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Abstract. We prove a result on the representation of squares by monic second degree polynomials

in the field of p-adic meromorphic functions in order to solve positively Büchi’s n squares problem in
this field. Using this result, we prove the non-existence of an algorithm to decide whether a system

of diagonal quadratic forms over Z[z] represents or not in the ring of p-adic entire functions (in the

variable z) a given vector of polynomials in Z[z], and a similar result for p-adic meromorphic functions
when the systems allow vanishing conditions on the unknowns. This improves the known negative

answers for the analogue of Hilbert’s Tenth Problem for these structures. We also improve some

results by Vojta concerning the case of complex meromorphic functions, the case of function fields
and finally the case of number fields, and show an intimate relation of the latter with Bombieri’s

conjecture for surfaces over number fields.
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1. Introduction

In 1970, after the work developed by M. Davis, H. Putnam and J. Robinson, Hilbert’s Tenth Problem
was answered negatively by Y. Matiyasevic (see [11] or [5]). In logical terms, it was shown that the
positive existential theory of Z in the language of rings LR = {0, 1,+, ·} is undecidable, which means
that there exists no algorithm to decide whether a system of diophantine equations (or equivalently,
a single diophantine equation) has integer solutions or not. For a general survey on Hilbert’s Tenth
Problem and extensions of it, see for example [17] or [19] (see [22] for results about number fields and
function fields).

Soon after the problem was solved, J. R. Büchi proved in an unpublished work (see [9] or [12]) that
a positive answer to a certain problem in Number Theory (which we write here BP(Z)) would allow
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2 HECTOR PASTEN

to show that there exists no algorithm to decide whether a system of diagonal quadratic forms over Z
represents or not a given vector of integers.

The number-theoretical problem BP(Z) is based on the following observation. If we consider the first
difference of a sequence of consecutive integer squares (for example 1, 4, 9, 16), we obtain a sequence of
consecutive odd integers (in our example 3, 5, 7). Hence, the second difference is the constant sequence
(2). One may ask whether a sequence of squares having second difference equal to the constant sequence
(2) must be a sequence of consecutive squares. The sequence 62, 232, 322, 392 shows that it is not true
in general.

Problem 1.1 (BP(Z)). Does there exist an integer M such that the following happens:
If the second difference of a sequence (x2i )

M
i=1 of integer squares is constant and equal to 2, then there

exists an integer ν such that x2i = (ν + i)2 for i = 1, . . . ,M (that is, the squares must be consecutive).

This problem became known as the n Squares Problem or Büchi’s Problem. Numerical evidence
suggests that M = 5 should work (see for example [18]), but BP(Z) still is an open problem.

Assuming a positive answer to BP(Z), Büchi was able to prove, using the negative answer given to
Hilbert’s tenth problem and assuming a positive answer to BP(Z), the non-existence of an algorithm
for the problem of representation of a vector of integers by diagonal quadratic forms. The problem of
the existence of such an algorithm can be shown to be equivalent to the problem of decidability of the
positive existential theory of Z over the language L2 = {0, 1,+, P2}, where P2(x) is interpreted as ‘x
is a square’.

In order to get similar consequences in Logic for other rings of interest, and motivated by the
arithmetical interest of the problem, several authors have studied variants of BP(Z). A natural thing
to do is to replace the ring Z by another commutative ring A with unit. Depending on the ring, we
sometimes need to make additional hypothesis in the statement of BP(A):

• If A is a ring of functions of characteristic zero in the variable z, then we ask for at least one
xi to be non-constant.

• If A is a ring of positive characteristic, then we ask M to be at most the characteristic of A.

For variants on Büchi’s problem (for example, considering sequences whose second difference is a
constant sequence (m) for some m not necessarily = 2), see [1] and [3]. For the problem BP(A) with
A a ring, we know that the following cases (among various others) have a positive answer: BP2(Fp)
with p > 2 (see [7]), BP2(M) where M is the field of complex meromorphic functions (see [26]),
BP2(F (z)) where F (z) is the field of rational functions over a field of characteristic 0 or p ≥ 19
(see [15, 16]). Moreover, Büchi’s problem has a positive answer even in the case of function fields of
curves (see [26] for the characteristic zero case and see [23] for ‘large enough’ positive characteristic).
Under a conjecture in Diophantine Geometry, Vojta showed in [26] that BP2(Q) would have a positive
answer (hence BP2(Z) would have a positive answer). See [14] for a survey on Büchi’s problem and
its variants.

The positive existential L2-theory of a ring is usually much weaker than its positive existential
LR-theory. But when Büchi’s problem has a positive answer for a ring A then those theories for A are
(in general) equivalent. This is what happens for example for p-adic analytic functions and for p-adic
meromorphic functions (see Section 3.2).

We will solve BP(A) for some rings of functions, namely, the field of p-adic meromorphic functions,
the field of complex meromorphic functions and function fields of curves in characteristic zero by
showing in each case a somewhat stronger result on representation of squares by polynomials, in the
spirit of the following:

Given a ring B and a subset A of B, there exists a constant M satisfying the following condition:
For any set {a1, . . . , aM} of M elements in A, there exists a ‘small’ set E ⊆ B[X] such that, if a monic
polynomial of degree two P ∈ B[X] has the property that each P (ai) is a square in B, then P ∈ E or
P is a square in B[X].

We will prove such a result for number fields, but assuming that the following conjecture by Bombieri
holds for surfaces.

Conjecture 1.2 (Bombieri). If X is a smooth projective variety of general type defined over a number
field K/Q, then X(K) is contained in a proper Zariski closed set of X.
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REPRESENTATION OF SQUARES FOR p-ADIC MEROMORPHIC FUNCTIONS 3

The results for function fields, complex meromorphic functions and number fields are based in
Vojta’s work on Büchi’s problem (see [26]), where he solved Büchi’s problem for complex meromorphic
functions, function fields and (assuming the above conjecture) for number fields. The results related
to the p-adic setting are proved in a completely different way from Vojta’s proof for the complex
meromorphic case, and indeed, our proof is closer to the ideas in [15].

On the one hand, from an arithmetic point of view, our interest is not only in solving Büchi’s
problem in some structures, but also understand how many times a second degree polynomial which is
not a square, can represent a square.

On the other hand, from the point of view of Logic, our main interest in solving Büchi’s problem
for p-adic meromorphic functions is that some analogues of Hilbert’s Tenth Problem for the ring of
p-adic analytic functions (see [10]) and the field of p-adic meromorphic functions (see [24]) have been
proved to be undecidable (those problems are open in the complex case). Those results allow us, in
the p-adic case, to derive consequences in Logic from Büchi’s problem. This will be explained below
in Section 3.2.

We also refer the reader to [6] where is developed a general method used to solve negatively analogues
of Hilbert’s Tenth Problem for rings of functions.
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3. Main results

In this section, we present the statements of the results proven in this work.

3.1. Representation of squares in the field of p-adic meromorphic functions. Let p be a prime
number and let Cp be the field of p-adic complex numbers (the completion of the algebraic closure of
the field Qp of p-adic numbers). Throughout the paper, one can replace Cp by any algebraically closed
field of characteristic zero, complete with respect to a non-trivial non-Archimedean valuation.

Let Ap be the ring of entire functions over Cp and let Mp be the field of meromorphic functions
over Cp. We prove the following theorem on representation of squares by polynomials.

Theorem 3.1. Let P ∈ Mp[X] be a monic polynomial of degree two. If P (a) is a square in Mp for
at least 35 values of a ∈ Cp, then either P has constant coefficients or P is a square in Mp[X].

By solving the second order recurrence implied in the statement of Büchi’s problem, we can use the
above theorem to show the following.

Corollary 3.2. The problems BP(Ap) and BP(Mp) have a positive answer.

Theorem 3.1 can be improved for the ring Ap of p-adic entire functions in the following way.

Theorem 3.3. Let P ∈ Ap[X] be a monic polynomial of degree two. If P (a) is a square in Ap for at
least 13 values of a ∈ Cp, then either P has constant coefficients or P is a square in Ap[X].

The proof of Theorem 3.3 is shorter and simpler than the proof of Theorem 3.1. Indeed, the
method used in the proof of Theorem 3.3 essentially is a p-adic simplified version of the method in
[15]. Unfortunately, several technical difficulties arise when we consider the problem for Mp, and this
requires the use of Nevanlinna theory and some combinatoric arguments.

We will prove these results in Section 5 and Section 6. In Section 4, the reader will find some results
from p-adic Complex Analysis that we will need later in the proofs.

Jul 12 2010 22:53:44 EDT
Vers. 1 - Sub. to TRAN



4 HECTOR PASTEN

3.2. Undecidability for p-adic entire and meromorphic functions in Büchi’s language.
Corollary 3.2 allows us to obtain very strong undecidability results for p-adic analytic and mero-
morphic functions, improving results by Lipshitz, Pheidas and Vidaux. In order to state the theorems,
we need to introduce some notation.

Recall that Ap stands for the ring of entire functions over Cp, and Mp stands for the field of
meromorphic functions over Cp, with variable z.

By a diagonal quadratic equation over a ring A we will mean an equation of the form :

a1x
2
1 + · · ·+ anx

2
n = b

where the ai and b are elements of A and the xi are the unkowns.
Define the following languages:

LzR ={0, 1,+, ·, z},
L∗R ={0, 1,+, ·, z, ord},
Lz2 ={0, 1,+, P2, fz}, and

L∗2 ={0, 1,+, P2, fz, ord},

where P2 and ord are unary predicate symbols, and fz is a unary function symbol. In Ap and Mp,
P2(x) is interpreted as ‘x is a square’, fz(x) is interpreted as ‘x 7→ zx’, and we interpret ord(x) as
‘x(0) = 0’ (all other symbols are interpreted in the obvious way).

Theorem 3.4. Multiplication is positive existentially definable in Mp and in Ap over the language
Lz2.

See Section 7 for a proof.
We recall that the following two theories are undecidable: the positive existential theory of Ap in

the language LzR (see [10]) and the positive existential theory of Mp in the language L∗R (see [24]).
From this and Theorem 3.4 we conclude

Theorem 3.5. The positive existential theory of Ap in the language Lz2 and the positive existential
theory of Mp in the language L∗2 are undecidable.

This result allows us to prove the following (see Section 7).

Theorem 3.6. There is no algorithm to solve any of the following problems:

(1) Given a system of diagonal quadratic equations

r∑
i=1

aijx
2
i = bj j = 1, . . . , s

with all the aij and bj in Z[z], to decide whether or not the system has a solution in Ap.
(2) Given a system of diagonal quadratic equations

r∑
i=1

aijx
2
i = bj j = 1, . . . , s

with all the aij and bj in Z[z], and given a set I ⊆ {1, . . . , r}, to decide whether or not the
system has a solution in Mp satisfying xi(0) = 0 for each i ∈ I.

3.3. Representation of squares in number fields. The statements given below will be proved in
Section 10.

Theorem 3.7. Assume Bombieri’s Conjecture 1.2 holds for surfaces. Let K be a number field and
{a1, . . . , a8} a set of eight elements in K. There exists a finite (possibly empty) set E = E(K, (ai)i) of
polynomials in K[x] such that the following holds : for each polynomial f of the form x2+ax+b ∈ K[x],
if f(ai) are squares in K for each i then either f ∈ E, or f = (x+ c)2 for some c ∈ K.

This theorem is an extension of Theorem 0.5 in [26]. The method used to obtain this result is
essentially an adaptation of the method by Vojta in [26].
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REPRESENTATION OF SQUARES FOR p-ADIC MEROMORPHIC FUNCTIONS 5

It is an obvious but remarkable fact that, if one could find a number field K and a sequence
a = (a1, . . . , a8) of distinct elements of K such that the set E(K, (ai)) is infinite, then one would au-
tomatically obtain a counterexample to Bombieri’s Conjecture. On the other hand, showing finiteness
for E(K, (ai)) for some K and some sequence (ai) would give a new example of a surface (over K)
where Bombieri’s question has a positive answer. We are not able to prove nor disprove the finiteness
of the set E(K, (ai)) in any case.

From the finiteness of the sets E(K, (ai)) one can easily derive the following (see Section 10).

Corollary 3.8. Assume that Bombieri’s conjecture holds for surfaces defined over Q. Let a1, a2, . . . be
a sequence of integers without repeated terms. There exists a constant M (depending on the sequence
(ai)i) such that: if a polynomial f = x2 + ax + b ∈ Q[x] satisfies the property ‘f(ai) is a square in Z
for i = 1, . . . ,M ’, then f is of the form f = (x+ c)2, for some c ∈ Z.

Observe that the dependence of M on the sequence cannot be dropped. Consider for example the
polynomial fN = x2 − 4(2N)!, where N is a positive integer, and define

ai = i! +
(2N)!

i!
.

Then it is obvious that (ai)
N
i=1 is a strictly decreasing sequence in Z and each fN (ai) is a square in Z.

Note that, if in Corollary 3.8 we set an = n for each n, then we obtain a positive answer to Büchi’s
Problem for Z (under Bombieri’s Conjecture).

3.4. Representation of squares for function fields and for complex meromorphic functions.
The geometric results in Section 8 will be used in Section 10 to prove the following theorems, analogues
to Theorem 3.1.

Theorem 3.9. Let F be a field of characteristic zero and C a non-singular projective curve defined
over F . Define the integer M = max{8, 4(g + 1)} where g is the genus of C. Write K(C) for the
function field of C and let X be transcendental over K(C). Let P ∈ K(C)[X] be a monic polynomial
of degree two. If P (a) is a square in K(C) for at least M values of a ∈ F , then either P has constant
coefficients or P is a square in K(C)[X].

Theorem 3.10. Write M for the field of meromorphic functions on C. Let P ∈ M[X] be a monic
polynomial of degree two. If P (a) is a square in M for at least 8 values of a ∈ C, then either P has
constant coefficients or P is a square in M[X].

These theorems give as a direct consequence a positive answer to Büchi’s problem in the respective
cases, but such a positive answer is not new since it was proved in [26] for both cases. Moreover,
Büchi’s problem was solved recently by a new method in characteristic zero and (large enough) positive
characteristic in [23].

4. Some results in p-adic Nevanlinna Theory

First we present the notation we use for the usual functions in p-adic Nevanlinna Theory.
We will work over the field Cp with absolute value | · |p. Write Ap for the ring of entire functions

over Cp and Mp for the field of meromorphic functions over Cp. We denote by F+ the positive part
of a function F in to R, that is F+ = max{F, 0}. We adopt the following notation for the standard
functions in p-adic Nevanlinna theory, where f = h

g ∈ Mp is non-zero, and where g, h ∈ Ap are
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coprime:
B[r] = {z ∈ Cp : |z|p ≤ r}

n(r, h, 0) = number of zeros of h in B[r] counting multiplicity

n(r, f, 0) = n(r, h, 0)

n(r, f,∞) = n(r, g, 0)

N(r, h, 0) =

∫ r

0

n(t, h, 0)− n(0, h, 0)

t
dt+ n(0, h, 0) log r

N(r, f, 0) = N(r, h, 0)

N(r, f, a) = N(r, f − a, 0)

N(r, f,∞) = N(r, g, 0)

|h|r = max
n≥0
|an|prn, where h(z) = a0 +

∑
n≥1

anz
n

|f |r =
|h|r
|g|r

m(r, f, a) = log+ 1

|f − a|r
m(r, f) = m(r, f,∞) = log+ |f |r

We recall to the reader that for each r > 0, the function | · |r : M → R is a non-archimedean
absolute value satisfying |a|r = |a|p when a is constant.

We will need the following standard results from p-adic Nevanlinna Theory. For a general presenta-
tion of p-adic complex analysis, see for example [20]. For references on p-adic Nevanlinna Theory (in
particular, for a proof of the following results) see for example [4], [21] or the Chapter II of [8].

First we have the Logarithmic Derivative Lemma:

Lemma 4.1. If n > 0 is a positive integer and f ∈Mp then∣∣∣∣f (n)f
∣∣∣∣
r

≤ 1

rn

where f (n) stands for the n-th derivative.

We will also need the Poisson-Jensen Formula:

Theorem 4.2. Given f ∈Mp, there exists a constant C depending only on f such that

log |f |r = N(r, f, 0)−N(r, f,∞) + C.

As a consequence of the Poisson-Jensen Formula, we get the First Main Theorem:

Theorem 4.3. Let f ∈Mp be a non-constant meromorphic function and a ∈ Cp. As r →∞ we have

m(r, f, a) +N(r, f, a) = m(r, f,∞) +N(r, f,∞) +O(1).

Finally, we state the Second Main Theorem:

Theorem 4.4. Let f ∈ Mp be a non-constant meromorphic function and let a1, . . . , aq ∈ Cp be
distinct. Then, as r →∞ we have

q∑
i=1

m(r, f, ai) ≤ N(r, f,∞) +O(1).

5. Proof of Theorem 3.1 (p-adic Meromorphic Functions)

The following equality will be used many times without mention within this section:

(1) N(r, f, x) = K +

∫ r

1

n(t, f, x)

t
dt, for large r.
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REPRESENTATION OF SQUARES FOR p-ADIC MEROMORPHIC FUNCTIONS 7

It will be used systematically in order to deduce inequalities (for large r) about N when we know
inequalities about n (the point is that the integral is a linear and monotone operator).

In order to simplify the proof of Theorem 3.1, we actually will prove the following equivalent result.

Theorem 5.1. Let h1, . . . , hM be elements of Mp such that at least one hi is non-constant. Let
a1, . . . , aM be M distinct elements of Cp. If there exist f, g ∈Mp, with g non-zero, such that

(2) h2j = (aj + f)2 − g j = 1, . . . ,M

then M ≤ 34.

For the rest of this section, we will assume that we are under the hypothesis of Theorem 5.1.
Assuming M ≥ 35 we will obtain a contradiction.

First, we observe that

h2i − h2j = (ai − aj)(2f + ai + aj).(3)

Lemma 5.2. The function f is not constant.

Proof. If f is constant then so is ci = (ai + f)2. Note that since some hi is non-constant, g is non-
constant. Taking i, j and k such that ci, cj , and ck are pairwise distinct constants, the following
equality

(hihjhk)2 = (ci − g)(cj − g)(ck − g)

gives a non-constant meromorphic parametrization of an elliptic curve over Cp, which is impossible by
a theorem of Berkovich (see [2]). �

Lemma 5.3. Let x ∈ Cp be a pole of some hi. There exists an index k depending on x such that for
each i 6= k we have (simultaneously)

(1) ordxhk ≥ ordxhi;
(2) ordxf ≥ 2ordxhi;
(3) ordxg ≥ 4ordxhi;
(4) ordxhi = ordxhj for all j 6= k; and
(5) ordxhi ≤ −1.

Moreover, for each i we have

(4) min{ordxhi, 0} ≥
1

M − 1

∑
l

min{ordxhl, 0}

and, there exists a positive constant K such that for large enough r and for each i we have

(5) N(r, hi,∞) ≤ 1

M − 1

∑
l

N(r, hl,∞).

Proof. Let i0 be an index such that hi0 has a pole at x.
First suppose that all hi have the same order at x (hence negative). In this case, Items (1), (4) and

(5) hold trivially, Item (2) comes from Equation (3), and Item (3) comes from Equation (2). Indeed
for Item (3) we have

ordx(g) ≥ 2 min{ordx(hi), ordx(f + ai)}
= 2 min{ordx(hi), ordx(f)}
= 2 min{ordx(hi), 2ordx(hi)}
≥ 4ordxhi,

where the last inequality comes from Item (2).
The other case is when not all hi have the same order at x. Choose k such that item (1) holds true.

By Equation (3) for indices k and any i 6= k, Item (4) holds true. If i0 = k then all hi have a pole at
x (by maximality of k), and if i0 6= k then by Item (4), for all i 6= k, hi has a pole at x. Hence Item
(5) holds true. Items (2) and (3) for i 6= k follow as in the previous case.

Finally, by Items (1), (4) and (5), and observing that ordxhk could be positive, we have for each i

(M − 1) min{ordxhi, 0} =
∑
l 6=k

min{ordxhl, 0} ≥
∑
l

min{ordxhl, 0}.
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Summing for x ∈ B[r] we obtain

(M − 1)n(r, hi,∞) ≤
∑
l

n(r, hl,∞).

which gives the inequality (5) by Equation (1). �

Lemma 5.4. The following inequality holds

M∑
n=1

log |hn|r +
1

M − 1

M∑
n=1

N(r, hn,∞) ≥ −1

2
N(r, f,∞) +O(1).

Proof. By the Second Main Theorem 4.4, we have for each i ∈ {1, . . . ,M}

−N(r, f,∞) +O(1) ≤ −
∑
j 6=i

log+

∣∣∣∣∣ 1

f +
ai+aj

2

∣∣∣∣∣
r

≤
∑
j 6=i

log

∣∣∣∣f +
ai + aj

2

∣∣∣∣
r

.

Since by Equation (3) we have

h2i − h2j = 2(ai − aj)
(
f +

ai + aj
2

)
,

we deduce

−N(r, f,∞) +O(1) ≤
∑
j 6=i

log
∣∣h2i − h2j ∣∣r .

If for a given r, ir is an index such that |hi|r is minimal, then

1

2

∑
j 6=ir

log
∣∣h2ir − h2j ∣∣r ≤

∑
j 6=ir

log |hj |r

= C +
∑
j 6=ir

(N(r, hj , 0)−N(r, hj ,∞))

≤ C +N(r, hir ,∞) +
∑
n

(N(r, hn, 0)−N(r, hn,∞))

= C ′ +N(r, hir ,∞) +
∑
n

log |hn|r

≤ C ′′ +
1

M − 1

∑
n

N(r, hn,∞) +
∑
n

log |hn|r

where the first and second equalities are given by the Poisson-Jensen Formula 4.2, the third inequality
is given by Lemma 5.3 (see Equation (5)), and C, C ′, C ′′ are fixed constants (not depending on r nor
on ir).

Finally we have

−1

2
N(r, f,∞) +O(1) ≤ 1

2

∑
j 6=ir

log
∣∣h2ir − h2j ∣∣r ≤∑ log |hn|r +

1

M − 1

∑
N(r, hn,∞) + C ′′

for each r large enough, and the lemma is proven. �

Lemma 5.5. The following inequalities hold:

n(r, f,∞) ≤ 2

M − 1

∑
n

n(r, hn,∞)

and ∑
n

N(r, hn, 0) ≥ M − 3

M − 1

∑
n

N(r, hn,∞) +O(1).
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REPRESENTATION OF SQUARES FOR p-ADIC MEROMORPHIC FUNCTIONS 9

Proof. Observe that by Lemma 5.3 (Item (2) and Equation (4)) we have

(M − 1)n(r, f,∞) ≤ 2
∑

n(r, hj ,∞),

hence

(M − 1)N(r, f,∞) ≤ 2
∑

N(r, hn,∞) +O(1).

The second formula comes immediately by Lemma 5.4 and the Poisson-Jensen Formula 4.2. �

The equations

h2n + g = (an + f)2

2h′nhn + g′ = 2f ′(an + f)

are directly deduced by reordering and differentiating the one given in the hypothesis. From this we
deduce

(2h′nhn + g′)2 = 4f ′2(h2n + g)

hence

g′2 − 4f ′2g = 4hn(hnf
′2 − h′2n hn − h′ng′).

Writing

∆ = g′2 − 4f ′2g

∆n = hnf
′2 − h′2n hn − h′ng′

we have

(6) ∆ = 4hn∆n.

Lemma 5.6. If ∆ is not identically zero, then

N(r,∆, 0) ≥ 1

2

∑
N(r, hn, 0)− 8

M − 1

∑
N(r, hn,∞) +O(1).

Proof. On the one hand, for a given x ∈ Cp suppose f has a pole at x and hj(x) = 0 for some index
j. Set l = ordx(hj) and m = ordx(f). Note that ordx(g) = 2m because hj(x) = 0 (see Equation (2)).
Write

hj = ul(z − x)l + ul+1(z − x)l+1 + · · · ,

f = vm(z − x)m + vm+1(z − x)m+1 + · · ·
and

g = w2m(z − x)2m + w2m+1(z − x)2m+1 + · · ·
for the Laurent series of hj , f and g at x. Observe that w2m = v2m. The first term of the Laurent
series at x for respectively hjf

′2, h′2j hj and h′jg
′ is, respectively,

m2ulv
2
m(z − x)l+2m−2

l2u3l (z − x)3l−2

2lmulv
2
m(z − x)l+2m−2

hence ordx∆j = l + 2m− 2 since 2l 6= m. Therefore, we have

ordx∆ = 2(l +m− 1).

On the other hand, if x ∈ Cp is not a pole of f and is a zero of some hj , then we have

ordx∆ ≥ ordx(hj)

because by Equation (2), g does not have a pole, hence ∆j does not have a pole and we conclude by
Equation (6).

Let Ar be the set of x ∈ B[r] such that f has not a pole at x and hj(x) = 0 for some index j, and
let Br be the set of x ∈ B[r] such that f has a pole at x and hj(x) = 0 for some index j. Observe
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10 HECTOR PASTEN

that, by Equation (3), no three of the hn can share a zero (we use it for the fifth inequality below).
We have then

n(r,∆, 0) ≥
∑
x∈Ar

ordx∆ +
∑
x∈Br

ordx∆

≥
∑
x∈Ar

max
hi(x)=0

ordx(hi) +
∑
x∈Br

max
hi(x)=0

2(ordx(hi) + ordx(f)− 1)

≥
∑

x∈Ar∪Br

max
hi(x)=0

ordx(hi) + 2
∑
x∈Br

max
hi(x)=0

(ordx(f)− 1)

=
∑

x∈Ar∪Br

max
hi(x)=0

ordx(hi) + 2
∑
x∈Br

(ordx(f)− 1)

≥
∑

x∈Ar∪Br

max
hi(x)=0

ordx(hi) + 4
∑
x∈Br

ordx(f)

≥ 1

2

∑
i

n(r, hi, 0)− 4n(r, f,∞)

≥ 1

2

∑
i

n(r, hi, 0)− 8

M − 1

∑
n(r, hi,∞)

where the last inequality comes from Lemma 5.5. The result follows. �

Lemma 5.7. If ∆ is not identically zero, then

N(r,∆,∞) ≤ 8

M − 1

∑
N(r, hn,∞) +O(1).

Proof. Suppose that some x ∈ Cp is a pole of ∆. Then, by definition of ∆, it is a pole of f or of g.
If none of the hi has a pole at x then by Equation (3) f does not have a pole, and by Equation (2),
g does not have a pole, which contradicts our hypothesis. Therefore, some hi has a pole at x. Take k
as in Lemma 5.3. For each index i 6= k we have (observing that ordx(hi) ≤ −1 and that if g′ = 0 then
ordxh

′
ig
′ is infinite)

ordx∆ ≥ ordxhi + min{ordxhif
′2, ordxh

′2
i hi, ordxh

′
ig
′}

≥ ordxhi + min{7ordxhi, 5ordxhi, 7ordxhi}
= 8ordxhi.

Hence, using the Lemma 5.3 (Equation (4)) we have

ordx∆ ≥ 8

M − 1

∑
l

min{ordxhl, 0}.

Write Dr for the set of poles of ∆ in B[r]. We have

n(r,∆,∞) =
∑
x∈Dr

−ordx∆

≤ 8

M − 1

∑
x∈Dr

∑
l

max{−ordxhl, 0}

≤ 8

M − 1

∑
l

∑
x∈B[r]

max{−ordxhl, 0}

=
8

M − 1

∑
l

n(r, hl,∞).

and the result follows. �

Lemma 5.8. (1) For each r > 0, there exists an index kr such that |hkr |r is minimal.
(2) There exists a positive constant Kf such that, for any r > 0 and for all i 6= kr, we have

log |f |r ≤ max{0, 2 log |hi|r}+Kf .
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REPRESENTATION OF SQUARES FOR p-ADIC MEROMORPHIC FUNCTIONS 11

(3) There exists a positive constant Kg such that, for any r > 0 and for all i 6= kr, we have

log |f |r ≤ max{0, 4 log |hi|r}+Kg.

Proof. Item (1) is immediate since for each r, the set {|hi|r : i = 1, . . . ,M} is finite. Let us prove Item
(2). There exists a positive constant K ′ > 1 such that for each r > 0, i and j, we have

(7) |2f |r ≤ |2f + ai + aj |r + |ai + aj |r ≤ K ′ + |2f + ai + aj |r.
On the other hand, by Equation (3) there exists a constant K ′′ > 1 such that, for any r > 0, i 6= kr
and j, we have

|2f + ai + aj |r =

∣∣∣∣∣h2i − h2krai − akr

∣∣∣∣∣
r

≤
∣∣∣∣ h2i
ai − akr

∣∣∣∣
r

(by Item (1))

≤ K ′′|h2i |r
hence by Equation (7)

|2f |r ≤ K ′′|h2i |r +K ′ ≤ K ′′max{|h2i |r, 1}+K ′.

Therefore, we have

log |f |r ≤ log(K ′′max{|h2i |r, 1}+K ′)− log |2|r
≤ log(K ′′max{|h2i |r, 1}) + logK ′ + log 2− log |2|r
≤ max{2 log |hi|r, 0}+Kf

with Kf is a positive constant greater than logK ′′ + logK ′ + log 2 − log |2|r, and where the second
inequality comes from the fact that for all real numbers x, y ≥ 1, we have log(x+y) ≤ log x+log y+log 2
(just write (1− x)(y − 1) ≤ 0).

Finally, we prove Item (3). By Equation (2) and Item (2), for each i 6= kr we have

log |g|r = log |(f + ai)
2 − h2i |r

≤ log
(
max{|h2i |r, |f2|r, |2aif |r, |a2i |r}

)
≤ log

(
max{|h2i |r, |f2|r, |a2i |r}

)
≤ max{2 log |hi|r, 0, 2 log |f |r}+ max{|a2i |r}
≤ max{2 log |hi|r, 0, 2 max{0, 2 log |hi|r}+ 2Kf}+ max{|a2i |r}
≤ max{2 log |hi|r + 2Kf , 2Kf , 4 log |hi|r + 2Kf}+ max{|a2i |r}
≤ max{0, 4 log |hi|r}+Kg

where Kg is a fixed positive constant bigger than 2Kf + max{|a2i |r}, and where the second inequality
comes from the following :

|2aif |r ≤ |ai|r|f |r ≤
|a2i |r + |f2|r

2
≤ max{|a2i |r, |f2|r}.

�

Lemma 5.9. If ∆ is not identically zero, then

log |∆|r ≤
6M − 2

M(M − 1)

∑
log |hn|r +

8

(M − 1)2

∑
N(r, hn,∞)− 2 log r +O(1).

Proof. By the Poisson-Jensen Formula 4.2 and Lemma 5.3 (Equation (5)) we have for r large enough
and for each i

log |hi|r = N(r, hi, 0)−N(r, hi,∞) + C

≥ −N(r, hi,∞) + C

≥ − 1

M − 1

∑
n

N(r, hn,∞) + C ′

for some constants C,C ′.
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12 HECTOR PASTEN

Given r > 0 take kr as in Lemma 5.8. Choose ir such that |hir |r is minimal in {|hi|r : i 6= kr}, and
note that

log |hir |r ≤
1

M − 1

∑
i 6=kr

log |hi|r.

By Item (2) in Lemma 5.8, we have for each r large enough

log |f |r ≤ max{0, 2 log |hir |r}+Kf

≤ max

0,
2

M − 1

∑
i 6=kr

log |hi|r

+Kf

≤ max

{
0,

2

M − 1

∑
log |hn|r +

2

(M − 1)2

∑
N(r, hn,∞)

}
− 2C ′

M − 1
+Kf

and by Item (3) in Lemma 5.8 we have for each r large enough

log |g|r ≤ max{0, 4 log |hir |r}+Kg

≤ max

{
0,

4

M − 1

∑
n

log |hn|r +
4

(M − 1)2

∑
n

N(r, hn,∞)

}
− 4C ′

M − 1
+Kg.

Hence, for large r we get

log |f |r ≤ max

{
0,

2

M − 1

∑
n

log |hn|r +
2

(M − 1)2

∑
n

N(r, hn,∞)

}
+O(1)(8)

log |g|r ≤ max

{
0,

4

M − 1

∑
n

log |hn|r +
4

(M − 1)2

∑
n

N(r, hn,∞)

}
+O(1).(9)

Since ∆ is not the zero function, from Lemma 4.1 (Logarithmic Derivative Lemma) we have for
each index n

|∆|r ≤ |hn|r max{|hnf ′2|r, |h′2n hn|r, |h′ng′|r} ≤
1

r2
|hn|2r max{|f |2r, |hn|2r, |g|r}

and by Equation (2) for each n holds

2 log |hn|r ≤ max{2 log |f |r, 0, log |g|r}+O(1)

therefore we have for each n

log |∆|r ≤ log

(
1

r2
|hn|2r

)
+ max{2 log |f |r, 0, log |g|r}+O(1).

Since this last expression is true for each n, we have

log |∆|r ≤
2

M

∑
log |hn|r − 2 log r + max{2 log |f |r, 0, log |g|r}+O(1).

Note that by equations (8) and (9)

max{2 log |f |r, 0, log |g|r} ≤ max

{
0,

4

M − 1

∑
log |hn|r +

4

(M − 1)2

∑
N(r, hn,∞)

}
+O(1)

and by Lemma 5.4 we have that this last expression is less than or equal to

4

M − 1

∑
log |hn|r +

4

(M − 1)2

∑
N(r, hn,∞) +

2

M − 1
N(r, f,∞) +O(1).

Therefore

log |∆|r ≤
(

2

M
+

4

M − 1

)∑
log |hn|r − 2 log r +

4

(M − 1)2

∑
N(r, hn,∞)

+
2

M − 1
N(r, f,∞) +O(1)

Finally, we bound N(r, f,∞) using Lemma 5.5 and the result follows. �

Lemma 5.10. ∆ = 0 for M ≥ 35.
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REPRESENTATION OF SQUARES FOR p-ADIC MEROMORPHIC FUNCTIONS 13

Proof. The proof goes by contradiction, so we assume ∆ is not identically zero. Consider the equation

log |∆|r = N(r,∆, 0)−N(r,∆,∞) +O(1).

Lemmas 5.6, 5.7 and 5.9 allow us to bound log |∆|r above and below, obtaining

6M − 2

M(M − 1)

∑
log |hn|r +

8

(M − 1)2
I − 2 log r ≥ 1

2
Z − 8

M − 1
I − 8

M − 1
I +O(1)

where we write Z =
∑
N(r, hn, 0) and I =

∑
N(r, hn,∞). Observe that∑

log |hn|r = Z − I +O(1)

by Poisson-Jensen Formula 4.2. This and Lemma 5.5 give

−2 log r ≥
(

1

2
− 6M − 2

M(M − 1)

)
Z +

(
6M − 2

M(M − 1)
− 16

M − 1
− 8

(M − 1)2

)
I +O(1)

≥
((

1

2
− 6M − 2

M(M − 1)

)
M − 3

M − 1
− 10M2 − 2

M(M − 1)2

)
I +O(1)

=
M2 − 35M + 8

2M(M − 1)
I +O(1).

A contradiction for M ≥ 35. �

Finally, we have that ∆ is the zero function, f is not a constant and g is non-zero. We get the
equation g′2 = 4f ′2g, which implies that exists a meromorphic function u such that g = u2 and
u′2 = f ′2. Hence u = αf + b for certain α ∈ {−1, 1} and b ∈ Cp, and we obtain

h2n = (an + f)2 − (αf + b)2

= (an + f)2 − (f + αb)2

= (an − αb)(an + αb+ 2f).

From this we get(
hihjhk√

(ai − αb)(aj − αb)(ak − αb)

)2

= (ai + αb+ 2f)(aj + αb+ 2f)(ak + αb+ 2f).

This is a contradiction because f is not a constant. Therefore the Theorem 5.1 is proven.

6. Proof of Theorem 3.3 (p-adic Entire Functions)

The purpose of this section is to prove Theorem 3.3. Up to some adaptations for the p-adic setting,
the proof goes along essentially the same lines as the solution of Büchi’s problem for C[z] using the
method of Pheidas and Vidaux (see for example [15] for the paper where this method was used by first
time, or [14] for a quite simplified exposition in the particular case C[x], which is closer to the case of
p-adic entire functions) and we include it here just for the sake of completeness.

We prefer to avoid the use of Berkovich’s theorem and replace it by an elementary argument on
factorization.

In order to simplify the proof, we will prove the Theorem in the following equivalent form:

Theorem 6.1. Let hj ∈ Ap, j = 1, . . . ,M with at least one of them non-constant, and let aj ∈ Cp be
distinct for j = 1, . . . ,M . Assume we have f, g ∈ Ap with f, g non-zero, such that h2j = (aj + f)2 − g
for j = 1, . . . ,M . Then M ≤ 12.

We will assume M > 12 to obtain a contradiction.

Lemma 6.2. The function f is non-constant.

Proof. Suppose that f is constant. Then (hi − hj)(hi + hj) = (ai − aj)(ai + aj + 2f) also is constant
for i 6= j, hence each hi = 1

2 ((hi − hj) + (hi + hj)) is constant, which contradicts the hypothesis. �
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14 HECTOR PASTEN

For i 6= j we have

h2i − h2j =
(
(ai + f)2 − g

)
−
(
(aj + f)2 − g

)
= 2(ai − aj)f + (a2i − a2j )

hence, for each r we have

2 max
n

m(r, hn) ≥ m(r, h2i − h2j ) = m(r, f) +O(1)(10)

and the equality g = (aj + f)2 − h2j implies

m(r, g) ≤ 2 max{m(r, aj + f),m(r, hj)}+O(1) ≤ 4 max
n

m(r, hn) +O(1).(11)

As in the previous section, we define

∆ = g′2 − 4f ′2g

∆n = hnf
′2 − h′n

2
hn − h′ng′

and these functions satisfy the same equation as in the previous section (see Equation (6))

∆ = 4hn∆n.

Lemma 6.3. The function ∆ is the zero function.

The point is that, if ∆ is not the zero function then we can apply to it the function m(r, ·), and
we will obtain a contradiction by bounding above and below m(r,∆). We we will need the following
three claims.

Claim 6.4. For each r large enough, we have

m(r,∆) ≤ 6 max
n

m(r, hn)− 2 log r +O(1).

Proof of Claim 6.4. By definition of ∆ we have

m(r,∆) = m(r, hn) +m(r,∆n) +O(1)

≤ m(r, hn) + max{m(r, hnf
′2),m(r, h′n

2
hn),m(r, h′ng

′)}+O(1)

In order to estimate an upper bound for this last expression, by the inequalities (10) and (11) and
Lemma 4.1 we obtain for each r large enough

m(r, hnf
′2) ≤ m(r, hn) + 2m(r, f)− 2 log r +O(1)

≤ 5 max
n

m(r, hn)− 2 log r +O(1)

m(r, h′n
2
hn) ≤ m(r, hn) + 2m(r, hn)− 2 log r +O(1)

≤ 3 max
n

m(r, hn)− 2 log r +O(1)

m(r, h′ng
′) ≤ m(r, hn) +m(r, g)− 2 log r +O(1)

≤ 5 max
n

m(r, hn)− 2 log r +O(1)

Therefore, for each r large enough we have

m(r,∆) ≤ 6 max
n

m(r, hn)− 2 log r +O(1).

�

Claim 6.5. For each r large enough, we have

maxm(r, hn) ≤ 1

M − 1

∑
n

m(r, hn) +O(1)

Proof of Claim 6.5. Given an r, if all the m(r, hn) are equal the result is obvious, so let us assume that
we have two indices s, t such that m(r, hs) is minimal, m(r, ht) is maximal and m(r, hs) 6= m(r, ht).
For r large enough and for all i 6= j we have |2f |r = |ai + aj + 2f |r because of Lemma 6.2 and the

definition of | · |r, moreover, |2f |r > 1 for large r. Write C = log+ maxi 6=j |ai − aj |p and note that this
constant does not depend on r. Since h2i − h2j = (ai − aj)(ai + aj + 2f) we have for r large enough

m(r, f) ≤ m(r, h2i − h2j ) ≤ m(r, f) + C.
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REPRESENTATION OF SQUARES FOR p-ADIC MEROMORPHIC FUNCTIONS 15

On the one hand, by the strong triangle inequality of | · |r we have for each n

m(r, f) + C ≥ m(r, h2t − h2s) = 2m(r, ht) = 2 max
n

m(r, hn).

On the other hand, for each n 6= s we have

2m(r, hn) ≥ m(r, h2n − h2s) ≥ m(r, f).

adding these inequalities as long as n 6= s we get

2
∑
n

m(r, hn) ≥ 2
∑
n6=s

m(r, hn) ≥ (M − 1)m(r, f).

Therefore

2
∑
n

m(r, hn) ≥ (M − 1)m(r, f) ≥ (M − 1)(2 max
n

m(r, hn)− C).

�

Claim 6.6. For each r large enough, we have

1

2

∑
n

m(r, hn) ≤ m(r,∆) +O(1)

Proof of Claim 6.6. Define

n(r) =
∑
|ρ|≤r

max
n

ordρhn

and note that this sum is always finite because the hn are entire. Since 4hn∆n = ∆ holds for each n and
∆ is not identically zero, we have ordρhn ≤ ordρ∆ for each n and each ρ, therefore n(r) ≤ n(r,∆, 0).

Observe that no three of the hi can share a zero (if ρ is a common zero of hi, hj , hk for distinct
indices, then the polynomial (f(ρ) +X)2 − g(ρ) has three roots, namely ai, aj , ak), hence∑

n

n(r, hn, 0) ≤ 2n(r)

and we arrive to ∑
n

n(r, hn, 0) ≤ 2n(r,∆, 0)

hence ∑
n

N(r, hn, 0) ≤ 2N(r,∆, 0) +O(1).

This inequality and Theorem 4.2 applied to ∆ (which is an entire function) lead to∑
n

m(r, hn) ≤ 2m(r,∆) +O(1).

�

Proof of Lemma 6.3. We suppose ∆ is not identically zero. We apply to it m(r, ·) and use the bounds
given in the above Claims to get:

2 log r +
1

2

∑
n

m(r, hn) ≤ 6

M − 1

∑
n

m(r, hn) +O(1)

which is a contradiction for M > 12. This proves that ∆ = 0. �

From the equation ∆ = 0 we have

g′2 = 4f ′2g.(12)

By Lemma 6.2 we have that f is non-constant, hence the equation g′2 = 4f ′2g implies that g is a square
in Mp, but g ∈ Ap implies that g is a square in Ap. Thus g = u2 for some u ∈ Ap and replacing in
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16 HECTOR PASTEN

Equation (12) we get u′2 = f ′2. Therefore there exists b ∈ Cp and α ∈ {−1, 1} such that g = (αf+b)2,
hence

h2n = (an + f)2 − (αf + b)2

= (an + f)2 − (f + αb)2

= (an − αb)(an + αb+ 2f).

Observe that this and Lemma 6.2 imply hn non-constant for all n such that an 6= αb, and this is the
case for al but at most one index m since the an are pairwise distinct. Define

vn =
fn

an − αb
for each n 6= m, and note that each vi is non-constant. Take any two indices i 6= j such that i, j 6= m.
We have

(vi − vj)(vi + vj) = v2i − v2j = (ai + αb+ 2f)− (aj + αb+ 2f) = ai − aj
and this implies that vi − vj and vi + vj are constant, therefore each vi = 1

2 ((vi + vj) + (vi − vj)) is
constant. This is the desired contradiction, and the proof of Theorem 6.1 is complete.

7. Proof of Theorem 3.4 (Undecidability Results)

We will use the positive answer to Problems BP(Mp) and BP(Ap). First we define the following
Lz2-formulas:

Bu[x, y] : ∃u1 · · · ∃u35
(
∧35i=1P2(ui)

)
∧
(
∧34i=2ui−1 + ui+1 = 2ui + 2

)
∧ x = u1 ∧ 2y + 1 = u2 − u1

Sq[x, y] : Bu[x, y] ∧ Bu[fzx, fzfzy]

Prod[x, y, w] : ∃u∃vP2(u) ∧ P2(v) ∧ (Sq[x+ y, u] ∧ Sq[x− y, v] ∧ u = v + 4w) .

Note that all the above formulas are positive existential.
Next we define the following systems of equations:

Busys(a, b) :



q23 − 2q22 + q21 = 2
...

q235 − 2q234 + q233 = 2

q21 = b

q22 − q21 = 2a+ 1

Sqsys(a, b) :

{
Busys(a, b)

Busys(za, z
2b)

and

Prodsys(a, b, c) :


Sq(a, x2)

Sq(b, y2)

Sq(a+ b, w2)

w2 = x2 + 2c+ y2

where it is understood that, if we consider a system of equations built up by several of these systems,
then the unknowns in each of them are distinct. For example, in the definition of Sqsys, since we use
twice Busys, it is understood that the variables qi in the first Busys are distinct from the variables qi
appearing in the second Busys.

Note that the system Prodsys(x
2, y2, z2) (where x, y, z also are considered as unknowns) is a system

of diagonal quadratic equations with coefficients in Z[z].
From the definition of the above formulas and systems of equations, it is clear that given a, b, c ∈ R,

where R = Ap or Mp, we have the following:

• R |= Bu[a, b] if and only if the system Busys(a, b) has a solution in R
• R |= Sq[a, b] if and only if the system Sqsys(a, b) has a solution in R
• R |= Prod[a, b, c] if and only if the system Prodsys(a, b, c) has a solution in R.
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Lemma 7.1. If a, b, c ∈ R, where R = Ap or R =Mp, then the following statements are equivalent:

i. ab = c
ii. R |= Prod[a, b, c]

iii. Prodsys(a, b, c) has a solution in R.

Proof. Because of the above discussion, it is enough to prove that item i is equivalent to item ii. By
Corollary 3.2 we have : R satisfies Bu[a, b] if and only if b = a2 or a and b are constants. Thus, R
satisfies Sq[a, b] if and only if b = a2. Therefore, R satisfies Prod[a, b, c] if and only if c = ab. �

Proof of Theorem 3.4. This is a consequence of the equivalence of items i and ii in Lemma 7.1, and
the fact that Prod[x, y, z] is a positive existential Lz2-formula. �

Proof of Theorem 3.6. From Theorem 3.4 we obtain the non-existence of an algorithm to solve any of
the following problems:

(1) Given a system
r∑
i=1

aikx
2
i +

s∑
j=1

bjkyj = ck, k = 1, . . . , t(13)

with all the aik, bjk, ck in Z[z], to decide whether or not the system has a solution in Ap.
(2) Given a system

r∑
i=1

aikx
2
i +

s∑
j=1

bjkyj = ck, k = 1, . . . , t(14)

with all the aik, bjk, ck in Z[z], and given two sets I ⊆ {1, . . . , r} and J ⊆ {1, . . . , s}, to decide
whether or not the system has a solution in Mp satisfying xi(0) = 0 for each i ∈ I and
yj(0) = 0 for each k ∈ J .

To prove item (1) of the theorem, consider the diagonal quadratic system
r∑
i=1

aikx
2
i +

s∑
k=1

bjk(u2j − v2j ) = ck, k = 1, . . . , t.(15)

System (15) has a solution in Ap if and only if System (13) has, because of the identity

x =

(
x+ 1

2

)2

−
(
x− 1

2

)2

.

In order to prove item (2) of the theorem, we cannot perform the same substitution as before in
order to eliminate the degree-one part, because a technical problem arises with the vanishing conditions.
Namely, if we replace an unknown yj with condition yj(0) = 0 by (u2j − v2j ) as in the previous case,

then the vanishing condition becomes (u2j − v2j )(0) = 0, which is useless because we want vanishing
conditions on the unknowns, not on polynomial expressions of the unknowns. To fix this problem, we
will use again the positive answer to Büchi’s problem in order to perform a substitution in such a way
that vanishing conditions on unknowns become vanishing conditions on the new unknowns. We will
obtain not one but several diagonal quadratic systems, but this will be enough to prove the Theorem.

Consider the following 2|J| diagonal quadratic systems Sα indexed by α ⊆ J :

(Sα)



r∑
i=1

aikx
2
i +

∑
j∈α

bjk(u2j2 − u2j1 − 1) +
∑

1≤j≤s
j /∈J

bjk(w2
j2 − w2

j1) = ck, k = 1, . . . , t

u2j3 − 2u2j2 + u2j1 = 2, j ∈ α
...

u2j35 − 2u2j34 + u2j33 = 2, j ∈ α
Prod(u2j1, v

2
j , 1), j ∈ α

with conditions xi(0) = 0 for each i ∈ I and uj1(0) = 0 for each j ∈ α.
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18 HECTOR PASTEN

We make the following two obvious observations about functions in Mp:

(A) f(0) = 0 and f is constant if and only if f = 0.
(B) f(0) = 0 and f is non-constant if and only if f(0) = 0 and f is invertible

We will prove now that System (14) has a solution in Mp satisfying its corresponding vanishing
conditions if and only at least one of the Systems Sα has a solution in Mp satisfying its vanishing
conditions.

First, assume that System (14) has a solution xi = fi, yj = gj satisfying the vanishing conditions
and define

α = {j ∈ J : gj is non-constant}.
Then Sα has the following solution satisfying its vanishing conditions (by Lemma 7.1):

xi = fi

ujl =
gj
2 + l − 1 for j ∈ α

vj = 1
ujl

for j ∈ α

wj1 =
gj−1
2 for 1 ≤ j ≤ s and j /∈ J

wj2 =
gj+1
2 for 1 ≤ j ≤ s and j /∈ J.

Observe that the yj with j ∈ J − α have been replaced by 0 (observation (A)).
Assume now that System Sα has the following solution satisfying its vanishing conditions:

xi = χi
ujl = µjl for j ∈ α
vj = νj for j ∈ α
wj1 = ωj1 for 1 ≤ j ≤ s and j /∈ J
wj2 = ωj2 for 1 ≤ j ≤ s and j /∈ J.

Then the following is a solution of System (14):

xi = χi

yj = 0 for j ∈ J − α
yj = µ2

j2 − µ2
j1 − 1 for j ∈ α

yj = ω2
j2 − ω2

j1 for 1 ≤ j ≤ s and j /∈ J.

It only remains to show that this solution satisfies the vanishing conditions of System (14). Indeed,
the condition xi(0) = 0 for i ∈ I holds because it is the same vanishing condition on the xi as in Sα.
For j ∈ J we have yj(0) = 0, which is trivially true for j ∈ J − α. For j ∈ α we have µj1(0) = 0
(this is a condition on Sα) and µj1 is invertible (its inverse is ±νj). Therefore, by observation (B)
the function µj1 is non-constant. Observe that (µjl)

35
l=1 is a Büchi sequence with a non-constant term,

hence, by Corollary 3.2 there exists a non-cosntant γj such that µ2
jl = (γj + l)2. This implies that

yj = µ2
j2 − µ2

j1 − 1 = 2(γj + 1) = 2µj1

hence, using the condition µj1(0) = 0 for j ∈ α on Sα, we obtain yj(0) = 2µj1(0) = 0. �

8. Some geometric results

This section contains most of the geometric results that we will use in the next two sections. The
arguments given here essentially are adaptations of the arguments given by Vojta in [26]. For the sake
of completeness, we will perform most of the computations.

During the whole section, we assume that the base field is C, and we write g(X) for the genus of
the curve X.

Let S = (δ2, δ3, . . .) be a sequence in C∗ with pairwise distinct terms. Set X2 = P2(C) and for n > 2
let Xn ⊂ Pn(C) be the algebraic set defined by the equations

δ2x
2
i = δiδ2(δi − δ2)x20 − (δi − δ2)x21 + δix

2
2(16)
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REPRESENTATION OF SQUARES FOR p-ADIC MEROMORPHIC FUNCTIONS 19

as the index i ranges from 3 to n. If [x0 : · · · : xn] ∈ Xn, it is easy to see that at most 2 of the xi can
be zero, hence Xn ⊂ U0 ∪ U1 ∪ U2 where Ui is the open set {xi 6= 0}.

Lemma 8.1. The variety Xn is a smooth surface in Pn, contains the lines

±x1 = ±x2 − δ2x0 = · · · = ±xn − δnx0(17)

and has canonical sheaf OXn
(n− 5). In particular, Xn is of general type for n ≥ 6.

Proof. Observe that, for [x0 : · · · , xn] ∈ Xn ∩ U0 the matrix
(δ3 − δ2)x1 −δ3x2 δ2x3 0 · · · 0

(δ4 − δ2)x1 −δ4x2 0 δ2x4
. . . 0

...
...

...
. . .

. . .
...

(δn − δ2)x1 −δnx2 0 0 · · · δ2xn

(18)

has rank n− 2. Indeed, there are 3 cases depending on the number of zeroes among x3, . . . , xn:

(1) No zero: trivial.
(2) One zero: at least one of the first two columns has no zero.
(3) Two zeroes: suppose that xi = xj = 0 where 3 ≤ i < j ≤ n, then no entry in the first two

columns is zero. Therefore∣∣∣∣ (δi − δ2)x1 −δix2
(δj − δ2)x1 −δjx2

∣∣∣∣ = δ2x1x2(δj − δi) 6= 0.

hence, Xn is nonsingular at each point in Xn ∩ U0. The verification that Xn is nonsingular at each
point in Xn ∩ U1 and Xn ∩ U2 is quite similar, but the determinants in case (3) are∣∣∣∣ −δiδ2(δi − δ2)x0 −δix2

−δjδ2(δj − δ2)x0 −δjx2

∣∣∣∣ = δ2δiδjx0x2(δj − δi) 6= 0

and ∣∣∣∣ −δiδ2(δi − δ2)x0 (δi − δ2)x1
−δjδ2(δj − δ2)x0 (δj − δ2)x1

∣∣∣∣ = δ2x0x1(δj − δi)(δj − δ2)(δi − δ2) 6= 0

respectively. Therefore Xn is a smooth surface in Pn.
The claim about the lines (17) is an easy computation (looking at U0 ∩Xn).
Finally, since Xn is a complete intersection surface in Pn defined as the intersection of n−2 smooth

hypersurfaces of degree 2, its canonical sheaf is O(2(n− 2)− n− 1) = O(n− 5). �

Definition 8.2. Define the trivial lines of Xn as the lines (17).

Observe that for n ≥ 3 the rational map [x0 : · · · : xn] 7→ [x0 : · · · : xn−1] induces a finite morphism
πn : Xn → Xn−1 of degree 2 ramified along the curve Cn ⊂ Xn defined by xn = 0. This curve is
nonsingular. Indeed, if

[x0 : · · · : xn] ∈ Cn = Xn ∩ {xn = 0}
then at most one of the x0, . . . , xn−1 can be zero and the remaining verification can be performed as
in the proof of Lemma 8.1 for cases (2) and (3) since xn = 0, but adding the extra row (0, . . . , 0, 1) to
each matrix.

Define φn = π3 ◦ · · · ◦ πn. We note that the image of Cn in X2 via φn is

δnδ2(δn − δ2)x20 − (δn − δ2)x21 + δnx
2
2 = 0.(19)

Definition 8.3. Let X be a smooth surface over C and let L be an invertible sheaf on X. Take a
section ω ∈ H0(X,L ⊗ S2(Ω1

X)). Let Y ⊂ X be a curve with normalization i : Ỹ → Y . We say that

Y is ω−integral if i∗ω ∈ H0(Ỹ , i∗(L)⊗ S2(Ω1
Ỹ

)) vanishes identically on Ỹ .

On U0 ⊂ P2 = X2 define

ω = x1x2dx1 ⊗ dx1 + (δ22 − x21 − x22)dx1 ⊗ dx2 + x1x2dx2 ⊗ dx2.
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Note that, after the change of variables y0 = x0/x1 and y2 = x2/x1, on U0 ∩ U1, we have

ω =
1

y50

(
δ22y0y2dy0 ⊗ dy0 + (1− δ22y20 − y22)dy0 ⊗ dy2 + y0y2dy2 ⊗ dy2

)
hence ω extends to a section

ω2 ∈ H0(X2,OX2
(5)⊗ S2(Ω1

X2
)).

Lemma 8.4. Write [x0 : x1 : x2] for homogeneous coordinates on P2 = X2. The only ω2-integral
curves on X2 are

(1) x0 = 0, x1 = 0, and x2 = 0
(2) the four trivial lines
(3) the conics δ2c(c− δ2)x20 − (c− δ2)x21 + cx22 = 0 for c 6= 0, δ2.

Moreover, if f : C→ X2(C) is a non-constant holomorphic map satisfying f∗ω2 = 0 then its image is
contained in one of these curves.

Proof. It is easy to see that curves of type (1) and (2) are ω2-integral. Let’s show that curves of type
(3) are ω2-integral. If we look at the affine chart U0, on a curve of type (3) we have

(c− δ2)x1dx1 = cx2dx2

hence

ω2 =

(
c2x32

(c− δ2)2x1
+

cx2
(c− δ2)x1

(δ22 − x21 − x22) + x1x2

)
dx2 ⊗ dx2

=
(
c2x22 + c(c− δ2)(δ22 − x21 − x22) + (c− δ2)2x21

) x2dx2 ⊗ dx2
(c− δ2)2x1

=
(
δ22c(c− δ2)− δ2(c− δ2)x21 + δ2cx

2
2

) x2dx2 ⊗ dx2
(c− δ2)2x1

= δ2
(
δ2c(c− δ2)− (c− δ2)x21 + cx22

) x2dx2 ⊗ dx2
(c− δ2)2x1

= 0.

Conversely, let Y be an ω2-integral curve on X2 not of type (1) or (2). We will show that Y is of
type (3). Let P ∈ Y be a regular point of Y not in a line of type (1) nor (2). As Y is regular at
P , in some neighborhood of P one can assume that one affine coordinate is function of the other, say
x1 = x1(x2). Since Y is ω2-integral, we get a quadratic ordinary differential equation for x1. Hence
there are 2 local solutions at P . But exactly 2 curves of type (3) pass through P . Therefore, Y is
locally of type (3) on a dense set of points, and so Y is of type (3).

A similar computation proves the assertion about holomorphic maps. �

Observe that the image of Cn in X2 is ω2-integral (see Equation (19)).
Write ω′n = φ∗nω2 and note that

ω′n ∈ H0(Xn,OXn
(5)⊗ S2(Ω1

Xn
))

because π∗nOXn−1
(1) = OXn

(1) for each n ≥ 3.

Lemma 8.5. Let n ≥ 6 be an integer. The only ω′n-integral curves on Xn are

(1) the pull-backs via φn of the coordinate axes on X2 to Xn

(2) the trivial lines
(3) the pull-backs via φn of the conics δ2c(c− δ2)x20 − (c− δ2)x21 + cx22 = 0 for c 6= 0, δ2.

These curves are nonsingular and the only one with genus ≤ 2n−3 are the trivial lines, with genus 0.
Moreover, if h : C → Xn(C) is a non-constant holomorphic map satisfying h∗ω′n = 0 then the image
of h is contained in one of these curves.

Proof. Let Y ⊂ Xn be a ω′n-integral curve. Write Z = φn(Y ) and Y ′ = φ∗n(Z). Note that Z is
ω2-integral. Hence we have 3 cases by Lemma 8.4.

Suppose that Z = {xj = 0} ⊂ X2 is a coordinate axe. Then Y ′ = Xn ∩ {xj = 0} is nonsingular
by a verification similar to the one done for Cn. Since Z meets all the curves φ(Ci) for i = 3, . . . , n
and they form the branch divisor, Y ′ is connected. Hence Y ′ = Y and Y is nonsingular. Note that

Jul 12 2010 22:53:44 EDT
Vers. 1 - Sub. to TRAN



REPRESENTATION OF SQUARES FOR p-ADIC MEROMORPHIC FUNCTIONS 21

φn|Y : Y → Z has degree 2n−2 and is ramified at 2n−2(n − 2) points, hence g(Y ) = 2n−3(n − 4) + 1
by the Hurwitz formula.

Now suppose that Z is a trivial line in X2. Replacing the value of x2 in terms of x1 in the defining
equations of Xn we obtain that Y is a trivial line, with genus 0.

Finally suppose that Z is a curve of type (3) in Lemma 8.4. By the same argument as in the first
case, Y ′ is connected. One can show that Y ′ is nonsingular by a direct computation (on the affine
chart U0 we add the row ((c− δ2)x1,−cx2, 0, . . . , 0) in 18, and for U1, U2 the computation is similar)
therefore Y = Y ′. Consider the map φn|Y : Y → Z. This map induces a morphism ψn : Y → Z.
If Y lies above one of the curves Ci then deg(ψn) = 2n−3 and if Y does not lie above any Ci then
deg(ψn) = 2n−2. Anyway, φn is ramified at least in (n−3) ·4 ·2n−4 = 2n−2(n−3) points and g(Z) = 0,
thus for n ≥ 6 by the Hurwitz formula we have

g(Y ) > −2n−2 + 2n−3(n− 3) = 2n−3(n− 5) ≥ 2n−3.

The assertion about holomorphic maps follows from taking f = φn ◦ h in Lemma 8.4 and noting that
f is not constant since φn is finite, and f∗ω2 = h∗ψ∗nω2 = h∗ω′n = 0. �

Lemma 8.6. Let π : X ′ → X be a finite morphism of smooth projective surfaces over C, ramified
along a curve Y ⊂ X ′. Let L be a invertible sheaf on X, and take a section ω ∈ H0(X,L ⊗ S2(Ω1

X)).
If π(Y ) is ω−integral, then π∗ω ∈ H0(X ′, π∗L ⊗ S2(Ω1

X′)) vanishes identically on Y .

Proof. This is a particular case of [26] Lemma 2.10. �

We recall to the reader that ω′n = φ∗nω2.

Lemma 8.7. Define ω′2 = ω2. The sections ω′n determine sections

ωn ∈ H0(Xn,OXn
(7− n)⊗ S2(Ω1

Xn
))

such that each ωn−integral curve is a ω′n−integral curve. Moreover, the ωn−integral curves are the
same as the ω′n−integral curves, with the only possible exception of ω′−integral curves lying over
C3, . . . , Cn.

Proof. By induction. The case n = 2 is clear. Assume it for n = m − 1 with m > 2. Note that
πm(Cm) does not lie over any of the curves C3, . . . , Cm−1 because they have different images in X2,
hence πm(Cm) is ωm−1−integral by Lemma 8.5 and induction hypothesis. Consider the section

π∗mωm−1 ∈ H0(Xm, π
∗
mOXm−1

(7− (m− 1))⊗ S2(Ω1
Xm

)) = H0(Xm,OXm
(7− (m− 1))⊗ S2(Ω1

Xm
))

(recall that π∗nOXn−1
(1) = OXn

(1)). By Lemma 8.6 we have that π∗mωm−1 vanishes identically on Cm,
thus π∗mωm−1 determines a global section ωm in OXm

(7−m)⊗ S2(Ω1
Xm

) by taking

ωm =
1

xm
π∗mωm−1.

Call Um the open set of Xm obtained by deleting the curves lying over any of the C3, . . . , Cm. The
sections ω′m and ωm agree on Um up to a non-vanishing factor, therefore the ω′m−integral curves and
the ωm−integral curves are the same on Um. A curve lying over some Ci is of type (3) in Lemma 8.5
(see Equation 19), hence it is ω′m-integral, and we are done. �

Corollary 8.8. For n ≥ 6, the only ωn−integral curves with genus ≤ 2n−3 on Xn are the trivial lines,
with genus 0. Moreover, if h : C → Xn(C) is a non-constant holomorphic map such that h∗ωn = 0
then the image of h lies in a trivial line.

Proof. From Lemma 8.5 and Lemma 8.7 we deduce the first part of the Lemma, and the fact that the
image of h lies in a curve with genus > 2n−3 or in a trivial line. Use Picard’s Theorem to conclude. �

Theorem 8.9. For n ≥ 8, the only curves of genus 0 or 1 on Xn are the trivial lines.

Proof. Let Y ⊂ Xn be a curve of genus 0 or 1 and write i : Ỹ → Y for its normalization. On the one
hand, the curve Ỹ has genus 0 or 1, hence KỸ has non-positive degree. On the other hand, the sheaf

i∗OXn
(7−n) has negative degree because n ≥ 8. Therefore, i∗OXn

(7−n)⊗K⊗2
Ỹ

has no nonzero global

section on Ỹ , hence i∗ωn vanishes identically on Ỹ . From this we deduce that Y is a ωn−integral curve
with genus ≤ 1 on Xn, and we are done by Corollary 8.8. �
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9. Correspondence between polynomials and points

We understand that, given a sequence δ2, δ3, . . . of distinct non-zero elements in K/Q, the surfaces
Xn are defined by Equation (16).

Lemma 9.1. Fix a sequence (a1, a2, . . . an) in K/Q, with n ≥ 3 and pairwise distinct ai. Set δi =
ai − a1 for i ≥ 2. There is an injective map from the set of monic polynomials f ∈ K[x] of degree
two satisfying that f(ai) is a square for i = 1, . . . , n, to the set Xn(K) ∩ {x0 6= 0}. The map is

j(f) = [1 :
√
f(a1) : · · · :

√
f(an)] (for a fixed choice of square roots) and has the property that f is a

square in K[x] if and only if j(f) lies in a trivial line of Xn.

Proof. Take a polynomial f = x2 + ax + b ∈ K[x] with the property that f(a1) = b21, . . . , f(an) = b2n
are squares in K, then

δ2b
2
i = (a2 − a1)f(ai) = (a2 − a1)(a2i + uai + v)

= (ai − a1)(a2 − a1)(ai − a2) · 1− (ai − a2)(a21 + ua1 + v) + (ai − a1)(a22 + ua2 + v)

= δiδ2(δi − δ2)12 − (δi − δ2)b21 + δib
2
2

Therefore, for each polynomial f = x2 + ux + v ∈ K[x] with the property that f(a1), . . . , f(an) are
squares in K, we have that j(f) ∈ Xn(K) ∩ {x0 6= 0}.
Now we check injectivity. Given a point p = [1 : b1 : · · · : bn] ∈ Xn(K) ∩ {x0 6= 0}, define

fp = x2 +
b22 − b21 − a22 + a21

a2 − a1
x+

a1a2(a2 − a1)− a1b22 + a2b
2
1

a2 − a1
∈ K[x]

The polynomial fp is the only monic polynomial of degree two satisfying fp(a1) = b21 and fp(a2) = b22.
Moreover, after a standard computation we get

δ2fp(a1 + δi) = δiδ2(δi − δ2)− (δi − δ2)b21 + δib
2
2

and, since p ∈ Xn(K) ∩ {x0 6= 0}, we obtain δ2fp(a1 + δi) = δ2b
2
i . Therefore fp(ai) = b2i for each i.

The uniqueness of fp proves that j is injective.
Assume that j(g) = [1 : b1 : · · · : bn] lies in a trivial line for some g = x2 + ux+ v ∈ K[x]. Thus we

have an equation of the kind ±b2 − δ2 = ±b1, say ε′b2 = εb1 + a2 − a1 for ε, ε′ ∈ {1,−1}. Therefore
b22 = b21 + 2ε(a2 − a1)b1 + (a2 − a1)2 and we get(

b22 − b21 − a22 + a21
a2 − a1

)2

− 4

(
a1a2(a2 − a1)− a1b22 + a2b

2
1

a2 − a1

)
= 4b21(ε2 − 1) = 0

So, using the above definition of fp, we have g = fj(g) =
(
x+ u

2

)2
. �

10. Case of number fields, function fields and complex meromorphic functions

We use the same notation as in Section 8. First we prove Theorem 3.7.

Proof. We follow the notation of Section 8. For i = 2, . . . , 8 set δi = ai − a1 and note that X2, . . . , X8

are defined over K. If Conjecture 1.2 holds then there exists a proper Zariski closed subset Z ⊂ X8

such that all the K-rational points of X8 belong to Z. Given an irreducible curve Y ⊂ Xn, if Y (K) is
dense in Y (C) then Y is defined over K and, by Faltings’ Theorem, Y has genus at most 1. Therefore
we can take Z as the union of a finite number of curves on X8 with genus 0 or 1, up to a finite number
of K-rational points. We conclude by Theorem 8.9 and Lemma 9.1. �

Let us prove Corollary 3.8.

Proof. Since the set E(Q, (ai)i) is finite, it is enough to show that a monic polynomial f ∈ Z[z] which
is not a square, is such that f(n) is a square at most for a finite number of n ∈ Z. Indeed, the graph

of y =
√
f(x) is asymptotic to the graph of y = |x|, and hence has no integer point for large enough

|x|. �

The next proposition will be useful to prove Theorem 3.9.

Proposition 10.1. Let n ≥ 8. If Y ⊆ Xn is a curve, its normalization is i : Ỹ → Y and g(Ỹ ) < n−3
4 ,

then Y is an ωn-integral curve.
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Proof. Let i : Ỹ → Y be the normalization map. We have

i∗ωn ∈ H0(Xn, i
∗O(7− n)⊗K⊗2

Ỹ
).

As deg i∗OXn
(1) ≥ 1, for n ≥ 8 we get

deg
(
i∗OXn(7− n)⊗K⊗2

Ỹ

)
= (7− n) deg i∗OXn(1) + 4g(ỹ)− 4

≤ 7− n+ 4g(Ỹ )− 4

= 4g(Ỹ ) + 3− n < 0.

Therefore, i∗ωn is zero in Ỹ . �

Now we present the proof of Theorem 3.9.

Proof. We can assume F = C. Suppose P has some non-constant coefficient and P (ai) = h2i , i =
1, . . . ,M for some ai ∈ C and hi ∈ K(C). Using Lemma 9.1 with K = K(C), one can verify that
h = [1 : h1 : . . . : hM ] defines a non-constant morphism h : C → XM , where we consider δi = ai − a1
in the definition of XM . Since C is a complete variety we obtain that im(h) is algebraic. Let Y be an

irreducible curve containing im(h), since h is dominant on Y , we conclude that h factors through Ỹ .
By Riemann-Hurwitz Formula, we have

g(Ỹ ) ≤ g(C) ≤ M

4
− 1 <

M − 3

4

hence Y is a ωM integral curve by the previous Lemma. Finally, Lemma 8.8 implies that im(h) is
contained in a trivial line, and the conclusion follows from Lemma 9.1. �

Before proving Theorem 3.10 we need to fix some notation in complex Nevanlinna theory. We refer
the reader to the notes [27] on Diophantine Approximation and Complex Nevanlinna Theory, where
Vojta gives a concise and self-contained introduction to this topic. We follow the notation used there.

Let X be a smooth projective variety over C. For each divisor D ∈ Div(X) and for each holomorphic
map f : C → X whose image is not contained in the support of D, we denote by TD,f : R+ → R the
Nevanlinna height function associated to D and f . Moreover, one can define (up to a bounded term
as r varies) a Nevanlinna height function for line sheaves by letting TL,f = TD,f , where D ∈ Div(X)
can be any divisor such that L = O(D) and the image of f is not contained in D. There is a formal
analogy between these height functions and the ones produced by the Weil Height Machine in the
context of heights for algebraic points on varieties. Indeed, this is part of a deep formal analogy
between Nevanlina Theory for holomorphic maps and Diophantine Approximation; see for example
[13] or [25].

We need the following result:

Theorem 10.2 (See [26] Prop. 6.1). Let X be a complex non-singular projective variety, f : C→ X
an holomorphic curve, d > 0 an integer, L a line sheaf on X, ω a global section of L∨ ⊗ SdΩ1

X , and
A an ample line sheaf on X. If f∗ω is not identically zero, then there exists a set U ⊆ R+ of finite
Lebesgue measure such that for any r /∈ U we have

TL,f (r) ≤ O(log TA,f (r)) + o(log r).

Proof of Theorem 3.10. Let P ∈M[X] be a monic second degree polynomial, with some non-constant
coefficient, which is not a square in M[X], and assume that there exists a1, a2, . . . , a8 ∈ C such that
P (ai) is a square in M for each i, say √

P (ai) = hi ∈M.

Since P has some non-constant coefficient, some of the hi is non-constant. By Lemma 9.1 we have that
h := [1 : h1 : · · · : h8] does not belong to a trivial line of X8(M), that is, the image of the non-constant
holomorphic map h : C→ X8(C) is not contained in the trivial lines.

Now take L = O(1). Since L is the line sheaf associated to a hyperplane divisor on X8, it is very
ample. Note that O(1)∨ ' O(−1) and consider the section ω8 of

O(−1)⊗ S2Ω1
X8
.
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Taking L = A = O(1), f = h, d = 2 and ω = ω8 in Theorem 10.2 we conclude that h∗ω8 = 0
because h is non-constant. By Corollary 8.8, the image of h must be contained in the trivial lines, a
contradiction. �

References

[1] D. Allison, On square values of quadratics, Math. Proc. Camb. Philos. Soc. 99, no. 3, 381-383 (1986).
[2] W. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Math. Surveys and Monographs,

Coll. Amer. Math Soc. (1990).
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[14] H. Pasten, T. Pheidas and X. Vidaux, A survey on Büchis problem: new presentations and open problems, to appear
in the Proceedings of the Workshop New methods in the Hilbert tenth problem, Hausdorff Institute of Mathematics,

Bonn, Germany (2010).
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