
Spheres in Rn

Let cn be the volume in Rn bounded by

x21 + · · ·+ x2n = 1 .

It is easy to se that

cn+1 = 2cn

∫ 1

0

(1− x2)n/2dx , (1)

which implies that limn→∞ cn = 0.

We want to study the behavior of the center of gravity of the region bounded by a hemisphsere
Hn as n→∞. In Rn+1) the region is given by

x21 + · · ·+ x2n + x2n+1 ≤ 1 , xn+1 ≥ 0 ,

and the center of gravity will be

Gn = (0, . . . , 0, h) , h = h(n) > 0 .

Intuition suggests h(n+ 1) < h(n), and we will furthermore show that

Lemma 1: The center of gravity Gn tends to the origin as n→∞, that is,

lim
n→∞

h(n) = 0 .

Proof: Letε > 0. We will show first that there exists n0 so that h(n) < ε if n ≥ n0. Let
A = A(n, ε) be the subregion of Hn where xn+1 ≥ ε, and let B = B(n, ε) be its complement
in Hn. Then

Vol(A) = cn

∫ 1

ε

(1− x2)n/2dx ≤ cn
[
1− ε2

]n/2
,

while

Vol(B) = cn

∫ ε

0

(1− x2)n/2dx ≥ cn(ε/2)
[
1− (ε/2)2

]n/2
.

The second bound follows from the fact that B contains a “disk” of height ε/2 and radius√
1− (ε/2)2. We will show that if n is sufficiently large, then the region A produces a

momentum with respect to the hyperplane xn+1 = ε that is smaller than that momentum of
the region B. This shows that for such large values of n, the center of gravity must lie below
ε.

The momentum produced by A is MA = Vol(A) · [a(n) − h(n)], where a(n) represents the
position on its axis of symmetry of the center of gravity of A. It follows that

MA ≤ Vol(A) ≤ cn
[
1− ε2

]n/2
. (3)
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The momentum MB is larger than that of the aforementioned disk, that is,

MB ≥ cn
ε

2

[
1− (ε/2)2

]n/2 · 3ε

4
. (4)

It follows from (3) and (4) that, for ε fixed, MB > MA for all large n,

Lemma 2: The heights h(n) are decreasing with n.

Proof: The expression h = h(n) is determined by the equation:∫ h

0

(h− x)(1− x2)n/2dx =

∫ 1

h

(x− h)(1− x2)n/2dx . (5)

Let α(s), β(s) be defined by

α(s) =

∫ 1

s

(x− s)(1− x2)n/2dx , β(s) =

∫ s

0

(s− x)(1− x2)n/2dx .

It is easy to see that

α′(s) = −
∫ 1

s

(1− x2)n/2dx < 0 , β′(s) =

∫ s

0

(1− x2)n/2dx > 0 ,

and that
α(0) > 0 , α(1) = 0 , β(0) = 0 , β(1) > 0 .

With this, the value h = h(n) for which (5) hold is unique. On the other hand,

∂α

∂n
=

1

2

∫ 1

s

(x− s)(1− x2)n/2 log(1− x2) dx

y
∂β

∂n
=

1

2

∫ s

0

(s− x)(1− x2)n/2 log(1− x2) dx .

Since (5) holds, one can see that∫ h

0

(h− x)(1− x2)n/2 log(1− x2) dx >
∫ 1

h

(x− h)(1− x2)n/2 log(1− x2) dx ,

es decir,
∂β

∂n
(h) >

∂α

∂n
(h) .

This ensure that the point of intersection of the graphs of α y β moves to the left as n
increases.
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