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Abstract. We consider the problem giving upper bounds for the counting function of common zeros

(i.e. the gcd) of two entire analytic functions in various settings. Applying techniques from analytic
number theory and Diophantine approximation in the context of entire and meromorphic functions,

we establish bounds of this type covering several aspects that were not well-suited for the previously

used methods in the context of this problem.
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1. Introduction

In [5], Bugeaud, Corvaja and Zannier showed that for every ε > 0 and for all multiplicatively
independent positive integers a, b, the following bound holds as n grows:

(1) gcd(an − 1, bn − 1)�ε,a,b exp(εn).

Corvaja and Zannier generalized (1) by replacing an, bn by multiplicatively independent S-units u, v ∈
Z, showing that in this case

(2) gcd(u− 1, v − 1) < max{|u|, |v|}ε

holds with finitely many exceptions. See [8] and [9, Proposition 4] for details. These bounds are far
from obvious and they have found various applications in number theory, see for instance [15]. The
proof of these inequalities requires a very ingenious application of Schmidt’s Subspace Theorem [22].
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It was later realized that gcd bounds of this type are basically the same as particular instances of
Vojta’s conjecture in the case of targets of codimension 2 in the two dimensional torus G2

m, see [25, 10]
for further analysis of this point of view and various generalizations.

The purpose of this paper is to investigate analogues of the previous gcd bounds for analytic and
meromorphic functions in various settings.

An analogue of (1) for complex polynomials was established in [1] by linking the gcd problem
to number theoretical results on “unlikely intersections”; namely, the gcd bound is deduced from a
theorem of Ihara, Serre and Tate on torsion points in algebraic curves in G2

m. A generalized version
of (2) for algebraic function fields of characteristic zero is established in [10] by studying Wronskians,
which in particular yields a new proof of the Ihara-Serre-Tate theorem. The case of function fields in
positive characteristic is governed by anomalous examples, as studied in detail in [24].

The case of complex holomorphic functions has also been studied. Using techniques of Nevanlinna
theory and jet spaces, Noguchi, Winkelmann and Yamanoi [16] prove a very general height inequality
for holomorphic maps F : C → S into semi-abelian varieties, which in the particular case of S = G2

m

yields an analogue of (2) of the form:
Let F,G be entire complex holomorphic units (functions with no zeros, i.e., exponentials of entire

functions) and suppose that F,G are multiplicatively independent. For every ε > 0 we have

(3) N(F − 1, G− 1, r) ≤exc εmax{T (F, r), T (G, r)}.

Here, T (f, r) denotes the Nevanlinna height function, N(f, g, r) is an analogue of a gcd: it is the
counting function of common zeros of f and g, and the notation ≤exc means the estimate holds except
for r in a set of finite Lebesgue measure possibly depending on ε. (See Section 2 for the relevant
definitions from Nevanlinna theory.)

As mentioned before, our goal is to study analogues of the bounds (1) and (2) for analytic functions.
The main open problems that we address in this work are the following:

Problem 1.1. Can one obtain a gcd bound for general analytic/meromorphic functions (not just
exponentials)?

We give an affirmative answer to this question on average (in the aspect of n) for meromorphic
functions over a complete algebraically closed field of any characteristic, not just over C. For instance,
we obtain

Theorem 1.2. Let k be an algebraically closed field of any characteristic, complete with respect to
a non-trivial absolute value (such as C or Cp). Let f, g be algebraically independent meromorphic
functions on k. For any given ε > 0 there is mε such that for all m ≥ mε we have

1

m

∑
m/2<n≤m

N(fn − 1, gn − 1, r) < εmax{mTf (r),mTg(r)}.

We actually prove much stronger average bounds of which the previous theorem is a special case,
see Section 5.1. Our results have applications analogous to some classical number-theoretical problems
(see Section 5.3). The proof of our average gcd bound does not use the second main theorem of
Nevanlinna theory in any form, but instead, it is based on an elementary construction coming from
algebraic combinatorics, and some estimates from analytic number theory.

From our more precise average bounds we will deduce the following result, applicable in a very
general context (see Corollary 5.4):

Theorem 1.3. Let k be an algebraically closed field of any characteristic, complete for a non-trivial
absolute value. Let f, g be algebraically independent meromorphic functions over k. Let ε > 0. There
is an exceptional set E of positive integers having density zero in N such that for each n ∈ N r E the
following bound holds

N(fn − 1, gn − 1, r) <∞ εmax{nTf (r), nTg(r)},

where the notation “<∞” means that the inequality holds for r in a certain set U ⊆ R>0 of infinite
Lebesgue measure.
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We suspect that the difficulty in this aspect of the gcd problem relies in the fact the various versions
of the second main theorem in Nevanlinna theory only include “places at infinity” in the proximity
function. In order to adapt the successful approach from number fields, it seems that one would need
to include vanishing orders (at infinitely many points) in the proximity function.

Problem 1.4. Can the max in (3) be replaced by a min?

The point is that when G is small compared to F in the sense that TG(r) = o(TF (r)), the gcd
bound (3) gives no information. Unfortunately, the answer to this question is negative in general (see
Section 4.1 for an example). Nevertheless, under suitable hypothesis on F and G one can indeed obtain
a positive answer that allows one to get a non-trivial gcd bound even when TG(r) = o(TF (r)). For
instance, we obtain:

Theorem 1.5. Let F and G be complex holomorphic entire functions with no zeros (i.e., units) such
that F and G are multiplicatively independent. Suppose that both F and G have finite order. Then for
every ε > 0, there is nε such that for all n ≥ nε we have

N(Fn − 1, Gn − 1, r) < εmin{T (Fn, r), T (Gn, r)}+O(log r)

for sufficiently large r. Moreover, if we further assume that neither F nor G is the exponential of a
linear polynomial and that the pair (F,G) is indecomposable (cf. Section 4) then for every ε > 0 we
have

N(F − 1, G− 1, r)�F,G,ε min{T (F, r), T (G, r)} 1
2 +ε +O(log r)

for sufficiently large r.

See Section 4.1 for stronger versions of this theorem and a discussion on the optimality of the
hypotheses. Our proof uses methods originated in Pila’s work on the Andre-Oort conjecture, although
in this context the methods apply in a more direct way.

It is also possible to remove the “finite order” assumption by introducing a rather mild growth
condition (here, Mf (r) denotes the maximum modulus max{|f(z)| : |z| ≤ r}).

Theorem 1.6. Let f, g be non-constant entire functions and assume that they are algebraically inde-
pendent over Q. Suppose that

lim
r→∞

logMf (12r) logMg(12r)

min{Mf (r),Mg(r)}
= 0.

Write F = exp(2πif) and G = exp(2πig). Then for every ε > 0 we have the bound

N(F − 1, G− 1, r) <∞ εmin{T (F, r), T (G, r)}.

See Section 4.2 for the proof and for a discussion on the optimality of the growth condition. Our
proof uses methods from transcendental number theory and we will follow the main ideas from [30],
suitably extended to estimate simultaneous integral values of entire functions.

Problem 1.7. Can one prove gcd bounds analogous to (1), (2) and (3) for non-Archimedean analytic
functions?

This question is not just for the sake of generalizing, but actually there is a concrete technical
obstruction that prevents one from obtaining such a result just by adapting the known theory over C.
The work of [16], in its present form, only applies to the complex setting. In fact, it is a theorem of
Cherry [6] that the only analytic maps A1 → S with S a semi-abelian variety over non-Archimedean
fields are the constant maps. (In the particular case of Gm this is the same as the lack of globally
convergent non-Archimedean exponential functions.) So, in the non-Archimedean setting one is forced
to work with non-units. Nevertheless, our theorems 1.2 and 1.3 already apply in the non-Archimedean
setting. In addition, we prove a bound of the form

(4) N(Fn − 1, Gn − 1, r) <

(
1

2
+ ε

)
max{T (Fn, r), T (Gn, r)}

for F,G entire non-Archimedean functions in characteristic zero, provided that n�ε 1 (see Section 6).
We suspect that the bound should hold with 1/2 removed, but it seems that such a version of the gcd
inequality for general F,G, even in the non-Archimedean setting, is beyond the current techniques.
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In addition to our work on the previous main questions, in Section 3 we provide an alternative
more elementary proof of the Noguchi-Winkelmann-Yamanoi theorem in the particular case of the gcd
bound (3) by adapting the number-theoretical argument from [9] to Nevanlinna theory (which serves
as an example of Vojta’s dictionary working in the direction “number theory to complex analysis”).
Also, in Section 7 we discuss the precise relation of Vojta’s conjectures for blow-up surfaces with gcd
bounds in the context of analytic functions (see [25] for the corresponding analysis over number fields).

From an informal point of view, large part of this work consists of applying number theory in
Nevanlinna theory, both by analogy and by actually applying number theoretical results that escape
the classical analogy of Nevanlinna theory and Diophantine approximation. We hope that, beyond the
present study of the gcd problem, these connections can serve to extend the usual analogies between
value distribution and number theory.

2. Nevanlinna theory

2.1. Nevanlinna Theory over C. We will set up some notation and definitions in Nevanlinna theory
for complex meromorphic functions and recall some basic results. We refer to [12, Chapter VI ] or [20,
Chapter 1] for details.

Let f be a meromorphic function and z ∈ C. Denote by vz(f) := ordz(f).

v+
z (f) := max{0, vz(f)}, and v−z (f) := −min{0, vz(f)}.

Let nf (r,∞) (respectively, n
(1)
f (r,∞)) denote the number of poles of f in {z : |z| ≤ r}, counting mul-

tiplicity (respectively, ignoring multiplicity). The counting function and truncated counting function
of f at ∞ are defined respectively by

Nf (r,∞) :=

∫ r

0

nf (t,∞)− nf (0,∞)

t
dt+ nf (0,∞) log r

=
∑

0<|z|≤r

v−z (f) log |r
z
|+ v−0 (f) log r,

and

N
(1)
f (r,∞) :=

∫ r

0

n
(1)
f (t,∞)− n(1)

f (0,∞)

t
dt+ n

(1)
f (0,∞) log r

=
∑

0<|z|≤r

min{1, v−z (f)} log |r
z
|+ min{1, v−0 (f)} log r.

Then define the counting function Nf (r, a) and the truncated counting function N
(1)
f (r, a) for a ∈ C as

Nf (r, a) := N1/(f−a)(r,∞) and N
(1)
f (r, a) := N

(1)
1/(f−a)(r,∞).

The proximity function mf (r,∞) is defined by

mf (r,∞) :=

∫ 2π

0

log+ |f(reiθ)| dθ
2π
,

where log+ x = max{0, log x}. For any a ∈ C, the proximity function mf (r, a) is defined by

mf (r, a) := m1/(f−a)(r,∞).

Finally, the characteristic function is defined by

T (f, r) := mf (r,∞) +Nf (r,∞).

Jensen’s formula can be stated as follows.

Theorem 2.1. Let f be a meromorphic function on {z : |z| ≤ r} which is not the zero function. Then∫ 2π

0

log |f(reiθ)| dθ
2π

= Nf (r, 0)−Nf (r,∞) + log |cf |,

where cf is the leading coefficient of f expanded as Laurent series in z, i.e., f = cfz
m + · · · with

cf 6= 0.
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We now recall the main theorems of Nevanlinna theory.

Theorem 2.2 (First Main Theorem). Let f be a non-constant meromorphic function on C. Then
for every a ∈ C, and any positive real number r,

mf (r, a) +Nf (r, a) = T (f, r) +O(1),

where O(1) is a constant independent of r.

Theorem 2.3 (Truncated Second Main Theorem). Let f be a non-constant meromorphic func-
tion on C, and a1, . . . , aq be distinct elements in C ∪ {∞}. Then for r > 0,

(q − 2)T (f, r) ≤exc
q∑
i=1

N
(1)
f (r, ai) +O(log+ T (f, r)),

where ≤exc means the estimate holds except for r in a set of finite Lebesgue measure.

The following notation will be central in our work, as it gives an analogue for the notion of gcd in
the context of meromorphic functions. For meromorphic functions F,G write

n(F,G, r) :=
∑
|z|≤r

min{v+
z (F ), v+

z (G)}

and

N(F,G, r) :=

∫ r

0

n(F,G, t)− n(F,G, 0)

t
dt+ n(F,G, 0) log r.

This will be the counting function of the greatest common divisor of F and G.

Remark 2.4. If F,G are holomorphic, then we can define a holomorphic function H as the gcd of F
and G by considering the respective Weierstrass factorizations. Then H would be well-defined only up
to multiplication by a holomorphic unit. Nevertheless, we would still have N(H, r) = N(F,G, r). So,
we prefer to define N(F,G, r) as above without introducing a holomorphic gcd since this approach gives
the same result and avoids all choices and ambiguities (and moreover, it works in the meromorphic
case as well).

2.2. Nevanlinna theory for holomorphic maps. Let D be a hypersurface in Pn(C) of degree d.
We also use the notation D(x) for a homogeneous polynomial of degree d such that D is its zero locus.
The homogeneous polynomial D(x) is only well-defined up to a linear factor, but we fix one choice
once and for all. For x = [x0 : · · · : xn] ∈ Pn(C), we let

λD(x) = − log
|D(x)|

max{|x0|, . . . , |xn|}d
.(1)

This expression is invariant under scaling of projective coordinates.
Let f : C → Pn(C) be a holomorphic map. Let f = (f0, . . . , fn) be a reduced representation of

f , i.e. f0, . . . , fn are entire functions on C without common zeros such that for all z ∈ C we have
f(z) = [f0(z) : . . . : fn(z)]. The Nevanlinna-Cartan characteristic function Tf (r) is defined by

Tf (r) =

∫ 2π

0

log ‖f(reiθ)‖ dθ
2π
,

where ‖f(z)‖ = max{|f0(z)|, . . . , |fn(z)|}. This definition is independent, up to an additive constant,
of the choice of the reduced representation of f . The proximity function of f with respect to D is
defined by

mf (r,D) =

∫ 2π

0

λD(f(reiθ))
dθ

2π
.

Let nf (r,D) be the number of zeros of D◦f in the disk |z| ≤ r, counting multiplicity. The integrated
counting function is defined by

Nf (r,D) =

∫ r

0

nf (t,D)− nf (0, D)

t
dt+ nf (0, D) log r.

In this context, the First Main Theorem reads as follows.
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Theorem 2.5. Let f : C → Pn(C) be a holomorphic map, and let D be a hypersurface in Pn(C) of
degree d. If f(C) 6⊂ D, then for r > 0,

dTf (r) = mf (r,D) +Nf (r,D) +O(1),

where O(1) is bounded independently of r.

The following is a generalized Second Main Theorem due to Vojta in [27]. Although it does not
involve truncated counting functions, it permits very fine control of the proximity functions.

Theorem 2.6. Let H1, H2, . . . ,Hq be hyperplanes in Pn(C) (not necessarily in general position).
f : C→ Pn(C) be a holomorphic map whose image does not lie in any proper linear subspace. Then∫ 2π

0

max
J

∑
j∈J

λHj (f(reiθ))
dθ

2π
≤exc (n+ 1)Tf (r) +O(log+ Tf (r)) + o(log r),(2)

where the maximum is taken over all subsets J of {1, . . . , q} such that the linear forms corresponding
to Hj, j ∈ J , are linearly independent.

2.3. Nevanlinna theory over non-Archimedean fields. Here we give some basic notation and
definitions in non-Archimedean Nevanlinna theory. See [11] for reference. Let k be an algebraically
closed field (of arbitrary characteristic) complete with respect to a non-Archimedean absolute value
| − |. Let A be the ring of entire analytic functions on k, that is, functions that can be expressed
as a power series over k with infinite radius of convergence. Given h(z) =

∑∞
j=0 ajz

j ∈ A an entire
analytic function on k, for each real number r ≥ 0 we define

|h|r := sup
j
|aj |rj = sup{|h(z)| : z ∈ k with |z| ≤ r}

= sup{|h(z)| : z ∈ k with |z| = r}.
For r > 0, the function | − |r defines an absolute value on A.

The definition of the counting functions are the same as the complex case. The Poisson-Jensen
formula for an entire function h can be stated as

Nh(r, 0) = log |h|r +O(1).

The field of non-Archimedean meromorphic function on k, denoted by M, is the fraction field of A.
One can show that a non-Archimedean meromorphic function f ∈ M is the quotient of two non-
Archimedean entire functions h/g such that h and g do not have common zeros on k. The above
notations can be extended as follows:

For r > 0 the absolute value | − |r has a unique extension from to an absolute value on M and it
satisfies

|f |r =
|h|r
|g|r

.

The proximity functions are given by

mf (r,∞) = log+ |f |r, mf (r, a) = log+ 1

|f − a|r
,

and the characteristic function is

T (f, r) = mf (r,∞) +Nf (r,∞).

As in the complex case, we have the following version of the first and second main theorems.

Theorem 2.7. Let f be a non-constant non-Archimedean meromorphic function on k and let a ∈ k.
Then for r > 0

mf (r, a) +Nf (r, a) = T (f, r) +O(1)

where O(1) is bounded independently of r.

Theorem 2.8. Let f be a non-constant non-Archimedean meromorphic function on k, and a1, . . . , aq
be distinct elements in k ∪ {∞}. Then for r > 0,

(q − 2)T (f, r) ≤
q∑
i=1

N
(1)
f (r, ai)− log r +O(1).
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For non-Archimedean meromorphic functions F,G we define the gcd counting functions exactly as
in the complex case. Namely, we define

n(F,G, r) :=
∑
|z|≤r

min{v+
z (F ), v+

z (G)}

and

N(F,G, r) :=

∫ r

0

n(F,G, t)− n(F,G, 0)

t
dt+ n(F,G, 0) log r.

3. An alternative proof of a gcd bound for holomorphic units

In this section we work over the complex numbers.
We say that f and g are multiplicatively independent if for all (m,n) ∈ Z × Z \ {(0, 0)} we have

fm · gn /∈ C. In this section we give a more elementary proof of the following important special case
of a theorem of Noguchi, Winkelmann and Yamanoi [16], as discussed in the introduction.

Theorem 3.1. Let f, g be entire functions with no zeros and suppose that f and g are multiplicatively
independent. Let ε > 0. Then we have

N(f − 1, g − 1, r) ≤exc εmax{T (f, r), T (g, r)}.

Our proof of Theorem 3.1 breaks into two steps. We first show by Borel Lemma that if two units
f and g are multiplicatively independent, then they actually are algebraically independent. Then we
adapt the method in [9] from the number field case to the complex setting assuming that f and g are
algebraically independent. In this second step, we will need to use Theorem 2.6, a generalized version
of the second main theorem by Vojta, as a substitute for the version of Schmidt’s subspace theorem
used in [9].

We now recall Borel’s Lemma (cf. [20, Theorem A.3.3.2]).

Theorem (Borel’s Lemma). Let f0, . . . , fn+1 be entire functions without zeros, satisfying

f0 + . . .+ fn + fn+1 = 0.

Considering the partition

{0, 1, 2, . . . , n+ 1} = I1 ∪ I2 . . . ∪ Ik
such that i and j are in the same set I` if and only if fi = cijfj for some nonzero constant cij. Then
for each ` we have ∑

i∈I`

fi = 0.

Proof of Theorem 3.1. If f and g are algebraically dependent over C, then they satisfy a non-trivial
C-linear relation, say

m∑
i=0

u∑
j=0

aijf
igj = 0,(3)

where aij ∈ C. We may further assume that no proper sub-sums of the left hand side of (3) is zero.
Since f and g are entire functions without zeros, Borel’s Lemma implies that we have pairs of indices
(i, j) 6= (i′, j′) such that aijf

igj is a constant multiple of some ai′j′f
i′gj

′
appearing in the left hand side

of (3), which is not possible since f and g are multiplicatively independent. Therefore, we conclude
that f and g are algebraically independent over C.

Next, we will adapt the arguments in [9] into the complex setting. For a positive integer j, we let

zj :=
f j − 1

g − 1
.(4)

Note that

zj = z1 · (f j−1 + · · ·+ f + 1).(5)



8 HECTOR PASTEN AND JULIE TZU-YUEH WANG

Fix a positive integer h and consider the identity

1

g − 1
=

1

g
· 1

1− g−1
=

1

g

(
1 + g−1 + · · ·+ g−h+1 +

g−h

1− g−1

)
.(6)

Fix a second positive integer k. Then for j ∈ {1, · · · , k} we obtain, on multiplying by f j − 1 in the
above identity,

zj = (f j − 1) ·
(
g−1 + g−2 + · · ·+ g−h +

g−h

g − 1

)
.(7)

We put M = hk + h+ k; for convenience we write coordinates in CM as

x = (x1, . . . , xM ) = (z1, . . . , zk, y0,1, . . . , y0,h, . . . , yk,1, . . . , yk,h).

In this notation, we choose linear forms Hi = xi for 1 ≤ i ≤M and

HM+j = zj + y0,1 + . . .+ y0,h − yj,1 − . . .− yj,h

for j = 1, . . . , k. Let ξ be a gcd of f − 1 and g − 1, i.e. f−1
ξ and g−1

ξ are entire with no common zero,

and let η = g−1
ξ . Set

F = (z1η, . . . , zkη, g
−1η, . . . , g−hη, fg−1η, . . . , fg−hη, . . . , fkg−1η, . . . , fkg−hη)(8)

which is a reduced representation of a holomorphic map from C to PM−1. Then

TF (r) =

∫ 2π

0

log ‖F (reiθ)‖ dθ
2π
.(9)

For simplicity of notation, we let |ξ|r,θ := |ξ(reiθ)| for a meromorphic function ξ and let ‖F‖r,θ :=
‖F (reiθ)‖.

For r > 0, we denote by S+
r = {θ ∈ [0, 2π) : |g|r,θ > 1} and S−r = {θ ∈ [0, 2π) : |g|r,θ ≤ 1}. For

θ ∈ S+
r , we have that

|HM+j(F )|r,θ = |η|r,θ · |zj − f jg−1 − · · · − f jg−h + g−1 + · · ·+ g−h|r,θ

= |η|r,θ · |f j − 1|r,θ
|g|−hr,θ
|1− g|r,θ

≤ 2 max(1, |f |r,θ)j ·
1

|1− g|r,θ
|g|−hr,θ · |η|r,θ(10)

for j = 1, . . . , k by (7). Consequently, for θ ∈ S+ we have

k∑
j=1

λHM+j
(F (reiθ)) ≥ −k(k + 1)

2
log+ |f |r,θ + k log |1− g|r,θ + kh log |g|r,θ

+ k log ‖F‖r,θ − k log |η|r,θ −
k(k + 1)

2
log 2.(11)

For θ ∈ S−r , we recall that zj = (f j − 1)/(g − 1), so

|Hj(F )|r,θ ≤ |f j − 1|r,θ|1− g|−1
r,θ · |η|r,θ

≤ 2 max(1, |f |r,θ)j · |1− g|−1
r,θ · |η|r,θ(12)

for 1 ≤ j ≤ k. Therefore,

k∑
j=1

λHj (F (reiθ)) ≥ −k(k + 1)

2
log+ |f |r,θ + k log |1− g|r,θ + k log ‖F‖r,θ − k log |η|r,θ −

k(k + 1)

2
log 2

(13)

for θ ∈ S−.
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We note that the linear forms Hk+1, . . . ,HM+k are linearly independent, so are the linear forms
H1, . . . ,HM . Theorem 2.6 implies that∫

S−

M∑
j=1

λHj (re
iθ)
dθ

2π
+

∫
S+

M+k∑
j=k+1

λHj (re
iθ)
dθ

2π
≤exc MTF (r) +O(log+ TF (r)) + o(log r).(14)

On the other hand, the left hand side of the above inequality equals∫
S−

k∑
j=1

λHj (F (reiθ))
dθ

2π
+

∫
S+

M+k∑
j=M+1

λHj (F (reiθ))
dθ

2π
+

M∑
j=k+1

∫ 2π

0

λHj (F (reiθ))
dθ

2π
.(15)

For k + 1 ≤ j ≤M , it follows from Theorem 2.5, the First Main Theorem, that∫ 2π

0

λHj (F (reiθ))
dθ

2π
= mF (r,Hi) = TF (r)−NF (r,Hi) = TF (r)−Nη(r, 0)(16)

since f and g are units. To estimate the first two terms of (15), we use (11), (13) and the following
identities:∫ 2π

0

log+ |f |r,θ
dθ

2π
= mf (r,∞) = T (f, r) +O(1)∫

S+

log |g|r,θ
dθ

2π
=

1

2π

∫ 2π

0

log+ |g|r,θdθ = T (g, r) +O(1)∫ 2π

0

log |1− g|r,θ
dθ

2π
= Ng−1(r, 0)−Ng−1(r,∞) +O(1) = Ng−1(r, 0) +O(1) (by Theorem 2.1 )∫ 2π

0

log |η|r,θ
dθ

2π
= Nη(r, 0) +O(1) (by Theorem 2.1 ).

Then ∫
S−

k∑
j=1

λHj (F (reiθ))
dθ

2π
+

∫
S+

M+k∑
j=M+1

λHj (F (reiθ))
dθ

2π

≥ kTF (r)− kNη(r, 0)− k(k + 1)

2
T (f, r) + hkT (g, r) + kNg−1(r, 0) +O(1)(17)

Consequently, (15) is at least

MTF (r)−MNη(r, 0) + kNg−1(r, 0)− k(k + 1)

2
T (f, r) + hkT (g, r) +O(1).

Together with (14), Ng−1(r, 0) ≤ T (g − 1, r) = T (g, r) +O(1) and that

Nη(r, 0) = Ng−1(r, 0)−N(f − 1, g − 1, r),

we have

MN(f − 1, g − 1, r) ≤exc
k(k + 1)

2
T (f, r)− hkT (g, r) + (M − k)Ng−1(r, 0) +O(log+ TF (r)) + o(log r)

≤exc
k(k + 1)

2
T (f, r) + hT (g, r) +O(log+ TF (r)) + o(log r).

Let k > 2
ε and h > k

ε . Then

N(f − 1, g − 1, r) ≤exc εmax{T (f, r), T (g, r)},

for r sufficiently large. �
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4. Bounds for gcd using min instead of max

In this section we again work over the complex numbers.
Let F and G be two entire functions. One can easily derive from Theorem 2.2 that

(18) N(F − 1, G− 1, r) ≤ min{T (F, r), T (G, r)}+O(1).

Thus, if T (G, r) = o(T (F, r)) then the bound given by Theorem 3.1 in the case of holomorphic units is
too crude. Our goal in this section is to investigate to what extent one can bound N(F − 1, G− 1, r)
in terms of min{T (F, r), T (G, r)} beyond the trivial bound (18).

First of all, the following example shows that equality can occur in (18), and therefore, some
restriction on F and G must be imposed in order to obtain a non-trivial estimate.

Example 4.1. Let F = exp(2πiz) and G = exp(2πip(z)), where p(z) is a polynomial over Z of
degree n ≥ 2. It’s clear that they are algebraically independent, and hence multiplicatively independent.
Moreover, exp(2πiz)−1 has zeros if and only if z ∈ Z and all zeros are simple. Since exp(2πip(z)) = 1
for all z ∈ Z,

N(F − 1, G− 1, r) = 2r +O(log r)

On the other hand,

min{T (F, r), T (G, r)} = T (F, r) = 2r.

Therefore, in this example we get that N(F − 1, G− 1, r) and min{T (F, r), T (G, r)} are equal, up to a
negligible error.

In this example, F is small compared to G in the sense that TF (r) = o(TG(r)), and therefore the gcd
bound in Theorem 3.1 offers no information. In this section we will impose suitable hypothesis on the
holomorphic units F and G in order to obtain a non-trivial gcd bound even when TG(r) = o(TF (r)).

In the first part of this section we assume that F and G are non-constant entire functions of finite
order with no zero. In the second part, we impose certain mild growth condition on F and G in order
to remove the finite order assumption, at the cost of obtaining a bound valid for all r on a set of infinite
measure (as opposed to all r outside a set of finite measure).

4.1. Units of finite order. We now discuss the case when F and G are entire functions of finite
order with no zeros. An entire function of finite order with no zero is of the form exp(p) where p is
a polynomial over C, thus, we may let F = exp(f) and G = exp(g) where f and g are non-constant
polynomials over C. To simplify the notation, we will write dp for the degree of a polynomial p.

The next notion will play a central role.

Definition 4.2. Let f and g be nonconstant entire functions. The pair (f, g) is indecomposable if there

exists no entire function h different form a polynomial of degree 1 such that f = f̃ ◦ h and g = g̃ ◦ h
for some entire functions f̃ , g̃.

We will prove:

Theorem 4.3. Let F and G be complex holomorphic entire functions with no zeros (i.e. units) such
that F and G are multiplicatively independent. Suppose that both F and G have finite order. Then for
every ε > 0, there is nε such that for all n ≥ nε we have

N(Fn − 1, Gn − 1, r) < εmin{T (Fn, r), T (Gn, r)}.
Moreover, if we further assume that the pair (F,G) is indecomposable and that neither F nor G is the
exponential of a linear polynomial, then for every ε > 0 we have

N(F − 1, G− 1, r)�F,G,ε min{T (F, r), T (G, r)} 1
2 +ε.

We will deduce Theorem 4.3 from the next two more precise results.

Theorem 4.4. Let f, g ∈ C[x] be non-constant polynomials and write F = exp(f) and G = exp(g).

Suppose that we have an indecomposable pair of polynomials (f̃ , g̃), both non-linear, such that f = f̃ ◦h
and g = g̃ ◦ h for some polynomial h. Then for every ε > 0 we have

N(F − 1, G− 1, r)�f,g,ε min{T (F, r), T (G, r)}ε+1/min(df̃ ,dg̃).
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Theorem 4.5. Let f, g ∈ C[x] be non-constant polynomials and write F = exp(f) and G = exp(g).

Suppose that we have an indecomposable pair of polynomials (f̃ , g̃) such that f = f̃ ◦ h and g = g̃ ◦ h
for some polynomial h of degree D = dh. If df̃ = 1 and dg̃ = d, then for all positive integers n we have

N(Fn − 1, Gn − 1, r)�f,g n
1/drD

where the implicit constant only depends on f and g. Hence

N(Fn − 1, Gn − 1, r)�f,g n
−(1− 1

d ) min{T (Fn, r), T (Gn, r)}.

The proof of Theorem 4.4 uses the following result by Bombieri and Pila [3, Theorem 5], along with
the next two lemmas.

Theorem 4.6. Let C be a geometrically irreducible curve defined by F (x, y) ∈ R[x, y] of degree dC ≥ 2
and let M ≥ exp(d6

C). Then the number of integral points on C and inside a square [−M,M ]×[−M,M ]
does not exceed

4M1/dC exp(12
√
dC logM log logM).

Lemma 4.7. Let f and g be nonconstant polynomials in C[x] with degree df and dg respectively.
Suppose that the pair (f, g) is indecomposable. Let C be the Zariski closure of the image of the map
φ = [f : g : 1] : P1 → P2. Then the degree of the curve C is max(df , dg).

Moreover, if f, g take infinitely many rational values simultaneously, then there are complex numbers
a 6= 0 and b such that the polynomials f(az + b) and g(az + b) have rational coefficients.

Proof. Since (f, g) is indecomposable, φ is generically one to one so that it is the normalization of C.
The degree of C is the intersection number with any line L ⊆ P2, and since φ is the normalization

of C, this number is the degree of the zero divisor of φ∗H for any linear form H, hence the assertion
about the degree of C.

For the second part, let K be a field where f, g have coefficients, so that C is defined over K and
φ : P1

K → C is defined over K. If f, g take infinitely many rational values simultaneously, then C
can be defined over Q; we write C0 for a model of C over Q. Let ν : P1

Q → C0 be the normalization

of C0 defined over Q. After base change to K we get that ψ := φ−1 ◦ (ν ⊗ IdK) : P1
K → P1

K is an
automorphism (i.e. a Möbius transformation defined over K) satisfying that φ ◦ ψ = ν × IdK . This
proves that the pair (f, g) composed with a suitable non-constant Möbius transformation ψ gives a
pair of rational functions u, v defined over Q. As f, g are polynomials, we get that either u, v are
polynomials or they have exactly one pole (at the same point for both); in the first case we are done
(ψ is a linear polynomial), so let’s assume that we are in the second case. As u, v are defined over Q,
the unique pole occurs at a rational number q ∈ Q (by considering the Galois action). Hence ψ has its
unique pole at q, and therefore ψ ◦

(
1
z + q

)
is a linear polynomial az + b with the required property,

because f(az + b) = u ◦
(

1
z + q

)
is still defined over Q (similarly for g). �

Lemma 4.8. Let F and G are holomorphic functions and h(x) := adx
d + . . .+ a1x+ a0 in C[x] with

ad 6= 0. Then for sufficiently large r, we have

N(F ◦ h,G ◦ h, r) ≤ N(F,G, (d+ 1) · |h|rd) +O(log r),(19)

where |h| := max{1, |ad|, . . . , |a0|}.

Proof. We first observe that |h(z)| ≤ (d+ 1) · |h|max{1, |z|}d . Secondly, for w ∈ C

∏
z∈h−1(w)

zvz(h−w) =
(−1)d

ad
(a0 − w), and

∑
z∈h−1(w)

vz(h− w) = d.(20)
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Since vz(F (h)) = vw(F ) · vz(h− w) for z ∈ C and w = h(z),

N(F (h), G(h), r) =
∑

0<|z|≤r

min{vz(F (h)), vz(G(h))} log |r
z
|+ min{v0(F (h)), v0(G(h))} log r

=
∑

0<|z|≤r

vz(h− w) ·min{vw(F ), vw(G)} log |r
z
|+O(log r)

≤
∑

0<|w|≤(d+1)·|h|rd
min{vw(F ), vw(G)} · (

∑
z∈h−1(w)

vz(h− w) log |r
z
|) +O(log r)

=
∑

0<|w|≤(d+1)·|h|rd
min{vw(F ), vw(G)} · log | ad · r

d

w − a0
|+O(log r)

≤
∑

0<|w|≤(d+1)·|h|rd
min{vw(F ), vw(G)} log |ad · r

d

w
|+O(log r)

≤ N(F,G, (d+ 1) · |h|rd) +O(log r)

for r sufficiently large. �

Proof of Theorem 4.4. By Lemma 4.8 and the fact that T (exp(f), r) � rdf , it suffices to show that for
any given ε > 0

N(exp(f̃)− 1, exp(g̃)− 1, r)�f̃ ,g̃,ε r
1+ε.

So we can assume that the pair (f, g) is indecomposable, and that both f, g are polynomials of degree
at least 2. We also let f = 2πif1 and g = 2πig1. Denote by d = max{df , dg}.

For z ∈ C, the condition exp(f(z)) = 1 is equivalent to the condition f1(z) ∈ Z. Moreover, it
follows from comparing the Taylor expansions of f(z) and exp(f(z))− 1 at b ∈ C with f1(b) ∈ Z that
vb(exp(f(z))−1) = vb(f(z)−f(b)) = vb(f1(z)−f1(b)), and this multiplicity does not exceed the degree
of f .

Therefore,

n(exp(f)− 1, exp(g)− 1, r) =
∑
j,k∈Z

n(f1 − j, g1 − k, r) ≤ d ·
∑
|z|<r

δ((f1(z), g1(z)) ∈ Z× Z)(21)

where the notation δ(P ) means: 1 if the statement P is true, 0 if P is false.
Suppose that there are only finitely many z ∈ C such that f1(z) ∈ Z and g1(z) ∈ Z. Then (21)

implies that

N(exp(f)− 1, exp(g)− 1, r) ≤ O(log r)

proving the result in this case. Therefore, we can assume from now that there are infinitely many
z ∈ C such that f1(z) ∈ Z and g1(z) ∈ Z. By Lemma 4.7 we can assume (after a harmless linear
substitution if necessary) that f1 and g1 are in fact in Q[x].

Let C be the Zariski closure of the image of the map φ : [f1 : g1 : 1] : P1 → P2 which is a curve of
degree d > 1 by Lemma 4.7. If |z| ≤ r, then |f1(z)|, |g1(z)| ≤ crd where c = (d + 1) max{|f1|, |g1|}.
Let us write

ZC(M) := {[m : n : 1] ∈ C|(m,n) ∈ Z2 ∩ [−M,M ]× [−M,M ]}.
The map φ : P1 → C is generically 1-to-1, and at all points it is at most d-to-1, so we have the (crude)
bound ∑

|z|<r

δ((f1(z), g1(z)) ∈ Z× Z) ≤ d ·#ZC(crd).(22)

By Theorem 4.6 and the fact that C has degree d > 1, we have

#ZC(crd) ≤ 4c1/dr exp(12
√
d log crd log log crd)

for r large. Consequently, N(exp(f)− 1, exp(g)− 1, r)�f,g,ε r
1+ε for any given ε > 0. �
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Proof of Theorem 4.5. Let n be a positive integer. It will be important to keep uniformity on n, so
all the implicit constants in the bounds occurring in this proof will (possibly) depend on f and g, but
not on n.

We first consider the case when the pair (f, g) is indecomposable, so that df = 1 and dg = d. In
this case, our aim is to prove that

N(exp(nf)− 1, exp(ng)− 1, r)�f,g n
1/dr.(23)

After a linear change of variables which only depends on f , we can assume that f(z) = 2πiz; this
change of variables only contribute to the implicit constant �f,g. Moreover, it will be convenient to
write g = 2πiq with q a polynomial. With this notation can assume that q ∈ Q[z]; for otherwise z and
h(z) can only take finitely many rational values simultaneously, and we would have

N(exp(nf)− 1, exp(ng)− 1, r)�f,g log r.

We note that

n(exp(2πinz)− 1, exp(2πinq(z))− 1, r) =
∑
|b|≤r

∑
(j,k)∈Z2

min(vb(nz − j), vb(nq(z)− k))

=
∑

a∈[−nr,nr]∩Z

δ(nq(a/n) ∈ Z)

where we used that vb(nz− j) is either 0 or 1 (the notation δ(P ) means: 1 if P is true, 0 if P is false).
Now we estimate the last sum. Let Q(x, y) ∈ Z[x, y] be a homogeneous polynomial of total degree d
such that the coefficients of Q are coprime and let D ∈ Z be such that q(z) = Q(z, 1)/D (Q,D are
unique up to sign). Then Q(x, y) = a0x

d+a1x
d−1y+ . . .+ady

d with a0 6= 0 ∈ Z. Then for a, b coprime
integers, on has that gcd(Q(a, b), b) divides a0. With all these observations and notation we find (the
sums run over positive integers):∑

a≤nr

δ(nq(a/n) ∈ Z) =
∑
a≤nr

δ(Dnd−1|Q(a, n))

=
∑
e|n

∑
gcd(t,e)=1
t≤er

δ(Ded|nQ(t, e))

≤
∑
e|n

∑
gcd(t,e)=1
t≤er

δ(ed|nad0)

≤
∑
ed|nad0

(r + 1)ϕ(e)

= (r + 1)
∑

e|u(nad0)

ϕ(e)

where did the change of variables e = n/ gcd(a, n) and t = a/ gcd(a, n), the symbol u(M) denotes the
largest d-th power dividing M , and ϕ is Euler’s totient function. From classic number theory, we know
that ∑

e|A

ϕ(e) = A

and certainly we have u(M) ≤M1/d, so we get∑
a≤nr

δ(nq(a/n) ∈ Z) ≤ (r + 1) · (nad0)1/d �f,g n
1/d(r + 1).

A similar estimate holds in the range a ∈ [−nr, 1] ∩ Z, and a = 0 contributes at most by 1, therefore
for all r > 0 we get

n(exp(2πinz)− 1, exp(2πinq(z))− 1, r)− n(exp(2πinz)− 1, exp(2πinq(z))− 1, 0)�f,g n
1/d(r + 1).
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It is important that this estimate holds even for small r uniformly on n because we will integrate it.
We also observe that

n(exp(2πinz)−1, exp(2πinq(z))−1, r)−n(exp(2πinz)−1, exp(2πinq(z))−1, 0) = 0 for 0 ≤ r < 1/n.

Therefore, for r > 1 + log n

N(exp(2πinz)− 1, exp(2πinq(z))− 1, r)

=

∫ r

0

n(exp(2πinz)− 1, exp(2πinq(z))− 1, t)− n(exp(2πinz)− 1, exp(2πinh(z))− 1, 0)
dt

t

+ n(exp(2πinz)− 1, exp(2πinq(z))− 1, 0) log r

�f,g

∫ r

1/n

n1/d(t+ 1)

t
dt+ log r

�f,g n
1/dr

which proves (23).
Finally, let us deduce the general case. The bound

N(exp(nf)− 1, exp(ng)− 1, r)�f,g n
1/drD +O(log r)

is obtained from the indecomposable case (that is, from (23)) by using Lemma 4.8.

With the notation of the statement, since f̃ is linear we see that

min{T (exp(nf), r), T (exp(ng), r)} �f,g nrD

which gives

N(exp(nf)− 1, exp(ng)− 1, r)�f,g n
1
d−1 min{T (exp(nf), r), T (exp(ng), r)}.

�

Finally, we prove Theorem 4.3. We need the following lemma.

Lemma 4.9. Let f and g be non-constant entire functions such that af+bg = 2πic for some a, b, c ∈ C,
not all zeros. If f and g take infinitely many values in 2πiZ, then exp(f) and exp(g) are multiplicatively
dependent.

Proof. As f and g take infinitely same many values in 2πiZ, a, b, c must be rational with ab 6= 0.
Taking non-zero integer powers of exp(f), exp(g) we can further assume that a, b, c are integers. Con-
sequently, 1 = exp(2πic) = exp(af + bg) = exp(af)exp(bg) which shows that exp(f) and exp(g) are
multiplicatively dependent. �

Proof of Theorem 4.3. By Lemma 4.8 we can assume that the pair (F,G) is indecomposable. By
Lemma 4.9 not both F,G are exponential of linear polynomials. If exactly one of them is the expo-
nential of a linear polynomial, then we use Theorem 4.5 to conclude the first bound in the statement
of the theorem. If none of F,G is the exponential of a linear polynomial we use Theorem 4.4 to get
the second bound in the statement of the theorem, which also implies the first bound. �

4.2. Min bound for units with growth condition. Let us recall the notation

Mf (r) = max{|f(z)| : |z| = r}
for the maximum modulus of an entire function f . This function of r measures the growth of f .

Theorem 4.10. Let f, g be non-constant entire functions and assume that they are algebraically in-
dependent over Q. Suppose that

lim
r→∞

logMf (12r) logMg(12r)

min{Mf (r),Mg(r)}
= 0.(24)

Write F = exp(2πif) and G = exp(2πig). Then for every ε > 0 we have

N(F − 1, G− 1, r) <∞ εmin{T (F, r), T (G, r)},(25)

where the notation “<∞” means that the inequality holds for r in a certain set U ⊆ R>0 of infinite
Lebesgue measure.
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We remark that the theorem can be stated in an equivalent way by using common integer values of f
and g instead of common zeros of F −1 and G−1. This alternative formulation can be of independent
interest for number-theoretical purposes. Also, the constant 12 appearing in the statement is not
intended to be optimal.

Before proving Theorem 4.10, let us consider an interesting class of entire functions which clarifies
the role of the growth condition in the theorem.

Let C be the set of entire functions that C[z]-linear combinations of functions of the form exp(P (z))
with P (z) ∈ C[z]. That is, the elements of C are the functions of the form

f = Q1e
P1 + . . .+Qne

Pn

with Qi, Pi complex polynomials. Thus, C contains (for instance) all polynomials, sin(z), cos(z),
sinh(z) and cosh(z).

First of all, we observe that Theorem 4.10 can very well be applied to cases when f is a small function
of g, such as f = R(z) ∈ C[z] and g = Q1e

P1 + . . . + Qne
Pn satisfying that 1 ≤ degPj < d := degR

for all j, and not all Qi zero. With these choices we would have

logMf (12r) logMg(12r)

min{Mf (r),Mg(r)}
� (log r)rd−1

rd
→ 0

which is acceptable for the theorem. Moreover, continuing with the same type of examples, we note
that the growth hypothesis is optimal at least for functions in C, in the sense that if we allow deg(Pj) ≥
d := degR for some j then we would get examples such as

f = z, g = exp(2πiz)

(note that this pair is algebraically independent over Q and indecomposable) for which we have

N(F − 1, G− 1, r) = min{T (F, r), T (G, r)}+O(log r).

The proof of Theorem 4.10 will follow the main idea from [30], adapted to estimate simultaneous
integral values of entire functions. We remark that in [17] a similar problem is considered. However,
our result does not impose monotonicity conditions on f and g (unlike [17]), although our hypothesis
is more restrictive in the aspect of growth conditions.

We will need the following arithmetic lemma.

Lemma 4.11 (Siegel’s lemma). Let A be an m× n matrix with integer coefficients, and assume that
m < n and that all the entries of A have absolute value bounded by X. Then there is a non-zero tuple
a = (ai)i ∈ Zn in the kernel of A such that |ai| ≤ (nX)m/(n−m) for each 1 ≤ i ≤ n.

Also, we will use the following standard results from complex analysis.

Lemma 4.12. Let h be a non-constant entire function. Then for all r < R

T (h, r) ≤ log+Mh ≤
R+ r

R− r
T (h,R).

Lemma 4.13. Let h be a non-constant entire function which is not a linear polynomial, and let
1 > δ > 0. Then for all large enough r we have

Mh(δr) ≤ δMh(r).

Proof. From Cauchy’s bound we see that for every C the inequality

Mh(r) > Cr

holds for infinitely many values of r. Take C = 1 +Mh(1), then there is r0 > 1 with

logMh(r0)− logMh(1)

log r0 − log 1
> 1.

By Hadamard’s 3-circles theorem we know that logMh(r) is a convex function of log r, thus we obtain
that for every r > max{r0, 1/δ} the following holds

logMh(r)− logMh(δr)

log r − log(δr)
> 1

which gives what we want. �
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Lemma 4.14. Let X be a discrete set in C and let n
(1)
X (r) = #X ∩B(r),

N
(1)
X (r) :=

∫ r

0

n
(1)
X (t)− n(1)

X (0)

t
dt+ n

(1)
X (0) log r

= n
(1)
X (0) log r +

∑
0<|z|≤r
z∈X

log
r

|z|
.

Then for every 0 < θ < 1 we have the inequalities

(i) n
(1)
X (r) ≥ 1

log θ−1

(
N

(1)
X (r)−N (1)

X (θr)
)

;

(ii) N
(1)
X (r) ≥ (log θ−1)n

(1)
X (θr) for r > 1/θ.

Proof. We have ∑
θr<|z|≤r
z∈X

log
r

|z|
= N

(1)
X (r)− n(1)

X (0) log r −
∑

0<|z|≤θr
z∈X

log
r

|z|

= N
(1)
X (r)−N (1)

X (θr)− n(1)
X (0) log θ−1 −

∑
0<|z|≤θr
z∈X

log θ−1

= N
(1)
X (r)−N (1)

X (θr)− n(1)
X (θr) log θ−1.

The first inequality now follows from

(n
(1)
X (r)− n(1)

X (θr)) log θ−1 ≥
∑

θr<|z|≤r
z∈X

log
r

|z|

and the second inequality follows from ∑
θr<|z|≤r
z∈X

log
r

|z|
≥ 0

and the fact that N
(1)
X (θr) > 0 for r > 1/θ. �

Lemma 4.15. Let h be a non-constant entire function with h(0) = 0, let 0 < θ ≤ 1/4 and let
H = exp(2πih). Then we have for all large r

logMH(θr) ≤ 2πMh(θr) ≤ 96θT (H, r).

Proof. By Polya [18] (see [7] for the sharp version that we will use) we have for all large r the bound
MH(r) ≥ exp(M2πih(r/2)/8), that is

M2πih(r/2) ≤ 8 logMH(r).(26)

Thus we have
logMH(θr) ≤M2πih(θr)

≤ 4θM2πih(r/4) (by Lemma 4.13)

≤ 32θ logMH(r/2) (by (26))

≤ 32θ × 3T (H, r). (by Lemma 4.12)

�

For the next lemma see Lemma 6.2.1 in [29].

Lemma 4.16. Let f be entire, let 0 < ρ < R and 0 < r < R. Then

logMf (r) ≤ logMf (R)− nf (0, ρ) log
R2 − rρ
R(r + ρ)

.

The next lemma will allow us to ignore multiplicities in the proof of Theorem 4.10.
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Lemma 4.17. Let f, g be non-constant entire functions and let F = exp(2πif), G = exp(2πig). For
all δ > 0 we have the bound

N(F − 1, G− 1, r) ≤exc N (1)(F − 1, G− 1, r) + δmin{T (F, r), T (G, r)}.

Proof. Let n ≥ 1 be a large integer and define Fn = exp(2πif/n), Gn = exp(2πig/n). Let µn be the
set of n-th roots of 1. The first and the second main theorem give

NFn(µn, r)−N (1)
Fn

(µn, r) ≤exc nT (Fn, r)− (n− 3)T (Fn, r) = 3T (Fn, r)

and similarly for Gn. It follows that

N(F − 1, G− 1, r)−N (1)(F − 1, G− 1, r)

= N(Fnn − 1, Gnn − 1, r)−N (1)(Fnn − 1, Gnn − 1, r)

≤exc 3 min{T (Fn, r), T (Gn, r)}

=
3

n
min{T (F, r), T (G, r)}.

�

Proof of Theorem 4.10. After substituting z by z − z0 in both f and g we can assume that both f, g
take an integer value at z = 0, and after adding suitable integers to f, g (not necessarily the same) we
can assume without loss of generality that f, g take the value 0 at z = 0. Also, in view of Lemma 4.17
it suffices to prove the result using N (1)(F − 1, G− 1, r) instead of N(F − 1, G− 1, r).

Let ε > 0 and suppose that the result is false. Then we have

(27) N (1)(F − 1, G− 1, r) ≥exc εmin{T (F, r), T (G, r)}.

Define
µ(r) = min{T (F, r), T (G, r))}
Sr = {z ∈ B(r) : f(z), g(z) ∈ Z}

so that

#Sr = n(1)(F − 1, G− 1, r).

Recalling that F = exp(2πif) and f(0) = 0 and similarly for g, we have for any fixed 0 < θ < 1/4

#Sr = n(1)(F − 1, G− 1, r)

≥ 1

log θ−1

(
N (1)(F − 1, G− 1, r)−N (1)(F − 1, G− 1, θr)

)
(by Lemma 4.14)

≥exc
1

log θ−1
(εµ(r)− log min{MF (θr),MG(θr)}) +Oθ(1)

≥ ε− 96θ

log θ−1
µ(r) +Oθ(1). (by Lemma 4.15)

Let us choose θ = ε/100 so that κ := ε−96θ
2 log θ−1 > 0 is a positive constant depending only on ε > 0

(which is fixed). Thus

(28) #Sr >exc κµ(r).

Define

h(r) = 2

(
#Sr logMg(r)

logMf (r)

)1/2

k(r) = 2

(
#Sr logMf (r)

logMg(r)

)1/2

then, by (24), the growth condition, and Lemma 4.13 we know that both h(r), k(r) grow to infinity.
Moreover we have

4#Sr = h(r)k(r).
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Let r0 be a large sufficiently large number (throughout the proof we will impose a finite number of
conditions on it) and let h0 := h(r0) and k0 := k(r0). In view of (28) we can assume that the bound

#Sr > κµ(r)

holds for all r ≥ r0, except perhaps on an open set E ⊆ R≥r0 of measure ≤ 1/2 (taking r0 large
enough). The natural projection map π : R → R/Z is a covering map and if we endow R/Z with
the push-forward measure (which agrees with the Lebesgue measure on any fundamental domain
[x, x+ 1)) we deduce that π(E) has measure ≤ 1/2. It follows that there is r′ ∈ [r0, r0 + 1) such that
r′+N = {r′, r′+1, r′+2, . . .}∩E = ∅, and we can replace r0 by r′, so that now the bound #Sr > κµ(r)
holds for all r ∈ r0 + N. Making r0 larger if necessary, we can assume that h(r) ≥ h0 and k(r) ≥ k0

for all r ∈ r0 + N.
By Siegel’s lemma there are find integers aij such that

A(z) :=
∑

0≤i<h0

∑
0≤j≤k0

aijf(z)ig(z)j

satisfies:

• A(z) = 0 for each z ∈ Sr0 ,
• log |aij | ≤ 2(#Sr0)1/2(logMf (r0) logMg(r0))1/2, and
• not all the aij are zero.

In fact, the first item imposes #Sr0 (possibly dependent) linear equations on the aij with integer
coefficients (here we use that f, g are integer valued on Sr0), and there are at least h0k0 = 4#Sr0
unknowns, so the logarithm of the bound in Siegel’s lemma is

#Sr0
h0k0 −#Sr0

log(h0k0Mf (r0)h0Mg(r0)k0)

=
1

3
(log(h0k0) + h0 logMf (r0) + k0 logMg(r0))

< 2(#Sr0)1/2(logMf (r0) logMg(r0))1/2.

By construction A vanishes on Sr0 . Also, A is not identically zero because f, g are algebraically
independent over Q, so that it makes sense to consider logMA(r). We claim that actually for every r
we have

(i)r: A vanishes at every point of Sr; and
(ii)r: logMA(r) < 0.

As in [30] this is done by an inductive argument.
First note that for every r we have that (ii)r implies (i)r because if z0 ∈ Sr and A(z0) 6= 0 then we

have |A(z0)| ≥ 1. Moreover, note that it suffices to prove these claims for an unbounded sequence of
values of r, and we restrict ourselves to r ∈ r0 + N, so that in particular we have #Sr ≥ κµ(r).

We know that A vanishes at every point of Sr0 , that is, we already know (i)r0 . For r ∈ r0 + N,

suppose that (i)r holds and let us show that (ii)r+1 holds (this will complete the induction).
The triangle inequality gives for all R ≥ r0

logMA(R) ≤ log

(
h0k0 max

ij
{|aij |}Mf (R)h0Mg(R)k0

)
≤ log(4#Sr0) + 2(#Sr0)1/2(logMf (r0) logMg(r0))1/2

+ 2(#Sr0)1/2
(

(logMf (r0) logMg(R))1/2 + (logMf (R) logMg(r0))1/2
)

≤ 4(#Sr0)1/2
(

(logMf (r0) logMg(R))1/2 + (logMf (R) logMg(r0))1/2
)

≤ 8(#Sr0)1/2(logMf (R) logMg(R))1/2

and since we are assuming (i)r we have

n
(1)
A (0, r) ≥ #Sr ≥ κµ(r).
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Therefore Lemma 4.16 (with ρ = r + 1 and R = 3r so that (R2 − rρ)/(R(r + ρ)) > 1.3) gives

logMA(r + 1) ≤ logMA(3r)− n(1)
A (0, r) log(1.3)

≤ 8(#Sr0)1/2(logMf (3r) logMg(3r))
1/2 − log(1.3)#Sr

≤ 8(#Sr)

((
logMf (3r) logMg(3r)

#Sr

)1/2

− log(1.3)

8

)

≤ 8(#Sr)

((
logMf (3r) logMg(3r)

κµ(r)

)1/2

− log(1.3)

8

)
which is negative thanks to our growth hypothesis, since by Lemma 4.15 we have

logMf (3r) logMg(3r)

min{T (F, r), T (G, r)}
≤ 12 logMf (3r) logMg(3r)

πmin{Mf (r/4),Mg(r/4)}
and r0 is sufficiently large with r ≥ r0 (recall that κ only depends on ε). This proves (ii)r+1, completing
the induction.

Therefore A is an entire function with the following properties:

• A is not the zero function
• A has “many” zeros (in the sense that (i)r holds for all r)
• A is bounded (because (ii)r holds for all r).

These three properties are contradictory by Liouville’s theorem. This contradiction shows that the
bound (27) cannot hold, hence proving the result. �

5. Some general gcd bounds on average

The results in this section cover the complex case and also the non-Archimedean case.

5.1. The main results of average gcd. From now on, we let k = C or k, an algebraically closed
field complete with respect to a non-Archimedean absolute value | | and of arbitrary characteristic.

The lack of exponential functions in the non-Archimedean case forces us to look to the general
case when f, g are not assumed to be exponentials. This is more difficult, mainly, because Nevanlinna
theory is not well-suited (as far as we know) to consider vanishing orders at given infinitely many
points of k as part of the “bad places” (i.e. in the proximity function).

It turns out that if we care about the average behavior as we vary n in the expression

N(Fn − 1, Gn − 1, r),

then a non-trivial max bound can be achieved in full generality (that is, without assuming that F,G
are units). In particular, it will follow that a very sharp bound holds for all but a negligible set of
exponents n. To state this result in a precise way, let us define for any given x and 0 < ∆ < x the
quantity

Avgx,∆(fn − 1, gn − 1, r) :=
1

∆

∑
x−∆<n≤x

N(fn − 1, gn − 1, r)

which is nothing but the average size of N(fn− 1, gn− 1, r) for n ∈ (x−∆, x] (that is, for n “∆-close”
to x); we will investigate this quantity for given x and ∆, as r →∞.

One’s hope is that for multiplicatively independent f, g we have that for every ε > 0, if n�ε 1 then

N(fn − 1, gn − 1) <exc εmax{nT (f, r), nT (g, r)}.
However, in this generality, such a bound seems beyond the existing techniques. We will give further
discussion of this conjectured inequality in Section 7.

The average version should then state that, for every ε > 0, if x �ε 1 and if ∆ is not so small (so
that we can actually take advantage of averaging, then

Avgx,∆(fn − 1, gn − 1, r) < εmax{xT (f, r), xT (g, r)}

for r away from a set of finite measure (possibly depending on ε and x). In fact we prove a much
stronger and general average result:



20 HECTOR PASTEN AND JULIE TZU-YUEH WANG

Theorem 5.1. Let k = C or k, an algebraically closed field complete with respect to a non-Archimedean
absolute value of arbitrary characteristic. Let f, g be algebraically independent meromorphic functions
on k. For any given x ≥ e, any y ∈ [e, x) and any ∆ ∈ [1, x) we have

Avgx,∆(fn − 1, gn − 1, r) <

(
14(y log y)1.5

x
+

2
√

2 ·∆0.5

y
+

2
√

2

∆0.5

)
max{xT (f, r), xT (g, r)}+Ox(1).

Before discussing the proof of this theorem, let us present some corollaries that optimize different
aspects of this general bound.

The next bound is for averages over intervals of fixed length, for large exponent. It is nontrivial
already for the average of N(fn − 1, gn − 1, r) over nine consecutive values of the exponent n (taking
∆ = 9).

Corollary 5.2. Let k = C or k, an algebraically closed field complete with respect to a non-Archimedean
absolute value of arbitrary characteristic. Let f, g be algebraically independent meromorphic functions
on k. Let ∆ be a given positive integer. For any given ε > 0, we have that all n�ε,∆ 1 satisfy

1

∆

∆∑
j=1

N(fn+1−j − 1, gn+1−j − 1, r) <

(
2
√

2

∆0.5
+ ε

)
max{nT (f, r), nT (g, r)}+O(1).

Proof. Choose y = x2/5 and x = n. This actually gives ε = ε(n) = Oτ (1/n2/5−τ ) for any τ > 0. �

The next bound is for the average over the dyadic interval n ∈ (x/2, x] (taking ∆ = x/2).

Corollary 5.3. Let k = C or k, an algebraically closed field complete with respect to a non-Archimedean
absolute value of arbitrary characteristic. Let f, g be algebraically independent meromorphic functions
on k. For each x ≥ 6 we have the bound

1

x

∑
x/2<n≤x

N(fn − 1, gn − 1, r) <
6 + 7(log x)1.5

x1/10
max{xT (f, r), xT (g, r)}+Ox(1).

Proof. Take ∆ = x/2 and y = x3/5; as x ≥ 6 we have y ≥ e. The quantity in parenthesis in the main
theorem becomes

14 · (3/5)1.5 (log x)1.5

x1/10
+

2

x1/10
+

4

x0.5
<

6 + 7(log x)1.5

x1/10
.

�

Note that the factor ε(x) := (6 + 7(log x)1.5)/x1/10 is as small as we want provided that x is large.
Thus, this corollary is an improved version of Theorem 1.2 from the introduction, and it gives the
following improved version of Theorem 1.3 as a consequence:

Corollary 5.4. Let k = C or k, an algebraically closed field complete with respect to a non-Archimedean
absolute value of arbitrary characteristic. Let ε > 0. Let Eε be set of positive integers n for which the
following fails

(∗) N(fn − 1, gn − 1, r) <∞ εmax{nT (f, r), nT (g, r)}.
Then for any positive τ there is a uniform constant Kε,τ depending only on the numbers ε and τ
(independent of f, g) such that for all large x

#Eε ∩ [1, x] < Kε,τx
9
10 +τ .

In particular, Eε has density zero in N, which means that most n satisfy (∗).

Proof. Let x0 be a sufficiently large number and let x > x0 be arbitrary. Since f and g are nonconatant
meromorphic functions, the constant Ox(1) in Corollary 5.3 is bounded by max{Tf (r), Tg(r)} for
sufficiently large r. Therefore, we have∑

x/2<n≤x

N(fn − 1, gn − 1, r) < (6 + 7(log x)1.5)x9/10 max{xT (f, r), xT (g, r)}(29)

for r � 1. On the other hand, for each n ∈ Eε
N(fn − 1, gn − 1, r) ≥exc εmax{nT (f, r), nT (g, r)}.(30)
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Let mx,ε = #Eε ∩ (x/2, x]. Then (30) implies that∑
x/2<n≤x

N(fn − 1, gn − 1, r) ≥exc εmx,ε max{x
2
T (f, r),

x

2
T (g, r)}.(31)

It follows from (29) and (31) that

mx,ε <
1

ε
(12 + 14(log x)1.5)x9/10.

Consequently,

#Eε ∩ [1, x] ≤ x0 +

log2 x∑
i=0

mx/2i,ε

≤ x0 +
1

ε
(12 + 14(log x)1.5)x9/10

∞∑
i=0

1

29i/10

from which the result follows. �

5.2. Proof of the average bound. The proof of Theorem 5.1 does not use the second main theorem,
only the first main theorem (on P2).

We need the following elementary construction from algebraic combinatorics (see [26] for a discussion
on some striking applications of it).

Lemma 5.5. Let k be a field and let S be a set of M points in k2. There is a non-zero polynomial
P (X,Y ) ∈ k[X,Y ] of degree d ≤

√
2M which vanishes at every point of S.

Proof. The vector space Vd = k[X,Y ]≤d of bivariate polynomials of degree ≤ d has dimension(
d+ 2

2

)
=

(d+ 2)(d+ 1)

2
.

Evaluation at points in S defines a linear map L : Vd → kM . For M small relative to d this map will
have non-trivial kernel (which is what we want); more precisely, there is non-trivial kernel as soon as

M < (d+ 1)(d+ 2)/2. Taking d = b
√

2Mc we see that the last requirement is achieved. �

Before proving Theorem 5.1, we also need an arithmetic lemma that will allow us to count roots of
unity. We write ϕ for Euler’s totient function, µ for Möbius function, ω for the function counting the
number of distinct prime divisors, and [a, b] for the lcm.

Lemma 5.6. For all X > e we have ∑
[a,b]≤X

1 < 22X(logX)3

where the sum runs over all ordered pairs of positive integers (a, b) whose lcm it at most X.

Proof. Let `(n) be the number of ordered pairs of positive integers (a, b) with [a, b] = n. For any such
pair (a, b) we have a unique way to write n = uvg with u, v coprime and a = ug, b = vg (in fact, g is
the gcd of a, b). Thus ` can be expressed as a Dirichlet convolution

`(n) =
∑
g|n

∑
(u,v)=1
uv=n/g

1 =
∑
g|n

2ω(n/g) = (1 ∗ 2ω)(n).

Let ζ(s) be the Riemann zeta function. Since the Dirichlet series of 2ω is ζ(s)2/ζ(2s) (see [14, Exercise
1.2.6]), the previous identity gives that for <(s) > 1 we have∑

n≥1

`(n)

ns
=
ζ(s)3

ζ(2s)

which has a pole of order 3 at s = 1. Choose s = 1 + 1/ logX, then, on the one hand we have∑
n≥1

`(n)

n1+1/ logX
> e−1

X∑
n=1

`(n)/n >
1

eX

∑
n≤X

`(n)
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and on the other hand, one knows that ζ(σ) < 2/(σ − 1) for all real 1 < σ ≤ 2, so we have

ζ(1 + 1/ logX)3

ζ(2 + 2/ logX)
< ζ(1 + 1/ logX)3 < 8(logX)3.

The result follows, since the sum in the statement is precisely
∑
n≤X `(n). �

We remark that the sum is actually asymptotic to (π2/6)X(logX)2 as can be seen from the Taube-
rian theorem. We prefer our bound which is valid for all X > e, not just for large enough X.

Proof of Theorem 5.1. We write µn for the set of n-th roots of 1. Fix x ≥ 6 and 1 ≤ ∆ < x, and
consider the set

Sx =
⋃

x−∆<n≤x

µn × µn ⊆ k2.

Then

#Sx ≤
∑

x−∆<n≤x

n2 ≤ x2∆.

For p ∈ Sx we write p = (ζp, ξp) and we let ap (resp. bp) be the multiplicative order of ζp (resp. ξp).
For any given y with e < y < x, let us split the set Sx as

S−x := {p ∈ Sx : [ap, bp] ≤ y}, S+
x := {p ∈ Sx : [ap, bp] > y}.

Note that by Lemma 5.6 (and using the trivial bound ϕ(n) ≤ n) we have

#S−x ≤
∑

[a,b]≤y

ϕ(a)ϕ(b) ≤ 22y3(log y)3

and also, we have

#S+
x ≤ #Sx ≤ x2∆.

By Lemma 5.5, there are algebraic curves C−, C+ ⊆ P2 defined over k, of degrees

d− ≤ 7(y log y)1.5, d+ ≤
√

2 · x∆0.5

respectively, and passing through all points in S−x and S+
x respectively – we are identifying a fixed

affine chart in P2 with k2. Consider the analytic map

F = [f : g : 1] : A1 → P2.

This map has Zariski dense image because f, g are algebraically independent. Hence, the image of
F is not contained in C−, nor C+. We also note that it follows from the definition of characteristic
functions that

TF (r) ≤ 2k max{T (f, r), T (g, r)},
where 2k = 2 if k = C and 2k = 1 if k is non-Archimedean. We want to relate Avgx,∆(fn−1, gn−1, r)

to NF (C−, r) and NF (C+, r). To clarify the discussion, let us briefly explain the strategy: if the sets
µn × µn were disjoint as n varies in (x−∆, x], then we would see that each point in Sx is counted in
exactly one summand of Avgx,∆(fn − 1, gn − 1, r), hence we would have

(?) ∆Avgx,∆(fn − 1, gn − 1, r) ≤ NF (C−, r) +NF (C+, r).

Unfortunately, the sets µn × µn are not disjoint as n varies, and we need to take repetitions into
account. So, while it is not clear that the bound (?) holds, we will nevertheless prove a weaker version
of it which suffices for our purposes.

Now we return to the proof. For p ∈ Sx we let

ρ(p, x) = #{n ∈ (x−∆, x] : p ∈ µn × µn}.

The values of n ∈ (x − ∆, x] for which p ∈ µn × µn are precisely those n ∈ (x − ∆, x] divisible by
[ap, bp] (the lcm), hence

ρ(p, x) =

⌈
x

[ap, bp]

⌉
−
⌈
x−∆

[ap, bp)]

⌉
≤ ∆

[ap, bp]
+ 1.
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It follows that

ρ(p, x) ≤

{
∆ if p ∈ S−x trivial upper bound using #Z ∩ (x−∆, x],
∆
y + 1 if p ∈ S+

x by previous estimate and definition of S+
x .

Now let us bound Avgx,∆(fn − 1, gn − 1, r) in terms of NF (C−, r) and NF (C+, r). First we note that

∆Avgx,∆(fn − 1, gn − 1, r) =
∑

x−∆<n≤x

∑
(ζ,ξ)∈µn×µn

N(f − ζ, g − ξ, r)

=
∑
p∈Sx

ρ(p, x)N(f − ζp, g − ξp, r)

=
∑
p∈S−x

ρ(p, x)N(f − ζp, g − ξp, r) +
∑
p∈S+

x

ρ(p, x)N(f − ζp, g − ξp, r).

For S−x and using the fact that C− passes through every point in S−x , we have∑
p∈S−x

ρ(p, x)N(f − ζp, g − ξp, r) ≤ ∆
∑
p∈S−x

N(f − ζp, g − ξp, r)

≤ ∆NF (C−, r).

Simiarly, for S+
x we have∑
p∈S+

x

ρ(p, x)N(f − ζp, g − ξp, r) ≤
(

∆

y
+ 1

) ∑
p∈S+

x

N(f − ζp, g − ξp, r)

≤
(

∆

y
+ 1

)
NF (C+, r).

Putting these bounds together, we find our substitute for the inequality (?):

∆Avgx,∆(fn − 1, gn − 1, r) ≤ ∆NF (C−, r) +

(
∆

y
+ 1

)
NF (C+, r).

Now, by the First Main Theorem (Theorem 2.5) and recalling that the degree of C− is d− ≤
7(y log y)1.5 we get

NF (C−, r) ≤ d−TF (r) +Ox(1)

< 7(y log y)1.5TF (r) +Ox(1)

≤ 14(y log y)1.5 max{T (f, r), T (g, r)}+Ox(1).

Similarly, using d+ ≤
√

2 · x∆0.5 we get

NF (C+, r) ≤ d+TF (r) +Ox(1)

<
√

2 · x∆0.5TF (r) +Ox(1)

≤ 2
√

2 · x∆0.5 max{T (f, r), T (g, r)}+Ox(1).

We therefore find

∆Avgx,∆(fn−1, gn−1, r) ≤
(

14∆(y log y)1.5 + 2
√

2 · x∆0.5

(
∆

y
+ 1

))
max{T (f, r), T (g, r)}+Ox(1)

which is the same as

Avgx,∆(fn − 1, gn − 1, r) ≤

(
14(y log y)1.5

x
+

2
√

2 ·∆0.5

y
+

2
√

2

∆0.5

)
max{xT (f, r), xT (g, r)}+Ox(1).

�
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5.3. Application: an analogue of a conjecture of Pisot. In this section we illustrate the appli-
cability of the results obtained from our average bounds in the previous section.

A special case of Pisot’s conjecture states that given integers a, b > 1, if an− 1 divides bn− 1 for all
large positive integer n, then b is a power of a, see [19] for a solution of the original problem, and see
[31] for an overview of the existing improvements. The following result can be viewed as an analogue
in the complex and non-Archimedean situation. (Moreover, we will later prove a stronger version of
this result in the non-Archimedean case of characteristic zero, see Section 6.2.)

Proposition 5.7. Let k = C or k, an algebraically closed field of characteristic zero, complete with
respect to a non-Archimedean absolute value. Let f, g be transcendental entire functions with T (f, r) �
T (g, r) (i.e. of the same order of magnitude). Suppose that there is a set P of primes with positive
upper density in the primes such that for all p ∈ P we have gp−1|fp−1. Then f, g are multiplicatively
dependent and in fact fn = gm for some positive integers m and n.

Proof. We will prove the complex case to simplify the notation; the non-Archimedean case follows
similarly.

Assume that f and g are multiplicatively independent.
If f and g are algebraically dependent entire functions, then the image of the analytic curve F (z) :=

(f(z), g(z)) → C × C is contained in an algebraic curve C ⊂ C × C. As f, g are multiplicatively
independent, the curve C can only contain a finite number of pairs of roots of unity thanks to a
theorem of Tate, Serre and Ihara (cf. [13, Chapter 8, Theorem 6.1]).

It follows that fp − 1 and gp − 1 have no common zeros if p is a sufficiently large prime, which is a
contradiction. Thus we are left with the case when f and g are algebraically independent.

Suppose now that f, g are algebraically independent. Let C > 1 be such that T (f, r) < CT (g, r)
for all r large. Then Corollary 5.4 with ε = 1/(2C) gives the existence of infinitely many primes
p ∈ S := PrEε (here we use the assumption that there is σ > 0 with #P ∩ [1, x] > σx/ log x infinitely
often, and the precise information on the size of Eε provided by the corollary). For any such p ∈ S
satisfying gp − 1|fp − 1 we then have

Ngp−1(r, 0) = N(gp − 1, fp − 1, r) <∞
1

2C
max{pT (f, r), pT (g, r)}.

Using Theorem 2.3, we have
(p− 3)T (g, r) <exc Ngp−1(r, 0).

Hence,

(p− 3)T (g, r) <∞
p

2C
max{T (f, r), T (g, r)} < p

2
T (g, r).

As soon as p ≥ 7 we get a contradiction. �

6. More on the non-Archimedean case

A correspondence between non-Archimedean Nevanlinna theory and certain Diophantine statements
over the integers Z or the rational numbers Q was studied in [2]. The main observation is that
Z has only one archimedean place and the proximity function of non-Archimedean entire functions
behave similarly. In particular, the characteristic functions of entire functions on k enjoy several
useful properties as following.

Proposition 6.1. Let fand g be a non-constant entire functions on k. Then for r sufficiently large,
we have

(i) T (fg, r) = T (f, r) + T (g, r),
(ii) T (f + g, r) ≤ max{T (f, r), T (g, r)},
(iii) T (f, r) = Nf (r, a) +O(1), for a ∈ k.

We note that (i) and (iii) fail in the complex setting, while (ii) only holds in a weaker form over the
complex numbers.

Proof. Since f has no pole in k, T (f, r) = mf (r,∞) = log+ |f |r = log |f |r for r sufficiently large. Then
the first two assertion follows from the fact that |fg|r = |f |r · |g|r and |f + g|r ≤ max{|f |r, |g|r}. The
last assertion follows from Theorem 2.7 and that |f − a|r tends to infinity as r is sufficiently large. �
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We will be also using the following refinement the truncated second main theorem for diagonal
equations of non-Archimedean entire functions, which can be obtained via the linear algebra arguments
in [4]. (See also [21] for the complex case.)

Theorem 6.2. Let k be an algebraically closed field complete with respect to a non-Archimedean ab-
solute value of characteristic zero. Let f = [f0 : f1 : · · · : fn] : k→ Pn(k) be a non-Archimedean holo-
morphic map, with f0, · · · , fn non-Archimedean entire and no common zero. Let fn+1 = −

∑n
i=1 fi.

If
∑
i∈I fi 6= 0 for any proper subset I of {0, 1, · · · , n+ 1}, then

Tf (r) := log max{|f0|r, . . . , |fn|r} ≤
n+1∑
j=0

N
(n)
fj

(r, 0)− log+ r

for r > 0.

6.1. gcd bounds for non-Archimedean entire functions.

Theorem 6.3. Let f, g be multiplicatively independent non-Archimedean entire functions f and g on
k of characteristic zero. Then

N(fn − 1, gn − 1, r) ≤ n+ 2

2n
max{T (fn, r), T (gn, r)} − 1

2
log r +O(1)

for sufficiently large r

We note that the proof of the theorem is analogous to [15] where the gcd of 2n − 1 and 3n − 1 is
estimated under the abc conjecture.

Proof. Let h be an entire function on k such that

u :=
fn − 1

h
and v :=

gn − 1

h
(32)

are entire functions with no common zero on k, i.e. h is a gcd of fn− 1 and gn− 1. We note that such
h exists and is unique up to a constant factor and

N(fn − 1, gn − 1, r) = Nh(r, 0).(33)

We also let α be a gcd of f and g and write f = αf0 and g = αg0. Then (32) yields

vfn0 − ugn0 =
v − u
αn

.(34)

We note that v−u
αn is an entire function. It is clear from (32) that vfn0 and ugn0 are not constant and

have no common zeros. Applying Theorem 6.2 for (34), we have

max{T (vfn0 , r), T (ugn0 , r)}

≤ N (1)
u (r, 0) +N (1)

v (r, 0) +N
(1)
v−u
αn

(r, 0) +N
(1)
f0

(r, 0) +N (1)
g0 (r, 0)− log r +O(1)

≤ T (u, r) + T (v, r) + max{T (u, r), T (v, r)} − nT (α, r) + T (f0, r) + T (g0, r)− log r +O(1)

for r sufficiently large, where the last inequality follows from Theorem 2.7 and that Proposition 6.1.
Since u, v, f0 and g0 are entire functions on k,

T (vfn0 , r) = T (v, r) + nT (f0, r) and T (ugn0 , r) = T (u, r) + nT (g0, r)

for r sufficiently large. Therefore, we get

(n− 1)T (f0, r) ≤ T (u, r) + max{T (u, r), T (v, r)} − nT (α, r) + T (g0, r)− log r +O(1),(35)

and

(n− 1)T (g0, r) ≤ T (v, r) + max{T (u, r), T (v, r)} − nT (α, r) + T (f0, r)− log r +O(1),(36)

for r sufficiently large. On the other hand, since uh = fn − 1 and vh = gn − 1,

|u|r · |h|r = |fn − 1|r = |fn|r = nT (f, r) and |v|r · |h|r = |gn − 1|r = |gn|r = nTg(r)
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for r sufficiently large. Therefore, if T (f, r) ≥ T (g, r) for a fixed r which is sufficiently large, then
T (u, r) ≥ T (v, r). In this case, (35) implies that

T (u, r) ≥ n− 2

2
T (f0, r) +

n

2
T (α, r) +

1

2
log r +O(1) ≥ n− 2

2
T (f, r) +

1

2
log r +O(1)

for r sufficiently large. Consequently,

T (h, r) = nT (f, r)− T (u, r) ≤ n+ 2

2
T (f, r)− 1

2
log r +O(1)

=
n+ 2

2n
max{T (fn, r), T (gn, r)} − 1

2
log r +O(1)

for r sufficiently large.
�

6.2. Divisible sequences revisited: the non-Archimedean case. We will derive a stronger ver-
sion of Proposition 5.7. The main tool is the version of the truncated second main theorem stated in
Theorem 6.2.

Proposition 6.4. Let k be an algebraically closed field complete with respect to a non-Archimedean
absolute value of zero characteristic. Let f, g be transcendental entire functions with Tf (r) � Tg(r)
(i.e. of the same order of magnitude). Suppose that gn − 1|fn − 1 for infinitely many integers. Then
f, g are multiplicatively dependent and in fact fn = gm for some positive integers m and n.

Proof. For a positive integer n, we let

q(n) :=
fn − 1

gn − 1
.(37)

Assume that there exists a positive integer c such that cTg(r) > Tf (r) for r � 1. Note that

(gcn − 1)q(n) = (gn − 1)q(n)(1 + g + · · ·+ g(c−1)n)(38)

= (fn − 1)(1 + gn + · · ·+ g(c−1)n).(39)

We rewrite this equation as follows.

gcnq(n) +

c−1∑
j=0

gjn −
c−1∑
j=0

fngjn = q(n).(40)

Let F (n) = (gcnq(n), 1, gn, · · · , g(c−1)n,−fn,−fngn, · · · ,−fng(c−1)n). We note that f and g are entire
functions and q(n) is entire if fn − 1 is divisible by gn − 1. Moreover, F is a reduced representation
when q(n) in entire. Suppose that no proper subsum of the left hand side of (40) is zero. Then
Theorem 6.2 implies that for r > 0

TF (n)(r) ≤ N
(2c)
gcnq(n)(r, 0) +

c−1∑
j=0

N
(2c)
gjn (r, 0) +

c−1∑
j=0

N
(2c)
fngjn(r, 0) +N

(2c)
q(n)(r, 0)− log+ r

≤ 2Nq(n)(r, 0) + (4c2 + 2c)Ng(r, 0) + 2c2Nf (r, 0)− log+ r

≤ 2T (q(n), r) + (4c2 + 2c)T (g, r) + 2c2T (f, r)− log+ r

≤ 2T (q(n), r) + (2c3 + 4c2 + 2c)T (g, r)− log+ r.

We note that T (gcnq(n), r) ≤ TF (n)(r) +O(1) and

T (gcnq(n), r) = T (gcn, r) + T (q(n), r) +O(1)

Then the previous equation becomes

T (gcn, r)− T (q(n), r) ≤ (2c3 + 4c2 + 2c)T (g, r)− log+ r +O(1).

Again, since

T (q(n), r) = T (fn − 1, r)− T (gn − 1, r) +O(1) = T (fn, r)− T (gn, r) +O(1),
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and T (gcn, r) ≥ T (fn, r), we obtain

T (gn, r) ≤ (2c3 + 4c2 + 2c)T (g, r)− log+ r +O(1).

This is impossible if n > 2c3 + 4c2 + 2c.
It remains to consider when some proper subsum of the left hand side of (40) is zero, and it leads

to the following two equations with no vanishing proper subsum:∑
i∈I1

gin −
∑
j∈J1

fngjn = 0,(41)

or

gcnq(n) +
∑
i∈I2

gin −
∑
j∈J2

fngjn = 0,(42)

where Ii and Ji, i = 1, 2, are subsets of {0, 1, · · · , c− 1}. We note that neither I1 nor J1 is empty as f
and g are nonconstant entire functions. Furthermore, |I1|+ |J1| ≥ 3 since f and g are multiplicatively
independent. One can show that (41) is impossible if n ≥ 2c3 + 4c2 by Theorem 6.2. Since the
arguments are similar to the previous one, we will omit the proof.

We now consider when (42) happens. It is clear that we can exclude the case that |I2| = 1 and
|J2| = 0 since q(n) is entire and c > i for i ∈ I2. If |I2| = 0 and |J2| = 1, then (42) gives g(c−j)nq(n) =
fn, where 0 ≤ j ≤ c − 1. Since q(n) and f have no common zero, it implies that q(n) is a constant,
i.e. fn − 1 = agn − a for some a ∈ k∗. Therefore, ag(c−j)n = agn − a+ 1 which is impossible. We can
now assume that |I2|+ |J2| ≥ 2. Similar to the previous argument, we can show that

T (gn, r) + T (q(n), r) ≤ N (2c)
gcnq(n)(r, 0) +

c−1∑
j=0

N
(2c)
gjn (r, 0) +

c−1∑
j=0

N
(2c)
fngjn(r, 0)− log+ r

≤ Nq(n)(r, 0) + (4c2 + 2c)Ng(r, 0) + 2c2Nf (r, 0)− log+ r

≤ T (q(n), r) + (4c2 + 2c)T (g, r) + 2c2T (f, r)− log+ r

≤ T (q(n), r) + (2c3 + 4c2 + 2c)T (g, r)− log+ r.

This is impossible if n > 2c3 + 4c2 + 2c. �

7. Expected gcd bounds under Vojta’s conjectures

Let us recall the following conjecture of Vojta. (cf. [28, Chapter 15]).

Conjecture 7.1 (Vojta). Let X be a complex smooth projective variety. Let A be an ample divisor on
X, let D be a normal crossing divisor on X and let KX be a canonical divisor on X. Then for every
ε > 0 there exists a proper Zariski closed subset Z = Z(X,D,A, ε) such that the inequality

mf,D(r) + Tf,KX (r) ≤exc εTf,A(r)(43)

holds for all non constant holomorphic curves f : C→ X whose image is not contained in Z.

The purpose of this section is to clarify what should be expected for gcd bounds in the holomorphic
setting, at least under the previous conjecture. See also [25] where Silverman shows how Vojta’s
conjectures on heights of rational points imply very precise gcd bounds in a number of settings of
arithmetic relevance. This final section can be seen as the holomorphic counterpart of Silverman’s
arguments, and it gives a conditional answer to some of the questions posed in the introduction of this
work. We will only consider the complex case; if the reader is willing to assume a non-Archimedean
version of Vojta’s conjecture, then similar conditional results can be obtained for non-Archimedean
meromorphic functions.

Proposition 7.2. Let f1 and f2 be algebraically independent complex meromorphic functions. Assume
that Vojta’s conjecture is true (for P1×P1 blown up at a single point). Then for any ε > 0, the following
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inequality holds

N(f1 − 1, f2 − 1, r) ≤exc εmax{Tf1(r), Tf2(r)}

+
1

1 + ε/4

2∑
i=1

(Nfi,0(r) +Nfi,∞(r)) +O(1).

We will need the following lemma.

Lemma 7.3. Let X = P1×P1, let π : V → X be the blow-up of X at a point P ∈ X, and let E be the
exceptional divisor. Let KX be a canonical divisor of X. Then −π∗KX −E is an ample divisor on V .

Proof. This is a straightforward computation, we include it for the convenience of the reader. Via the
Segre embedding we can identify X with a smooth quadric in P3. If H is a hyperplane on P3 then
−2H|X is a canonical divisor on X.

We use the Nakai-Moishezon criterion to see that −π∗KX − E is ample. First, note that KX can
be taken so that its support does not contain P , hence

(−π∗KX − E)2 = (π∗KX)2 + E2 = 4− 1 = 3 > 0

Let C be an irreducible curve on V , we want to see that C.(−π∗KX − E) > 0. This is clear if C = E
so we can assume that C 6= E, so that C ′ := π(C) is a curve on X. Let µP (C ′) be the multiplicity of
C ′ at P , then for any hyperplane H ⊆ P3 passing through P we have

C.E = µP (C ′) ≤ (C ′.H)P3 = (C ′.H|X)X < (C ′.−KX)X = (C.− π∗KX)V

where the intersection numbers are taken in P3, X and V as indicated. This proves what we want. (In
fact, the same argument shows that −π∗KX − θE is ample whenever 0 < θ < 2.) �

Proof of Proposition 7.2. Let X = P1×P1 and take P = (1, 1) ∈ X (identifying A1 with a fixed affine
chart of P1). Let π : V → X be the blow-up of X at P and let E be the exceptional divisor.

The divisor

KX = −(∞× P1)− (0× P1)− (P1 ×∞)− (P1 × 0)

is a canonical divisor on X, and therefore we have the following canonical divisor on V

KV := π∗KX + E.(44)

By the previous lemma, the divisor A := −KV is an ample divisor of V .
Let us first consider the case when f1, f2 are algebraically independent.
Assume Vojta’s conjecture on V and let D = −π∗KX , which has normal crossings. Let f = (f1, f2) :

C→ X, and let f̃ : C→ V be the lift of f such that π ◦ f̃ = f . The image of f is Zariski dense in X
because f1, f2 are algebraically independent. Then for ε > 0, Vojta’s conjecture gives

mf̃ ,−π∗KX (r) + Tf̃ ,KV (r) ≤exc εTf̃ ,A(r).

By (44) and the definition of A, this implies

mf̃ ,−π∗KX (r) + Tf̃ ,π∗KX (r) + Tf̃ ,E(r) ≤exc −εTf̃ ,E(r)− εTf̃ ,π∗KX (r) +O(1).

Hence,

(1 + ε)Tf̃ ,E(r) ≤exc Nf̃ ,−π∗KX (r) + εTf̃ ,−π∗KX (r) +O(1).

By functoriality properties of the counting function and by the bound Nf̃ ,E(r) ≤ Tf̃ ,E(r), we conclude

(1 + ε)N(f1 − 1, f2 − 1, r) = (1 + ε)Nf̃ ,E(r)

≤exc Nf,−KX (r) + εTf,−KX (r) +O(1)

=

2∑
i=1

(Nfi,0(r) +Nfi,∞(r)) + 2ε(Tf1(r) + Tf2(r)) +O(1).
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Consequently, we have

N(f1 − 1, f2 − 1, r) ≤exc
4ε

1 + ε
max{Tf1(r), Tf2(r)}

+
1

1 + ε

2∑
i=1

(Nfi,0(r) +Nfi,∞(r)) +O(1)

which proves the result f1, f2 (after replacing ε by ε′/4).
�

Let us observe that a similar argument gives the following result for N(fn1 − 1, fn2 − 1, r):

Proposition 7.4. Let f1 and f2 be multiplicatively independent meromorphic functions. Assume that
Vojta’s conjecture is true (for P1 × P1 blown up along a set of finitely many points of P1 × P1). Then
for any ε > 0, there exists n0 such that for all n ≥ n0

N(fn1 − 1, fn2 − 1, r) ≤exc εmax{Tfn1 (r), Tfn2 (r)}.

Before going into the proof, let us remark the fact that our Corollary 5.4 (see also Theorem 1.3)
can be seen as an unconditional partial result towards this conjectural bound.

Proof. Let us briefly indicate the necessary modifications to the previous argument. If f1, f2 are
algebraically dependent (and multiplicatively independent as in the statement) the required bound
can be proved in an even stronger form by using the result of Tate, Serre and Ihara in the same way
as it was applied in Section 5.3. We leave the details to the interested reader. So we can assume that
f1, f2 are algebraically independent.

Firstly, fix a positive integer n. We let V be the blow-up of X = P1×P2 at the n2 points of the set
µn × µn ⊆ X, where µn is the set of n-th roots of 1. Let E be the exceptional divisor (which consists
of n2 disjoint copies of P1). One can show that for some sufficiently large M (depending on n), the
divisor −π∗KX − 1

ME is ample; see Section 4 of [25]. The same computations as done before give us

N(fn1 − 1, fn2 − 1, r) ≤ 4ε

n(1 + ε
M )

max{nTf1(r), nTf2(r)}+
1

n(1 + ε
M )

2∑
i=1

(Nfni ,0(r) +Nfni ,∞(r)) +O(1)

≤ 4ε

n(1 + ε
M )

max{nTf1(r), nTf2(r)}+
4

n(1 + ε
M )

max{nTf1(r), nTf2(r)}+O(1)

=
4(1 + ε)

n(1 + ε
M )

max{nTf1(r), nTf2(r)}+O(1).

From here, the result follows. �

One can also formulate a “truncated” version of Vojta’s conjecture, where the bound (43) is replaced
by the sharper bound

Tf,D+KX (r) ≤exc N (1)
f,D(r) + εTf,A(r)(45)

(this implies (43) by the first main theorem), see [28, Chapter 23]. Assuming this refined conjecture,
one deduces a version of Proposition 7.2 with the stronger bound

N(f1 − 1, f2 − 1, r) ≤exc εmax{Tf1(r), Tf2(r)}

+
1

1 + ε/4

2∑
i=1

(N
(1)
fi,0

(r) +N
(1)
fi,∞(r)) +O(1).

Finally, let us comment that this stronger bound (which is obtained under a stronger conjecture)
implies at once the bound obtained in Proposition 7.4. Nevertheless, Proposition 7.4 only assumes the
non-truncated version of Vojta’s conjecture.
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