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Abstract. After the work of G. Frey, it is known that an appropriate bound for the Faltings height

of elliptic curves in terms of the conductor (Frey’s height conjecture) would give a version of the ABC

conjecture. In this paper we prove a partial result towards Frey’s height conjecture which applies to
all elliptic curves over Q, not only Frey curves. Our bound is completely effective and the technique is

based in the theory of modular forms. As a consequence, we prove effective explicit bounds towards

the ABC conjecture of similar strength to what can be obtained by linear forms in logarithms, without
using the latter technique. The main application is a new effective proof of the finiteness of solutions

to the S-unit equation (that is, S-integral points of P1 − {0, 1,∞}), with a completely explicit and

effective bound, without using any variant of Baker’s theory or the Thue-Bombieri method.
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1. Introduction

A central problem in Number Theory is to establish the finiteness of integral or rational solutions to
a Diophantine equation. The proof of such finiteness results often gives an upper bound for the number
of solutions, while obtaining upper bounds for the size (or more precisely, height) of the solutions is a
much harder problem. Results of the latter type are called effective since, in theory, a bound for the
height of the solutions reduces the search for solutions to a finite amount of computation. For later
reference, we denote the (logarithmic) height of a rational number q ∈ Q by

h(q) = log max{|a|, |b|}
where a, b are coprime integers with q = a/b.

Effective results are difficult to obtain, and essentially the only general approaches are Baker’s
theory of linear forms in logarithms along with the p-adic and elliptic analogues of it, and Bombieri’s
improvement of Thue’s method [2].

The purpose of this note is to introduce another approach for obtaining effective finiteness results.
The technique that we present is based on the theory of modular forms, and it originates in the known
approaches to attack the ABC conjecture using elliptic curves and modular forms, which we discuss

Date: January 25, 2014.
2010 Mathematics Subject Classification. Primary 11F11,11D75; Secondary 11G05.

Key words and phrases. Effective diophantine approximation; modular forms; unit equation; ABC conjecture.
The first author has been partially funded by an NSERC Discovery grant.

The second author has been partially supported by an Ontario Graduate Scholarship.

1
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below. Using this approach we provide an ‘algebro-geometric proof’ of the following effective version
of Mahler’s theorem [12, p.724] on the S-unit equation, a topic classically studied by means of analytic
techniques.

Theorem 1.1. Let S be a finite set of primes in Z and let P be the product of the elements of S. If
U, V ∈ Z×S satisfy U + V = 1 then

max{h(U), h(V )} < 4.8P logP + 13P + 25.

Here, Z×S denotes the group of units of the ring ZS of rational S-integers. Moreover, as we vary the
set S we get

max{h(U), h(V )} < 4P logP +O(P log logP ).

The S-unit equation is a relevant case of finiteness result since several diophantine problems can
be reduced to it. Although this is not the first ‘algebro-geometric’ proof of finiteness of ZS-solutions
to the unit equation (see the important work of M. Kim [10], where the result is stated in terms of
ZS-points of P1 − {0, 1,∞} and it is attributed to Siegel), our method is effective and gives explicit
constants.

An equivalent way to state the previous theorem is the following partial result towards the ABC
conjecture.

Theorem 1.2. Let A,B,C be coprime non-zero integers with A+B = C. Let R = rad(ABC) be the
radical of ABC, where rad(N) =

∏
p|N p. Then

log max{|A|, |B|, |C|} < 4.8R logR+ 13R+ 25.

Moreover, as we vary the triple A,B,C we have

log max{|A|, |B|, |C|} ≤ 4R logR+O(R log logR).

We remark that Theorems 1.1 and 1.2 do not give the sharpest effective bounds known today.
However, our bounds have similar shape compared to the previous results on the ABC conjecture, all
of them effective and obtained by means of the theory of linear forms in logarithms:

• log max{|A|, |B|, |C|} � rad(ABC)15 by Stewart and Tijdeman in 1986, see [18]
• log max{|A|, |B|, |C|} � rad(ABC)2/3+ε by Stewart and Yu in 1991, see [19]
• log max{|A|, |B|, |C|} � rad(ABC)1/3+ε by Stewart and Yu in 2001, see [20].

Our bound log max{|A|, |B|, |C|} � rad(ABC)1+ε is better than the first bound obtained by transcen-
dental methods, but it is certainly worse than the subsequent improvements.

Let us now discuss in more detail our approach. After the work of G. Frey (see [7]) one knows that
the following conjecture implies a version of the ABC conjecture.

Conjecture 1.3 (Height Conjecture). For all elliptic curves E/Q one has hF (E)� logNE. Here hF
denotes the Faltings height, and NE is the conductor of E.

Conversely, the ABC conjecture implies the Height conjecture (see for instance Exercises F.4 and
F.5 in [8]). By looking at proofs of these implications, it is clear that any bound towards the Height
conjecture would give a bound in the spirit of the ABC conjecture. However the converse is not known
to hold, for instance, it is not clear if one can deduce from [20] a partial result for the Height conjecture
for all elliptic curves over Q. Nevertheless, the computations in the proof of Theorem 1 (ii) in [15]
show that a partial result for the ABC conjecture would give a partial result for the Height conjecture
restricted to Frey curves (that is, elliptic curves of the form y2 = x(x−A)(x+B) with A,B coprime

integers). In particular, for Frey curves one knows that hF (E)� N
1/3+ε
E thanks to the results in [20].

No such bound is known to hold for the height of all elliptic curves over Q.
In this paper we prove a partial result towards the Height conjecture, which holds for all elliptic

curves over Q. Namely, we prove hF (E)� NE logNE . We also work out explicit values of the involved
constants, obtaining Theorem 7.1. To the best of our knowledge, this is the first unconditional result
for the Height conjecture for all elliptic curves over Q, not only Frey curves. From it, we deduce a
partial result for the Szpiro conjecture, from which our effective bounds on the ABC conjecture and the
S-unit equation follow (after making explicit the constants involved at various steps of the reduction
from the Height conjecture to the ABC conjecture).
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More precisely, since all elliptic curves over Q are modular (see [23] and [22] for the semi-stable
case) well-known arguments of [7] and [15] show that for our purposes of bounding the Faltings height
in terms of the conductor, it suffices to bound the modular degree. To bound the latter in terms of the
conductor, it is enough to bound certain number called the congruence number of a modular form in
terms of the level (here, we perform these arguments in a slightly different and more careful way in
order to get explicit constants). However, it is not clear how to bound the congruence number in terms
of the level with a bound of the expected order of magnitude, namely, polynomial. Instead, we prove
a bound for the congruence number which is exponential on the level. The technique that we use to
get this bound originates in ideas of [15] (however our proof is different, it corrects some imprecisions
of loc. cit. and has better dependence on the level). Namely, we show that the congruence number
divides certain index iN related to the Hecke algebra, and finally we bound the latter by the covolume
of a specific lattice which can be estimated in terms of the level. This last bound follows from classical
estimates related to the Fourier coefficients of modular forms. It is this relation to the index of the
Hecke algebra what allows us to give a partial result for the Height conjecture.

Let us remark that when we prove that the congruence number divides the index iN , a new invariant
n′f arises in a natural way. We discuss this in Section 4. The invariant n′f is related to the coprime

Hecke algebra T′N in the same way that the congruence number (resp. the modular degree) is related
to the Hecke algebra TN (resp. the endomorphism ring EndJ0(N)). This analogy leads us to formulate
a conjectural bound for n′f which, if true, would imply the ABC conjecture.

Finally, to make clear the approach in this work, note that the way in which the known partial
results for the Height conjecture have been proved goes as follows: apply linear forms in logarithms to
the equation A + B = C which gives an effective result for the ABC conjecture, and then apply the
resulting bound on Frey elliptic curves. Our approach, instead, goes the other way around: we apply
the theory of modular forms to get a result for the Height conjecture on all elliptic curves over Q (and
this bound turns out to be effective), then we use it in the special case of Frey curves, and an effective
bound for the ABC conjecture and the S-unit equation follow.

2. The index of the coprime Hecke algebra

Let N be a positive integer such that the space of wight two modular forms for Γ0(N), denoted
by S2(Γ0(N)), is non-trivial. Let T′N be the coprime Hecke algebra generated over Z by the Hecke
operators Tn with (n,N) = 1 acting on S2(Γ0(N)).

LetN (N) denote the set of normalized newforms of weight 2 for Γ0(N), and letN ∗(N) = ∪d|NN (d).
For f ∈ N ∗(N) let Kf be the number field generated over Q by the Fourier coefficients of f . We adopt
the following notation valid for all the remaining sections.

Notation 2.1. The cardinal of N ∗(N) is r = r(N), and the elements of N ∗(N) are f1, . . . , fr where
the indices are arranged in such a way that f1, . . . , fc (for some c ≤ r) form a set of representatives of
Galois conjugacy classes in N ∗(N). Whenever we focus our attention into a single rational newform
f , we will implicitly assume that it is f = f1.

One has a Q-vector space isomorphism

T′N ⊗Q −→
c∏
i=1

Kfi

given by Tn 7→ (an(fi))i. Moreover, the image T ′N of T′N is a full-rank subgroup of O′N :=
∏
Oi, where

Oi is the ring of integers of Ki = Kfi . The coprime Hecke index is defined by

iN = [O′N : T ′N ].

The fields Ki are totally real, so the canonical embedding from algebraic number theory is

Ki −→ R[Ki:Q] =: Ei.

Let E =
∏c
i=1Ei, then E = Rr with r as defined above. We have an embedding

∏c
i=1Ki → E which

allows us to see T ′N and O′N as full-rank sub-lattices of E.
We put the usual Lebesgue measure on E and we write CovolV for the covolume of a full-rank

lattice in a given real vector space V .
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Lemma 2.2. We have iN · CovolE(O′N ) = CovolE(T ′N ) and CovolE(O′N ) ≥ 1. In particular

iN ≤ CovolE(T ′N ).

Proof. We only need to justify the assertion CovolE(O′N ) ≥ 1. The covolume of Oi in Ei is
√
|∆i|

where ∆i is the discriminant of Oi. Thus CovolE(O′N ) =
∏c
i=1

√
|∆i| ≥ 1. �

We want to bound CovolE(T ′N ). For this, let I = {1, . . . , r} and for any J set of r positive integers
coprime to N define the square matrix AJ = [aj(fi)](i,j)∈I×J . Then we have

Lemma 2.3. If J is a set of r positive integers coprime to N such that detAJ 6= 0 then

CovolE(T ′N ) ≤ |detAJ |.

Proof. Up to reordering the rows of AJ , we see that the columns of AJ are elements of T ′N ⊆ E
because N ∗(N) is stable under the Galois action on Fourier coefficients. On the other hand, the
condition detAJ 6= 0 implies that these columns form an R-basis for E. The result follows. �

In the next section we study detAJ more closely.

3. Bounding detAJ

Let sf(N) be the square-free part of N , which is the product of the primes dividing N with exponent
exactly 1. By properties of the killing operators (see p.142-143 in [1]) we know that the rule

f =
∑
n≥1

anq
n 7→ t(f) =

∑
(n,N)=1

anq
n

defines a linear map

t : S2(Γ0(N))→ S2(Γ0(Nsf(N))).

Define the following subspaces of S2(Γ0(N))

H(N) =
⊕
d|N

S2(Γ0(N/d))new ⊆ S2(Γ0(N)),

K(N) =

∑
p|N

gp(pz) ∈ S2(Γ0(N)) : gp ∈ S2(Γ0(N/p))

 .

Note that dimH(N) = r; indeed, the set N ∗(N) is a basis for H(N).

Proposition 3.1. The kernel of t is K(N), which is equal to the set of all f ∈ S2(Γ0(N)) with
an(f) = 0 for (n,N) = 1. Moreover, S2(Γ0(N)) = H(N) ⊕ K(N). In particular, t is injective on
H(N).

Proof. The inclusion ker t ⊇ K(N) is clear. The reciprocal inclusion follows from Atkin-Lehner theory
(more precisely, Theorem 1 in [1]). That S2(Γ0(N)) = H(N)⊕K(N) also follows from Atkin-Lehner
theory. �

In particular, if f ∈ S2(Γ0(N)) has an(f) = 0 for all n coprime to the level N , then f ∈ K(N). For
our purposes, the following effective version is needed.

Proposition 3.2. Let g1, . . . , gr ∈ S2(Γ0(N)) be a basis for H(N), and let

I = {1, . . . , r}, J ′ = {j : 1 ≤ j ≤ ρ(N) and (j,N) = 1}

where

ρ(N) =
Nsf(N)

6

∏
p|N

(
1 +

1

p

)
.

Then the matrix [aj(gi)](i,j)∈I×J′ has rank r.
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Proof. By Proposition 3.1 we know that t(gi) are linearly independent elements in S2(Γ0(Nsf(N))).
Hence, if β1, . . . , βr are complex numbers not all zero then h =

∑
1≤j≤r βjt(gj) ∈ S2(Γ0(Nsf(N))) is a

non-zero element, so that its order of vanishing at i∞ is at most 2g(Nsf(N))− 2, where (see Theorem
9.10 in [11])

g(m) := dimC S2(Γ0(m)) ≤ 1 +
m

12

∏
p|m

(
1 +

1

p

)
.

With m = Nsf(N) we get

2g(Nsf(N))− 2 ≤ Nsf(N)

6

∏
p|Nsf(N)

(
1 +

1

p

)
= ρ(N).

Therefore (aj(h))j∈J is not the zero vector, which shows that the rows of [aj(gi)](i,j)∈I×J′ are linearly
independent. �

We will also need a bound for r = dimH(N). From Theorem 4 in [13] one deduces

Proposition 3.3. We have

dimH(N) ≤ N + 4

12
.

Now we can bound detAJ for suitable J .

Proposition 3.4. There exists a set J of r positive integers coprime to N such that detAJ 6= 0 and

log |detAJ | <
1

5
N logN.

Moreover, as N →∞ this choice of J (depending on N) gives

log |detAJ | ≤
1

6
N logN +O(N log logN).

Proof. We need a suitable set J such that the determinant of the matrix AJ = [aj(fi)](i,j)∈I×J is not
zero and we can estimate it. Proposition 3.2 applied to the basis N ∗(N) implies that there is a subset
J ⊆ {1, 2, . . . , ρ} such that detAJ 6= 0, where ρ := ρ(N). Consider such a set J .

Since fi are normalized eigenforms of weight 2, one has the bound |aj(fi)| ≤ j1/2σ0(j) where σ0 is
the number of divisors. Therefore

|detAJ | ≤ r
∏
j∈J

j1/2σ0(j) ≤ rρr/2
∏
j∈J

σ0(j).

The trivial upper bound σ0(j) ≤ 2
√
j is sufficient for our purposes, and we obtain

(1) |detAJ | ≤ rρr/2(2ρ)r/2.

On the other hand, it is easily seen from the definition of ρ = ρ(N) that

ρ ≤ 1

6
Nsf(N)(1 + logN) ≤ 1

6
N2(1 + logN).

Plugging this bound and the bound for r given by Proposition 3.3 into (1) one gets

log |detAJ | ≤ r log ρ+
log 2

2
r + log r

≤ N + 4

12

(
2 logN + log(1 + logN)− log 18

2

)
+ log

N + 4

12
.

It is a calculus exercise to check that the last expression is strictly less than 0.2N logN when N > 30.
Finally, for N ≤ 30 with S2(N) 6= (0) one can directly check the existence of a set of indices J

with the desired properties by looking at tables of modular forms. Namely, the following table gives
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suitable sets J for such N , along with the related quantities:

N J log |detAJ | 0.2N logN
11, 14, 15, 17, 19, 20, 21, 22, 24, 27, 28 {1} log 1 = 0 ≥ 5.27

23 {1, 2} log
√

5 < 0.81 ≥ 14.42
26 {1, 3} log 4 < 1.39 ≥ 16.94
29 {1, 2} log 23/2 < 1.04 ≥ 19.53
30 {1, 7} log 4 < 1.39 ≥ 20.4.

The Fourier coefficients necessary for computing this table have been obtained using Sage. �

From Proposition 3.4 and lemmas 2.2 and 2.3 we conclude

Theorem 3.5. We have

log iN ≤
1

5
N logN.

Moreover, as N →∞
log iN ≤

1

6
N logN +O(N log logN).

4. The congruence number and the modular degree

Let f be a rational newform in S2(Γ0(N)). The congruence number of f , denoted by nf , is the
largest positive integer M satisfying the following: there is a cuspform g ∈ SZ such that (f, g) = 0 and
f ≡ g mod M . Here, (, ) denotes the Petersson inner product and f ≡ g mod M means that for each
n ≥ 1 one has an(f) ≡ an(g) mod M .

We have a ring homomorphism TN → Z defined by T 7→ a1(Tf). Let If be the kernel, then one
constructs the Shimura quotient

qf : J0(N)→ Ef = J0(N)/IfJ0(N)

where J0(N) is the Jacobian of the modular curve X0(N). Here we are using the canonical rational
model of X0(N) and we take the embedding j∞ : X0(N) → J0(N) using the cusp at infinity which
is Q-rational. One gets that Ef is an elliptic curve defined over Q and qf is a morphism of abelian
varieties defined over Q. Let φf = qf ◦ j∞ : X0(N) → Ef be the modular parametrization. The
modular degree mf is defined as mf = deg φf .

The integers mf and nf are related by the following result attributed to Ribet (see [3])

Theorem 4.1. If f is a rational newform, then mf |nf .

Following an approach similar to [15] we prove

Theorem 4.2. We have nf |iN . In particular mf |iN .

Proof. We assume f = f1 ∈ N ∗(N). By definition of iN we know that iNe1 ∈ T ′N where e1 =
(1, 0, . . . , 0) ∈ O′N . Let T ∈ T′N be such that T = iNe1 in

∏
iKi. This means that T (f) = iNf and

T (fi) = 0 for i = 2, . . . , c. The Hecke action commutes with the Galois action on Fourier coefficients
and therefore T (fi) = 0 for i = 2, . . . , r. Moreover, since T ∈ T′N we know (by Atkin-Lehner theory)
that the action of T on S2(Γ0(N)) is diagonalizable and the eigenvalues of T on S2(Γ0(N)) are the
same (with possible repetitions) as the eigenvalues of the fi ∈ N ∗(N) with respect to T . Therefore
T (f) = iNf and T annihilates the orthogonal complement of f in S2(Γ0(N)).

Let g ∈ S2(Γ0(N)) be a cusp form with integral Fourier coefficients which is orthogonal to f = f1,
and such that aj(f) ≡ aj(g) mod nf for all j ≥ 1. In particular T (g) = 0.

The n-th Fourier coefficient of T (g) (which is 0) satisfies

an(T (g)) ≡ an(T (f)) mod nf

because T ∈ T′N and g ≡ f mod nf . Since T (f) = iNf we get an(T (f)) = an(iNf) = iNan(f) from
which we conclude that nf |iNan(f) for all n. In particular, with n = 1 we get nf |iN . �

From Theorem 3.5 we deduce the following bound for the modular degree and the congruence
number.
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Theorem 4.3. We have

logmf ≤ log nf ≤
1

5
N logN.

Moreover, as N →∞ one has

logmf ≤ log nf ≤
1

6
N logN +O(N log logN).

The rest of the discussion in this section will not be used in other parts of the paper, but it can be
of independent interest. Looking at the proof of Theorem 4.2 it is natural to define n′f as the least

positive integer n such that ne1 ∈ T ′N (from the proof, it follows that n′f exists). Equivalently, let pf
be the orthogonal projection from S2(Γ0(N)) onto C · f , then n′f is the least positive integer n such

that npf ∈ T′N ; that is, n′f is the denominator of pf with respect to T′N . This quantity n′f satisfies

nf |n′f and n′f |iN . We conjecture

Conjecture 4.4. The quantity n′f satisfies log n′f � logN .

Let give some justification for this conjecture. Recall from [3] that mf (resp. nf ) is the denominator
of pf with respect to EndJ0(N) (resp. TN ) acting on S2(Γ0(N)). One has the chain of inclusions
T′N ⊆ TN ⊆ EndJ0(N) and therefore mf |nf and nf |n′f . The conjecture logmf � logN is due to Frey

(see [7]), and Murty formulated the conjecture log nf � logN (see [15]); both of these conjectures
imply a version of the ABC conjecture. Therefore, after the analogous characterizations of mf , nf , n

′
f

as denominators, we think that it is natural to formulate Conjecture 4.4.
Since mf |n′f and n′f |iN we obtain the following result about Conjecture 4.4.

Theorem 4.5. Conjecture 4.4 implies Frey’s Modular Degree conjecture, hence, the Height conjecture,
the Szpiro conjecture and a version of the ABC conjecture. Unconditionally, the estimate log n′f �
N logN holds.

We do not know if a sufficiently strong version of the ABC conjecture implies Conjecture 4.4, and
we believe that the invariant n′f deserves a more detailed study.

5. The height and minimal discriminant of elliptic curves

Let ∆(z) be the Ramanujan cusp form, which is given by

∆(z) = q
∏
n≥1

(1− qn)24, q = e2iπz.

Given E an elliptic curve defined over Q, we denote its minimal discriminant by ∆E and we let τE
be a point in the upper half plane h such that E(C) is biholomorphic to the torus C/(Z + τEZ). Of
course there are infinitely many choices for τE , all of them SL2(Z)-equivalent, but in the discussion
below the choice of τE is irrelevant as we will be concerned with the quantity |∆(τE)|(=τE)6 which is
SL2(Z)-invariant.

In his solution to the Mordell Conjecture [6], Faltings introduced a notion of height for an abelian
variety defined over a number field (which we call Faltings height). The precise definition is better
understood in terms of Arakelov geometry and we do not recall it here. For our purposes we will only
need the Faltings height hF (E) of an elliptic curve E defined over Q, and the following fact (cf. [16])

Theorem 5.1. If E is an elliptic curve defined over Q, then its Faltings height satisfies

12hF (E) = log |∆E | − log
(
|∆(τE)|(=τE)6

)
+ 12 log(2π).

Since ∆(z) is a weight 12 cusp for for SL2(Z) it is a standard fact that the quantity |∆(τE)|(=τE)6

has a uniform upper bound on h. From the next two lemmas we get an explicit such bound.

Lemma 5.2. Let 0 < r < 1. If |q| ≤ r then we have

|∆(τ)/q| <
(

1

1− r

)1/(1−r)
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Proof. Since ∆(τ) = q
∏
n≥1(1− qn)24, we find (for the branch of log with log 1 = 0)

log q − log ∆(τ) = −24
∑
n≥1

log(1− qn) =
∑
n≥1

∑
k≥1

qkn

k
=
∑
k≥1

∑
n≥1

qkn

k

thus

| log ∆(τ)− log q| ≤
∑
k≥1

∑
n≥1

rkn

k
=
∑
k≥1

1

k

rk

1− rk
<

1

1− r
∑
k≥1

rk

k
=

1

1− r
log

1

1− r
.

�

Lemma 5.3. If τ ∈ F then

log |∆(τ)=(τ)6| < −6.272.

Proof. Observe that if τ ∈ F then |q| = e−2π=(τ) ≤ r := e−π
√
3 so that the previous lemma gives

|∆(τ)=(τ)6| <
(

1

1− r

)1/(1−r)

e−2π=(τ)=(τ)6.

The function x 7→ e−2πxx6 attains its maximum on the interval [
√

3/2,∞) at the point x = 3/π so
that for τ ∈ F we get

|∆(τ)=(τ)6| <
(

1

1− r

)1/(1−r)

e−6
(

3

π

)6

that is

log |∆(τ)=(τ)6| < 1

1− r
log

1

1− r
+ 6 log

(
3

eπ

)
= −6.272343...

giving the claimed bound. �

Plugging this result into Theorem 5.1 we obtain

Theorem 5.4. If E is an elliptic curve defined over Q, then its Faltings height satisfies

12hF (E) > log |∆E |+ 28.326.

6. The height and modular degree of elliptic curves

Let E/Q be an elliptic curve of conductor N . By the Modularity theorem, there is a rational
newform f ∈ S2(Γ0(N)) such that E is isogenous to Ef over Q (we use the notation from Section 4).
By results of Mazur [14] we know that there is an isogeny ψ : Ef → E defined over Q of degree at most
163. Let pE = ψ ◦ φf : X0(N) → E. We can assume that φf (∞) = 0 and ψ(0) = 0, then the same
argument as in Proposition 1 of [5] gives the following result (which does not need our assumption on
the degree of ψ).

Theorem 6.1. Let ω be a minimal differential on E with respect to a global minimal Weierstrass
form. Let f be the newform associated to E and denote the composition h → Γ0(N)\h ↪→ X0(N) by
u. Then u∗p∗Eω = 2πicEfdz on h, where cE is a non-zero integer. In particular |cE | ≥ 1.

The integer cE is the Manin constant of the modular parameterization pE (this is a slight abuse of
notation; cE depends on pE not only on E) and we can assume it is positive by changing ω to −ω if
necessary; we keep this assumption during the present section. It is conjectured that if pE induces an
optimal quotient J0(N) → E (i.e. pE is a strong parameterization) then cE = 1, but for general pE
this does not need to be the case.

The Faltings height hF (E) is related to modular parameterizations by (cf. [16] where the hypothesis
of pE being strong is unnecessary for this formula):

Proposition 6.2. With the above notation, we have

1

2
log deg pE = hF (E) + log ‖f‖+ log cE

where ‖f‖ denotes the Petersson norm of f .
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It is easily seen that

‖f‖ ≥ e−2π

2
√
π
, hence log ‖f‖ > −7.549.

This estimate is far from optimal with respect to the dependence on the level (see [9]), but it is sufficient
for our purposes since it is explicit. Also, we have cE ≥ 1 by Theorem 6.1, and the result of Mazur
mentioned above gives

1

2
log deg φf ≥

1

2
log deg pE −

1

2
log 163 >

1

2
log deg pE − 2.547.

Plugging these estimates into Proposition 6.2 yields

Proposition 6.3. With the above notation, we have

1

2
log deg φf > hF (E)− 10.096.

7. A bound for the Szpiro Conjecture and the Height Conjecture

In this section we put together the various results of the previous sections in order to get an explicit
effective bound towards the Szpiro Conjecture and Frey’s Height Conjecture. We remark that such
bounds can be obtained by other means, for example, using results from [20] (at least in the case when
E has rational 2-torsion, i.e. Frey curves). However, our approach gives an effective result with explicit
constants without using results from the theory of linear forms in logarithms (which is the goal of the
present work).

Theorem 7.1. Let E be an elliptic curve defined over Q with minimal discriminant ∆E, conductor
N and Falting’s height hF (E). Then we have

hF (E) < 0.1N logN + 11

and
log |∆E | < 1.2N logN + 93.

Moreover, as we let E vary, we have

hF (E) <
1

12
N logN +O(N log logN)

and
log |∆E | < N logN +O(N log logN).

Proof. Using Proposition 6.3 and Theorem 4.3, we get

hF (E) <
1

2
logmf + 10.096 ≤ 1

10
N logN + 10.096.

Using this bound and Theorem 5.4 we conclude

log |∆E | <
12

10
N logN + 92.826

and the first part of the result follows. The second part is proved in the same way. �

8. Effective bounds for the ABC conjecture and the S-unit equation

Finally, using Frey elliptic curves we derive the explicit effective bound for the ABC conjecture and
the S-unit equation stated in the introduction.

Proof of Theorem 1.2. Given A,B,C non-zero coprime integers with A + B + C = 0 we can assume
that A ≡ −1(4) and B is even. As usual, we consider the Frey-Hellegouarch curve

E : y2 = x(x−A)(x+B).

Then E the minimal discriminant of E satisfies 28|∆E | ≥ (ABC)2 (see p.257 in [17]) and the conductor
of E satisfies NE |24rad(ABC) (see [4]). Write R = rad(ABC), then applying Theorem 7.1 to E we
get

log(ABC)2 − 8 log 2 < 1.2 · 24R log(24R) + 93



10 M. RAM MURTY AND HECTOR PASTEN

hence

2 log |ABC| < 19.2R logR+ 53.234R+ 98.546.

Now, say that 1 ≤ |A| ≤ |B| ≤ |C|, then max{|A|, |B|, |C|} = |C| ≤ |C · 2B|1/2 ≤ |2ABC|1/2 and we
have

4 log max{|A|, |B|, |C|} − 2 log 2 < 19.2R logR+ 53.234R+ 98.546

from which the first part of the result follows. For the second part one does the same computation
using the second part of Theorem 7.1 instead. �

Proof of Theorem 1.1. Let U, V ∈ Z×S with U + V = 1, then we can write U = −A/C, V = −B/C for
A,B,C non-zero coprime integers whose prime factors belong to S (in particular rad(ABC) divides
the product of the primes in S) and A+B + C = 0. Then one concludes by observing that

max{h(U), h(V )} = log max{|A|, |B|, |C|}.
�
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