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Abstract. On the ABC conjecture, we get an asymptotic estimate for the number of squarefree
values of a polynomial at prime arguments. A key tool in our argument is a result by Tao and Ziegler

(improving a previous result by Green and Tao) concerning arithmetic progressions of primes.

1. Introduction

Let r ≥ 2 and let f ∈ Z[t] be a polynomial of degree r. In this paper p, q always denote primes.
Define

Nf (x) = #{p ≤ x : f(p) is squarefree}
Define ρf (n) as the number of solutions a ∈ (Z/nZ)× of the congruence f(x) ≡ 0 mod n.

It is natural to expect that if f has no repeated factor in Z[t], then f takes infinitely many squarefree
values at prime arguments unless there is a local obstruction for this to happen. A simple probabilistic
heuristic leads to a conjectural asymptotic formula for Nf (x): taking n ∈ [1, x] at random we expect
that n is prime with probability 1/ log x. Provided that n is prime, for any given prime p we expect
that p2 divides f(n) with probability ρf (p2)/φ(p2) where φ is Euler’s function, and hence, we expect
that f(n) is squarefree (provided that n is prime) with probability

cf =
∏
p

(
1− ρf (p2)

φ(p2)

)
.

Therefore, this heuristic suggests that Nf (x)/x ≈ cf/ log x and one can conjecture that if f has no
repeated factor then

(1) Nf (x) = cf
x

log x
+ o

(
x

log x

)
.

It turns out that the formula (1) is known unconditionally when f has degree r ≤ 3, see [5] and
the references therein. However, it is remarkable that already the case of degree 3 requires highly
non-trivial results, such as the modularity theorem of Wiles et al.

To the best of our knowledge, there is no known example of an irreducible polynomial f of degree
bigger than 3 for which the asymptotic formula (1) is proved.

On the other hand, in [8] it is shown that the ABC conjecture implies a similar asymptotic formula
for counting a-th power free values of polynomials at primes, for any fixed a ≥ 3. The case a = 2
(i.e. squarefree values) was also studied in [8] but the ABC conjecture alone was not enough, and it
was also necessary to assume the GRH and the so-called abscissa conjecture, the latter being a rather
strong hypothesis for which not much evidence is known. Note that they also obtain an error term
under these assumptions, but they comment that it is not clear if the ABC conjecture alone can give
an asymptotic formula. See Theorem 16 in [8] and the discussion after it.

In this note we prove that the ABC conjecture for number fields implies the asymptotic formula
(1). More precisely, we prove:
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2 HECTOR PASTEN

Theorem 1.1. Let f ∈ Z[t] be a polynomial without repeated factors in Z[t]. Assume that the ABC
conjecture for number fields holds for each number field Q(α) where α varies over the irrational roots
of f . Then

Nf (x) ∼ cf
x

log x
where

cf =
∏
p

(
1− ρf (p2)

p(p− 1)

)
.

The infinite product defining cf converges absolutely to a non-zero constant if and only if each
individual factor is non-zero. Using Hensel’s lemma one can bound ρf (p2) by an effective constant (see
Lemma 2.2 below), hence:

Corollary 1.2. Let f be polynomial with integer coefficients without repeated factors. Assume that the
ABC conjecture for number fields holds for each number field Q(α) where α varies over the irrational
roots of f . There is a computable constant B = B(f) such that the following are equivalent:

• f takes squarefree values at infinitely many primes.
• f takes squarefree values at each prime in a set of positive density among primes.
• For each prime p < B one has ρf (p2) < p(p− 1).

The proof of Theorem 1.1 involves a new approach to the problem of counting squarefree values of
polynomials, which is mainly based in two new ingredients. The first one corresponds to an application
of the ABC conjecture in a way which is ‘dual’ to previous applications in the problem of counting
squarefree values. Roughly speaking, we do not vary the argument n of f(n) to apply the ABC
conjecture, but we fix the arguments and vary the polynomial, see Theorem 4.2 below and the discussion
in Section 4. The second one is an application of recent results of Tao and Ziegler [11] (extending
previous work by Green and Tao [4]) about arithmetic progressions of primes.

In a nutshell, the proof goes as follows: a standard sieve argument gives the desired asymptotic
formula up to some extra terms. The most problematic term is the cardinal of P∩[1, x] for certain set of
primes P . We use the ABC conjecture to prove that for a suitable fixed M (indeed, M = 6(deg f)3 +1
will suffice) the set P has no arithmetic progressions of length M (with certain additional hypothesis),
and then the results of Green, Tao and Ziegler show that P must have density zero. Hence #P ∩ [1, x]
only contributes to the error term.

We remark that our sieve methods are standard for this type of problems (see for instance Section
9 in [8] or Section 2 in [5] for similar reductions), although the details in Section 2 below have been
worked out focusing on our present goal. On the other hand, our new contributions to the problem
are (as explained above) the ‘dual’ way to apply the ABC conjecture, and the use of results on long
arithmetic progressions of primes to control error terms. These two ingredients are what allow us to
show that the problem of counting squarefree values at prime arguments is indeed within the range of
applications of the ABC conjecture (which was not clear, as discussed in [8]).

Since several generalizations of the ABC conjecture are stated in the literature, it may be useful
to conclude this introduction by stating the precise version that we will need (see Section 4 for the

precise definition of the truncated counting function N
(1)
K,S and the height hK).

Conjecture 1.3 (ABC for number fields). Let K be a number field. Let ε > 0 and fix mutually distinct
elements b1, . . . , bM ∈ K. Let S be a finite set of places of K. Then for all but finitely many α ∈ K
one has

(M − 2− ε)hK(α) <

M∑
i=1

N
(1)
K,S(α− bi).

See Remark 14.4.17 in p. 497 [1] for a more detailed discussion (note that the version with M = 3
implies the general case, and when K = Q this is nothing but the classical ABC conjecture of Masser
and Oesterlé). In particular, this is weaker than Vojta’s ABC conjecture for algebraic numbers of
bounded degree [13] (we only consider one number field at time), which in turn is weaker than the
uniform ABC conjecture for algebraic numbers (see for instance [3] for a statement of the latter). For
the sake of completeness, in Section 7 we give a related application of Vojta’s ABC conjecture for
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algebraic numbers of bounded degree which can be useful in other problems, but is not needed for
proving Theorem 1.1.

2. Sieving

In this section we perform some standard sieve computations to show that, in order to prove Theorem
1.1 it suffices to prove:

Theorem 2.1. Let f be as in Theorem 1.1. Assume that the ABC conjecture for number fields holds
for each number field Q(α) where α varies over the irrational roots of f . Given ε > 0, define

Σx = {p ≤ x : ∃q > x1−ε, q2|f(p)}.

Then there is a choice of ε = ε0 > 0 depending only on f , for which

#Σx = o

(
x

log x

)
.

In the rest of this section, x is a variable that grows to infinity and ε > 0 is a fixed parameter
smaller than a constant. Let y = (log x)/8 and z = x1−ε, and note that both quantities grow with x
(and depend on ε). We will use the variables ε and τ to denote positive quantities, as small as needed
at different points of our arguments in this section.

Consider the sets
Q = {p ≤ x : ∀q ≤ y, q2 - f(p)}
R = {p ≤ x : ∃q ∈ (y, z], q2|f(p)}
S = {p ≤ x : ∃q > z, q2|f(p)}.

Note that S = Σx in the notation of Theorem 2.1, and note also that

(2) #Q ≥ Nf (x) ≥ #Q−#R−#S.

As usual, write π(x) for the number of primes p ≤ x, and write π(x;m, b) for the number of primes
p ≤ x with p ≡ b(m).

If X is a statement, we define δ(X) = 1 if X is true, and δ(X) = 0 if X is false. Define Y =
∏
q≤y q

and note that Y ≤ x1/4 because π(y) ≤ 2y/ log y and y = (log x)/8.
The next lemma is a standard application of Hensel’s lemma, and it is a key ingredient in our

estimates.

Lemma 2.2. For every ε > 0 the inequality ρf (n) < nε holds for all n�ε 1.

Proof. By Hensel’s lemma, one can show that there is a constant C such that for all prime powers pr

one has ρf (pr) < C. Indeed, ρf (pr) is bounded by the total number of roots of f in Z/prZ, and the
latter quantity is absolutely (and effectively) bounded by a constant that only depends on f (this is
standard; see for instance Lemma 5.2 in [9]).

Since ρf is multiplicative and bounded on prime powers, the result follows. �

Lemma 2.3. For any given τ > 0 we have∑
y<d≤x1/2−τ

∑
a∈(Z/d2Z)×
f(a)≡0(d2)

π(x; d2, a) = o

(
x

log x

)
.

Proof. The Brun-Titchmarsh theorem gives∑
y<d≤x1/2−τ

∑
a∈(Z/d2Z)×
f(a)≡0(d2)

π(x; d2, a)�
∑

y<d≤x1/2−τ

ρf (d2)
x

φ(d2) log(x/d2)
≤ x

log(x2τ )

∑
d>y

dε

d2−ε
= o

(
x

log x

)

where we used ρf (n)� nε and φ(n)� n/ log log n, and ε can be taken equal to 1/4, say. �
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Lemma 2.4. We have ∏
q≤y

(
1− ρf (q2)

φ(q2)

)
= cf + o(1)

with cf as in Theorem 1.1.

Proof. Let P be the product in question. If cf = 0 then P = 0 for some y large enough, since
ρf (q2)/φf (q2)� q−2+ε. On the other hand, if cf 6= 0 then

1 < P/cf =
∏
q>y

(
1− ρf (q2)

φf (q2)

)−1
<
∏
q>y

(
1− 1

q2−ε

)−1
< 1 +

∑
n>y

1

n2−ε
= 1 + o(1).

In any case, P = cf + o(1). �

Lemma 2.5. We have

#Q = cfπ(x) + o(π(x)).

Proof. Observe that

#Q =
∑
p≤x

∏
q≤y

(1− δ(q2|f(p))) =
∑
p≤x

∑
d|Y

µ(d)δ(d2|f(p))

=
∑
d|Y

µ(d)
∑
p≤x

δ(d2|f(p))

=
∑
d|Y

µ(d)
∑

a∈(Z/d2Z)×

∑
p≤x

p≡a(d2)

δ(d2|f(p)) +
∑
d|Y

µ(d)O (ω(d))

=
∑
d|Y

µ(d)
∑

a∈(Z/d2Z)×
f(a)≡0(d2)

π(x; d2, a) +O(2ω(Y )).

Note that 2ω(Y ) ≤ Y ≤ x1/4 hence

#Q =
∑
d|Y

µ(d)
∑

a∈(Z/d2Z)×
f(a)≡0(d2)

π(x; d2, a) + o

(
x

log x

)
.

Write this sum as U + V where U runs over d ≤ y with d|Y , and V over d > y with d|Y . Note that in
V we have d ≤ Y ≤ x1/4, hence, Lemma 2.3 gives

|V | = o

(
x

log x

)
.

Let U ′ be the sum obtained if in U we substitute π(x; d2, a) by π(x)/φ(d2). Since y � log x we can
use the Siegel-Walfisz theorem to get

|U − U ′| ≤
∑
d≤y
d|Y

∑
a∈(Z/d2Z)×
f(a)≡0(d2)

∣∣∣∣π(x; d2, a)− π(x)

φ(d2)

∣∣∣∣
� y

(
max
d≤y

ρf (d2)

)
x

(log x)4

� xy1+ε

(log x)4
.

As y � log x, we can take ε = 1 to find |U − U ′| = o(x/ log x). Therefore

Q = U ′ + o

(
x

log x

)
= π(x)

∑
d≤y
d|Y

µ(d)
ρf (d2)

φ(d2)
+ o

(
x

log x

)
.
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As in the proof of Lemma 2.3, one sees that∑
y<d≤Y
d|Y

ρf (d2)

φ(d2)
= o(1)

and therefore

Q = π(x)
∑
d|Y

µ(d)
ρf (d2)

φ(d2)
+ o

(
x

log x

)
.

The function ρf (d2)/φ(d2) is multiplicative in d, hence

Q = π(x)
∏
q≤y

(
1− ρf (q2)

φ(q2)

)
+ o

(
x

log x

)
and we conclude by Lemma 2.4. �

Lemma 2.6. We have

#R = o

(
x

log x

)
.

Proof. First we observe that for any τ > 0 we have

#R ≤
∑
p≤x

∑
y<q≤z

δ(q2|f(p)) =
∑

y<q≤x1/2−τ

∑
p≤x

δ(q2|f(p)) +
∑

x1/2−τ<q≤z

∑
p≤x

δ(q2|f(p)).

Let W and Z be the first and the second sum of the last expression, respectively. For W , Lemma 2.3
gives

W ≤
∑

y<q≤x1/2−τ

1 +
∑

a∈(Z/q2Z)×
f(a)≡0(q2)

π(x; q2, a)

 = O

(
x1/2−τ

log x

)
+ o

(
x

log x

)
= o

(
x

log x

)
.

On Z we will use the trivial bound∑
p≤x

δ(q2|f(p)) ≤ 1 +
∑
n≤x

(n,q2)=1

δ(q2|f(n)) ≤ 1 +
x

q2
ρf (q2) + ρf (q2)

which gives

Z ≤
∑

x1/2−τ<q≤z

(
1 +

x

q2
ρf (q2) + ρf (q2)

)

≤ zε
∑

x1/2−τ<q≤z

(
x

q2
+ 1

)
≤ zεπ(z)x2τ < z1+εx2τ

for z �ε 1. Recall z = x1−ε where ε > 0 is fixed. Taking ε = ε and τ = ε2/4 gives Z < x1−0.5ε
2

=
o(x/ log x), which concludes the proof. �

Finally, lemmas 2.5 and 2.6 together with equation (2) give

Nf (x) = cf
x

log x
+ o

(
x

log x

)
+O(#S).

Since S = Σx in the notation of Theorem 2.1, we see that in order to prove Theorem 1.1 it suffices to
prove Theorem 2.1, as claimed.

As the reader already noticed, we have put no effort in obtaining a good error term. An explicit
error term is possible at this point, but the bound that we will later give for #S is sufficiently rough
to make such a labor unnecessary.
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3. A reduction

We claim that in order to prove Theorem 2.1 (and hence, Theorem 1.1) it suffices to prove

Theorem 3.1. Let f be an irreducible polynomial of degree r ≥ 2 with integer coefficients, and fix
ε > 0 sufficiently small (any fixed ε ≤ 1/(2(r + 1)) will work). Define

Sx = {p ≤ x : ∃q > x1−ε, q2|f(p)}.
Assume that the ABC conjecture for number fields holds for each number field Q(α) where α varies
over the roots of f . Then

#Sx = o

(
x

log x

)
.

First we need

Lemma 3.2. Let a, b ∈ Z with a 6= 0. Let 1/2 > ε > 0. Then

#{p < x : ∃q > x1−ε, q2|ap+ b} = o

(
x

log x

)
.

Proof. If p is large enough in terms of a, b (uniformly in x), then

|ap+ b| ≥ q2 > x2−2ε > p2−2ε � |ap+ b|2−2ε,
a contradiction. Hence, the set in question actually has bounded cardinality. �

Lemma 3.3. For ε > 0 and g ∈ Z[t] define the set

T εx(g) = {p < x : ∃q > x1−ε, q2|g(p)}.
Let g, h ∈ Z[t] be two coprime polynomials. There is a constant X depending only on g, h, ε such that
for all x > X we have

T εx(gh) ⊆ T εx(g) ∪ T εx(h).

Proof. Let X be such that X1−ε is larger than all the prime divisors of the resultant R of g and h
(note that R 6= 0 because (g, h) = 1). Take any x > X and let us check the inclusion. Consider a
prime p ∈ T εx(gh). Let q > x1−ε be a prime such that q2|g(p)h(p), which exists because p ∈ T εx(gh).
Without loss of generality, suppose that q|g(p). We claim that q - h(p). On the contrary, if q|h(p) then
q|R but q > x1−ε > X1−ε which is larger than any prime divisor of R. Therefore q - h(p), thus q2|g(p).
This proves that p ∈ T εx(g). �

The previous lemma shows that it suffices to prove Theorem 2.1 for irreducible polynomials (note
that f from Theorem 2.1 has no repeated factor). On the other hand, Theorem 3.1 and Lemma 3.2
precisely cover the cases of irreducible polynomials. More precisely, in Theorem 2.1 one can take
ε0 = 1/(2(r + 1)) if the maximal degree among the irreducible factors of f is r ≥ 2. Therefore, if we
prove Theorem 3.1 we also obtain Theorem 2.1 and hence Theorem 1.1.

Theorem 3.1 will be proved in Section 6.

4. The ABC conjecture

Let K be a number field and write MK for the set of all places of K. Let M0
K be the set of finite

places, and M∞K the set of infinite places. If v ∈ MK then we write ‖ · ‖v for the normalized norm at
v, which for α ∈ K∗ is defined by

‖α‖v =


[OK : p]−ordp(α) if v ∈M0

K corresponds to the prime ideal p ⊆ OK
|σ(α)| if v ∈M∞K corresponds to the real embedding σ : K → R
|σ(α)|2 if v ∈M∞K corresponds to the non-real embedding σ : K → C

and of course ‖0‖v = 0 in all cases. This is an absolute value except in the last case.
The height (relative to K) of α ∈ K is defined by

hK(α) =
∑
v∈MK

log max{1, ‖α‖v}.
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The absolute height is defined by

h(α) =
1

[K : Q]
hK(α)

and it only depends on α, not on the particular number field K (as long as it contains α). If S is a
finite set of places, the truncated counting function for α 6= 0 is defined by

N
(1)
K,S(α) =

∑
v∈M0

K\S

min{1,max{0, ordpvα}} log[OK : pv]

where pv is the prime corresponding to v ∈M0
K . The truncated counting function does depend on α,

S and K even if we normalize by 1/[K : Q] (which we do not) due to ramification.
With this notation, let us recall the ABC conjecture for number fields stated in the introduction.

Conjecture 4.1 (ABC for number fields). Let K be a number field. Let ε > 0 and fix mutually distinct
elements b1, . . . , bM ∈ K. Let S be a finite set of places of K. Then for all but finitely many α ∈ K
one has

(M − 2− ε)hK(α) <

M∑
i=1

N
(1)
K,S(α− bi).

For x = a/b ∈ Q∗ with a and b coprime integers, we define the radical of x by rad(x) = rad(a).
Note that

log rad(x) = N
(1)
Q,∅(x).

Given F ∈ Q[t] an irreducible monic polynomial of degree r, it will be convenient to define its height
H(F ) as

H(F ) = exp(rh(α))

where α is any root of F (the roots of F are Galois conjugate, hence, they have the same absolute
height). This definition actually agrees with the (exponential of the) Mahler measure of aF where a is
the least common denominator of the coefficients of F , and therefore our H(F ) is essentially the same
as the naive (multiplicative projective) height of F , up to a bounded factor that only depends on the
degree of F . See the discussion in Section 7.

Theorem 4.2. Let r ≥ 2 and let M be an integer. Fix b1, . . . , bM ∈ Q mutually distinct rational
numbers and let ε > 0. Let K be a number field of degree r over Q. Assume that the ABC conjecture
for number fields holds for K. For all monic irreducible polynomials F ∈ Q[t] of degree r with a root
in K, the following holds:

(M − 2r2 + r − 2− ε) logH(F ) ≤
M∑
i=1

log radF (bi) +A

where A is a constant depending only on r, ε, K and the bi, but it is independent of the particular F
satisfying the previous requirements.

Before presenting the proof of this result, let us make a comment on how this application of the
ABC conjecture compares to previous ones. Classically, the ABC conjecture is used to study the
factorization of F (b) when we fix a polynomial F ∈ Z[t] and we move the argument b (such results are
due to Langevin [7]). An application of this type in the context of squarefree values of polynomials
(not at prime arguments) was given in [2]. In [9] a refinement is necessary and F is also allowed to
vary. The bound in [9] has the same quality as Langevin’s bound when we vary b and F is fixed, and
it has exponential dependence in the multiplicative height of F which is precisely what is needed for
the purposes of [9], but too weak for our present goal. Here, instead, we fix arguments bi and move the
polynomial F to get a result with good dependence on F . Such an application of the ABC conjecture
was already considered in [10] and Theorem 4.2 is an elementary instance for irreducible polynomials
over Q instead of more general polynomials over a number field (nevertheless, the result becomes much
cleaner in this case).
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Proof. Let F ∈ Q[t] be a monic irreducible polynomial of degree r and let α ∈ K be a root of F . Note
that α is not one of the bi because F is irreducible and bi ∈ Q. Let P be the set of finite places of Q
where some bi has a pole or at least two bi have the same reduction, and let S be the set of places of
K lying above a place in P . Let Pα be the set of finite places in Q above which α has a pole, or at
which the discriminant ∆F of F vanishes.

If v ∈M0
K then we write v for the corresponding normalized valuation on K, that is, v(x) = ordp(x)

where p is the prime corresponding to v. If p ∈M0
Q (which we identify with a prime number) then we

write vp for the corresponding normalized (p-adic) valuation on Q. We write v+(x) = max{0, v(x)}
and similarly for vp. For notational convenience, for v ∈M0

K let us write deg(v) instead of log[OK : p],
where p is the prime corresponding to v (this notation is standard in Arakelov theory).

We have (the second-last equation will be explained below)

N
(1)
K,S(α− bi) =

∑
v∈M0

K\S

min{1, v+(α− bi)} deg(v)

=
∑

p∈M0
Q\P

∑
v|p

min{1, v+(α− bi)} deg(v)

=
∑

p∈M0
Q\(P∪Pα)

∑
v|p

min{1, v+(α− bi)} deg(v) +
∑

p∈Pα\P

∑
v|p

min{1, v+(α− bi)} deg(v)

=
∑

p∈M0
Q\(P∪Pα)

min{1, v+p (F (bi))} log(p) +
∑

p∈Pα\P

∑
v|p

min{1, v+(α− bi)} deg(v)

≤ log radF (bi) +
∑

p∈Pα\P

∑
v|p

min{1, v+(α− bi)} deg(v).

Let us explain the step from the third to the fourth line. In Lemma 4.5 [10] it is shown that if x ∈ K
generates K/Q, is regular above a prime p and the discriminant of the minimal polynomial H of x
does not vanish at p, then one of the following holds:

• vp(H(0)) = 0 and for each v|p in K one has v(x) = 0, or
• there is exactly one v∗|p in K such v∗(x) > 0 and v(x) = 0 for all other v|p. Moreover,
v∗(x) = vp(H(0)) and deg(v) = log p.

To get the fourth line from the third, one uses this result with x = α − bi for each p /∈ P ∪ Pα; such
choice is allowed by definition of P and Pα. Note that indeed K = Q(x) since F is irreducible of degree
r = [K : Q], that H(t) = F (t+ bi) is the minimal polynomial of α− bi and that the discriminant of H
is ∆F .

The ABC conjecture for K gives that for all but finitely many such F the following holds

(M − 2− ε)hK(α) ≤
M∑
i=1

N
(1)
K,S(α− bi)

≤
M∑
i=1

log radF (bi) +

M∑
i=1

∑
p∈Pα\P

∑
v|p

min{1, v+(α− bi)} deg(v).

For p ∈M0
Q \P fixed, we know that at most one v+(α− bi) is non-zero because the bi do not agree at

p. Hence

M∑
i=1

∑
p∈Pα\P

∑
v|p

min{1, v+(α− bi)} deg(v) ≤
∑

p∈Pα\P

∑
v|p

deg(v) ≤ r
∑
p∈Pα

log p.

Counting the zeros of ∆F and poles of α we get∑
p∈Pα

log p ≤ h(∆F ) + hK(α) ≤ 2(r − 1)rh(α) +Or(1) + hK(α) = (2r − 1)hK(α) +Or(1)
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where we used the bound h(∆F ) ≤ 2(r − 1)rh(α) + Or(1) which can be proved by expressing ∆F in
terms of the roots of F . Hence

(M − 2− ε)hK(α) <

M∑
i=1

log radF (bi) + (2r − 1)rhK(α) +Or(1)

that is

(M − 2r2 + r − 2− ε)hK(α) <

M∑
i=1

log radF (bi) +Or(1).

We can increase the implicit constant in the error term Or(1) to a new constant A such that the
inequality holds for all F that satisfy our requirements (that is, to include the finitely many exceptions).
This A will depend on r, K, ε and the bi (hence M), but it will be uniform for F . Recalling that
hK(α) = rh(α) = logH(F ), we conclude the proof. �

5. Arithmetic progressions of primes

The celebrated Green-Tao theorem [4] asserts that every set of primes with positive upper density
(among primes) has arithmetic progressions of any length. This result was later refined in a number
of directions. Here we need the following improvement due to Tao and Ziegler (see Theorem 1.3 and
Remark 1.4 in [11], see also [12]).

Theorem 5.1. Let P be a set of primes with positive upper density in the primes, that is

lim sup
x→∞

#{p ∈ P : p ≤ x}
π(x)

> 0.

Let ε > 0 and k a positive integer as large as we want. There are infinitely many k-terms arithmetic
progressions of the form

p, p+ d, p+ 2d, . . . , p+ (k − 1)d

where all the terms belong to P , and 0 < d < pε.

Such a result without the restriction d < pε was proved by Green and Tao [4], but for our application
the parameter ε is crucial. Note that the Tao-Ziegler theorem is more general and holds for polynomial
progressions, but here we just need the case of arithmetic (linear) progressions. Indeed, Tao and Ziegler
remark (see Remark 2.4 [11]) that the argument of Green and Tao [4] can be modified to get such a
result in the linear case, which is all we need.

6. Proof of Theorem 1.1

Recall that for proving Theorem 1.1 it suffices to prove Theorem 3.1. That is, on the ABC conjecture
for number fields, we want to give an upper bound for #Sx of the form o(x/ log x), where

Sx = {p ≤ x : ∃q > x1−ε, q2|f(p)}.
Here, f ∈ Z[t] satisfies the hypotheses from Theorem 3.1 (namely, it is irreducible of degree r ≥ 2).
Define

P = {p : ∃q > p1−ε, q2|f(p)},
then Sx ⊆ {p ∈ P : p ≤ x}. Thus, in order to prove Theorem 1.1 it suffices to show (on the ABC
conjecture) that for suitable ε > 0 the set P satisfies

#P ∩ [0, x] = o

(
x

log x

)
,

or in other words, that P has density 0 in the primes. We will do this by using the results of Green,
Tao and Ziegler from the previous section.

Let a be the leading coefficient of f . For n, d positive integers, define fn,d as the polynomial

fn,d(t) =
1

dra
f(n+ td).

For the next claim, recall our convention on the height of a monic irreducible polynomial in Q[t] (see
Section 4).
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Claim 6.1. The polynomial fn,d ∈ Q[t] is monic irreducible of degree r. If α is a root of f then
(α− n)/d is a root of fn,d, it generates K = Q(α) over Q, and one has

H(fn,d) ≥
nr

4rdrH(f/a)
.

Proof. That fn,d is monic of degree r is clear. A direct computation shows the statement about the
root, and now Galois theory implies irreducibility. The height bound also follows from the relation on
the roots:

logH(fn,d) = rh

(
α− n
d

)
≥ r(h(n)− h(α)− h(d)− log 4) = log nr − logH(f/a)− log dr − log 4r.

�

Let M = 6r3 + 1 and fix any ε ≤ 1/(2(r + 1)) in the definition of P .

Claim 6.2. Assume that the ABC conjecture for number fields holds for Q(α), where α is a root of
f . For all sufficiently large primes p ∈ P , and for all integers 0 < d < pε, we have that some of the
numbers

p, p+ d, . . . , p+ (M − 1)d

is not in P .

Proof. Suppose that there are arbitrarily large p ∈ P such that for each such p there is dp with
0 < dp < pε satisfying that

p, p+ dp, . . . , p+ (M − 1)dp ∈ P.
We will obtain a contradiction from this assumption, thus proving the claim. Take any such an element
p ∈ P , then the ABC conjecture and Theorem 4.2 applied to K = Q(α) and F = fp,dp give (choose
bj = j − 1 and ε = 1 in Theorem 4.2; not to be confused with the ε in the present claim)

(M − 3r2) logH(fp,dp) ≤
M∑
j=1

log radfp,dp(j − 1) +A

for some constant A independent of p and dp. Indeed, the constant A only depends on f because both
M and the number field K are determined by f .

Claim 6.1 and the assumption that p+ (j − 1)dp ∈ P for each 1 ≤ j ≤M give

(M − 3r2) log
pr

4rdrpH(f/a)
≤

M∑
j=1

log radfp,dp(j − 1) +A

=

M∑
j=1

log rad
1

drpa
f(p+ (j − 1)dp) +A

≤
M∑
j=1

log radf(p+ (j − 1)dp) +A

≤
M∑
j=1

log

∣∣∣∣ f(p+ (j − 1)dp)

(p+ (j − 1)dp)1−ε

∣∣∣∣+A.

Observe that

log
pr

4rdrpH(f/a)
= r log

p

dp
+Of (1)

where the implicit constant only depends on (the degree and coefficients of) f , and moreover the
triangle inequality gives

log

∣∣∣∣ f(p+ (j − 1)dp)

(p+ (j − 1)dp)1−ε

∣∣∣∣ ≤ log
∣∣(p+ (j − 1)dp)

r−1+ε∣∣+Of (1).
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These estimates together with the fact that M only depends on r = deg f , give

(M − 3r2)r log
p

dp
≤

M∑
j=1

log
∣∣(p+ (j − 1)dp)

r−1+ε∣∣+Of (1)

as p grows to infinity, where the implicit constant is independent of p and dp. Since 0 < dp < pε, we
deduce

(1− ε)(M − 3r2)r log p < (r − 1 + ε)M log p+Of (1)

hence (
M − 3r3 − εM(r + 1) + 3εr2

)
log p < Of (1).

Recalling that ε ≤ 1/(2(r + 1)) we see that(
M/2− 3r3

)
log p < Of (1).

Since M = 6r3 + 1, we get a contradiction for large p. �

By Theorem 5.1, we see that Claim 6.2 proves (on the ABC conjecture) that P cannot have positive
upper density in the primes. Hence P has density zero in the primes, which concludes the proof of
Theorem 1.1 as explained in the beginning of this section.

7. Further applications of ABC

In this section we briefly present a variation of Theorem 4.2. This result is not needed for the proof
of Theorem 1.1, however, it is of independent interest and can be useful in other applications. The
theorem that we discuss below is a particular instance of the results in [10], but when it is formulated
for polynomials over Q the statement becomes much simpler and it oughts to be stated explicitly.

Theorem 7.1. Assume Vojta’s ABC conjecture for algebraic numbers of bounded degree (see Conjec-
ture 2.3 in [13] and Conjecture 25.3.b in [14] in the case of the projective line). Let r ≥ 2 and let M
be an integer. Fix b1, . . . , bM ∈ Q mutually distinct rational numbers and let ε > 0. For all monic
irreducible polynomials F ∈ Q[t] of degree r, the following holds:

(M − 2r2 − r − ε) logH(F ) ≤
M∑
i=1

log radF (bi) +A

where A is a constant depending only on r, ε and the bi, but it is independent of the particular F
satisfying the previous requirements.

The term −2r2 − r comes from estimating the logarithmic discriminant of a root of F in terms of
heights, as in [10]. Details of the proof are similar to the computations in the previous section, and
we leave them to the reader (alternatively, see [10]).

Remarks.

• Note that we get a stronger conclusion (a height inequality without fixing the field generated
by a root of F ) at the cost of assuming Vojta’s ABC conjecture for bounded degree, which is
stronger than the number field ABC conjecture required for Theorem 4.2.

• Of course, in applications one can always factor the relevant polynomials into irreducible factors
and apply the result to each one.

• It can be useful to replace H(F ) by a slightly different height which is simpler to compute,
let us indicate how. Given F = ant

n + . . . + a1t + a0 ∈ Q[t], define its naive (multiplicative,
projective) height by

Hm(F ) =
∏
v∈MQ

max
0≤i≤n

{‖ai‖v}.

Note that Hm(xF ) = Hm(F ) for any x ∈ Q∗, and if F has coprime integer coefficients ai then
Hm(F ) = maxi |ai|. If F is monic and irreducible then

c1Hm(F ) ≤ H(F ) ≤ c2Hm(F )

for certain constants c1, c2 that depend only on degF , see Proposition 4 in p.49 [6].
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