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Abstract. It was shown by Granville that the ABC conjecture allows one to prove asymptotic

estimates on the number of squarefree values of polynomials. However, his proof gives no information

on the error term of the asymptotic formula. On the ABC conjecture, we prove an asymptotic formula
with error term using a different technique. From the ABC conjecture we also deduce an asymptotic

formula with error term for the number of squarefree values of polynomials on certain sets of integers

that are residually well distributed, in a suitable sense.

1. Introduction and results

Let r ≥ 2 and let f ∈ Z[X] be a polynomial of degree r. Define

Nf (x) = #{n ≤ x : f(n) is squarefree}

and write Gf := gcd(f(n) : n ≥ 1). Define ωf (n) to be the number of solutions of the congruence
f(x) ≡ 0 mod n; this is a multiplicative function on n. If f has some repeated factor or if Gf is not
squarefree, then trivially Nf (x) is bounded, so we will assume that f has no repeated factors and Gf
is squarefree.

On the ABC conjecture, Granville [2] showed the asymptotic formula Nf (x) ∼ cfx for certain
explicit constant cf , although it is not clear how to get an error term from his technique. Lee and
Murty [7] provided such an error term under the ABC conjecture and the so-called abscissa conjecture.
Due to the strong evidence and heuristics supporting the ABC conjecture, it is desirable to obtain an
error term assuming the ABC conjecture without the use of the abscissa conjecture. We prove:

Theorem 1.1. Assume the ABC conjecture. Let f be a polynomial with integer coefficients, of degree
r ≥ 2, without repeated factors, and with Gf squarefree. Then

Nf (x) = cfx+Of

(
x

(log x)γ

)
where γ > 0 is a computable constant that only depends on r (not on the particular f), and

cf =
∏
p

(
1− ωf (p2)

p2

)
> 0.

The constant cf is (on the ABC conjecture) the probability of f(n) being squarefree, while the
factor 1− ωf (p2)/p2 can be seen as the probability that p2 does not divide f(n) as we vary n. Thus,
the main term basically says that there is a sort of local-global principle in the problem of counting
squarefree values of f . This observation about the main term is already made in [2].

As in [2], one can suitably normalize f (provided that it has no repeated factor) in order to get
non-trivial counting of squarefree values of f even when Gf is not squarefree; our method can be
modified to obtain a result in that case too.

The proof of Theorem 1.1 uses the ABC conjecture in a way which is different to previous appli-
cations in the problem of counting squarefree values of polynomials. For this, we will establish the
following result, which is of independent interest.
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Theorem 1.2. Assume the ABC conjecture. Given ε > 0 and a positive integer r, there is a constant
Kε depending only on ε and computable constants α, β depending only on r, such that for all polynomials
F ∈ Z[X] of degree r without repeated factors and for all integers n one has

|n|r−1−ε < Kε exp(αH(F )β) max{1, rad(F (n))}.

Here, H(F ) is the height of F ∈ Z[X], which is defined as the maximum of the absolute value of
the coefficients of F , and rad(N) is the product of the primes dividing N when N is a nonzero integer
(and we set rad(0) = 0). This result is an explicit version of the classical result of Langevin [6] that
gives nr−1−ε �ε,F rad(F (n)) for F without repeated factors, on the ABC conjecture.

Finally, we mention that the technique of this paper actually allows one to count (with error term)
squarefree values of polynomials on sets of integers of positive density that are residually well dis-
tributed in a suitable sense (see Section 7). For instance, we have:

Theorem 1.3. Assume the ABC conjecture. Let f be a polynomial with integer coefficients, of degree
r ≥ 2, without repeated factors, with Gf squarefree. Let α > 1 be an irrational real number with finite

approximation exponent (for example α =
√

2 or α = π are allowed). Consider the set of positive
integers

A = {bkαc : k ∈ Z+}.

Let NA
f (x) be the number of integers n ≤ x such that f(n) is squarefree and n ∈ A. Then

NA
f (x) =

cf
α
x+O

(
x

(log x)γ

)
where γ > 0 and cf > 0 are as in Theorem 1.1.

This result is proved in Section 8, where the notion of ‘finite approximation exponent’ is recalled.
Note that the constant cf/α can be seen as a product of probabilities; as commented before, cf is a
product of local probabilities for f(n) to be squarefree, while 1/α is the probability that the argument
n belongs to A.

A more general result is given in Section 7, from which Theorem 1.3 is deduced (in Section 8) by
means of the theory of uniform distribution of sequences modulo 1. Since we care about the error
term, it will be crucial to have control on the discrepancy of uniformly distributed sequences.

2. Heights

In this section we recall several height estimates that we will later need in our computations.
For f ∈ Q(X) we define its height H(f) as follows: up to sign, there are unique u, v ∈ Z[X] coprime

such that f = u/v. Then we define H(f) as the maximal absolute value among the coefficients of u
and v. From the definition, one has H(u), H(v) ≤ H(f). Also, note that if f ∈ Q[X] is a polynomial
then v is the least common denominator of the coefficients of f and H(f) is the usual affine height of
f , that is, the affine height of the tuple given by the coefficients of f .

We need to recall the notion of height of an algebraic number. Let α be an algebraic number of
degree d, and let F be the minimal polynomial of α over Q, normalized so that it has coprime integer
coefficients. We define the (absolute multiplicative) height of α as H(α) = H(F )1/d. Note that this is
not the same as the Weil height defined in terms of valuations, but it is much simpler to define and
both heights agree up to a factor bounded in terms of d (cf. Proposition 4 p.49 [5]). For instance, if ζ
is a primitive 105-th root of unity then H(ζ) = 21/48 although the Weil height of any root of unity is
1.

For the next result, see Proposition 3 p.48 [5].

Proposition 2.1. Let f, g ∈ Q[X] be non-zero polynomials with deg f + deg g < d. Then

1

4d
H(fg) ≤ H(f)H(g) ≤ 4dH(fg).

The height of a polynomial admits the following local decomposition:
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Proposition 2.2. Let f = caX
a + . . . + c0 ∈ Q[X]. Let MQ = {∞, 2, 3, 5, 7, . . .} be the set of places

of Q and for each w ∈MQ let | − |w be the normalized absolute value. We have

H(f) =
∏

w∈MQ

max{1, |ca|w, . . . , |c0|w}.

Using this local decomposition we can prove:

Proposition 2.3. Let f, g ∈ Q[X] be polynomials of degree a, b ≥ 1 respectively. Then

H(f ◦ g) ≤ (a+ 1)(b+ 1)aH(f)H(g)a.

Proof. Write f = uaX
a + . . .+ u0 and g = vbX

b + . . .+ v0. Expanding

f ◦ g = ua(vbX
b + . . .+ v0)a + . . .+ u0

we see that the coefficients of f ◦ g have (Archimedean) absolute value bounded by

(a+ 1) max{|ui|}(b+ 1)a max{|vi|}a.

Similarly, for each prime p we find that the coefficients of f ◦ g have p-adic absolute value bounded by

max{|ui|p}max{|vi|p}a.

The result follows from the local decomposition of the height. �

We will also need a bound for the resultant of two polynomials.

Proposition 2.4. Let f, g ∈ Z[X] be coprime polynomials of degrees a, b ≥ 1 and height ≤ H. Let
R ∈ Z be the resultant of f and g. Then

|R| ≤ (a+ b)a+bHa+b.

Proof. Let M = [mi,j ]i,j be the Sylvester matrix of f and g, which is of size (a+b)×(a+b). Expanding
detM we find

|R| = |detM | ≤
∑

σ∈Sa+b

∣∣∣∣∣
a+b∏
i=1

mi,σ(i)

∣∣∣∣∣ ≤ (a+ b)a+bHa+b.

�

Finally, we state another useful bound (see p.237 [3]):

Proposition 2.5. Let f ∈ Q[X] and d ∈ Q. Then

H(f(X + d)) ≤ 4deg fH(f(X))H(d)deg f

3. Belyi maps

Let S be a finite set of m algebraic numbers of degree at most r and absolute multiplicative height
bounded by B. A well-known theorem of Belyi shows that there is a rational function φ ∈ Q(X) such
that φ takes all its ramification points in P1 and all the elements of S to {0, 1,∞}. Moreover, one can
find such a function φ that also takes the point at infinity to {0, 1,∞}

The construction of φ is very explicit and it is clear that one should be able to bound the height of
φ in terms of m, r and B. Keeping track of the heights during the construction, one concludes:

Proposition 3.1. There are computable constants A1, A2, A3, A4 depending only on the numbers r,m
but not on B or the particular set S, such that one can find a rational function φ ∈ Q(X) with

deg φ < A1B
A2 , H(φ) < exp(A3B

A4)

which maps its ramification points, the elements of S and ∞ to {0, 1,∞}.
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The proof is a simple height computation which we give below for the sake of completeness. Such
a bound has also been worked out in [4] with explicit Ai but the computation is longer and more
delicate; for our application the simpler Proposition 3.1 will suffice.

Now we construct φ keeping track of the heights and degrees of maps. In the remainder of this
section, we write c1, c2, . . . for computable constants that depend only on r,m but not on B or the
particular S.

Step I (mapping to Q). This step is standard, see for instance Exercise A.4.7 [3]. Here we don’t
consider the point at infinity; we will work with non-constant polynomials in this step, hence, ∞ gets
mapped to ∞.

Inductively, one uses the monic minimal polynomial Fα of an element α in S to map all the elements
of the set and hence reducing the degree over Q of at least α, at the cost of introducing new elements
(the critical points of Fα) whose degrees over Q are smaller than the degree of α. This procedure stops
after c1 steps, and say that T ⊆ Q is the final set in this procedure. If 0 /∈ T we will also include it
to simplify the notation later; note that #T ≤ c2. Let F be the composition of all the Fα, then the
degree of F is c3 and F maps all its critical points and all the elements of S to T ⊆ Q. Also, note that
F is monic.

At each step of this construction the height of the elements of the new set can increase. However, a
simultaneous induction with the height of the Fα and the height of the sets at each step, shows that
the elements in T and all the Fα have height bounded by c4B

c5 . As there are c1 polynomials Fα, each
with height bounded by c4B

c5 , it follows that H(F ) < c6B
c7 .

Step II (mapping to {0, 1,∞}) In most references, this step is performed using functions of the
form cXa(1 − X)b to inductively move one element of T each time; this is the first proof that Belyi
gave. This procedure is completely explicit but unfortunately it is very expensive in terms of heights.
Instead, one can move all the elements of T at the same time as in Belyi’s second proof – see [1] for
a more detailed discussion on these two proofs and an explanation of why this second proof is not so
widely known. Note, however, that we follow a different approach for the construction, which makes
the estimates simpler.

Enumerate the elements of T as follows: q0 = 0, q1, ..., qt, where t < c2. We claim that there are
(economical) non-zero integers ki such that

∑
i ki 6= 0 and the map

ψ(X) =

t∏
i=1

(X − qi)ki ∈ Q(X)

has all its affine critical points (i.e. possibly excluding ∞) in T . Indeed, away from the poles of ψ
(which already belong to T ), the affine critical points are the solutions of dψ(X)/ψ(X) = 0. Clearing
denominators this becomes

D(X) :=

t∑
i=1

kiPi(X) = 0, where Pi(X) =
∏
j 6=i

(X − qj) .

The Pi have degree t − 1 in X and evaluating at the qi we see that the Pi are linearly independent.
Thus, there are integers ki not all zero such that D(X) = aXt−1 with a =

∑
i ki 6= 0, and again

evaluating at the qi we see that for such a tuple k = (ki)i 6= 0 one necessarily has that all the ki are
non-zero. For such k, the only affine critical point of ψ which is not a pole of dψ/ψ is 0 which also
belongs to T . This proves the claim, and as we will see below, one can control the size of k.

The condition
∑
i kiPi(X) = D(X) = aXt−1 can be seen as a vanishing condition on the coefficients

of 1, X, . . . ,Xt−2. This is the same as requiring Ak = 0 where A is a (t− 1)× t matrix whose entries
are (t − 1)-variable elementary symmetric functions of degree ≤ t − 1 evaluated at the qi. Moreover,
observe that if k 6= 0 satisfies this condition then a 6= 0 because the Pi are linearly independent. If δ
is the product of the denominators of the qi then A = δA is a matrix with integers coefficients, and all
its entries have absolute value bounded by M t · 2t−1M t−1 < c8B

c9 , where M is the maximal height of
an element in T . We are now in a position to apply an elementary version of Siegel’s Lemma, which
we now recall (see for instance Lemma D.4.1 [3]):

Proposition 3.2 (Siegel’s Lemma). Let A be an m× n matrix with integer coefficients. Suppose that
m < n and that all the entries of A have absolute value bounded by X. Then there is a non-zero
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vector k ∈ Zn in the kernel of A such that all the coordinates of k have absolute value bounded by
(nX)m/(n−m).

Applied in our setting, Siegel’s Lemma gives that there is a k 6= 0 in the kernel of A such that all
its coordinates are integers and have absolute value bounded by

(tc8B
c9)

t−1
t−(t−1) < c10B

c11 .

With this choice of ki, the degree and height of ψ are

degψ ≤
t∑
i=1

|ki| < c12B
c13 , H(ψ) < δ

∑
i |ki|4t

∑
i |ki|

t∏
i=1

H(qi)
|ki| < exp (c15B

c16) .

The height was estimated as follows: first we clear denominators of the qi (this is the factor δ) so that
the numerator and denominator of ψ become polynomials with integer coefficients, and then we use
Proposition 2.1 to estimate the height of these two polynomials.

Now observe that ψ(0) ∈ Q× and let Ψ(X) = 1
ψ(0)ψ(X). Note that it has the same degree as ψ,

and H(Ψ) < exp(c17B
c18). The function Ψ maps all its affine ramification points and the set T to

{0, 1,∞} because of our choice of the ki and because ki 6= 0 for each i. Moreover, since
∑
i ki 6= 0 we

see that Ψ(∞) ∈ {0,∞}.
Finally, use Step I and Step II to conclude that φ = Ψ ◦ F maps all its ramification points in P1

and all the elements of S to {0, 1,∞}. Moreover, since F is a polynomial F (∞) = ∞ and hence
φ(∞) ∈ {0,∞}. The degree of φ can be bounded using deg(φ) = deg(F ) deg(Ψ), and the height of ψ
can be estimated using Proposition 2.3. Therefore, Proposition 3.1 follows.

4. Explicit ABC

In this section we prove Theorem 1.2, so we keep the same notation and assumptions from its
statement. We remark that the argument below is essentially due to Langevin and our only contribution
is to make explicit the dependence on the height of the polynomial. The same argument as the one
below, gives explicit dependence on the degree of F provided that one uses the bounds from [4] instead
of Proposition 3.1. We leave this variation as an exercise for the interested reader.

Let us first introduce some notation. In the computations of this section, we write c0, c1, c2, . . .
for computable constants that only depend on r. Given a non-zero g ∈ Z[X], we write radZ[X](g)
for the product of all distinct irreducible factors of g in Z[X] with positive leading coefficient; this is
the radical of g in Z[X]. When g = 0 we define radZ[X](0) = 0. Note that radZ[X] agrees with our
previously defined rad on Z ⊆ Z[X].

Let S be the set of roots of F . Note that S has r elements, all of them with degree ≤ r and height
bounded by c0B where B := H(F ). Let φ be the function provided by Proposition 3.1 for this S, then
the corresponding Ai only depend on r, not on B. Put D = deg φ and H = H(φ).

Let u, v ∈ Z[X] be coprime with φ = u/v and let w = v − u ∈ Z[X]. Then H(u), H(v), H(w) ≤ 2H
and degw ≤ max{deg u,deg v} = D. Using the Riemann-Hurwitz formula and the fact that φ is
unbranched away from {0, 1,∞} we see that

−2 = −2D + (3D −#φ−1{0, 1,∞}), hence #φ−1{0, 1,∞} = D + 2.

Note that α ∈ C is a root of uvw if and only if φ(α) ∈ {0, 1,∞}, and φ(∞) ∈ {0, 1,∞} by construction,
hence uvw has D+ 1 distinct roots (without counting multiplicities). We also conclude that F divides
radZ[X](uvw) in Q[X] because F has no repeated roots and φ(S) ⊆ {0, 1,∞}. Hence F divides
δradZ[X](uvw) in Z[X] for some integer 0 < δ ≤ B, by Gauss lemma.

Let R ∈ Z be the resultant of u and w, then R 6= 0 as u,w are coprime. Moreover, Proposition 2.4
gives

|R| ≤ (deg u+ degw)deg u+degw max{H(u), H(w)}deg u+degw ≤ (2D)2D(2H)2D < c1(2H)c2D
2

.

For n ∈ Z put gn = gcd(u(n), w(n)) which is well-defined because u,w have no common root, and
observe that for every n we have gn|R. We can apply the ABC conjecture to the equation u(n)/gn +
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w(n)/gn = v(n)/gn provided that n is not a root of uvw. It follows that for any ε > 0 there is Kε

depending only on ε such that for every integer n one has

1

R
max{|u(n)|, |v(n)|, |w(n)|}1−ε < Kε max{1, rad(u(n)v(n)w(n))}

where the extra 1 covers of the case when n is a root of uvw (in which case max{|u(n)|, |v(n)|, |w(n)|} ≤
gn ≤ R).

Let G ∈ Z[x] be such that FG = δradZ[X](uvw), then deg(G) = deg rad(uvw) − r = D + 1 − r.
Moreover, G divides δuvw in Z[X], say δuvw = G ·G0 with G0 ∈ Z[X], and Proposition 2.1 gives

H(G) ≤ H(G)H(G0) ≤ 43D+1H(δuvw) ≤ 43D+146D+3B ·H(u)H(v)H(w) ≤ ec3DBH3.

Hence, for n 6= 0 we have

rad(u(n)v(n)w(n)) ≤ rad(F (n)) · rad(G(n)) ≤ |G(n)|rad(F (n))

≤ (deg(G) + 1)H(G)|n|degGrad(F (n))

≤ ec4DH3B|n|D+1−rrad(F (n)).

Combining this with the bound obtained from the ABC conjecture, we get that for every integer n 6= 0

max{|u(n)|, |v(n)|, |w(n)|}1−ε < KεR
(
1 + ec4DH3B|n|D+1−rrad(F (n))

)
< Kεc1(2H)c2D

2 (
1 + ec4DH3B|n|D+1−rrad(F (n))

)
< Kεc5(1 +H)c6D

2

B|n|D+1−r max{1, rad(F (n))}.

Note that max{|u(n)|, |v(n)|, |w(n)|} ≥ 1. Let x be a polynomial among u, v, w having degree D, then

max{|u(n)|, |v(n)|, |w(n)|} ≥ |x(n)| ≥ |n|D −D ·H(x)|n|D−1 ≥ |n|D−1(|n| − 2DH) >
1

2
|n|D

provided that |n| > 4DH. Therefore, for all n we have

max{|u(n)|, |v(n)|, |w(n)|} ≥ 1

(4DH)D
|n|D.

It follows that

|n|D(1−ε) < Kε(4DH)D · c5(1 +H)c6D
2

B|n|D+1−r max{1, rad(F (n))}

< Kεc5(1 +H)c7D
2

B|n|D+1−r max{1, rad(F (n))}
and after choosing a different ε > 0 we get that for all n

|n|r−1−ε < Kεc5(1 +H)c7D
2

Bmax{1, rad(F (n))}

< Kεc5(1 + eA3(c0B)A4
)c7A

2
1(c0B)2A2

Bmax{1, rad(F (n))}
< Kε exp(c8B

c9) max{1, rad(F (n))}
as we wanted. This proves Theorem 1.2.

5. Sieve preliminaries

The proof of Theorem 1.1 starts with some standard sieve manipulations.
Let us set the notation. Let r ≥ 2 and let f ∈ Z[X] be a polynomial of degree r, without repeated

factors, and with Gf squarefree. We write ar for the leading coefficient of f and ∆f for the discriminant
of f (which is non-zero as f has no repeated factors). The symbol p will denote a prime.

Among the several versions of Hensel’s lemma available in the literature, let us recall the following
one which is obtained by setting m = 1 in Theorem 1, p.14 [10] (note that the conditions 0 ≤ j ≤ m
and 0 < 2k < n in the cited result should be 1 ≤ j ≤ m and 0 ≤ 2k < n).

Proposition 5.1 (Hensel’s lemma). Let F ∈ Zp[X] and x ∈ Zp where Zp is the ring of p-adic integers.
Suppose that for some integers n, k with 0 ≤ 2k < n we have F (x) ≡ 0 mod pn and vp(F

′(x)) = k,
where vp is the p-adic valuation and F ′ is the derivative of F . Then there is y ∈ Zp with F (y) = 0
and y ≡ x mod pn−k.
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Using this, we obtain:

Lemma 5.2. If p - ar∆f then for every t ≥ 1 the congruence f(X) ≡ 0 mod pt has at most r
solutions. Moreover, there is a constant C = C(f) such that for all primes p and all t ≥ 1 the
congruence f(X) ≡ 0 mod pt has < C solutions.

Proof. For the first part, it suffices to show that each solution to the congruence f(X) ≡ 0 mod pt

lifts to a p-adic solution, because f has at most r roots in Zp (recall that Zp is an integral domain).
Let x ∈ Z such that f(x) ≡ 0 mod p2. If p|f ′(x) then p|Res(f, f ′) = ±ar∆f which is not possible,

hence p - f ′(x). Hensel’s lemma (with n = t and k = 0) gives the desired p-adic lift of n.
For the last part of the lemma, we can restrict our attention to primes p dividing Res(f, f ′). Let p

be a prime divisor of Res(f, f ′) and let tp be such that ptp - Res(f, f ′). Similarly, we apply Hensel’s
lemma with k ≤ tp − 1 and n = t ≥ 2tp − 1 to conclude that f has at most r roots modulo pt−tp+1

that are congruent (modulo pt−tp+1) to roots in Z/ptZ. Hence, f has at most rptp−1 roots modulo pt

for any p dividing Res(f, f ′) and t ≥ tp. Since the prime p (divisor of Res(f, f ′)) and tp are bounded
in terms of f , the result follows. �

Let ε > 0 to be chosen later. First we note that

(1) #Q ≥ Nf (x) ≥ #Q−#R−#S − x1−ε

where we write
Q = {n ≤ x : ∀p ≤ y, p2 - f(n)}
R = {n ≤ x : ∃p ∈ (y, z], p2|f(n)}, and

S = {n ∈ (x1−ε, x] : ∃p > z, p2|f(n)}
and y < z are parameters to be chosen later. These sets depend on ε, x, y, z although the notation
does not reflect this fact.

To simplify the exposition, let us introduce the following notation: if X is a true statement then
write δ(X) = 1, and if X is false then δ(X) = 0. For instance δ(3|2) = 0 because 3 does not divide 2
in Z.

Lemma 5.3. We have

#Q = cfx+Of,ε

(
exp(εy) +

x

y1−ε

)
provided that y �f,ε 1.

Proof. Set P =
∏
p≤y p. We begin by observing that

#Q =
∑
n≤x

∏
p≤y

(1− δ(p2|f(n))) =
∑
n≤x

∑
d|P

µ(d)δ(d2|f(n))

=
∑
d|P

µ(d)ωf (d2)
( x
d2

+O(1)
)

= x
∏
p≤y

(
1− ωf (p2)

p2

)
+O

∑
d|P

ωf (d2)


= x

∏
p≤y

(
1− ωf (p2)

p2

)
+O

∏
p≤y

(1 + ωf (p2))

 .

By Lemma 5.2, for y �ε,f 1 ∏
p≤y

(1 + ωf (p2))�f

∏
p≤y

(r + 1)�f,ε exp(εy).

Let us analyze the other product. If y �f,ε 1 then

1 <
∏
p>y

(
1− ωf (p2)

p2

)−1
≤
∏
p>y

(
1− r

p2

)−1
< 1 +

∑
n>y

1

n2−ε/2
< 1 +

1

y1−ε
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and multiplying times cf we obtain

cf <
∏
p≤y

(
1− ωf (p2)

p2

)
<

(
1 +

1

y1−ε

)
cf .

The result now follows. �

Lemma 5.4. We have

#R�r
x

y
+

z

log z

provided that z > y �f 1.

Proof. Indeed, for z > y �f 1

#R ≤
∑
n≤x

∑
y<p≤z

δ(p2|f(n)) ≤
∑

y<p≤z

ωf (p2)

(
x

p2
+ 1

)

≤
∑

y<p≤z

r

(
x

p2
+ 1

)
≤ 2rx

y
+

2rz

log z
.

�

Now choose y = log x and z = x, then the inequalities (1) become

Proposition 5.5. Let ε > 0. Then

Nf (x) = cfx+Of,ε

(
x

(log x)1−ε

)
+O(#S)

for x�f,ε 1, where

S = {n ∈ (x1−ε, x] : ∃p > x, p2|f(n)}.

Note that the proof actually shows that the upper bound does not require one to estimate #S. The
problem of bounding #S is only relevant for the lower bound, and it is exactly the point where one
needs to invoke the ABC conjecture. We treat this in the next section, in order to conclude the proof
of Theorem 1.1.

6. Error term for counting squarefree values

First, observe that the conditions on f imposed by Theorem 1.1 are compatible with the conditions
of the previous section.

With the notation of the previous section, Proposition 5.5 shows that in order to prove Theorem
1.1 it suffices to show that cf > 0 when Gf is squarefree, and (on the ABC conjecture) that

(2) #S = #{n ∈ (x1−ε, x] : ∃p > x, p2|f(n)} �f
x

(log x)γ

with γ > 0 as in the statement of the theorem, for some 1/2 > ε > 0 say.
It is well-known that cf > 0 when Gf is squarefree, but we sketch a proof for the sake of complete-

ness. Since Gf is squarefree, ωf (p2) < p2 for all primes p, hence no factor in the definition of cf is
zero. For large primes, we use the bound ωf (p2) ≤ r from the previous section and it follows that the
product defining cf converges absolutely, hence, it is non-zero.

Now we focus on proving the estimate (2) on the ABC conjecture.
We partition (x1−ε, x] into T intervals Ii, each one having length ≤ 2x/T (we will later take T equal

to x divided by a power of log x, so that x/T →∞). First we show, on the ABC conjecture, that Ii∩S
contains at most �f 1 elements for suitable choice of T . For d ≥ 1 define Fd(X) = f(X)f(X + d).

Claim 6.1. There is a constant Mf depending only on f such that if d ≥Mf then the polynomial Fd
has no repeated factors.

Proof. The roots of f(X) have complex modulus bounded in terms of f . Hence, if d�f 1 then f(X)
and f(X + d) have no common factor. �
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Suppose that Ii ∩ S contains more than Mf elements. Then we can find d ≥Mf such that n, n+ d
are in Ii ∩ S. By the previous claim, we can apply Theorem 1.2 to Fd (on the ABC conjecture) to
obtain

n2r−1−ε < Kε exp(αH(Fd)
β)rad(Fd(n))�f Kε exp(αH(Fd)

β)

(
xr

x

)2

where we have used the fact that n, n + d ∈ S (note that α and β depend only on r). Hence (as
n > x1−ε in S)

x1−2εr < x1−2εr+ε
2

�f Kε exp(αH(Fd)
β).

Let us fix ε = 1/(4r) to get

x1/2 �f exp(αH(Fd)
β).

On the other hand, using Proposition 2.1, Proposition 2.5, and the fact that d < 4x/T , we obtain

H(Fd) ≤ 42r+1H(f)H(f(X + d)) ≤ 43r+1H(f)2dr < 44r+1H(f)2
xr

T r
.

Therefore, if we choose

T = κ
x

(log x)1/(rβ)

for some κ > 0 sufficiently large with respect to r and H(f), then we get a contradiction. It follows
that with this choice of T and assuming the ABC conjecture, each Ii∩S contains at most Mf elements.

Finally, since there are T of these intervals Ii, we conclude that

#S �f
x

(log x)γ

where γ = 1/(rβ) > 0 is computable and depends only on r, not on the particular f . This proves the
inequality (2), and hence Theorem 1.1.

7. A more general result

As said in the introduction, the method in this paper allows one to give, on the ABC conjecture,
asymptotic formulas with error term for the problem of counting squarefree values of polynomials when
the variable is restricted to suitable subsets of the positive integers. Let us explain this in more detail.

Given a set A of positive integers, we say that A has density σ(A) if the following limit exists and
equals σ(A):

lim
x→∞

#{n ≤ x : n ∈ A}
x

.

For instance the primes have density 0 and the multiples of a fixed positive integer k have density 1/k.
Not all sets of positive integers have a density, but we restrict our attention to those with density.

Given A and integers m, a we define A(m, a) = {t ∈ A : t ≡ a mod m}.
In this section g(x) will always denote a positive real valued function satisfying g(x) = o(x), while

λ(x) will denote a function growing to ∞ and A will denote a set of positive integers with density.
We say that A is residually well distributed with level λ(x) and discrepancy g(x) if there are constants
C, x0 such that for all x > x0 one has∣∣∣∣#{n ≤ x : n ∈ A(m, a)} − σ(A)x

m

∣∣∣∣ < Cg(x)

for each m ≤ λ(x) and each residue class a modulo m. Observe that if A is residually well distributed
with level λ and discrepancy g, then it is residually well distributed with level λ′ and discrepancy g′ for
any functions λ′ and g′ satisfying λ′(x) < λ(x) and g′(x) > g(x) for x sufficiently large, and λ′ →∞,
g′(x) = o(x).

We warn the reader that the concept of discrepancy just introduced is not the same as the discrep-
ancy that arises in the theory of uniformly distributed sequences. However, as we will see in the next
section, there is indeed a connection between both notions of discrepancy.

The relevant result is the following.
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Theorem 7.1. Assume the ABC conjecture. Suppose that A is residually well distributed with level
(log x)2 and discrepancy g. Let f be a polynomial as in Theorem 1.1. Let NA

f (x) be the number of

n ≤ x such that n ∈ A and f(n) is squarefree. Then for any given ε > 0 we have

NA
f (x) = σ(A)cfx+Of,A,ε

(
(log x)1+εg(x) +

x

(log x)γ

)
where cf and γ are as in Theorem 1.1.

Proof. The proof of this result is similar to the proof of Theorem 1.1. First note that ωf (n) �ε n
ε

because ωf is multiplicative and bounded on prime powers (see Lemma 5.2).
Define the sets

QA = {n ≤ x : n ∈ A,∀p ≤ y, p2 - f(n)}
RA = {n ≤ x : n ∈ A,∃p ∈ (y, z], p2|f(n)}, and

SA = {n ∈ (x1−ε, x] : n ∈ A,∃p > z, p2|f(n)}

with ε, y, z to be chosen. Then one observes that

#QA ≥ NA
f (x) ≥ #QA −#RA −#SA − x1−ε.

However, since RA ⊆ R and SA ⊆ S (with R, S as in Section 5) we obtain from our previous work
that, on the ABC conjecture, the following holds:

NA
f (x) = #QA +O

(
x

(log x)γ

)
provided that we choose y, z as in Section 5 (namely, y = log x, z = x) and ε as in Section 6 (namely,
any fixed ε ≤ 1/(4r)). Therefore one just needs to prove that

#QA = σ(A)cfx+O

(
(log x)1+εg(x) +

x

(log x)γ

)
.

This formula requires more work than the estimation of #Q in Section 5, since we want to assume
that A is residually well distributed with level (log x)2, which is rather small (see for instance Theorem
8.2 below).

To prove the estimate for #QA, write P =
∏
p≤y p and observe that

#QA =
∑
n≤x
n∈A

∏
p≤y

(1− δ(p2|f(n))) =
∑
d|P

µ(d)
∑
n≤x
n∈A

δ(d2|f(n))

=
∑
d|P

µ(d)
∑

a mod d2

f(a)≡0 mod d2

∑
n≤x

n∈A(d2,a)

1.

Let us split the latter sum as U + V where U takes the summands with d|P and d ≤ y, while V
takes the summands with d|P and d > y. For V one finds

|V | ≤
∑
d|P
d>y

ωf (d2)
( x
d2

+ 1
)
≤ x

∑
d>y

1

d2−ε
+
∑
d|P

ωf (d2) ≤ O
(

x

y1−ε
+ exp(εy)

)

where we used ωf (n) � nε, and the second summand was bounded as in the proof of Lemma 5.3.
Hence, V is absorbed by the error term. On the other hand, since A is residually well distributed with
level (log x)2 and discrepancy g, we find

U =
∑
d|P
d≤y

µ(d)ωf (d2)
σ(A)x

d2
+O (y · yε · g(x)) .
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Indeed, the error term comes from the discrepancy, and we only used moduli d2 ≤ y2 = (log x)2. A
computation as in the bound for V shows that we can include those d|P with d > y obtaining

#QA = U + V = σ(A)x
∑
d|P

µ(d)
ωf (d2)

d2
+O

(
x

y1−ε
+ exp(εy) + y1+εg(x)

)

= σ(A)x
∏
p≤y

(
1− ωf (p2)

p2

)
+O

(
(log x)1+εg(x) +

x

(log x)γ

)
.

Here we used y = log x. The product is treated as in the proof of Lemma 5.3, which introduces an
error term O(x/y1−ε) that has no effect in the previous error term. This concludes the proof. �

We remark that actually, for Theorem 7.1 it is enough to have an averaged version of residually well
distributed sets.

8. Proof of Theorem 1.3

For q ∈ Q one defines H(q) = max{|a|, |b|} where a, b are coprime integers satisfying q = a/b. This
agrees with our previous definition of the height of an algebraic number. Let α ∈ R \ Q. Recall that
the approximation exponent of α (also known as measure of irrationality) is defined as

τ(α) = sup{t ∈ R : there are infinitely many q ∈ Q with |q − α| < H(q)−t}.
Dirichlet’s box principle shows that τ(α) ∈ [2,∞]. On the other hand, Liouville showed τ(α) ≤ r
whenever α is algebraic of degree r ≥ 2, which allowed him to construct transcendental numbers
by showing examples of real numbers with infinite approximation exponent. A celebrated theorem of
Roth shows that actually τ(α) = 2 whenever α is algebraic. There are also very familiar transcendental
numbers that have finite approximation exponent, such as π (this is a theorem of Mahler, see [8]).

For later reference, let us recall the Erdös-Turán Inequality (see for instance Section 11.4 in [9]):

Theorem 8.1 (Erdös-Turán Inequality). Let {xn}n be a sequence of real numbers. For all integers
M,N ≥ 1 we have

sup
0≤a<b≤1

∣∣∣∣#{n ≤ N : a ≤ (xn) < b}
N

− (b− a)

∣∣∣∣ ≤ 1

M + 1
+ 3

M∑
k=1

1

Nk

∣∣∣∣∣
N∑
n=1

e2πikxn

∣∣∣∣∣
where (xn) denotes the fractional part of xn.

The next result provides a source of examples where Theorem 7.1 can be applied. In particular we
obtain Theorem 1.3.

Theorem 8.2. Let α ∈ R \ Q be an irrational real number with α > 1. Assume that α has finite
approximation exponent τ = τ(α). Then the set A = {bnαc : n ≥ 1} has density 1/α and for all ε > 0
it satisfies

max
r mod m

∣∣∣∣#{n ≤ x : n ∈ A(m, r)}
x

− σ(A)

m

∣∣∣∣�ε,α

(m
x

)1/(τ+ε)
whenever m ≤ x/α. In particular, A is residually well distributed with level x1/2 and discrepancy
x1−1/(3τ).

(Observe that, if 0 < α < 1 then A = N.)

Proof. The fact that σ(A) = 1/α is clear. Given a positive integer m define

∆m(x) = max
r mod m

∣∣∣∣#{n ≤ x : n ∈ A(m, r)}
x

− σ(A)

m

∣∣∣∣ .
Given a positive real number β we define

D(β, x) = sup
0≤a<b≤1

∣∣∣∣#{k ≤ x : a ≤ (kβ) < b}
x

− (b− a)

∣∣∣∣
where (kβ) denotes the fractional part of kβ. This quantity D(β, x) is what is called discrepancy in
the theory of uniformly distributed sequences, and as we will see, it is very related to our notion of
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discrepancy for residually well distributed sets. Taking β = α/m, b = r/m and a = (r − 1)/m we see
that

∆m(x) ≤ O
(

1

x

)
+ σ(A)D(α/m, x/α).

Therefore, it suffices to show D(α/m, y) � (m/y)1/(τ+ε) for m < y. Write ‖β‖ for the distance of β
to the nearest integer, then the Erdös-Turán Inequality gives (see also Exercise 11.4.10 [9])

D(α/m,N) ≤ 1

M + 1
+ 3

M∑
k=1

1

Nk

∣∣∣∣∣
N∑
n=1

e2πik·
nα
m

∣∣∣∣∣
≤ 1

M + 1
+ 3

M∑
k=1

1

Nk

1

|sin(πkα/m)|

≤ 1

M + 1
+

3

2N

M∑
k=1

1

k‖kα/m‖

for all positive integers M,N . Since α has finite approximation exponent τ we have

‖kα/m‖ = |j − kα/m| = k

m

∣∣∣∣α− mj

k

∣∣∣∣�α,ε
1

mkτ−1+ε

where j ∈ Z is an integer that satisfies |j− kα/m| = ‖kα/m‖. Hence, using the fact that τ ≥ 2 we get

D(α/m,N)�α,ε
1

M
+
m

N

M∑
k=1

kτ−2+ε ≤ 1

M
+
mMτ−1+ε

N
.

Choose M = b(N/m)1/(τ+ε)c (provided that N > m) to get

D(α/m,N)�α,ε

(m
N

)1/(τ+ε)
which proves the result. �
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