Moduli analítico de módulos de Drinfeld

Héctor Pastén

Pontificia Universidad Católica de Chile

2021/06/02

Recuerdo: Módulos de Drinfeld

- Sea k campo de característica p
- $\operatorname{End}_k(G_a)$ = polinomios aditivos sobre k. Anillo con composición.
- $C = \text{curva suave proyectiva sobre } \mathbb{F}_q$, $q = p^f$.
- $A = H^0(C \{\infty\}, \mathcal{O})$, por ejemplo $A = \mathbb{F}_q[T]$.
- Módulo de Drinfeld sobre k: Morfismo inyectivo de anillo

$$\phi: A \to \operatorname{End}_k(G_a).$$

Define un funtor $E : \mathbf{Alg}_k \to \mathbf{Mod}_A$.

Recuerdo: Torsión y estructura de nivel

- Torsión: para $a \in A$ el funtor E_a representado por el esquema $\ker(\phi_a)$.
- Sea $I \subseteq A$ ideal. El funtor E_I es representado por $\cap_a \ker(\phi_a)$ donde a varía en un conjunto finito de generadores de I (" \cap " = prod. fibrado).
- $I^{-1} \subseteq F$ es un ideal fraccionario; contiene a A. Entonces $(I^{-1}/A)^r$ es un grupo finito. Si $\phi: A \to \operatorname{End}_k(G_a)$ es un módulo de Drinfeld sobre un campo k y ϕ es de caracterísica coprima con I, entonces $E_I(k^{alg}) \simeq (I^{-1}/A)^r$. Una I-estructura de nivel es "elegir este isomorfismo". Más preciso:
- Sea S un esquema sobre \mathbb{F}_p y sea ϕ un módulo de Drinfeld sobre S. Un I-estructura de nivel para ϕ es 1 un S-isomorfismo de funtores $\alpha: (I^{-1}/A) \to E_I$ sobre S.
- No siempre existe: Por ejemplo, si ϕ sobre k admite una I-estructura de nivel, entonces $E_I(k) \simeq E_I(k^{alg})$, y esto no siempre ocurre.

 $^{^1}$ En realidad es más complicado. La función $A \to O_S$ dada por $a \mapsto \partial_0 \phi_a$ define $S \to \operatorname{Spec} A$ y la definición anterior de α se complica cuando la imagen de $S \to \operatorname{Spec} A$ intersecta $\mathbb{V}(I)$.

Recuerdo: Espacio de moduli

- Sea F_I^r : $\mathbf{Sch}_A \to \mathbf{Set}$ el funtor que a un A-esquema S le asocia el conjunto de clases de isomorfismo de pares (ϕ, α) donde ϕ es un módulo de Drinfeld sobre S y α es una I-estructura de nivel en ϕ .
- **Teorema.** Sea $I \subseteq A$ ideal divisible por al menos dos primos. Entonces F_I^r es representable por un A-esquema afín de tipo finito M_I^r : Para todo A-esquema S hay una biyección $F_I^r(S) \simeq M_I^r(S) := Mor_A(S, M_I^r)$ que es funtorial en S.
- **Obs.** si en lugar de trabajar sobre $\operatorname{Spec} A$ tusamos $\operatorname{Spec} A \mathbb{V}(I)$ entonces el funtor podría ser representable sin tener que pedir $\#\mathbb{V}(I) \geq 2$.

Recuerdo: Módulos de Drinfeld analíticamente

 $\mathbb{C}_{\infty}=$ completación de la clausura algebraica de F_{∞} , con F=Frac(A).

• Sea $M \subseteq \mathbb{C}_{\infty}$ un retículo de rango r (A-módulo proyectivo discreto). La función

$$e_M(x) = x \cdot \prod_{0 \neq m \in M} \left(1 - \frac{x}{m}\right)$$

converge bien, es \mathbb{F}_q -lineal, sobreyectiva y con $\ker(e_M) = M$.

- Obtenemos un isomorfismo \mathbb{F}_q -lineal $e_M: \mathbb{C}_\infty/M \to \mathbb{C}_\infty$.
- A actúa en \mathbb{C}_{∞}/M por multiplicación escalar. Entonces obtenemos un módulo de Drinfeld ϕ^M de rango $r=\mathrm{rk}M$ sobre \mathbb{C}_{∞} :

$$\phi_a^M(z) := e_M(a \cdot e_M^{-1}(z))$$

- **Obs.** Dado $\lambda \in \mathbb{C}_{\infty}^{\times}$, los módulos ϕ^{M} y $\phi^{\lambda M}$ son isomorfos.
- **Teorema clase pasada:** Esta construcción da una biyección entre las clases de dilatación de retículos $M \subseteq \mathbb{C}_{\infty}$ de rango r, y las clases de isomorfismo de módulos de Drinfeld $\phi: A \to \operatorname{End}_{\mathbb{C}_{\infty}}(G_a)$ de rango r.

Tema de hoy: versión analítica del espacio de moduli

- Vamos a clasificar clases de dilatación de retículos de rango r por un cierto espacio \mathbb{C}_{∞} -analítico X. Esto clasificará módulos de Drinfeld sobre \mathbb{C}_{∞} y por lo tanto X estará en biyección con $F^r(\mathbb{C}_{\infty})$.
- Versión con estructura de nivel. En ese caso $F_I^r(\mathbb{C}_{\infty}) = M_I^r(\mathbb{C}_{\infty})$ así que le estamos dando una estructura analítica al esquema M_I^r .
- Historia análoga: $SL_2(\mathbb{Z})\backslash \mathfrak{h}=GL_2(\mathbb{Z})\backslash (\mathbb{C}-\mathbb{R})$ clasifica \mathbb{Z} -retículos de rango 2 en \mathbb{C} . Entonces también clasifica curvas elípticas complejas, y eso nos dice que hay una biyección $Y_1(\mathbb{C})\simeq GL_2(\mathbb{Z})\backslash (\mathbb{C}-\mathbb{R})$. En principio Y_1 es una curva algebraica solamete pero esta biyección le da una buena estructura analítica.

Clasificando funciones inyectivas

Lema

La función
$$f: \mathbb{C}_{\infty}^{\times} \setminus (\operatorname{Hom}_{F_{\infty}}(F_{\infty}^{r}, \mathbb{C}_{\infty}) - \{0\}) \to \mathbb{P}^{r-1}(\mathbb{C}_{\infty})$$
 dada por $f(u) = [u(e_{1}): ...: u(e_{j})]$ es biyectiva. Ella se restringe a una biyección

$$\mathbb{C}_{\infty}^{\times} \backslash \mathit{Mon}_{F_{\infty}}(F_{\infty}^{r}, \mathbb{C}_{\infty}) \longrightarrow \Omega^{r}(\mathbb{C}_{\infty}) := \mathbb{P}^{r-1}(\mathbb{C}_{\infty}) - \bigcup_{H \, ext{hiperplano sobre} \, F_{\infty}} H$$

Dem. Lo primero es claro.

Lo segundo: dado
$$\mathbf{v}=(v_1,...,v_n)\in F_\infty^r$$
, las $u\in \mathrm{Hom}_{F_\infty}(F_\infty^r,\mathbb{C}_\infty)$ que cumplen $0=u(\mathbf{v})=v_1u(e_1)+...+v_nu(e_n)$ son las mismas que cumplen $f(u)\in H_\mathbf{v}:=\mathbb{V}(v_1x_1+...v_nx_n)\subseteq \mathbb{P}^{r-1}(\mathbb{C}_\infty)$.

Retículos analíticamente

Lema

Sea Y un A-modulo proyectivo de rango r. Entonces tenemos una biyección

$$\mathbb{C}_{\infty}^{\times} \backslash \mathit{Mon}_{\mathbb{F}_{\infty}}(Y \otimes F_{\infty}, \mathbb{C}_{\infty}) / \mathit{GL}_{A}(Y)
ightarrow \left\{ egin{array}{l} \mathit{reticulos en } \mathbb{C}_{\infty} \\ \mathit{isomorfos a } Y \end{array}
ight\} / \sim$$

- Sea $u: Y \to \mathbb{C}_{\infty}$. Entonces $M:=u(Y) \subseteq \mathbb{C}_{\infty}$ es retículo si y solo si $Y \otimes F_{\infty} \to \mathbb{C}_{\infty}$ es inyectivo.
- Los retículos $M \subseteq \mathbb{C}_{\infty}$ se clasifican módulo homotecia: $M \sim M'$ si existe $\lambda \in \mathbb{C}^{\times}$ con $M' = \lambda M$. Esto corresponde a $u \sim \lambda u$.
- La imagen de Y en $Y\otimes \mathbb{F}_{\infty}$ está únicamente determinada, pero el morfismo $Y\to Y\otimes F_{\infty}$ no lo está:
 - Podemos pre-componer $Y \to Y \otimes F_{\infty}$ con la acción de $GL_A(Y)$.

Clasificando módulos de Drinfeld

Sea $\Omega^r(\mathbb{C}_\infty)=\mathbb{P}^{r-1}(\mathbb{C}_\infty)-$ hiperplanos sobre $\mathbb{F}_\infty.$ Sea \mathcal{P}_A^r el conjunto de clases de isomorfismo de módulos proyectivos de rango r sobre A. (ej. si $A=\mathbb{F}_q[T]$ entonces $\mathcal{P}_A^r=\{A^r\}$ es un singleton).

Teorema

Las construcciones anteriores dan biyecciones entre los conjuntos:

- $\coprod_{Y \in \mathcal{P}_{\Delta}^{r}} \Omega^{r}(\mathbb{C}_{\infty}) / GL_{A}(Y)$
- $\bullet \coprod_{Y \in \mathcal{P}_A^r} \mathbb{C}_{\infty}^{\times} \backslash \mathit{Mon}_{\mathbb{F}_{\infty}}(Y \otimes \mathit{F}_{\infty}, \mathbb{C}_{\infty}) / \mathit{GL}_A(Y)$
- Retículos en \mathbb{C}_{∞} de rango r módulo homotecia.
- $F^r(\mathbb{C}_{\infty}) = M\acute{o}dulos \ de \ Drinfeld \ \phi : A \to \mathrm{End}_{\mathbb{C}_{\infty}}(G_a) \ m\acute{o}dulo$ isomorfismo.

Aplicación. Teniendo una buena teoría analítica, esto permite calcular la dimensión del espacio de moduli M^r y, más generalmente, M_I^r . Por ejemplo, los M_I^2 son curvas.

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Clasificando módulos de Drinfeld

Hay una versión con I-estructura. En ese caso se usa

- $\mathcal{P}_{A}^{r}(I) = \text{m\'odulos proyectivos e rango } r \text{ con } I\text{-structura}$
- El subgrupo de congruencia $GL_A(Y,I) := \ker(GL_A(Y) \to GL_A(Y/IY)).$ Este grupo actuando en $\Omega^r(\mathbb{C}_{\infty})$ es análogo a $\Gamma(N) = \ker(GL_2(\mathbb{Z}) \to GL_2(\mathbb{Z}/N\mathbb{Z}))$ actuando en $\mathfrak{h}^{\pm} := \mathbb{C} \mathbb{R}.$
- El funtor F_i^r

Cuando $\#\mathbb{V}(I) \geq 2$ el funtor F_I^r es representable por un A-esquema M_I^r y además obtenemos biyección con $M_I^r(\mathbb{C}_{\infty})$:

$$\coprod_{Y\in \mathcal{P}_A^r(I)} \Omega^r(\mathbb{C}_\infty)/\mathit{GL}_A(Y,I) \simeq \mathit{M}_I^r(\mathbb{C}_\infty).$$

Esto es análogo a la siguiente biyección para curvas elípticas

$$\coprod_{\epsilon} \Gamma_{\epsilon}(N) \backslash \mathfrak{h}^{\pm} \simeq Y_{N}(\mathbb{C}), \quad \epsilon \text{ raiz primitiva } N\text{-}\acute{\text{e}}\text{sima}.$$

| 4 □ ト 4 回 ト 4 回 ト 4 巨 ト 4 巨 ト 4 巨 ト 4 巨 ト 4 巨 ト 4 巨 ト 4 回 A U 日 A U