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Abstract

We show that first order integer arithmetic is uniformly positive-existentially
interpretable in large classes of (subrings of) function fields of positive character-
istic over some languages that contain the language of rings. One of the main
intermediate results is a positive existential definition (in these classes), uniform
among all characteristics p, of the binary relation “y = xp

s
or x = yp

s
for some

integer s ≥ 0”. A natural consequence of our work is that there is no algorithm
to decide whether or not a system of polynomial equations over Z[z] has solutions
in all but finitely many polynomial rings Fp[z]. Analogous consequences are de-
duced for the rational function fields Fp(z), over languages with a predicate for
the valuation ring at zero.
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1 Introduction

It is known that a system of Diophantine equations has a complex solution if and only
if it has a solution modulo infinitely many primes (see [Nav10, p. 460]). Since there
is an algorithm to solve the former problem, there is also an algorithm to decide the
latter. By deeper work due to Ax [A67] it is also known that there is an algorithm to
decide whether a system of Diophantine equations has a solution modulo every prime.
In this work we show that the situation is completely different if we replace the fields
Fp by rings of functions of positive characteristic and consider analogous Diophantine
problems. For example, we show that the following (five) problems are undecidable:

Problems: Decide whether or not a system of Diophantine equations in the un-
knowns x1, . . . , xn together with conditions of the form “xi is non-constant”, for some
of the unknowns xi, has a solution in Fp[z] for
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1. some prime p,

2. all primes p,

3. infinitely many primes p,

4. all but possibly a finite number of primes p, or

5. all primes p of the form 6k + 5 (say).

We work in a class Ω, each element of which is a structure over a fixed language
L. We ask the question: “Is there an algorithm which, given any (existential) sentence
of L, determines whether the sentence is true in some (or all, or infinitely many, or
almost all) elements of Ω?” In the cases that we will consider the answer is ‘No’. We
call results of this type uniform undecidability results.

In order to state our main result, let us briefly introduce some notation. We denote
by Lrings the language of rings, and we consider subrings of fields of rational functions
F (z), where F is a field, as structures over the following languages: Lz = Lrings ∪ {z}
where z is a constant symbol, LT = Lrings∪{T} where T is interpreted as the set of non-
constant functions, and Lz,ord = Lz ∪ {ord} where ord is interpreted as the valuation
ring at 0 (see Section 3 for more details).

Some of our main results are:

Theorem 1.1. First order arithmetic is uniformly positive-existentially interpretable
in the class of

1. polynomial rings of positive characteristic over the language LT , with one param-
eter interpreted (in each structure of the class) as any non-constant element,

2. polynomial rings of positive characteristic over the language Lz, without parame-
ters, and

3. fields of rational functions of positive characteristic over the language Lz,ord, with-
out parameters.

Our results for languages that extend Lz hold also for large classes of (subrings of)
function fields of positive characteristic of bounded genus (see Theorem 4.5, Corollary
4.6 and Theorem 4.7 in Section 4).

A result relevant to ours is due to Rumely, who showed in [Rum80] that the natural
numbers are uniformly interpretable in the class of global fields. Various authors have
used the notion of uniform interpretability, but not in the context of positive existential
theories, to the best of our knowledge. For some references and some extensions of
[Rum80], see [Po07] (compare our results to the discussion in Section 6 of the latter).

From Theorem 1.1 and using standard arguments going back to Tarski, we deduce
the following uniform undecidability results.
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Theorem 1.2. Consider any of the following three cases for the language L and the
class Ω:

1. L is LT and Ω is a non-empty subclass of the class of all polynomial rings F [z],
where F is a field of positive characteristic.

2. L is Lz and Ω is as in Item 1.

3. L is Lz,ord and Ω is a non-empty subclass of the class of all fields of rational
functions of the variable z, over a field F of positive characteristic.

The following hold true:
a) There is no algorithm which determines whether or not any given positive-existential
sentence of the language L is true or not in some member of Ω.
b) The conclusions of a) hold true if the word some is substituted by any of the words
all, almost all or infinitely many (members).

From the point view of algebraic geometry, positive existential formulas over Lz,
when interpreted in F (z), correspond to assertions concerning the existence of rational
sections for families of varieties over the projective line, while over LT , they correspond
to assertions concerning the existence of non-constant rational maps from the projective
line to varieties. For polynomial rings the meanings are similar but considering instead
morphisms of affine varieties.

Note that if the class Ω in Items 1 or 2 consists only of one polynomial ring, then the
results above have already been proved, over Lz in [Den79] - or see [Dem07] for a much
stronger result for polynomials over finite fields - and over LT in [PZ99a]. Similar results
for the case of classes consisting of one rational function field over Lz,ord are proved in
[Ph91] and [V94] (and even over Lz if the base field is finite - see also [KR92]).

One of the main tools that we develop is a positive existential definition of the
relation Denp(x, y), defined as “y = xp

s
or x = yp

s
for some natural number s” in

large classes of subrings of function fields of positive characteristic p. This relation was
introduced by Denef in [Den79] and has often been a crucial step to codify the integers
in rings of functions of positive characteristic (see for example, by chronological order,
[Ph87], [Ph91], [KR92], [Sh96], [PZ99a], [Sh00], [E03] and [ES09]). In particular, we
prove:

Theorem 1.3. There are positive-existential Lz-formulas ϕ1 and ϕ2 such that, for
every field F of positive characteristic p, ϕ1 defines Denp in F [z] and ϕ2 defines Denp
in F (z).

The relevant Theorem is 4.2 below, where we prove an analogous result for function
fields of bounded genus and also for the language LT . The method of achieving these
definitions is by utilizing the rational points on some specific varieties which come
from a problem asked by J. R. Büchi (see Subsection 3.4). Note that a first order (not
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existential) definition of the same relation in any function field of fixed odd characteristic
over Lz can be found in [ES09]1.

Using the tool described above, the proof of Theorem 1.1 turns out to be a conse-
quence of the following theorem which can be considered of independent interest.

Theorem 1.4. Given a prime number p, let |p be the relation over N defined by “x |p y
if and only if there exists an integer s such that y = psx”. There exists a positive
existential formula over the language {0, 1,+, R}, where R is a binary relation symbol,
which is independent of p and defines multiplication in the structure (N; 0, 1,+, |p).

The relation |p was introduced by Denef in [Den79]. This result corresponds to Item
1 of Theorem 4.3 in Section 4.

With respect to Theorem 1.2, there seem to be rather few results of this kind in
the literature, but there are several results on asymptotic (un)decidability : given a
class of structures, to decide whether or not a given formula is true for all but finitely
many of them. For example, in [CH03], Chatzidakis and Hrushovski prove that a
certain class of differential fields, each of them separately having a decidable theory,
has an asymptotic undecidable theory. On the other hand, Hrushovski [Hr06] and
Macintyre [Mac] (independently) show that the class of algebraically closed fields in
positive characteristic, together with the Frobenius map, is asymptotically decidable.
Other results of the same flavour can be found in [AK65a, AK65b, AK66, A67].

The undecidability results that we obtain are a consequence of the undecidability
of the positive existential theory of the ring of rational integers (the unsolvability of
Hilbert’s Tenth Problem), proved in 1970 by Y. Matijasevich, based on works M. Davis,
H. Putnam and J. Robinson (see [D73], [Mat70] and [DMR74]). For general surveys on
Hilbert’s Tenth Problem, see [PZ99b], [Po03] and [Sh07].

Acknowledgements. The authors would like to thank Ricardo Baeza, Antonio Laface,
Angus Macintyre and Thomas Scanlon for comments on a first version of this paper, and
Alexander Molnar for a careful reading of the very final version of it. The authors were
also benefited from discussions with Ram Murty, Alexandra Shlapentokh and Carlos
Videla.

Finally, the authors would like to heartily thank the anonymous referee. Her or his
comments and corrections greatly improved the quality and presentation of this work.

2 Outline of the proof

All the definitions and interpretations discussed in this section are uniform on the var-
ious parameters involved (unless specified otherwise) and positive existential.

1We have been informed that they now have obtained (non-uniform) positive existential such defi-
nitions over Lz,ord.
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Let us briefly indicate the main points of the proof of Theorem 1.1. In particular, this
result asserts that the semi-ring of natural numbers (N; 0, 1,+, ·) is uniformly positive-
existentially interpretable in

(A) the class of positive characteristic polynomial rings F [z], seen as LT -structures,
with one parameter that stands for a non-constant polynomial, and

(B) the class of positive characteristic rational function fields F (z), seen as Lz,ord-
structures, without parameters.

(Item 2 of the Theorem is done similarly to (B), whose proof actually works for subrings
of function fields.) We prove these two items separately, although their proofs have
common ingredients.

The first step is of arithmetic nature. The structure (N; 0, 1,+, ·) is not well-suited
to be interpreted directly in polynomial rings and rational function fields seen as LT
and Lz,ord-structures respectively. Thus, we first show (Theorem 4.3) that (N; 0, 1,+, ·)
is uniformly interpreted (without any parameter) in

(C) the class of structures Np = (N; 0, 1,+, |p) for p prime, and

(D) the class of structures Dp = (Z; 0, 1,+, |, |p,Z \ {−1, 0, 1}) for p prime.

Here, the symbol | stands for the usual divisibility relation.
That the natural numbers are interpretable in Np via positive existential formulas

is a known fact (see [Den79]), and our goal is to show that such an interpretation can
be done by (positive existential) formulas that are independent of the prime p, so that
it is uniform. Item (D) can be obtained by defining the relation ≤ independently of p
and thus reducing to the previous case. For this we prove a result of additive number
theory, Theorem 4.4, which can be of independent interest: a version of Lagrange’s four
squares theorem in the case of squares coprime to p, involving a uniformly bounded
number of summands (independent of p).

The next fundamental step in our argument is to find a definition of the binary
relation Denp(x, y) defined by ‘x = yp

s
or y = xp

s
for some natural number s’, which

is uniform (independent of p) among all rational function fields of sufficiently large
characteristic p (indeed, p ≥ 19 is enough). This is obtained as a consequence of the
existence of ‘exceptional’ sequences in the context of the so-called Büchi’s problem in
positive characteristic (see Subection 3.4). Actually this definition is uniform among all
function fields of bounded genus and large enough characteristic (see Theorem 4.2 and
the comments afterwards), which allows us to prove a more general version of Theorem
1.1. In each application, we are able to consider all but finitely many characteristics. For
purposes of obtaining interpretations that are uniform for all primes, this is harmless as
long as one can distinguish the exceptional (finitely many) cases by positive-existentially
definable formulas and the interpretability result is known for the exceptional cases.
Thus, for the sake of simplicity, and since the central issue of this work is uniformity,
let us ignore this technicality for the rest of the present section.
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The proof of (A) is as follows. We show that for p a given prime, the structure Dp

is uniformly interpretable (with one parameter) in the class of polynomial rings F [z]
of characteristic p, seen as LT -structures. This is achieved via the classical technique
of Pell equations introduced by Denef in [Den79], following the approach of Zahidi
and the second author [PZ99a]. Since the natural numbers are coded as the indices
n of some pairs of solutions (xn, yn) of an equation of the form X2 − (a2 − 1)Y 2 =
1 for some non-constant a, this technique involves a parameter for a (which seems
to be necessary). Nevertheless, this parameter turns out to have no impact for the
consequences on uniform undecidability. Indeed, the key fact is that the formulas
involved in this step actually do not depend on p, and therefore we can deduce (A)
from (D). At this point we remark that the interpretation of Dp in polynomial rings
over the language LT via formulas independent of p is already in [PZ99a], but this is
not sufficient to obtain (A), as (D) is essential. One of the key steps is Lemma 8.3,
which gives a definition (with parameters) of the relation Denp on x-coordinates of some
solutions of Pell equations. Here we could use our own definition of Denp, which does
not depend on any parameter and works in a much more general context, but this will
not improve the interpretability results as the parameter is needed in the other formulas
that appear in the interpretation.

The proof of (B) lies deeper. For p a given prime we show that the structure Np

is uniformly interpretable in the class of rational function fields of characteristic p over
the language Lz,ord (and as indicated above, we can also consider function fields of
bounded genus), making uniform the technique in [Ph91]. We interpret the natural
numbers as the order of vanishing at z = 0 of nonzero rational functions without poles
at z = 0, and then the relation |p for integers corresponds to the relation Denp(x, y)
for rational functions. The crucial point is that our definition of Denp(x, y) is uniform
on the characteristic p and works without restrictions on the field of coefficients for
each characteristic, so that we can obtain (B) from (C). Non-uniform definitions of
Denp are already available in the literature in several special cases as discussed in the
Introduction, but for our purposes the uniformity in the characteristic is the central
issue.

The consequences on undecidability then follow (Theorem 1.2, and more generally
Corollary 4.8).nonzero

3 Preliminaries

All languages considered will be first order languages with equality. The word class
will always refer to a non-empty class of structures over a common language.

3.1 Notation

1. We consider 0 to be a natural number.
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2. A language is identified with its set of constant, relation and function symbols.

3. If U is a structure, we will denote by |U| the underlying set of U.

4. If ϕ(x1, . . . , xn) is an L-formula with free variables among x1, . . . , xn, we will
write ϕU for its realization in the L-structure U, namely,

ϕU = {(x1, . . . , xn) ∈ |U|n : U � ϕ(x1, . . . , xn)} .
If α is a symbol of L, we will write αU for its interpretation in U.

5. We consider the following languages:

• Lrings = {0, 1,+, ·}, the language of rings.

• L∗ = {0, 1,+}.

Moreover, if s1, . . . , sn are relation, function or constant symbols, then we will
write

• Ls1,...,sn = Lrings ∪ {s1, . . . , sn}, and

• L∗s1,...,sn = L∗ ∪ {s1, . . . , sn}.

6. The symbols

• 0, 1 and z are constant symbols;

• + and · are binary function symbols;

• T and ord are unary relation symbols;

• |, 6=, R and S are binary relation symbols.

7. For each prime p, consider the following equivalence relation |p over Z:

x |p y if and only if there exists s ∈ Z such that y = ±xps.
We will refer to it as p-divisibility and denote its restriction to the natural numbers
by the same symbol.

8. Let Np be the L∗R-structure (N; 0, 1,+, |p) and

N = {Np : p is prime}.

9. Let Dp be the L∗|,R,T -structure (Z; 0, 1,+, |, |p,Z \ {−1, 0, 1}), where x | y is inter-
preted as divisibility in the usual sense, and

D = {Dp : p is prime}.

10. If A is a commutative ring with unit and of prime positive characteristic p, let
Denp be the equivalence relation defined on A by

Denp(x, y) if and only if there exists s ∈ N such that either y = xp
s

or x = yp
s

,

where p is the characteristic of A.
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3.2 Uniform Definability

We briefly introduce the notion of uniform definability, and then give a non-trivial
example to illustrate it.

Definition 3.1. Let L be a first order language, let X be a non-empty proper subset of
L, and let U be a class of L-structures. We will say that a symbol α ∈ X is uniformly
LrX-definable in U , if there exists an LrX-formula which defines the interpretation
of α in each structure in U . If moreover the formula is positive existential, then we will
write uniformly ∃+-LrX-definable.

If the symbol α has the same name ‘x’ across its interpretations in elements of U ,
we will say that ‘x’ is uniformly Lr {α}-definable. Also we may say that the family of
interpretations of α is uniformly definable in U instead of saying that α is (in practice,
the symbol α may be implicit, as in Lemma 5.5 for instance).

The following proposition is an immediate consequence of Theorem 4.4 (we state it
only to illustrate the concept).

Proposition 3.2. Consider the language {0,+,≤, R2}, where R2 is a unary relation
symbol, and the structures Ur = (Z; 0,+,≤, P r

2 ), where P r
2 (x) stands for “x is a square

and r does not divide x”. The relation ≤ is uniformly ∃+-{0,+, R2}-definable in the
class of all structures Ur with r ≥ 2.

A highly relevant result in the direction of non-uniformity can be found in [CDM92],
where it is shown that there is no formula in the language of rings that defines Fq in
Fq2 for all but finitely many q (here q is any power of any prime).

3.3 Uniform Interpretability

We give the definition of the concept of uniform interpretability that we use in this
work. See [Ho08, Chap. 5] for a general discussion on interpretations.

Definition 3.3. Let L and L′ be first order languages. Let M be an L-structure and U
a class of L′-structures. We say that M is uniformly interpretable in U if there exist
an L′-formula ϕL, and for each symbol s of L, an L′-formula ϕs, such that for each U
in U there is a surjective map θU : ϕU

L → |M| satisfying:

• ϕU
c ⊆ ϕU

L and θ−1
U (cM) = ϕU

c for each constant symbol c,

• ϕU
R ⊆ (ϕU

L)n and (θnU)−1(RM) = ϕU
R for each n-ary relation symbol R, and

• ϕU
f ⊆ (ϕU

L)n+1 and (θn+1
U )−1(fM) = ϕU

f for each symbol of function of arity n (here

fM ⊆ |M|n+1 is the graph of the interpretation of f in M).

If needed, we will specify that M is uniformly interpretable in U by Φ = {ϕs}s∈L∪{L}
through the class θU of maps θU, U in U . If all formulas in Φ are positive existential
then we will say that M is uniformly ∃+-interpretable in U .
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Note that if the class U consists of just one structure U, then the above definition
coincides with the usual definition of interpretability.

For clarity of the exposition, let us state the following somewhat trivial consequence
of Proposition 3.2, that illustrates both the concept of (uniform) interpretability and
its relation to the concept of (uniform) definability.

Proposition 3.4. Let L = {0,+,≤} and L′ = {0,+, R2} with R2 a unary relation
symbol. Consider the L-structure M = (N; 0,+,≤) and U the class of L′-structures
(Z; 0,+, P r

2 ) for r ≥ 2 (with P r
2 as in Proposition 3.2). Then M is uniformly ∃+-

interpretable in U .

The rest of this subsection is devoted to collect some observations on the concept
of uniform interpretability that will be useful in the present work.

Fact 3.5. Let U1, . . . ,Un be classes of L′-structures and let M be an L-structure. If
M is uniformly (positive-existentially) interpretable in each Uk and if there exists, for
each k = 1, . . . , n, a (positive-existential) L′-formula ϕk that distinguishes the class Uk
from the others, then M is uniformly (positive-existentially) interpretable in the class⋃n
k=1 Uk.

In our applications we will use a sort of “transitivity” satisfied by the concept of
uniform interpretability, which we now explain. Suppose that an L-structure M is
uniformly interpretable in a class of L′-structures U by Φ = {ϕs}s∈L∪{L}, and suppose
that each U ∈ U is uniformly interpretable in a class of L′′-structures VU by ΨU =
{ψU,s}s∈L′∪{L′} for some fixed language L′′. If the set of L′′-formulas ΨU is the same for
each U ∈ U then M is uniformly interpretable in V = ∪U∈UVU. Moreover this happens
in a positive existential way if the formulas in Φ and ΨU are positive existential. We
will quote this as the transitivity property of uniform interpretability.

Now we proceed to discuss some applications of uniform interpretability to problems
of decidability.

Once one has an interpretation of an L-structure M in an L′-structure U by a set
Φ of formulas through a map θU, it is standard to derive a (syntactic) algorithm AΦ,
depending on Φ but not on U, that transforms each L-sentence F into an L′-sentence
AΦ(F ), so that M � F if and only if U � AΦ(F ) (indeed, the algorithm roughly consists
of replacing every symbol s ∈ L that occurs in F by the formula ϕs). Therefore, if one
has a uniform interpretation of an L-structure M in a class U of L′-structures by Φ,
then there exists an algorithm AΦ, uniform in the sense that it depends on Φ but not
on each element of U , that transforms each L-sentence F into an L′-sentence AΦ(F ),
so that, for each U in U , M � F if and only if U � AΦ(F ). Moreover, if Φ only consists
of positive existential formulas, then the algorithm AΦ transforms positive existential
sentences into positive existential sentences.

Uniform interpretability can be used to show very strong undecidability results. In
the subsequent discussion, all formulas are meant to be positive existential. Suppose
that an L-structure M is uniformly interpretable in a class U by a set of L′-formulas Φ.
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Note that the property that for each U in U , M � F if and only if U � AΦ(F ), yields
the following equivalences:

M � F ⇐⇒ for each U in U , U � AΦ(F ) ⇐⇒ there exists U in U , U � AΦ(F ).

If C is a non-empty collection (class) of non-empty subclasses of U then this implies:

M � F ⇐⇒ there exists V in C such that for each U in V , U � AΦ(F ).

In particular, if there is no algorithm to decide whether or not an L-sentence F is true
in M, then the following problem is also undecidable:

(?) “Given an L′-sentence G, decide whether or not there exists a class V
in C such that every structure U in V satisfies G.”

We will refer to this phenomenon as uniform undecidability property.
For Item 1 of Theorem 1.1, we will need the more general concept of uniform in-

terpretability with parameters. Though it is very close to Definition 3.3, we state it in
the particular case we need it (namely, for one parameter) for the convenience of the
reader. In the following, the notation x and xs stand for tuples of variables.

Definition 3.6. Let L and L′ be first order languages. Let M be an L-structure and
U a class of L′-structures. We say that M is uniformly interpretable in U with one
parameter α if there exist an L′-formula τ with one free variable, an L′-formula ϕL(α; x)
and, for each symbol s of L, an L′-formula ϕs(α; xs), such that for each U in U and for
each a ∈ τU, there is a surjective map θU,a : ϕL(a; x)U → |M| satisfying:

• ϕc(a; xc)
U ⊆ ϕL(a; x)U and θ−1

U,a(c
M) = ϕc(a; xc)

U for each constant symbol c,

• ϕR(a; xR)U ⊆ (ϕL(a; x)U)n and (θnU,a)
−1(RM) = ϕR(a; xR)U for each n-ary relation

symbol R, and

• ϕf (a; xf )
U ⊆ (ϕL(a; x)U)n+1 and (θn+1

U,a )−1(fM) = ϕf (a; xf )
U for each symbol of

function of arity n.

We may specify that M is uniformly interpretable in U by the set of formulas {ϕs}s∈L∪{L}
with one parameter restricted by τ .

The remarks of this subsection can be extended in a straightforward way to our
definition of uniform interpretability with parameters. The only point that requires
closer attention is undecidability: the algorithm AΦ is syntactically the same except
that one adds the string ∃ατ(α)∧ at the beginning of the output formula.
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3.4 Büchi’s Problem in Positive Characteristic

In order to show that the relation Denp is uniformly ∃+-definable in several classes of
structures, we need to introduce Büchi’s problem. For that we consider a commutative
ring A with unit having a subfield C of characteristic p > 2. If M ≥ 3 is an integer,
an M-term Büchi sequence for (A,C) is a sequence of M elements of A, not all in C,
whose second difference of squares is the constant sequence (2, . . . , 2).

Büchi’s Problem for Rings of Characteristic p > 2:
BP(A,C,M) Is it true that for all N ≥M , any N-term Büchi sequence (xn) of (A,C)
satisfies

x2
n = (x+ n)p

s+1, n = 1, . . . , N,

for some x ∈ A and some non-negative integer s?

Observe that in characteristic p, any sequence of the form
(

(x+ n)
ps+1

2

)
n

is indeed

a Büchi sequence.

Notation 3.7. If BP(A,C,M) has a positive answer for some M then we will denote
by M0(A,C) the least such M and say that BP(A,C) has a positive answer.

Note that M0(A,C), if it exists, is always at most the characteristic p of A (as if
there exists an M -term Büchi sequence with M > p then this sequence can be trivially
extended into an infinite p-periodic Büchi sequence; see [PPV10]).

Definition 3.8. Let L be a language extending the language of rings. A class B of
L-structures is an L-Büchi class if there exists a constant M such that each structure
A in B seen as a ring has a subfield C of positive characteristic satisfying:

• BP(A,C) has a positive answer with M0(A,C) ≤M ,

• if the unary predicate T belongs to L, then TA is the set of elements of A tran-
scendental over C,

• if the constant symbol z belongs to L, then zA is transcendental over C,

• if z ∈ L and moreover the unary predicate ord belongs to L, then there is a
function field K of genus g with constant field C such that A is a subring of K,
ordA is the intersection of A with a valuation ring OP at some prime P of K, and
zA ∈ A is a uniformizer at P (hence transcendental over C). In this situation we
further assume that BP(K,C) has a positive answer with M0(K,C) ≤ M , and
that g is bounded as A ranges in B;

• if z, ord and S are in L then we interpret z and ord as in the previous item and
S(x, y) as “x and y have the same order at P”.

The least such M is denoted by M0(B).
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4 Results

The next proposition is one of the key technical results of our work (the proof is in
Section 6).

Proposition 4.1. For every integer M ≥ 3, there exists a positive existential Lrings-
formula βM(x, y) with the following property: If BP(A,C) has a positive answer and
M0(A,C) ≤M then:

1. if Denp(x, y) holds, then A satisfies βM(x, y), and

2. if either xy or x + y is not in C, then Denp(x, y) holds if and only if A satisfies
βM(x, y).

With respect to the languages considered in this work, this implies:

Theorem 4.2. For every positive integer M , there exists a positive existential LT -
formula βTM(x, y) and a positive existential Lz-formula βzM(x, y) such that:

1. if B is an LT -Büchi class with M0(B) ≤M , then βTM(x, y) uniformly defines Denp
in B, and

2. if B is an Lz-Büchi class with M0(B) ≤M , then βzM(x, y) uniformly defines Denp
in B.

Theorem 1.3 is an immediate consequence of Item 2 above. Indeed, the polynomial
rings of characteristic ≥ 17 constitute a Büchi class, so we can use the results from
[Den79] to cover the remaining cases (using disjunctions to construct one single for-
mula). Similarly, the rational functions of characteristic ≥ 19 constitute a Büchi class
and we can conclude by results from [Ph91, Lemma 1] and [V94, Lemma 2.3].

In the case of the language LT , one can actually impose much weaker hypothesis on
the class B and define the slightly weaker relation

Denp(x, y) holds, and either x or y is not in C

instead of Denp. Details are left to the reader (see proof of Theorem 4.2 in Section 6).
However, Theorem 4.2 is enough for our purposes.

As already mentioned in Section 2, we do not really need the formula βTM in this
work. Nevertheless, this formula (or a slight modification of it) might be used for
studying interpretability problems in much wider context, such as function fields for
instance. Note that over the language LT the only known results are for polynomial
rings in any characteristic (see [KR92] and [PZ99a] - these are undecidability results),
and for complex analytic functions on the unit disk [Rub95] (a decidability result). The
case of function fields is wide open, even for Fp(z).

Here are some known L-Büchi classes where Theorem 4.2 applies (see [PV06] for
Items 1 and 2, and [ShV11] for Item 3):
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1. Any non-empty subclass of the class of one variable polynomial rings over a field
of characteristic at least 17, where L is either Lz or LT .

2. Any non-empty subclass of the class of rational function fields over a field of
characteristic at least 19, where L is Lz.

3. Given an integer g0 ≥ 0, any non-empty subclass of the class of function fields of
curves of genus g ≤ g0 and of positive characteristic at least 312g + 169, where L
is Lz.

As far as arithmetic is concerned, we prove the following uniform interpretability
results:

Theorem 4.3. Multiplication is uniformly positive-existentially

1. L∗R-definable in N = {(N; 0, 1,+, |p) : p is prime};

2. L∗|,R,T -definable in D = {(Z; 0, 1,+, |, |p,Z r {−1, 0, 1}) : p is prime}.

In particular, the semi-ring of natural numbers is uniformly ∃+-interpretable in N and
D without parameters.

In our approach, this theorem turns out to be essential for obtaining the uniform
interpretability of arithmetic in rings of functions. Item 1 is proved in Subsection 5.2.
Item 2 is proved in two different ways in Subsection 5.3. One way uses the following
number-theoretical result, whose proof is given in Subsection 5.4.

Theorem 4.4. There exists an absolute constant M such that for each integer u ≥ 2,
each non-negative integer is the sum of at most M squares of elements in

C(u) = {n ∈ Z : u - n}.

As we shall see in the proof, one can take M = 4599396, which is far from being
optimal, but is a bound that is independent of u. A more detailed argument, along the
same lines as the proof that we will give here, can be used to show that the optimal
M is less than 6000, but this is likely to be also far from optimal. Finding the optimal
such M seems to be an interesting problem in additive number theory but we do not
consider it in the present work.

We now turn to the results about uniform interpretability in rings of functions.

Theorem 4.5. The semi-ring of natural numbers is uniformly ∃+-interpretable without
parameters in any Lz,ord, 6=,S-Büchi class.

In the following corollary, we specialize this theorem to some classes for which we
have a positive existential uniform definition of 6=, ord or S.
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Corollary 4.6. The semi-ring of natural numbers is uniformly ∃+-interpretable without
parameters in any of the following classes:

1. the class of one variable polynomial rings over a field of positive characteristic
over Lz,

2. the class of one variable rational function fields of positive characteristic over
Lz,ord,

3. the class C(g0) of function fields of genus at most some g0, whose characteristic
is at least 312g + 169, where g is the genus of the function field, over Lz,ord, and

4. the class of valuation rings of fields in C(g0) over Lz, where z is interpreted as a
uniformizer of the valuation ring.

We remark that Items 1 and 2 require results from [Den79], [Ph91] and [V94] (see
the comments after Theorem 4.2 and Fact 3.5). Theorem 4.5 and Corollary 4.6 are
proved in Section 7.

As far as the language LT is concerned, we will prove the following in Section 8.

Theorem 4.7. The semi-ring of natural numbers is uniformly ∃+-LT -interpretable,
with one parameter restricted by T , in the class of all polynomial rings over a field
of positive characteristic, where T (x) is interpreted in each structure as “x is non-
constant”.

Corollary 4.8. Let L be a language and let U be a class of L-structures such that the
conclusion of Theorems 4.5 or 4.7 hold. There is no algorithm to decide whether or not
a positive existential L-sentence is true for (for example):

1. some U in U ;

2. all U in U ;

3. infinitely many U in U (assuming U to be infinite);

4. all but finitely many U in U (assuming U to be infinite).

This corollary follows from Theorem 4.7 and the discussion around Problem (?) in
Subsection 3.3. For example, one obtains Item 4 by choosing the class C (in the notation
of Problem (?)) to be the class of all cofinite subclasses of U .

5 Uniform Definitions over the Integers

5.1 Some General Uniform Definitions in N and D
In this subsection we will show that the restriction of the squaring function to the set
of powers of a given prime is uniformly ∃+-definable in N and in D - see Subsection
3.1, Items 7, 8, and 9.
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When working with the structures Np, the string ‘a ≤ b’ stands for ∃c(b = a+ c).

Notation 5.1. For each prime number p we consider the sets:

P>
p = {ph : h ∈ N}, P±p = {ph : h ∈ N} ∪ {−ph : h ∈ N},

P>
p,∗ = {ph : h ∈ N>0}, and P±p,∗ = {ph : h ∈ N>0} ∪ {−ph : h ∈ N>0}.

Moreover, we consider the formulas

P (n) := R(1, n) and P ε
∗ (n) :=

{
R(1, n) ∧ (n ≥ 2) if ε is >

R(1, n) ∧ T (n) if ε is ± .

Note that P (n) uniformly ∃+-L∗R-defines the collection of sets P>
p in N , and uni-

formly ∃+-L∗|,R,T -defines the collection of sets P±p in D. Also note that P ε
∗ (n) uniformly

∃+-L∗R-defines the collection of sets P>
p,∗ in N if ε is >, and uniformly ∃+-L∗|,R,T -defines

the collection of sets P±p,∗ in D if ε is ±.

Lemma 5.2. Consider the positive existential formula

θ̄εP (m,n) : P ε
∗ (m) ∧ P ε

∗ (n) ∧R(m− 1, n−m)

over L∗R if ε is >, and over L∗|,R,T if ε is ±. For each prime p, we have

1. Np satisfies θ̄>P if and only if m,n ∈ P>
p,∗ and n = m2; and

2. Dp satisfies θ̄±P if and only if m,n ∈ P±p,∗ and

• either n = m2,

• p = 2 and (m,n) ∈ {(−2,−8), (2,−2), (4,−2), (4,−8)}, or

• p = 3 and (m,n) = (3,−3).

Proof. We leave to the reader the verification of the implications from the right to the
left. Suppose that θ̄εP is satisfied in Dp or Np (depending on ε). There exist integers
r, s, ` such that r > 0 and s > 0 and there exist ρ, σ, λ in {−1, 1} (or = 1 if working in
Np) so that

m = ρpr, n = σps and n−m = λp`(m− 1).

By direct substitution we obtain

σps − ρpr = λp`(ρpr − 1)

and deduce that ` ≥ min{r, s} ≥ 1 because p - ρpr − 1. Rearranging the previous
equation we get

σps = ρλpr+` + ρpr − λp`. (1)
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We analyze this equation in two cases corresponding to λ = ρ and λ 6= ρ (note that the
latter can only occur if working over Dp).
Case ρ = λ. We have λρ = 1, hence

σps ≥ p`+r − |p` − pr| > 0

and we conclude that σ = 1. Thus Equation (1) becomes ps = p`+r − λ(p` − pr) from
which we deduce ` = r, for otherwise the right-hand side is not a power of p (since
`, r ≥ 1). We obtain ps = p2r, that is s = 2r. Therefore, when ρ = λ we have σ = 1
and s = 2r, which means n = m2.
Case ρ 6= λ. We have λρ = −1 and

σps ≤ −p`+r + p` + pr = 1− (p` − 1)(pr − 1) ≤ 0

because `, r ≥ 1. Thus σ = −1 and Equation (1) becomes

ps = pr+` + λ(pr + p`). (2)

We claim that p ≤ 3. Indeed, if p ≥ 5 then |2λ| = 2 ≤ (p − 1)/2 and we can look at
Equation (2) as an equality between p-adic expansions with p-adic digits in the set{

−(p− 1)

2
, . . . ,−1, 0, 1, . . . ,

p− 1

2

}
.

We conclude that (2) cannot hold, as the right-hand side has at least two digits (because
`, r ≥ 1 and 0 6= |2λ| ≤ (p − 1)/2) while the left-hand side has only one. Therefore,
if λ 6= ρ then we have p = 2 or p = 3. We will explain the case p = 3 and leave the
verification of the case p = 2 to the reader, as it involves the same kind of analysis.

With p = 3, Equation (2) gives 3s = 3r+`+λ(3r+3`). Note that r = `, for otherwise
the right-hand side would not be a power of 3. Hence we get 3s = 32r + 2λ3r and in
particular s ≥ r. This leads to 3s−r = 3r + 2λ, hence 3s−r ≡ 2λ mod 3. From here we
see that s = r and λ = −1, so that 1 = 3s−r = 3r − 2. In particular r = s = 1 and
ρ = 1 (as ρ 6= λ). Recalling that σ = −1, we conclude that (m,n) = (3,−3).

Corollary 5.3. There exists a positive existential formula

1. θ>P (m,n) that uniformly L∗R-defines the collection of sets {(ph, p2h) : h ∈ N} in N
(hence squaring in P>

p is uniformly ∃+-L∗R-definable in N ).

2. θ±P (m,n) that uniformly L∗|,R,T -defines the collection of sets {(±ph, p2h) : h ∈ N}
in D (hence squaring in P±p is uniformly ∃+-L∗|,R,T -definable in D).

Remark 5.4. Corollary 5.3 allows us to write in our formulas terms like a2, a4,
a8,. . . whenever a is an element of P>

p , P>
p,∗, P

±
p or P±p,∗.
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5.2 Multiplication Uniformly in N
We prove Item 1 of Theorem 4.3.

Lemma 5.5. The collections of sets

Mp = {(n, pa, npa) : n ≥ 0 and a ≥ 0}

are uniformly ∃+-L∗R-definable in N .

Proof. Following the strategy of the second author in [Ph87, Section 2], one can show
that the formula ϕ(x, y, z), given by

R(1, y) ∧ z ≥ x ∧R(x, z) ∧R(x+ 1, z + y) ∧R(x+ y, z + y2),

is true in Np if and only if (x, y, z) ∈Mp (the verification is not immediate, as there are
many cases to consider, but it is a quite straightforward adaptation of op. cit.).

The rest of the proof of Item 1 is identical to the proof of [Ph87, Lemma 3] using
Lemma 5.5 instead of [Ph87, Lemma 2].

5.3 Multiplication Uniformly in D
In this section we prove Item 2 of Theorem 4.3.

Lemma 5.6. There is a positive existential L∗|,R,T -formula CO(x) that defines uniformly
the collection of sets

COp = {n ∈ Z : p - n}
in D (hence the sets COp are uniformly ∃+-L∗|,R,T -definable in D).

Proof. Consider the formula

∃m(P±∗ (m) ∧ n|(m− 1)).

If n ∈ COp, then we can take m = pφ(|n|), since by Euler’s theorem we know that pφ(|n|)

is congruent to 1 mod n.
Conversely, if the formula is satisfied in Dp, then there exists k ∈ Z such that

nk = m− 1. Since p divides m, it does not divide n.

The next lemma defines squaring uniformly in each COp.

Lemma 5.7. The collection of sets{
(n, n2) : n ∈ COp

}
is uniformly ∃+-L∗|,R,T -definable in D. More precisely, for any prime p we have: n = m2

with m,n ∈ COp if and only if Dp satisfies the L∗|,R,T -formula θCO(m,n) given by

CO(m) ∧ CO(n) ∧ ∃a(P±∗ (a) ∧m|(a2 − 1) ∧ n|(a2 − 1) ∧ (a8 −m) | (a16 − n)).
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Proof. If n = m2 and m,n ∈ COp then in particular m,n 6= 0 and the formula is
satisfied by choosing a = pφ(n), where φ stands for Euler’s function (note that φ(|m|)
divides φ(n)).

Suppose that Dp satisfies θCO(m,n) for some m,n ∈ COp. Since a ∈ P±p,∗ we have
a ≥ 2. Since m and n divide a2 − 1, we have |m| < a2 and |n| < a2. Since a8 − m
divides

a16 − n = a16 −m2 +m2 − n,

we have:

1. a8 −m divides m2 − n,

2. |m2 − n| < a4 + a2 (since |m| < a2 and |n| < a2), and

3. |a8 −m| > a8 − a2 (since |m| < a2).

By Item 1, we have that either m2 − n = 0 or |a8 − m| ≤ |m2 − n|. For the sake of
contradiction, suppose the latter is true. Then we have

a8 − a2 < |a8 −m| ≤ |m2 − n| < a4 + a2.

Hence, since a ≥ 2 we get

a8 < a4 + 2a2 < a4 + a4 < a8,

which is impossible. Therefore m2 = n.

By Lemma 5.7, we can use Theorem 4.4 to uniformly define the relation ≤ in D.
Therefore, Item 2 of Theorem 4.3 follows from Item 1. The proof of Theorem 4.4 is
given in the next subsection. The following two lemmas give an alternative elementary
way to conclude (though maybe in a somewhat less natural manner).

Lemma 5.8. The collection of sets

{(x, y, z) : z = xy and x ∈ COp and y ∈ P±p }

is uniformly ∃+-L∗|,R,T -definable in D. More precisely, for any integer prime p, we have:

x = mn with m ∈ COp and n ∈ P±p , if and only if Dp satisfies the formula

ρCP (m,n, x) : (n = −1 ∧m = −x) ∨ (n = 1 ∧m = x)∨(
CO(m) ∧ P±∗ (n) ∧ ∃a, b(θCO(m, a) ∧ θ±P (n, b) ∧ θCO(m+ n, a+ 2x+ b))

)
.

Proof. Note that if p does not divide m and n ∈ P±p,∗ then p does not divide m+n, and
note that (m+ n)2 = a+ 2mn+ b.

We are now ready to show that squaring is uniformly ∃+-L∗|,R,T -definable in D.
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Lemma 5.9. For any integer prime p and for any m,n ∈ Z the following holds: n = m2

if and only if Dp satisfies

∃a, b, u, v(P (a) ∧ P (b) ∧ CO(u) ∧ CO(v) ∧ ρCP (u, a,m)∧
ρCP (v, b, n) ∧ θ±P (a, b) ∧ θCO(u, v)).

Proof. Choose

a = pordpm and u =
m

a
,

and do similarly for n.

It is standard to define multiplication using squaring: for any m,n, h ∈ Z we have

h = m · n if and only if (m+ n)2 = m2 + 2h+ n2.

Hence, multiplication is uniformly ∃+-L∗|,R,T -definable in D and Item 2 of Theorem
4.3 follows.

5.4 Proof of Theorem 4.4

Let us recall the notion of Shnirelman density of a set of positive integers. If A is a set
of positive integers, then we write A[n] = |A ∩ {1, 2, . . . , n}|. The Shnirelman density
of A is defined by

σ(A) = inf
n≥1

A[n]

n
.

Note that 0 ≤ σ(A) ≤ 1. A fundamental property of the Shnirelman density is the
following (see [Nat00, Section 11.3]).

Theorem 5.10. For a set A of positive integers, if 1 > δ = σ(A) > 0 then every
positive integer is the sum of at most g elements of A, where g depends only on δ (not
on the particular set A). More precisely, one can take

g = g(δ) := 2

(
1 +

⌊
log 2

− log(1− δ)

⌋)
.

Recall that in the notation of Theorem 4.4 we have u ≥ 2 and

C(u) = {n ∈ Z : u - n}.

Let S(u) be the set of squares of elements in C(u). Let Au be the set of positive
integers that can be expressed as the sum of at most 6 elements in S(u), and let δu be
the Shnirelman density of Au (the reason for the number 6 in the definition of Au will be
clear later in the discussion). By Theorem 5.10, to prove Theorem 4.4 it suffices to give
a positive lower bound δ∗ for δu which is independent of u (one can take M = 6g(δ∗)),
and we devote the rest of this subsection to this end.
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Let r(u)(n) be the number of ways to write n as the sum of 6 elements of S(u)∪{0},
taking the order into account. Similarly, define r(n) to be the number of ways to write
n as a sum of 6 squares of non-negative integers, taking the order into account. Define

R(u)(N) =
N∑
n=1

r(u)(n).

On the one hand we have

Ru(N) = #

{
(x1, . . . , x6) ∈ N6 :

√
x2

1 + · · ·+ x2
6 ≤ N

1
2 ∧ u - xi, for i = 1, . . . , 6

}
≥
(
u− 1

u

)6

#

{
(x1, . . . , x6) ∈ N6 :

√
x2

1 + · · ·+ x2
6 ≤ N

1
2

}
≥
(
u− 1

u

)6

#

{
(x1, . . . , x6) ∈ N6 : xi ≤

√
N

6
for i = 1, . . . , 6

}

≥
(
u− 1

u

)6
N3

63
.

On the other hand, by [Nat00, Theorem 14.6] we know that r(n) < 40n2 if n > 0,
and hence r(u)(n) < 40n2 (this is the reason for the number 6 in the definition of Au).
Therefore

R(u)(N) ≤
∑

n≤N,r(u)(n)6=0

40n2 ≤ 40N2Au[N ]

and we conclude that for every positive integer N

Au[N ]

N
≥ 1

40 · 63

(
u− 1

u

)6

≥ 1

40 · 63 · 26

where we have used u ≥ 2. This proves δu ≥ 1/552960 which is a positive lower bound
independent of u, and hence the proof of Theorem 4.4 is complete.

As a side remark, using the lower bound 1/552960 for δu in Theorem 5.10 and
recalling the definition of Au we see that one can take M = 4599396 in Theorem 4.4,
which is by no means intended to be optimal, but makes clear the uniformity on u.

6 The Relation “y is a ps-th Power of x”

In this section, we prove Proposition 4.1 and Theorem 4.2. For short, we might write

“there exists s ∈ Z such that y = xp
s
”

instead of “there exists s ∈ N such that either y = xp
s

or x = yp
s
”.
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Lemma 6.1. Let A be a unitary commutative ring of prime characteristic p. Let
x, y ∈ A be such that y = xp

s
for some non-negative integer s. Let M ≥ 2 be an

integer. Suppose that for n = 1, . . . ,M the elements xn ∈ A satisfy

x2
n = (x− 1 + n)p

s+1.

We have
xy = x2

1 and x+ y = x2
2 − x2

1 − 1.

Proof. Let us show that the second equation holds. We have:

x+ y = x+ xp
s

= xp
s+1 + x+ xp

s

+ 1− xps+1 − 1

= (x+ 1)(xp
s

+ 1)− xps+1 − 1

= (x+ 1)(x+ 1)p
s − xps+1 − 1

= (x+ 1)p
s+1 − xps+1 − 1

= x2
2 − x2

1 − 1,

which proves the lemma.

Proof of Proposition 4.1. Suppose that Büchi’s problem has a positive answer for a
triple (A,C,M) and write M0 = M0(A,C). Namely, any M -term Büchi sequence (xn)
of (A,C), with M ≥M0, is of the form

x2
n = (f + n)p

s+1

for some non-negative integer s and f ∈ A.
Consider the following formulas from the language of rings:

ϕ0(x1, . . . , xM0 , x, y) : ∆(2)(x2
1, . . . , x

2
M0

) = (2) ∧ xy = x2
1 ∧ x+ y = x2

2 − x2
1 − 1,

ϕ1(x, y) : ∃x1 . . . ∃xM0ϕ0(x1, . . . , xM0 , x, y),

and
βM0(x, y) : ϕ1(x, y) ∨ ϕ1(y, x).

Let us prove Item 1 of Proposition 4.1. Let x, y ∈ A be such that Denp(x, y) holds.
By definition of Denp we have y = xp

s
for some integer s. If s ≥ 0, taking xn ∈ A

such that x2
n = (x − 1 + n)p

s+1 the formula βM0(x, y) is satisfied in A by Lemma 6.1.
Analogously, if s ≤ 0, then by taking x2

n = (y− 1 + n)p
−s+1 the formula ϕ1(y, x) is true

in A by Lemma 6.1.
Let us prove Item 2 of Proposition 4.1 (note that one implication comes directly

from Item 1). Let x, y ∈ A be such that A satisfies βM0(x, y) and xy or x+ y is not in
C. On the one hand, if xy is not in C then x2

1 is not in C. On the other hand, if x+ y
is not in C then x2

2− x2
1− 1 is not in C, hence one of x2

1 and x2
2 is not in C. Therefore,
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the sequence (x1, . . . , xM0) is a Büchi sequence with at least one term not in C and by
hypothesis, there exists f ∈ A such that

x2
n = (f + n)p

s+1

for some non-negative integer s. Therefore we have a system of equations in x and y{
xy = (f + 1)p

s+1

x+ y = (f + 2)p
s+1 − (f + 1)p

s+1 − 1

whose unique solutions are

(x, y) = (f + 1, (f + 1)p
s

) and (x, y) = ((f + 1)p
s

, f + 1)

(the verification is easy and is left to the reader). Hence either y = xp
s

or x = yp
s
, i.e.

Denp(x, y) holds.

Proof of Theorem 4.2. Within this proof, “transcendental” will always mean “transcen-
dental over C”, and “algebraic” will always mean “algebraic over C”.

The positive existential formula from the language LT = {0, 1,+, ·, T}

ϕTB(x, y) : ((T (xy) ∨ T (x+ y)) ∧ βM(B)(x, y))∨
∃u∃v((T (uv) ∨ T (u+ v)) ∧ βM(B)(ux, vy) ∧ βM(B)(u, v))

uniformly defines Denp in B over LT .
Indeed, if Denp(x, y) holds, then there exists an integer s such that y = xp

s
. If either

xy or x+ y is transcendental, then A satisfies

(T (xy) ∨ T (x+ y)) ∧ βM(B)(x, y),

by Proposition 4.1. If none of xy and x+ y is transcendental, then choose u transcen-
dental and v = up

s
if s ≥ 0, or choose v transcendental and u = vp

−s
if s < 0. For these

choices of u and v, A satisfies

(T (uv) ∨ T (u+ v)) ∧ βM(B)(ux, vy) ∧ βM(B)(u, v).

Suppose now that A satisfies ϕTB(x, y). If A satisfies

(T (xy) ∨ T (x+ y)) ∧ βM(B)(x, y),

then Denp(x, y) holds by Proposition 4.1. If not, then in particular both of xy and x+y
are algebraic, hence both of x and y are algebraic. Also there exist u, v ∈ A such that

• uv or u+ v is transcendental (hence u or v is transcendental);

• there exists r ∈ Z such that v = up
r

(by Proposition 4.1 and the previous item);
and
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• A satisfies βM(B)(ux, vy).

Note that the first and second items imply that both u and v are transcendental.
Suppose that x or y is not 0 (otherwise Denp(x, y) holds trivially).

Case 1: If uxvy or ux+ vy is transcendental, then, by the third item and Proposition
4.1, there exists s ∈ Z such that vy = (ux)p

s
. Hence, neither x nor y is 0 and

up
r

y = (ux)p
s

,

which implies
yup

r−ps = xp
s

.

Therefore, we have r = s (since u is transcendental, but x and y are nonzero and not
transcendental). Hence, Denp(x, y) holds.

Case 2: If both uxvy and ux+ vy are algebraic, then both ux and vy are algebraic,
hence they are 0 (since u and v are transcendental but x and y are algebraic), which
contradicts the fact that x or y is nonzero. This finishes the proof of Item 1 of Theorem
4.2.

Let us prove Item 2, namely, let us prove that the positive existential formula

ϕzB(x, y) : βM(B)(x, y) ∨ ∃u(βM(B)(z, u) ∧ (βM(B)(zx, uy) ∨ βM(B)(ux, zy))),

uniformly defines Denp in B over Lz = {0, 1,+, ·, z}.
Suppose first that Denp(x, y) holds. There exists an integer s such that y = xp

s
. If

s ≥ 0, then by taking u = zp
s

the formula βM(B)(zx, uy) holds in A by Proposition 4.1.

If s ≤ 0, then by taking u = zp
−s

the formula βM(B)(ux, zy) holds in A by Proposition
4.1.

Suppose now that A satisfies ϕzB(x, y). If xy or x + y is transcendental then as A
satisfies βM(B)(x, y) we are done by Proposition 4.1. So suppose that both xy and x+ y
are algebraic (hence both x and y are algebraic).

Suppose that A satisfies

∃u(βM(B)(z, u) ∧ βM(B)(zx, uy))

(the other case is done similarly). Since A satisfies βM(B)(z, u) and z is transcendental
(hence zu or z+ u is transcendental), by Proposition 4.1, there exists an integer r such
that

u = zp
r

(3)

and in particular u is transcendental. Note that if both x and y are 0 then we are done.
So we may assume that one of the two is nonzero.

Case 1: If uy + zx or uyzx is transcendental, as A satisfies βM(B)(zx, uy), there

exists an integer k such that uy = (zx)p
k

by Proposition 4.1. In particular, neither x
nor y is 0. By Equation (3) we have zp

r
y = (zx)p

k
, hence

zp
r−pky = xp

k

,
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which implies k = r (since x and y are algebraic and nonzero and z is transcendental)
and the result follows.

Case 2: If both uy+ zx and uyzx are algebraic, then both uy and zx are algebraic,
which is impossible since u and z are transcendental, x and y are algebraic, and at least
one of x or y is nonzero.

7 Functions over Lz
7.1 Proof of Theorem 4.5

By Theorem 4.3, the semi-ring (N; 0, 1,+, ·) is uniformly ∃+-interpretable in N . By
the transitivity property of uniform interpretability, in order to prove that (N; 0, 1,+, ·)
is uniformly ∃+-interpretable in any Lz,ord,6=,S-Büchi class, it is enough to prove the
following:

Proposition 7.1. Let B be an Lz,ord,6=,S-Büchi class. There exists a set of Lz,ord,6=,S-
formulas Φ so that for every prime p with Bp non-empty (where Bp is the sub-class of
structures of B with characteristic p), the L∗R-structure Np is uniformly ∃+-interpretable
in the class Bp by Φ.

Proof. The proof is based on techniques from [Ph91]. Recall that by the definition of a
Büchi class, for each structure B in some Bp, we have

- B is a sub-ring of a function field of characteristic p, transcendental over the field
of constants,

- ordB = B ∩ OP where OP is the valuation ring at some prime P,

- zB is a uniformizer at P which belongs to B, and

- S(x, y) is satisfied in B if and only if x and y have the same order at P.

Following the notation of the definition of uniform interpretability, we choose

• ϕL∗R(x) to be ord(x) ∧ x 6= 0;

• ϕ0 := 1, ϕ1 := z;

• ϕ=(x1, x2) to be the formula S(x1, x2) ∧ x1 6= 0 ∧ x2 6= 0;

• ϕ+(x1, x2, x3) to be the formula

∃u

(
3∧
i=1

ϕL∗R(xi) ∧ x1 · x2 = u ∧ S(x3, u)

)
;
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• ϕ|p(x1, x2) to be the formula

∃u

(
2∧
i=1

ϕL∗R(xi) ∧ βzM(x1, u) ∧ S(u, x2)

)
;

• for every B ∈ Bp, the map θB : ordB r {0} → N to be the (normalized) valuation
map associated to the valuation ring OP.

Recall that by Theorem 4.2, βzM defines Denp uniformly in any Lz-Büchi class. The
verification that this set of formulas fulfills the conditions for having a uniform inter-
pretation is easy and left to the reader.

7.2 Proof of Corollary 4.6

Let us first prove Item 1. The positive existential formula

∃u, v(z - u ∧ z - v ∧ ux = vy),

where z - u stands for
∃λ, µ (λµ = 1 ∧ z | u− λ) ,

uniformly ∃+-Lz-defines S in the class of all polynomial rings over fields. Also, the
relation 6= is uniformly ∃+-Lz-definable in the class of all polynomial rings over fields
by the formula (which we learned from a talk by A. Shlapentokh)

ϕ 6=(t) : ∃x, u, v((zu− 1)((z + 1)v − 1) = tx).

The verification is easy and left to the reader (for a general discussion on the relation
6=, see [MB07]). Finally, ord is uniformly ∃+-Lz-definable by any tautology.

We prove Items 2 and 3. In any class of fields, to be distinct from 0 is the same
as being invertible, hence 6= is uniformly ∃+-Lrings-definable. Also S is uniformly ∃+-
Lz,ord-definable by the formula

∃u, v (uv = 1 ∧ ord(u) ∧ ord(v) ∧ x = uy)

in the classes considered in these items.
We prove Item 4. To say that x and y have the same order in a valuation ring, we

can use the Lrings-formula ∃u, v (uv = 1 ∧ ux = y). The predicate ord can be defined
using any tautology. Finally for the relation 6=, it is remarkable that, once more, one
can use the solution to Büchi’s problem to obtain a uniform definition in a simple way.
Indeed, the Lz-formula

∃t (x | t ∧ βzM(t, z))

uniformly ∃+-defines ‘x 6= 0’ in the class considered in this item. Here one can take
M = 312g0 + 169.
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8 Polynomials over LT
8.1 Pell Equations Uniformly

In this subsection, all the fields F have characteristic distinct from 2, and z stands for
a transcendental element over F . If x and a are polynomials in z, we will denote by
x(a) the composition x ◦ a.

Let a ∈ F [z] r F and Σa(F ) the set of solutions of

X2 − (a2 − 1)Y 2 = 1 (4)

in F [z]. Recall that the operation

(x, y)⊕ (x′, y′) = (xx′ + (a2 − 1)yy′, xy′ + x′y)

defines a group law on Σa(F ), whose neutral element is (1, 0). Note that (−1, 0) is the
only point of order 2 and that we have	(x, y) = (x,−y) and (x, y)⊕(−1, 0) = (−x,−y).
Much more is known:

Theorem 8.1. Every (x, y) ∈ Σa(F ) is of the form (±xn(a), yn(a)), where the pairs
(xn(z), yn(z)) are defined by

xn(z) +
√
z2 − 1yn(z) =

(
z +
√
z2 − 1

)n
. (5)

Moreover, for any m,n ∈ Z we have n(a, 1) = (xn(a), yn(a)) and

1. xm+n(a) = xm(a)xn(a) + (a2 − 1)ym(a)yn(a);

2. ym+n(a) = xm(a)yn(a) + xn(a)ym(a);

3. m divides n in Z if and only if ym(a) divides yn(a) in F [z];

4. yn(a) is non constant if and only if n /∈ {−1, 0, 1};

5. if moreover p 6= 0 then for any s we have: n = ±mps if and only if xn(a) = xp
s

m(a).

Proof. See [PZ99a, Section 2].

Let Σ+
a (F ) be the subset of Σa(F ) consisting of the pairs (xn(a), yn(a)). Consider

the L∗|,R,T -structure

S+
a (F ) =

(
Σ+
a (F ); (1, 0), (a, 1),⊕, |, R̃, T̃

)
where

• (f, g) | (h, k) means “g divides k”;
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• R̃((f, g), (h, k)) means “there exists s ∈ Z such that fp
s

= h”;

• T̃ (f, g) means “g is not a constant”.

It is then an immediate consequence of Theorem 8.1 that S+
a (F ) is isomorphic to Dp

as L∗|,R,T -structures through the map

θF [z] : S+
a (F ) → Z

(xn(a), yn(a)) 7→ n.

8.2 Proof of Theorem 4.7

Consider the Lrings-formula

δ(α; v, w) : v2 − (α2 − 1)w2 = 1.

Lemma 8.2. If α is interpreted as a non-constant element a ∈ F [z], then the positive
existential Lrings-formula

η(α; v, w) : δ(α; v, w) ∧ (∃x, y(δ(α;x, y) ∧ (v = x2 + (α2 − 1)y2 ∧ w = 2xy)∨
(v = (x2 + (α2 − 1)y2)α + (α2 − 1)2xy ∧ w = x2 + (α2 − 1)y2 + 2αxy)))

is satisfied in F [z] if and only if (v, w) ∈ Σ+
a (F ).

Proof. The first part of the formula, namely δ(α; v, w), says that (v, w) belongs to
Σa(F ). The rest of the formula says that (v, w) is either of the form 2(x, y) or 2(x, y)⊕
(a, 1) for some (x, y) ∈ Σa(F ), which is equivalent to saying that (v, w) ∈ Σ+

a (F ).

Lemma 8.3. Assume that F has characteristic p > 2. If α is interpreted as a non-
constant element a ∈ F [z], then the positive existential Lrings-formula

∆(α;x, y, u, v) : η(α;x, y) ∧ η(α;u, v) ∧ ∃y1y2 (η(x;u, y1) ∧ η(x+ 1;u+ 1, y2))

is satisfied in F [z] if and only if Denp(x, u) and both (x, y) and (u, v) lie in Σ+
a (F ).

Proof. The proof is similar to the proof of Lemma 2.4 in [PZ99a]. Our formula is
slightly different because we are working with Σ+

a (F ) rather than Σa(F ), but this does
not affect the proof.

Theorem 8.4. There exists a set Φα of positive existential LT -formulas with parameter
α such that for each prime p > 2, the structure Dp is uniformly interpretable in the
class of polynomial rings of characteristic p by Φα.

Proof. We list the formulas of Φα (following the notation in Subsection 3.3):

• ϕL∗|,R,T
(α;x, y) : η(α;x, y);
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• ϕ0(x, y) : x = 1 ∧ y = 0;

• ϕ1(α;x, y) : x = α ∧ y = 1;

• ϕ=(α;x, y, u, v) : η(α;x, y) ∧ η(α;u, v) ∧ x = u ∧ y = v;

• ϕ+(α;x, y, u, v, z, w) : xu+ (α2 − 1)yv = z ∧ xv + yu = w ∧ η(α;x, y)∧ η(α;u, v);

• ϕ|(α;x, y, u, v) : η(α;x, y) ∧ η(α;u, v) ∧ ∃z(yz = v);

• ϕR(α;x, y, u, v) : ∆(α;x, y, u, v);

• ϕT (α;x, y) : η(α;x, y) ∧ T (y).

Let us fix a prime p > 2. Note that by Lemma 8.2 the set ϕL∗|,R,T
(a;x, y)F [z] is

Σ+
a (F ). The conclusion that Dp is uniformly interpretable in the class of polynomial

rings of characteristic p by Φα through the maps

θF [z],a : Σ+
a (F )→ Z

follows from the discussion in this section.

By Theorem 4.3, the semi-ring (N; 0, 1,+, ·) is uniformly ∃+-interpretable in D. By
the transitivity property, the latter together with Theorem 8.4 implies that (N; 0, 1,+, ·)
is uniformly ∃+-interpretable with one parameter restricted by T in the class of poly-
nomial rings of characteristic > 2 over LT .

The results at the end of the last section in [PZ99a] can be used to prove a result
analogous to Theorem 8.4 in the case p = 2, so that D2 is uniformly ∃+-interpretable
with one parameter restricted by T in the class of polynomial rings of characteristic
2 over LT . Therefore, (N; 0, 1,+, ·) is uniformly ∃+-interpretable with one parame-
ter restricted by T in the class of polynomial rings of characteristic 2 over LT . We
can then deduce Theorem 4.7 from Fact 3.5 applied to the classes of LT -structures
{F [z] : char(F ) = 2} and {F [z] : char(F ) > 2}, since these classes can be distinguished
by the formulas 1 + 1 = 0 and ∃x x+ x = 1.
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