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Abstract. The Tamagawa product of an elliptic curve is a quantity that naturally appears in the
Birch and Swinnerton-Dyer conjecture, and it is often conjectured to be small with respect to the
conductor. In this note we propose a precise version of such a conjectural bound, we give some
evidence for it, and we investigate arithmetic consequences beyond the context of the Birch and
Swinnerton-Dyer conjecture.

1. Tamagawa factors

Let E be an elliptic curve over Q. The Tamagawa factor of E at a prime p is denoted by cp(E).
We recall that cp(E) = [E (Fp) : E0(Fp)], where E is the Neron model of E over Z and E0 is the
identity component of E . Equivalently, cp(E) is the number of irreducible components of E ⊗ Fp
over Fp. Thus, cp(E) = 1 if E has good reduction at p.

The Tamagawa product τ(E) is defined by

τ(E) =
∏
p

cp(E)

where the product is over all primes p. Tate [Ta75] proved that τ(E) is precisely the “fudge
factor” appearing in the Birch and Swinnerton-Dyer conjectural formula for the first non-zero
Taylor coefficient of L(E, s) at s = 1. Due to this, the Tamagawa product plays an important role in
various questions involving other quantities appearing in the Birch and Swinnerton-Dyer conjecture,
such as the study of the conjectural size of Tate-Shafarevich groups [dW98, Ni00, Hi07], statistics
of ranks of elliptic curves [Wa08], or heuristics for uniform boundedness of ranks [PPVW16].

The main point in this note is to clarify the role of τ(E) in Diophantine problems beyond the
context of the Birch and Swinnerton-Dyer conjecture. We will be interested in the size of τ(E),
first with respect to the minimal discriminant of E, and then with respect to the conductor NE . It
turns out that showing that τ(E) is small with respect to the conductor is a difficult open problem
closely related to the abc-conjecture. To me, it seems plausible that the following holds

Conjecture 1.1. Let ε > 0. For all elliptic curves E over Q we have

log τ(E) ≤
(

7 log 3

3
+ ε

)
logNE

log logNE
+Oε(1).

Presumably, the constant 7(log 3)/3 = 2.563... is not optimal, but is its fairly small and it is not
too difficult to give some evidence for it. Among the Diophantine applications, we will explain how
this conjecture relates to sub-exponential versions of the abc-conjecture.

2. Notation and preliminaries

We will use the following standard arithmetic functions for positive integers n:

• For a prime p the p-adic valuation of n is vp(n).
• d(n) is the number of divisors of n. It satisfies d(n) =

∏
p|n(1 + vp(n)).
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• ω(n) is the number of different prime factors of n, without counting repetitions.
• rad(n) is the radical of n, i.e. it is the product of the different prime factors of n, without

counting repetitions.

For any given ε > 0, one has the following classical estimates:

ω(n) ≤ (1 + ε)
log n

log logn
+Oε(1), log d(n) ≤ (log 2 + ε)

log n

log logn
+Oε(1).

In addition, we will consider de Weger’s function (cf. [dW98])

W (n) =
∏
p|n

vp(n).

Erdös conjectured and de Weger proved that for any given ε > 0

W (n) ≤
(

log 3

3
+ ε

)
log n

log log n
+Oε(1).

For an elliptic curve E over Q we denote the absolute value of the minimal discriminant of E by
∆E , and the conductor by NE . The Ogg’s formula and the Neron-Ogg-Shafarevich theorem gives
that NE |∆E and these two integers have the same prime factors.

We already observed that the Tamagawa factor of E at a prime p of good reduction satisfies
cp(E) = 1. Tate’s algorithm [Ta75] provides further information:

Theorem 2.1. Let E be an elliptic curve over Q and let p be a prime. The Tamagawa factor cp(E)
satisfies:

(i) cp(E) ≤ 4 if E has additive reduction at p
(ii) cp(E) ≤ 2 if E has non-split multiplicative reduction at p

(iii) cp(E) = vp(∆E) if E has split multiplicative reduction at p.

The abc-conjecture and Szpiro’s conjecture will be relevant in our discussion, so let us recall
them here.

Conjecture 2.2 (abc-conjecture). Let ε > 0. There is a number κε depending only on ε, such that
for all coprime positive integers a, b, c with a+ b = c we have

c ≤ κε · rad(abc)1+ε.

Conjecture 2.3 (Szpiro’s conjecture). Let ε > 0. There is a number Kε depending only on ε, such
that for all elliptic curves E over Q we have ∆E ≤ Kε ·N6+ε

E .

It is a classical result that, up to the precise values of the exponents, these two conjectures are
essentially equivalent [Fr89].

3. Smallness of the Tamagawa factor

From Theorem 2.1 we get τ(E) ≤ 4ω(∆E)d(∆E). Thus, the estimates in Section 2 give the
following well-known lemma (cf. [dW98, Hi07, PPVW16])

Lemma 3.1. For all elliptic curves E over Q we have

log τ(E) = O

(
log ∆E

log log ∆E

)
.

In particular, log τ(E) = o(log ∆E).

In fact, a more careful analysis gives
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Proposition 3.2. Let ε > 0. For all elliptic curves E over Q we have

log τ(E) ≤
(

log 3

3
+ ε

)
log(∆ENE)

log log ∆E
+Oε(1).

Proof. Let us factor ∆E = AM where the primes of additive reduction appear in A, and those of
multiplicative reduction appear in M . If p|A then vp(NE) ≥ 2, and since NE |∆E we deduce

vp(∆ENE) ≥

{
vp(∆E) if p|M
4 if p|A.

Thus, τ(E) ≤W (∆ENE). We conclude by de Weger’s bound on W (n), using NE |∆E . �

Lemma 3.1 and Proposition 3.2 show that, in a sense, τ(E) is small. It is natural to expect
bounds of this sort where ∆E is replaced by the conductor NE .

Conjecture 3.3 (Folklore). For all elliptic curves E over Q we have log τ(E) = o(logNE).

Lemma 3.1 gives the following well-known fact (cf. [Hi07, dW98])

Proposition 3.4. Szpiro’s conjecture implies Conjecture 3.3. In fact, Szpiro’s conjecture implies
the stronger estimate

log τ(E) = O

(
logNE

log logNE

)
.

From our Proposition 3.2 we can in fact deduce more:

Proposition 3.5. Szpiro’s conjecture implies Conjecture 1.1.

Proof. Szpiro’s conjecture gives log(∆ENE) ≤ (7 + ε) logNE +Oε(1). �

Thus, Conjecture 1.1 seems plausible, as it follows from Szpiro’s conjecture. Furthermore, the
following result is easy to show, and it provides unconditional evidence for Conjecture 1.1:

Proposition 3.6. Let ε > 0. For all elliptic curves E over Q without primes of split multiplicative
reduction, we have

log τ(E) ≤ (log 4 + ε)
logNE

log logNE
+Oε(1).

Proof. From the results in Section 2 we get

log τ(E) ≤ ω(NE) log 4 ≤ (log 4 + ε)
logNE

log logNE
+Oε(1).

�

We observe that there are plenty of elliptic curves as in Proposition 3.6. For instance, all elliptic
curves with integral j-invariant satisfy the requirements, because they cannot have multiplicative
reduction at any prime.

The hard case in conjectures 3.3 and 1.1 is, of course, when E has primes of split multiplicative
reduction. In [Pa17] I proved the following result, which provides further unconditional evidence
for Conjecture 3.3 including the cases of split multiplicative reduction:

Theorem 3.7. Let ε > 0. For all semi-stable elliptic curves E over Q, we have

log τ(E) ≤
(

11

2
+ ε

)
logNE +Oε(1).

In particular, for these elliptic curves we have log τ(E) = O(logNE).
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See [Pa17] for a more general theorem allowing controlled additive reduction. Unlike the previous
results discussed so far, the proof of Theorem 3.7 is far from elementary —it is based on the theory
of automorphic forms, Arakelov theory on Shimura curves, proved cases of Colmez’s conjecture,
and zero density estimates for L-functions, among other tools.

Improving from the estimate log τ(E) = O(logNE) provided by Theorem 3.7, to the bound
log τ(E) = O(logNE/ log logN) predicted by 1.1 (possibly with other numerical coefficient) might
seem reachable —after all, it is just a log log factor! However, I suspect that this is a deep problem.
As an indication of this, in the next section we will see that such an improvement would lead to
some remarkable Diophantine consequences.

4. Diophantine consequences

Along with Theorem 3.7, in [Pa17] I also proved the following unconditional result towards the
abc-conjecture

Theorem 4.1 (d(abc)-theorem). Let ε > 0. There is a number Kε depending only on ε such that
for all coprime positive integers a, b, c with a+ b = c we have

d(abc) ≤ Kε · rad(abc)8/3+ε.

In particular, log d(abc) = O(log rad(abc)).

Here, I would like to propose a conjectural refinement of the d(abc)-theorem:

Conjecture 4.2. There are constants K,M such that for all coprime positive integers a, b, c with
a+ b = c we have

log d(abc) ≤ K · log rad(abc)

log log rad(abc)
+M.

It is easy to see that this refined d(abc) estimate follows from the abc-conjecture

Proposition 4.3. The abc-conjecture implies that Conjecture 4.2 holds and that K can be taken
as any real number with K > log 8.

Proof. Since abc ≤ c3, we have

log d(abc) ≤ (log 2 + ε/3)
log(abc)

log log(abc)
+Oε(1) ≤ (log 8 + ε)

log c

log log c
+Oε(1).

The abc-conjecture states log c ≤ (1 + ε) log rad(abc) +Oε(1), hence the result. �

It turns out that the bound for τ(E) proposed in Conjecture 1.1 also implies Conjecture 4.2
without invoking the abc-conjecture, but the proof is less direct.

Theorem 4.4. Conjecture 1.1 implies that Conjecture 4.2 holds and that K can be taken as any
real number with K > 7 log 3.

Proof. Let a, b, c be coprime positive integers with a+ b = c. Consider the Frey elliptic curve

E : y2 = x(x− a)(x+ b).

We have that E is semi-stable away from p = 2. Furthermore, ∆E = 2r(abc)2 and NE = 2srad(abc),
where |s|, |t| ≤ 8 (cf. p.256-257 [Si09]),.

Each p > 2 dividing NE is a prime of multiplicative reduction for E, and p = 2 also is, unless
v2(abc) ≤ 4 (cf. [DK95]).

By the Chinese remainder theorem, we can choose an integer D ≤ 8NE coprime to 2NE with
the following properties regarding ED (the quadratic twist of E by D):

(1) Each odd p|NE is a prime of split multiplicative reduction for ED.
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(2) If E has multiplicative reduction at 2, then ED has split multiplictive reduction at 2.

If E has good or multiplicative reduction at p = 2 then

τ(ED) ≥
∏
p

vp(∆E) ≥ 2−8
∏
p

(1 + vp(abc)) = 2−8d(abc).

If E has additive reduction at p = 2 then v2(abc) ≤ 4 and we have

τ(ED) ≥
∏
p>2

vp(∆E) ≥ 1

5

∏
p

(1 + vp(abc)) =
1

5
d(abc).

Note that NED ≤ NED
2 = O(N3

E). Conjecture 1.1 applied to ED gives

log τ(ED) ≤
(

7 log 3

3
+ ε

)
3 logNE

log logNE
+Oε(1)

which proves the result. �

Finally, we show that Conjecture 1.1 implies an abc-inequality which, although is not as strong
as the full abc-conjecture, it is certainly stronger than anything we can prove at present —e.g.
the exponential bounds log c = Oε(rad(abc)α+ε) for α = 15 [ST89], α = 2/3 [SY91], and α = 1/3
[SY01].

Corollary 4.5. Conjecture 1.1 implies the following sub-exponential version of the abc-conjecture:
Let ε > 0. For all coprime positive integers a, b, c with a+ b = c we have

log c ≤ exp

(
(7 log 3 + ε)

log rad(abc)

log log rad(abc)

)
+Oε(1).

Proof. In view of Theorem 4.4, the crude bound

log c ≤
(

max
p|abc

vp(abc)

)
log rad(c) ≤ d(abc) log rad(abc)

suffices. �

In particular, a bound for the Tamagawa product of elliptic curves as the one proposed in
Conjecture 1.1 would allow one to get bounds for the height of solutions of various Diophantine
equations, such as S-unit equations and Mordell equations, in a form that is much stronger than
what is available today —these applications for abc-estimates are standard, see for instance [MP13,
vK14, vKM16].
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