows that there are indices i1 6= i2 in

{1, 2, ...,M} and a Borel set V ⊆ R≥0 of infinite Lebesgue measure such that for all r ∈ V we have

NGCD(1/fi1 , 1/fi2 , r) ≥
(
M−1

2

)(
M
2

) (1− ε) max
1≤i≤M

T (fi, r) =

(
1− 2

M

)
(1− ε) max

1≤i≤M
T (fi, r).

After switching i1, i2 if necessary and replacing V by an infinite measure subset U , for all r ∈ U
we also have T (fi2 , r) ≤ T (fi1 , r). Finally, the trivial GCD bound gives

NGCD(1/fi1 , 1/fi2 , r) ≤ N(1/fi1 , 0, r) = N(fi1 ,∞, r) ≤ T (fi1 , r) +O(1).

We get the result adjusting ε. �

4.3. Two numerical lemmas.

Lemma 4.3. For x ∈ R, let us write x+ = max{0, x}. For every A,B ∈ R we have

(A−B)+ ≥ A+ −min{A+, B+}.

Proof. This is readily checked by considering the following cases: A ≤ B; 0 ≥ A > B; A > 0 ≥ B;
A > B > 0. The details are left to the reader. �
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Lemma 4.4. Let E be a complex elliptic curve and let g : E → P1 be a non-constant morphism of
degree d. Let α1, ..., αk ∈ C be the set of affine branch points (after identifying P1 = C∞). We have

1 ≤ k ≤ 2d and

k∑
j=1

#g−1(αj)

d
≤ k − 1− 1

d
.

Proof. The total number of branch points of a ramified morphism to P1 is always at least 2, so
k ≥ 1. The Riemann-Hurwitz formula gives (2 · 1− 2) = d · (2 · 0− 2) +

∑
α∈P1

(
d−#g−1(α)

)
, thus

2d =
∑
α∈P1

(
d−#g−1(α)

)
≥

∑
α∈P1

αbranch

1 ≥ k.

This proves the bounds for k. Finally, there is at most one branch points other than the αj , so the
Riemann-Hurwitz formula gives

2d =
∑
α∈P1

(
d−#g−1(α)

)
≤ (d− 1) +

k∑
j=1

(d−#g−1(αj)) = (k + 1)d− 1−
k∑
j=1

#g−1(αj)

and the result follows. �

4.4. Proof of Theorem 4.1. Let us keep the notation and assumptions of Theorem 4.1. Further-
more, we may assume M ≥ 4, so that the expressions M − 1, M − 2, and M − 3 are positive (this
is relevant as we will eventually divide by them in some computations).

Let ε > 0. Up to relabeling the functions fj if necessary, Lemma 4.2 shows that there is a Borel
set U ⊆ R≥0 of infinite Lebesgue measure such that for all r ∈ U we have

(4.1) T (f2, r) ≤ T (f1, r)

and

(4.2)

(
1− 2

M
− ε
)

max
1≤j≤M

T (fj , r) ≤ NGCD(1/f1, 1/f2, r) ≤ T (f1, r) +O(1).

For each 1 ≤ j ≤M define the complex numbers

λj =
a2 − aj
a2 − a1

, µj =
a1 − aj
a1 − a2

γj =
aj − a2

aj − a1

and observe that

• All the numbers λj , µj , γj are non-zero.
• The numbers λj are pairwise different. Similarly for the numbers µj and the numbers γj .
• λj + µj = 1.
• λja1 + µja2 = aj .
• γj = −λj/µj .

Let α ∈ C. We note that

λj(f1 − α) + µj(f2 − α) = (λj + µj)F1 + (λja1 + µja2)F2 − (λj + µj)α = fj − α.
hence

(4.3)
f2 − α
f1 − α

− γj = µ−1
j ·

fj − α
f1 − α

.

From this equation we observe that the meromorphic function (f2 − α)/(f1 − α) ∈ M is not the
constant function γj for any j, since fj is not the constant function α (fj is non-constant).

Also from (4.3) we see that given any complex number α ∈ C, for all r ≥ 0 we have

(4.4) N (1)

(
f2 − α
f1 − α

, γj , r

)
= N (1)

(
fj − α
f1 − α

, 0, r

)
.
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Given α ∈ C, let us give an upper bound for the average (for 2 ≤ j ≤M) of the right hand side
of the previous expression. Let B[r] = {z ∈ C : |z| ≤ r}. First we observe

M∑
j=2

n(1)

(
fj − α
f1 − α

, 0, r

)

≤
M∑
j=2

n(1) (fj − α, 0, r) +

M∑
j=2

# {z ∈ B[r] : ordz(f1 − α) < ordz(fj − α) ≤ 0} .

Since fj = F1 + ajF2, we see that if f1 has a pole at some z0, then all the fj have a pole of the
same order at z0 with at most one possible exception for j. Thus, given z0 ∈ C, the condition
ordz0(f1 − α) < ordz0(fj − α) ≤ 0 holds for at most one j, in which case f1 has a pole. We get

M∑
j=2

# {z ∈ B[r] : ordz(f1 − α) < ordz(fj − α) ≤ 0} ≤ n(1)(f1,∞, r),

from which we deduce

M∑
j=2

n(1)

(
fj − α
f1 − α

, 0, r

)
≤ n(1)(f1,∞, r) +

M∑
j=2

n(1) (fj − α, 0, r) .

Therefore, Lemma 3.1 gives

(4.5)
M∑
j=2

N (1)

(
fj − α
f1 − α

, 0, r

)
≤ N (1)(f1,∞, r) +

M∑
j=2

N (1) (fj − α, 0, r) +O(1).

Let us write

T (r) = max
1≤j≤M

T (fj , r).

Using (4.5), (4.4), the fact that N (1) (fj − α, 0, r) = N (1) (fj , α, r), and Lemma 3.3, we deduce that
for any given α ∈ C

(4.6)

M∑
j=2

N (1)

(
f2 − α
f1 − α

, γj , r

)
≤ N (1)(f1,∞, r) +

M∑
j=2

N (1) (fj , α, r) +O(1)

=exc N
(1)(f1,∞, r) +

(
#g−1(α)

d
+ o(1)

) M∑
j=2

T (fj , r)

≤ T (f1, r) +

(
#g−1(α)

d
+ o(1)

)
(M − 1)T (r).

As explained after (4.3), the meromorphic function (f2 − α)/(f1 − α) ∈ M is not equal to the
constant function γj for any j. The Second Main Theorem (2.2) with the targets γ2, ..., γM (here,
q = M − 1) gives that for any fixed α ∈ C

(4.7) (M − 3 + o(1))T

(
f2 − α
f1 − α

, r

)
≤exc

M∑
j=2

N (1)

(
f2 − α
f1 − α

, γj , r

)
.
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Let us give a lower bound for the expression on the left hand side of (4.7). By Lemma 4.3 we have

n

(
f2 − α
f1 − α

,∞, r
)

=
∑
|z|≤r

max{0, ordz(f1 − α)− ordz(f2 − α)}

≥
∑
|z|≤r

ord+
z (f1 − α)−

∑
|z|≤r

min{ord+
z (f1 − α), ord+

z (f2 − α)}

= n(f1, α, r)− nGCD(f1 − α, f2 − α, r).

Lemma 3.1 gives the desired lower bound for the left hand side of (4.7):

(4.8) N(f1, α, r)−NGCD(f1 − α, f2 − α, r) ≤ N
(
f2 − α
f1 − α

,∞, r
)

+O(1) ≤ T
(
f2 − α
f1 − α

, r

)
+O(1).

We conclude that for any given α ∈ C the following holds:

(M − 3 + o(1)) ((1 + o(1))T (f1, r)−NGCD(f1 − α, f2 − α, r))
=exc (M − 3 + o(1)) (N(f1, α, r)−NGCD(f1 − α, f2 − α, r)) by Lemma 3.3

≤exc
M∑
j=2

N (1)

(
f2 − α
f1 − α

, γj , r

)
by (4.8) and (4.7)

≤exc T (f1, r) +

(
#g−1(α)

d
+ o(1)

)
(M − 1)T (r) by (4.6).

Rearranging and collecting the error terms, we conclude

(4.9) (M − 4)T (f1, r) ≤exc
(

#g−1(α)

d
+ o(1)

)
(M − 1)T (r) + (M − 3)NGCD(f1 − α, f2 − α, r).

Let k be the number of affine branch points in C∞ = P1 of g : E → P1 and let α1, ..., αk ∈ C be
these branch points. Lemma 3.4 gives

k∑
i=1

NGCD(f1 − αi, f2 − αi, r) ≤ T (f1, r) + T (f2, r)−NGCD(1/f1, 1/f2, r) +O(1).

Using (4.1) and (4.2) we get for all r in the infinite measure set U

k∑
i=1

NGCD(f1 − αi, f2 − αi, r) ≤ 2T (f1, r)−
(

1− 2

M
− ε
)
T (r) +O(1).

Removing a finite measure subset from U we get an infinite measure set U ′ ⊆ U ⊆ R≥0 such that
for all r ∈ U ′ the previous estimate holds as well as (4.9) for α = αj with 1 ≤ j ≤ k. This gives
that for all r ∈ U ′ we have

k(M − 4)T (f1, r) ≤

 k∑
j=1

#g−1(αj)

d
+ o(1)

 (M − 1)T (r)

+ 2(M − 3)T (f1, r)− (M − 3)

(
1− 2

M
− ε
)
T (r).

Let us write

S =
k∑
j=1

#g−1(αj)

d
.
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Rearranging we get(
M − 4

M − 3
· k − 2

)
T (f1, r) ≤

(
M − 1

M − 3
· S + o(1)− 1 +

2

M
+ ε

)
T (r).

Using (4.2) (which is valid for r ∈ U ′) we get(
M − 4

M − 3
· k − 2

)(
1− 2

M
− ε
)
T (r) ≤

(
M − 1

M − 3
· S + o(1)− 1 +

2

M
+ ε

)
T (r).

Since U ′ ⊆ R≥0 has infinite measure, we can let r → +∞ over a sequence in U ′. As the functions
fj are non-constant, we get T (r)→ +∞ over this sequence, and we deduce(

M − 4

M − 3
· k − 2

)(
1− 2

M
− ε
)
≤ M − 1

M − 3
· S − 1 +

2

M
+ ε.

Since ε > 0 is arbitrary and S ≤ k − 1− 1/d (cf. Lemma 4.4) we obtain(
M − 4

M − 3
· k − 2

)(
1− 2

M

)
≤ M − 1

M − 3

(
k − 1− 1

d

)
− 1 +

2

M
.

If M were very large, this would approximately give k− 2 ≤ k− 1− 1/d− 1 = k− 2− 1/d which
is not possible. So, it is clear that this expression constrains the size of M . Let us work out the
precise details in order to get the desired bound: Rearranging we obtain

(4.10)
(M − 1)M

d
+ 2(2M − 3)− (5M − 8) · k ≤ 0.

The quadratic function

u(t) = t(t− 1)/d+ 2(2t− 3)− (5t− 8)k

is increasing for t ≥ t0 = (1+(5k−4)d)/2 and satisfies u((5k−4)d) = 3k−2 ≥ 1. Since (5k−4)d ≥ t0
we deduce that u(t) ≥ 1 for t ≥ (5k − 4)d. Therefore, (4.10) with Lemma 4.4 shows that

M ≤ (5k − 4)d ≤ 10d2 − 4d.

This concludes the proof of Theorem 4.1. �

5. Some geometric constructions

5.1. Notation and first constructions. Let k be an algebraically closed field of characteristic
0, let E be an elliptic curve over k and let n be a positive integer. Let g ∈ k(E) be a non-constant
rational function of degree d. We identify A1

k with the affine chart {[x0 : x1] ∈ P1
k : x0 6= 0} of

P1
k. In particular, g can be identified with a morphism g : E → P1

k of degree d defined over k.
We consider the abelian variety A = En of dimension n. Let Gn : A → (P1)n be the morphism
obtained from n copies of g.

Lemma 5.1. The morphism Gn is finite of degree dn and flat.

Proof. The map g : E → P1
k is surjective and finite of degree d. Hence, Gn : En → (P1

k)
n is

surjective and finite of degree dn. On the other hand, the map g is flat by [16] III Prop. 9.7. Hence,
repeated applications of [16] III Prop. 9.2 give that Gn is flat. �
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5.2. The surfaces Un and Hn. Let us assume that n ≥ 3. Let u1, ..., un be the coordinates on
Ank and let us define the affine variety

(5.1) Un :


u3 − 2u2 + u1 = 0

...

un − 2un−1 + un−2 = 0

⊆ Ank .

Under the previously chosen inclusion A1
k ⊆ P1

k, we have Ank ⊆ (P1
k)
n. Let Hn be the Zariski closure

of Un in (P1
k)
n. Let pj : (P1

k)
n → P1

k be the j-th coordinate projection.

Lemma 5.2. We have that Un is a linear surface in Ank and Hn is an irreducible projective surface.
Furthermore, for every j we have that pj restricts to a surjective map Hn → P1

k.

Proof. Un is a linear surface because the n−2 linear equations defining it are linearly independent.
The other claims follow. �

Lemma 5.3. Let 1 ≤ i < j ≤ n. The projection pij : (P1
k)
n → (P1

k)
2 onto the coordinates i and j

restricts to a map Hn → (P1
k)

2 which is finite of degree 1 above A2
k.

Proof. From the equations of Un, we note that if a point (α1, ..., αn) ∈ Hn has some coordinate
αj = ∞ ∈ P1

k, then all other coordinates with at most one exception are also equal to ∞. Thus,
the preimage of A2

k under pij |Hn : Hn → (P1
k)

2 is precisely Un. Finally, since k has characteristic 0,
fixing ui and uj in k (with i 6= j) determines a unique point in Un, namely

u` =
`− j
i− j

· ui +
`− i
j − i

· uj , 1 ≤ ` ≤ n.

�

5.3. The surfaces Vn and Xn. Let us define

Xn = G−1
n (Hn) ⊆ A and Vn = G−1

n (Un) ⊆ Xn.

Lemma 5.4. We have that Xn is a projective surface and Vn is a dense open subset in Xn.
Moreover, the morphism Gn : En → (P1

k)
n restricts to a morphism G′n : Xn → Hn which is

surjective, finite of degree dn, and flat.

Proof. Since Gn is flat (cf. Lemma 5.1), it is open by [16] III Exer. 9.1. It follows that G−1
n (cl(S)) =

cl(G−1
n (S)) for every set S ⊆ (P1

k)
n, where cl(−) denotes Zariski closure. As cl(Un) = Hn, we get

that Xn is the Zariski closure of Vn.
The branch divisor of Gn is

∑n
j=1 p

∗
jBg where Bg ⊆ P1

k is the branch divisor of g. From Lemma
5.2 we deduce that Hn is not contained in the branch locus of Gn. It follows that Gn restricts to a
finite surjective map G′n : Xn → Hn of degree dn. We note that Vn = G−1

n (Un) = (G′)−1
n (Un) and

Un is open in Hn, thus Vn is open.
Finally, note that G′n is the base change of Gn by the closed immersion Hn → (P1

k)
n, hence G′n

is flat (cf. [16] III Prop. 9.2). As Gn has pure relative dimension 0, we obtain from Lemma 5.2 and
[16] III Coro. 9.6 that dimXn = dimHn = 2. �

5.4. A line sheaf on En. Let πj : En → E be the j-th coordinate projection. Let eE be the
neutral point of E and consider the following line sheaf on En:

Ln = O

 n∑
j=1

π∗j eE

 .

Lemma 5.5. The line sheaf Ln on the abelian variety En is ample and symmetric.
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Proof. For m ∈ Z and B an abelian variety, we write [m]B for the endomorphism of multiplication
by m on B. Let A = En as before. We have [−1]∗EeE = eE , hence

[−1]∗A

n∑
j=1

π∗j eE =
n∑
j=1

[−1]∗Aπ
∗
j eE =

n∑
j=1

(πj [−1]A)∗eE

=
n∑
j=1

([−1]Eπj)
∗eE =

n∑
j=1

π∗j [−1]∗EeE =
n∑
j=1

π∗j eE .

It follows that Ln is symmetric on En. Since Ln '
⊗n

j=1 π
∗
jO(eE) and O(eE) is ample on E (it

has degree 1), we get that Ln is ample on En. �

5.5. Degree estimates. Given a line sheaf F on a smooth projective variety Y and a closed set
Z ⊆ Y , we define degF Z as deg([F ]dimZ · [Z]) if Z is irreducible, and we extend this definition
linearly for general Z. Here, the intersection product occurs in the Chow ring Ch(Y ) = ⊕jChj(Y )
of Y (graded by codimension) and deg : Ch0(Y ) → Z is the usual degree map on 0-cycles —we
use the standard convention that Chj denotes codimension j cycles, while Chj denotes cycles of
dimension j. For instance, see Appendix A in [16] for a survey of intersection theory.

Lemma 5.6. We have degLn
Xn ≤ (n2 − n)d2n−2.

Proof. For the following computations, let us recall that if f : Y → Z is a morphism of smooth
projective varieties over k, then the pull-back f∗ : Ch(Z) → Ch(Y ) is a graded ring morphism,
while the push-forward f∗ : Ch(Y )→ Ch(Z) respects addition and shifts the grading.

As Xn is a surface, we have degLn
Xn = deg([Ln]2 · [Xn]). We expand the intersection product

[Ln]2 · [Xn] =
n∑
i=1

n∑
j=1

[π∗i eE ] · [π∗j eE ] · [Xn]

=
n∑
i=1

[π∗i eE ]2 · [Xn] + 2
∑

1≤i<j≤n
[π∗i eE ] · [π∗j eE ] · [Xn]

Moving eE on E, we see that [π∗i eE ]2 = 0 ∈ Ch2(A). On the other hand, [Xn] = G∗n[Hn] ∈ Ch2(A)
by Lemma 5.4. Hence, the projection formula gives the following identities in Ch0((P1

k)
n)

(Gn)∗
(
[Ln]2 · [Xn]

)
= 2

∑
1≤i<j≤n

(Gn)∗
(
[π∗i eE ] · [π∗j eE ] ·G∗n[Hn]

)
= 2

∑
1≤i<j≤n

(Gn)∗([π
∗
i eE ] · [π∗j eE ]) · [Hn]

= 2
∑

1≤i<j≤n
(Gn)∗([π

∗
ij((eE , eE))]) · [Hn]

where πij : En → E2 is the projection onto the i and j coordinates.
Note that π∗ij((eE , eE)) is obtained from En by replacing the copies of E in the coordinates i and

j by {eE}. Let pij : (P1
k)
n → (P1

k)
2 be the projection onto the coordinates i and j. We deduce that

the map π∗ij((eE , eE))→ p∗ij((g(eE), g(eE))) induced by Gn is (up to the obvious isomorphisms) the

same as Gn−2 : En−2 → (P1
k)
n−2, which has degree dn−2 by Lemma 5.1. This gives

(Gn)∗([π
∗
ij((eE , eE))]) = dn−2[p∗ij((g(eE), g(eE))] ∈ Ch2((P1

k)
n).

Choose a k-rational point x ∈ A1
k ⊆ P1

k. For i < j, Lemma 5.3 gives the following on (P1
k)
n

deg
(
[p∗ij((g(eE), g(eE))] · [Hn]

)
= deg

(
[p∗ij((x, x))] · [Hn]

)
= 1.
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From here we deduce

deg
(
(Gn)∗

(
[Ln]2 · [Xn]

))
= (n2 − n)dn−2.

As Gn : A→ (P1
k)
n is finite of degree dn (cf. Lemma 5.1), we get the desired bound. �

6. Arithmetic progressions for finite rank groups

6.1. Main arithmetic result. Let L be a field. An arithmetic progression in L is a sequence
u1, ..., un of elements of L such that for some a, b ∈ L we have uj = a + jb for each j = 1, ..., n.
We say that the arithmetic progression u1, ..., un is trivial if al the terms uj are equal, i.e. b = 0.
Otherwise, the arithmetic progression is said to be non-trivial.

The rank of an abelian group Γ is defined as

rank Γ = dimQ(Γ⊗Z Q).

In particular, if Γ is a torsion abelian group, then rank Γ = 0.

Theorem 6.1. Let j0 ∈ Qalg and let d ≥ 2 be an integer. There is an effectively computable
constant κ(j0, d) depending only on j0 and d such that the following holds:

Let E be an elliptic curve over Qalg with j-invariant equal to j0. Let g ∈ k(E) be a non-constant
rational function on E of degree d defined over Qalg. Let Γ ⊆ E(Qalg) be a subgroup of finite rank.
Suppose that for a positive integer N there is a sequence P1, ..., PN of points in Γ such that no Pj is

a pole of g, and the sequence g(P1), ..., g(PN ) ∈ Qalg is a non-trivial arithmetic progression. Then

1 + rank Γ > κ(j0, d) · logN.

We remark that if L is a field of positive characteristic p > 0, then a non-trivial arithmetic
progression in L can have repeated terms. However, if L has characteristic 0, then an arithmetic
progression is non-trivial (i.e. not all terms are the same) if and only if all its terms are different.
For our purposes, we will work in characteristic zero.

We will need the following characterization of arithmetic progressions.

Lemma 6.2. Let n ≥ 3 be an integer, let L be a field, and let u1, ..., un ∈ L. The sequence u1, ..., un
is an arithmetic progression if and only if uj − 2uj−1 + uj−2 = 0 for each 3 ≤ j ≤ n.

Proof. Arithmetic progressions satisfy the required equations since one directly checks

(a+ jb)− 2(a+ (j − 1)b) + (a+ (j − 2)b) = 0.

Conversely, if the sequence u1, ..., un satisfies uj − 2uj−1 + uj−2 = 0 for each 3 ≤ j ≤ n, then
inductively one proves that uj = a+ jb with a = 2u1 − u2 and b = u2 − u1. �

6.2. Lang’s conjecture after Vojta, Faltings, and Rémond. In [10, 11] Faltings proved Lang’s
conjecture on rational points in sub-varieties of abelian varieties. Namely, if L is a number field, A
is an abelian variety over L and X ⊆ A is a sub-variety defined over L, then all but finitely many
L-rational points of X are contained in the Kawamata locus of X; i.e., the union of translates
of positive dimensional abelian sub-varieties of A contained in X. (We recall that the Kawamata
locus is Zariski closed by a theorem of Kawamata [18].) This proof extended ideas of Vojta’s proof
[44] of Faltings’ theorem for curves [9]. See also Bombieri’s simplification [3] of Vojta’s argument.

Faltings’ theorem on sub-varieties of abelian varieties has been extended in several directions. We
need a quantitative generalization due to Rémond [34, 35], which also extends Raynaud’s theorem
on torsion points [33] (i.e. the Manin-Mumford conjecture).

Theorem 6.3 (Rémond). Let A be an abelian variety of dimension n defined over Qalg, and let L
be a symmetric ample invertible sheaf on A. There is an effectively computable number c(A,L ) > 0
such that the following holds:
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Let X be a closed subvariety of A of dimension m, and let Λ be a subgroup of A(Qalg) such that
its rank r = dimQ(Λ⊗Z Q) is finite. There is a non-negative integer

R ≤ (c(A,L ) degL X)(r+1)n5(m+1)2

and there exist points x1, . . . , xR in X(Qalg)∩Λ and abelian subvarieties T1, . . . , TR of A satisfying
that xi + Ti ⊆ X for each 1 ≤ i ≤ R, and

X(Qalg) ∩ Λ =
R⋃
i=1

(xi + Ti)(Qalg) ∩ Λ.

This formulation is the same as Théorème 1.2 in [34], with the additional remark that the number
c(A,L ) can be effectively computed. In fact, this point is explained in loc. cit. after the statement
of Théorème 1.2, and the precise details are given in Théorème 2.1 and the paragraph after it.

Moreover, a simple closed formula for c(A,L ) is given in Théorème 1.3 of [35] using the notion
of theta height of A, under the assumption that L induces a principal polarization. See Section
6.5 for details on how to use these explicit effective estimates in our context.

6.3. Proof of Theorem 6.1. Let us keep the notation and assumptions of Theorem 6.1. Let us
consider constructions from Section 5 with k = Qalg, n = 10d2 − 4d + 2, and the choice of E and
g given in Theorem 6.1. Especially, we obtain the morphism Gn : En → (P1

k)
n, the projective

surfaces Hn ⊆ (P1
k)
n and Xn ⊆ En, the open sets Un ⊆ Hn and Vn ⊆ Xn, and the line sheaf Ln on

En.
Let ∆n = {u1 = u2 = ... = un} ⊆ Ank be the diagonal line. We observe that ∆n is a Zariski

closed set in Un. Let us define

U0
n = Un −∆n and V 0

n = G−1
n (U0

n) ⊆ Vn.

Lemma 6.4. Let L/k be a field extension. Let α1, ..., αn ∈ L. We have that the sequence is
an arithmetic progression in L if and only if (α1, ..., αn) ∈ Un(L). In this case, the arithmetic
progression is non-trivial if and only if (α1, ..., αn) ∈ U0

n(L).
Furthermore, let P1, ..., Pn be a sequence of points in E(L). We have that g(P1), ..., g(Pn) is an

arithmetic progression in L = A1
k(L) if and only if (P1, ..., Pn) ∈ Vn(L). In this case, the arithmetic

progression is non-trivial if and only if (P1, ..., Pn) ∈ V 0
n (L).

Proof. The sequence α1, ..., αn is an arithmetic progression if and only if it has second differences
equal to 0 (cf. Lemma 6.2). This is equivalent to the condition that (α1, ..., αn) ∈ Un(L). The
sequence is trivial if and only if all terms are equal, which is equivalent to (α1, ..., αn) ∈ ∆n(L).

The second part follows from the first part, using Vn = G−1
n (Un) and V 0

n = G−1
n (U0

n). �

Note that V 0
n is a non-empty open set of Vn, thus, of Xn. Let Zn = Xn − V 0

n ; this is a proper
Zariski closed subset of Xn. We now show that the Kawamata locus of Xn is contained in Zn.

Lemma 6.5. Let T ⊆ En be an abelian sub-variety of strictly positive dimension, and suppose that
x ∈ Xn(k) satisfies x+ T ⊆ Xn. Then x+ T ⊆ Zn.

Proof. Let T ′ = x+T . Since T ′(C) is a positive dimensional complex torus, there is a non-constant
holomorphic map φ : C → Xn whose image is Zariski dense in T ′; this can be seen by considering
T ′ ' Cg/Λ for a lattice Λ ⊆ Cg. Let us write φj = πj ◦ φ : C→ E, so that φ = (φ1, ..., φn).

By contradiction, suppose that T ′ is not contained in Zn. Then the image of φ meets V 0
n .

Thus, the image of Gn ◦ φ meets U0
n. In particular, all the compositions fj = g ◦ φj are complex

meromorphic functions (i.e. φj is not identically a pole of g, for each j).
The image of Gn ◦ φ = (f1, ..., fn) is contained in the projective surface Hn and meets the

Zariski open subset U0
n ⊆ Hn. It follows that for all but countably many z0 ∈ C we have
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(f1(z0), ..., fn(z0)) ∈ U0
n. In fact, composing Gn ◦ φ with local equations for the Zariski closed

set Hn − U0
n ⊆ Hn, the claim follows from the fact that the zero set of a non-constant complex

meromorphic function in one variable is at most countable.
By the identity principle, we get that (f1, ..., fn) ∈ M n satisfies the equations defining Un but

not the equations defining ∆n. This means that (f1, ..., fn) ∈ U0
n(M ) as an M -rational point. By

Lemma 6.4 with L = M , we get that f1, ..., fn is a non-trivial arithmetic progression in M . Hence,
there are F1, F2 ∈M such that F2 is not the zero function and fj = F1 + jF2 for each 1 ≤ j ≤ n.

As φ is non-constant and g is finite, at least one of the fj is non-constant. Thus, at least one
of F1 or F2 is non-constant, and it follows that at most one of the f1, ..., fn can be constant.
Relabeling if necessary and deleting one term, we apply Theorem 4.1 with M = n− 1 to conclude
that M ≤ 10d2−4d. Since n = 10d2−4d+ 2 we get 10d2−4d+ 1 ≤ 10d2−4d, a contradiction. �

Finally, we proceed to conclude the proof of Theorem 6.1.
We apply Theorem 6.3 with A = En and L = Ln; this choice of sheaf is allowed by Lemma

5.5. We obtain the effectively computable constant c(En,Ln) > 0 provided by Theorem 6.3. This
constant only depends on the isomorphism class over k = Qalg of the pair (En,Ln). By construction
(see Section 5.4), this data is uniquely determined by the isomorphism class of E over k and the
integer n = 10d2 − 4d + 2. Therefore, c(En,Ln) only depends on d and j0, the j-invariant of E,
and this dependence is effective. Let us write c(j0, d) instead of c(En,Ln) to make explicit that
this quantity only depends on j0 and d. (See Section 6.5 for a concrete example.)

We take X = Xn, which has dimension m = 2 (cf. Lemma 5.4). Let us consider the group
Λ = Γ× · · · × Γ ⊆ En(k) with Γ as in Theorem 6.1 and observe that Λ has finite rank

r = rank Λ = n · rank Γ.

By Lemma 5.6, the number R provided by Theorem 6.3 satisfies

(6.1) R ≤ (c(j0, d) degLn
Xn)n

45(r+1) ≤ R0 :=
(
c(j0, d) · (n2 − n)d2n−2

)n45(1+n·rank Γ)
.

In addition, there are points x1, ..., xR ∈ Xn(k) and abelian sub-varieties T1, ..., TR ⊆ En such that

V 0
n (k) ∩ Λ ⊆ Xn(k) ∩ Λ ⊆

R⋃
i=1

(xi + Ti)(k).

By Lemma 6.5, all the Ti with dimTi ≥ 1 satisfy xi + Ti ⊆ Zn. Thus, writing

I = {1 ≤ i ≤ R : Ti = {eA}}
we get

V 0
n (k) ∩ Λ ⊆

⋃
i∈I

(xi + Ti)(k) = {xi : i ∈ I}.

In particular,

(6.2) #
(
V 0
n (k) ∩ Λ

)
≤ R.

Let us define

(6.3) C(j0, d) =
(
c(j0, d) · (n2 − n)d2n−2

)n46

with n = 10d2 − 4d+ 2.

By (6.1) and (6.2), we see that

(6.4) C(j0, d)1+rank Γ = R0

(
c(j0, d) · (n2 − n)d2n−2

)n46−n45

> 2R0 > n+R0 ≥ n+#
(
V 0
n (k) ∩ Λ

)
.

Let P1, ..., PN ∈ Γ be as in the statement of Theorem 6.1, i.e, g(P1), ..., g(PN ) is a non-trivial arith-
metic progression in k. We note that for each j = 1, ..., N−n the sequence g(Pj), g(Pj+1), ..., g(Pj+n−1)
is a non-trivial arithmetic progression in k of length n, and all these N −n sequences are different.
From Lemma 6.4 we deduce that (Pj , ..., Pj+n−1) ∈ V 0

n (k) for each j = 1, ..., N − n and these are
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different points as their images under Gn are different. Furthermore, by assumption Pi ∈ Γ for
each i, so we get (Pj , ..., Pj+n−1) ∈ V 0

n (k) ∩ Λ. This proves #
(
V 0
n (k) ∩ Λ

)
≥ N − n.

Together with (6.4) we finally get

C(j0, d)1+rank Γ > N.

This proves Theorem 6.1 with

(6.5) κ(j0, d) = 1/ logC(j0, d).

Since c(j0, d) is effectively computable, so are C(j0, d) and κ(j0, d). �

6.4. Consequences. Let us formulate here two direct consequences of Theorem 6.1 that relate
arithmetic progressions of rational points to two different aspects of the arithmetic of elliptic curves:
the rank, and on the other hand, the torsion part.

Corollary 6.6. Let j0 ∈ Qalg and let d be a positive integer. There is an effectively computable
constant κ(j0, d) > 0 depending only on j0 and d such that the following holds:

Let L ⊆ Qalg be a number field containing j0 and let E be an elliptic curve over L with j-invariant
equal to j0. Let g be a non-constant rational function on E defined over L of degree d. If for some N
there is a sequence of points P1, ..., PN ∈ E(L) such that g(P1), ..., g(PN ) is a non-trivial arithmetic
progression in L, then

1 + rankE(L) > κ(j0, d) · logN

Proof. All elliptic curves over number fields with j-invariant equal to j0 are isomorphic to each other
after base change to Qalg. Thus, the result is immediate from Theorem 6.1 applied to E′ = E⊗LQalg

choosing the group Γ = E(L), which is a group of finite rank by the Mordell-Weil theorem. Here,
we use the inclusion Γ ⊆ E(Qalg) ' E′(Qalg). �

Corollary 6.7. Let E be an elliptic curve over Qalg and let d be a positive integer. There is an
effectively computable constant N(E, d) depending only on E and d such that the following holds:

Let g be a non-constant rational function on E defined over Qalg of degree d. Let Sg ⊆ E(Qalg)

be the set of poles of g and let E(Qalg)tor be the group of all torsion points of E. The set

g
(
E(Qalg)tor − Sg

)
⊆ Qalg

does not contain non-trivial arithmetic progressions of length greater than N(E, d).

Proof. The group Γ = E(Qalg)tor has rank 0 and the isomorphism class of E over Qalg is determined
by the j-invariant. Thus, the result is a direct consequence of Theorem 6.1. �

As a special case, we obtain two of the main results stated in the Introduction.

Proof of Theorem 1.1. The result follows from Corollary 6.6 with d = 2 for x-coordinates, d = 3
for y-coordinates, and choosing L = Q. �

Proof of Theorem 1.2. The result follows from Corollary 6.7 with d = 2 for x-coordinates and d = 3
for y-coordinates. �

6.5. Effectivity. Here we prove that (1.1) gives an admissible value for c(j0) in Theorem 1.1.
Although we restrict ourselves to the setting of Theorem 1.1 for the sake of simplicity, it will be
clear from the argument that a similar (although lengthier) computation gives an explicit value for
the effective constants in Theorem 6.1 and its consequences.

Let j0 ∈ Q. From the proof of Theorem 1.1 (cf. Section 6.4) we note that c(j0) can be chosen as
any value smaller than

min{κ(j0, 2), κ(j0, 3)} =
1

log max{C(j0, 2), C(j0, 3)}
=

1

logC(j0, 3)
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with κ(j0, d) and C(j0, d) as defined in (6.3) and (6.5). Here we used that for j0 fixed, one can
check that the quantity C(j0, d) is increasing on d. We compute

(6.6) logC(j0, 3) = 8046 (log(c(j0, 3)) + log(6320) + 158 log(3)) < 8046 (log(c(j0, 3)) + 183)

where c(j0, 3) is as in Section 6.3. Namely, c(j0, 3) = c(En,Ln) where n = 10 · 32 − 4 · 3 + 2 = 80,
E is an elliptic curve over Qalg with j-invariant equal to j0, and c(A,L ) is the constant appearing
in Theorem 6.3.

An admissible value for c(A,L ) is given in Théorème 1.3 of [35] under the additional assumption
that L induces a principal polarization. In our case, L = Ln '

⊗n
j=1 π

∗
jO(eE) induces a principal

polarization on En, see [19]. Therefore, the formula from [35] directly applies. In our case, the
abelian variety A = En and the sheaf Ln can be defined over Q because j0 ∈ Q. Therefore,
Théorème 1.3 of [35] allows us to take

(6.7) c(j0, 3) = c(En,Ln) = 234 ·max{1, hΘ(En)}, n = 80

where hΘ denotes the Theta height associated to the line sheaf L ⊗16. Let us estimate the Theta
height. First we compare it to the semi-stable Faltings’ height hF using results by Pazuki, namely
Corollary 1.3(2) in [30]. Here we use the normalization of hF used in loc. cit. As we are using the
Theta height associated to L ⊗16, we must choose r = 4 in [30] Corollary 1.3(2), which gives

hΘ(En) ≤ 1

2
max{1, hF (En)}+ C2(80, 4) log (2 + max{1, hF (En)})

<
1

2
max{1, hF (En)}+ e256 log(2 + max{1, hF (En)}).

Since the Faltings height satisfies hF (A1 × A2) = hF (A1) + hF (A2) (cf. equation (2.7) in [4] for
instance) and we chose n = 80, we find

hΘ(En) <
1

2
max{1, 80hF (E)}+ e256 log(2 + max{1, 80hF (E)}).

Lemme 7.9 in [15] (see also [39]) gives hF (E) ≤ h(j0)/12− 0.72 < h(j0) where h(x) = logH(x) for
x ∈ Q (note that the normalization of the Faltings height in [15] and [30] is the same), from which
we get

hΘ(En) <
1

2
max

{
1,

20

3
h(j0)

}
+ e256 log

(
2 + max

{
1,

20

3
h(j0)

})
≤ 10

3
(1 + h(j0)) + e256 log

(
20

3
(1 + h(j0))

)
≤ max

{
20

3
(1 + h(j0)), e257 log

(
20

3
(1 + h(j0))

)}
.

From (6.7) we get

log c(j0, 3) < 34 log 2 + max

{
log

20

3
+ log(1 + h(j0)), 257 + log

(
log

20

3
+ log(1 + h(j0))

)}
< 24 + max{2 + log(1 + h(j0)), 257 + log (2 + log(1 + h(j0)))}
= 26 + max{log(1 + h(j0)), 255 + log (2 + log(1 + h(j0)))}.

Finally (6.6) gives

logC(j0, 3) < 8046 (209 + max{log(1 + h(j0)), 255 + log (2 + log(1 + h(j0)))})

which proves (1.1). �
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7. Bounding the rank and applications

7.1. Pointwise rank bounds. Let us recall the following bound for the rank of the quadratic twist
of an elliptic curve. A similar result holds over number fields, although to simplify the notation we
only state the case of Q. Here we recall that ω(D) is the number of distinct prime divisors of D.

Lemma 7.1. Let E be an elliptic curve over Q. There is an effectively computable constant c(E)
depending only on E such that for all squarefree integers D we have

rankE(D)(Q) ≤ 12 · ω(D) + c(E).

Proof. This follows from [40] Ch. VIII, Exercise 8.1 with m = 2. In particular, c(E) is bounded
by a multiple of the number of places of bad reduction of E plus the 2-rank of the class group of
K = Q(E[2]) = Q(E(D)[2]). �

From this we get

Corollary 7.2. Let E be an elliptic curve over Q and let d be a positive integer. There is an
effectively computable constant C(E, d) depending only on E and d such that the following holds:

Let D be a squarefree integer. Let g be a rational function on E(D) defined over Q of de-
gree d. If for some N there is a sequence of rational points P1, ..., PN ∈ E(D)(Q) satisfying that

g(P1), ..., g(PN ) is a non-trivial arithmetic progression in Q, then N < C(E, d)ω(D)+1.

Proof. The result is obtained from Corollary 6.6 with L = Q, using the fact that taking quadratic
twists does not change the j-invariant, and using Lemma 7.1 to bound rankE(D)(Q). �

We note that Corollary 1.3 is a special case of Corollary 7.2.

7.2. Average bounds for Mordell curves. As in the introduction, for x > 0 we let S(x) be
the set of sixth-power free integers n with |n| ≤ x. It is an elementary result in Analytic Number
Theory that the number of k-power free positive integers up to x is asymptotic to x/ζ(k) where
ζ(s) is the Riemann zeta function. In particular we have

Lemma 7.3. As x→∞ we have the asymptotic estimate

#S(x) ∼ 2

ζ(6)
· x =

1890

π6
· x.

For n a sixth-power free integer, we consider the Mordell elliptic curve An defined by the equation
y2 = x3 + n. The following theorem is a special case of a result due to Fouvry, cf. [12] Théorème 1
(using the bounds R+(

√
3) ≤ 115 and R−(

√
3) ≤ 100 given there).

Theorem 7.4. The following estimate holds for all large enough x:∑
n∈S(x)

3(rankAn(Q))/2 < 216 · x.

With these results, we can proceed to the proof of Theorem 1.6.

Proof of Theorem 1.6. By Theorem 1.1 with j0 = 0 we have

max{βx(An), βy(An)} ≤ exp ((1 + rankAn(Q))/c)

where c = c(0) > 0 is an absolute constant. Let us take τ = (c · log 3)/2 > 0 and note that

max{βx(An), βy(An)}τ ≤
√

3 · 3(rankAn(Q))/2.

Theorem 7.4 gives that for all large enough x we have∑
n∈S(x)

max{βx(An), βy(An)}τ ≤ 216
√

3 · x.
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Since 216
√

3 · 1890/π6 < 735.5, Lemma 7.3 gives that for all large enough x we have∑
n∈S(x)

max{βx(An), βy(An)}τ < 800 ·#S(x).

The result follows �

We remark that we can use Corollary 6.6 instead of Theorem 1.1 to obtain a version of Theorem
1.6 for more general rational functions, not just x and y-coordinates.

As explained in the introduction, a crucial aspect in the proof of Theorem 1.6 is that our lower
bounds for the rank are logarithmic on the maximal length of an arithmetic progression (cf. The-
orems 1.1 and 6.1), and not worse than logarithmic. Briefly, the reason why Fouvry’s theorem
can control averages of an exponential function of the rank that the core of [12] is an average
estimate for the size of certain 3-isogeny Selmer groups, which is then used as an upper bound for
# (An(Q)/3An(Q)) ≥ 3rankAn(Q).

7.3. Average bounds for congruent number curves. For x > 0, let Q(x) be the set of odd
squarefree positive integers n ≤ x. We remark that it is an elementary exercise in sieve theory to
check that #Q(x) ∼ (3/π2) · x as x→∞.

Given a squarefree integer n, we consider the elliptic curve Bn defined by y2 = x3 − n2x. These
elliptic curves are associated to the classical congruent number problem. The following theorem is
a direct consequence of Theorem 1 in [17] by Heath-Brown.

Theorem 7.5. Let ` be a positive integer. As x→∞ we have the asymptotic estimate∑
n∈Q(x)

(#S2(Bn))` ∼ 4`+1
∏̀
j=1

(
1 + 2j

)
·#Q(x).

In particular, there is a positive constant γ(`) depending only on m such that for all x > 1 we have∑
n∈Q(x)

(#S2(Bn))` < γ(`) ·#Q(x).

The previous bound for the moments of #S2(Bn) allows us to prove Theorem 1.7.

Proof. All the elliptic curves Bn have j-invariant equal to 1728. For each squarefree positive integer
n, Theorem 1.1 with j0 = 1728 gives

max{βx(Bn), βy(Bn)} ≤ exp ((1 + rankBn(Q))/c)

where c = c(1728) > 0 is an absolute constant. Given k > 0 we choose the positive integer

` = `(k) =

⌈
k

c log 2

⌉
where dte is the smallest integer bigger than or equal to t. Thus, ` log 2 ≥ k/c and we deduce

max{βx(Bn), βy(Bn)}k ≤ 2(1+rankBn(Q))·` < # (Bn(Q)/2Bn(Q))`

for each squarefree positive integer n. Here we used the classical fact that the rational torsion of
Bn is isomorphic to Z/2Z× Z/2Z, so that # (Bn(Q)/2Bn(Q)) = 22+rankBn(Q).

The fundamental injective map Bn(Q)/2Bn(Q) → S2(Bn(Q)) (cf. the exact sequence (1.2))
together with Theorem 7.5 finally give that for all x > 1∑

n∈S(x)

max{βx(Bn), βy(Bn)}k < γ

(⌈
k

c log 2

⌉)
·#Q(x)

�
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Finally, we remark that using Corollary 6.6 instead of Theorem 1.1, the same argument gives a
version of Theorem 1.7 for any non-constant rational function on Bn, not just x and y coordinates.
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Paris, 1990-91, Progr. Math. (1993), 61-84.
[13] N. Garcia-Fritz, Quadratic sequences of powers and Mohanty’s conjecture. Int. J. Number Theory 14.02 (2018),

479-507.
[14] I. Garcia-Selfa, J. Tornero. Searching for simultaneous arithmetic progressions on elliptic curves. Bull. Aust.

Math. Soc. 71, no. 3 (2005), 417-424.
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Facultad de Matemáticas
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