## Spheres in $\mathbb{R}^{n}$

Let $c_{n}$ be the volume in $\mathbb{R}^{n}$ bounded by

$$
x_{1}^{2}+\cdots+x_{n}^{2}=1
$$

It is easy to se that

$$
\begin{equation*}
c_{n+1}=2 c_{n} \int_{0}^{1}\left(1-x^{2}\right)^{n / 2} d x \tag{1}
\end{equation*}
$$

which implies that $\lim _{n \rightarrow \infty} c_{n}=0$.
We want to study the behavior of the center of gravity of the region bounded by a hemisphsere $H_{n}$ as $n \rightarrow \infty$. In $\mathbb{R}^{n+1}$ ) the region is given by

$$
x_{1}^{2}+\cdots+x_{n}^{2}+x_{n+1}^{2} \leq 1, \quad x_{n+1} \geq 0
$$

and the center of gravity will be

$$
G_{n}=(0, \ldots, 0, h), \quad h=h(n)>0 .
$$

Intuition suggests $h(n+1)<h(n)$, and we will furthermore show that
Lemma 1: The center of gravity $G_{n}$ tends to the origin as $n \rightarrow \infty$, that is,

$$
\lim _{n \rightarrow \infty} h(n)=0
$$

Proof: Let $\epsilon>0$. We will show first that there exists $n_{0}$ so that $h(n)<\epsilon$ if $n \geq n_{0}$. Let $A=A(n, \epsilon)$ be the subregion of $H_{n}$ where $x_{n+1} \geq \epsilon$, and let $B=B(n, \epsilon)$ be its complement in $H_{n}$. Then

$$
\operatorname{Vol}(A)=c_{n} \int_{\epsilon}^{1}\left(1-x^{2}\right)^{n / 2} d x \leq c_{n}\left[1-\epsilon^{2}\right]^{n / 2}
$$

while

$$
\operatorname{Vol}(B)=c_{n} \int_{0}^{\epsilon}\left(1-x^{2}\right)^{n / 2} d x \geq c_{n}(\epsilon / 2)\left[1-(\epsilon / 2)^{2}\right]^{n / 2} .
$$

The second bound follows from the fact that $B$ contains a "disk" of height $\epsilon / 2$ and radius $\sqrt{1-(\epsilon / 2)^{2}}$. We will show that if $n$ is sufficiently large, then the region $A$ produces a momentum with respect to the hyperplane $x_{n+1}=\epsilon$ that is smaller than that momentum of the region $B$. This shows that for such large values of $n$, the center of gravity must lie below $\epsilon$.

The momentum produced by $A$ is $M_{A}=\operatorname{Vol}(A) \cdot[a(n)-h(n)]$, where $a(n)$ represents the position on its axis of symmetry of the center of gravity of $A$. It follows that

$$
\begin{equation*}
M_{A} \leq \operatorname{Vol}(A) \leq c_{n}\left[1-\epsilon^{2}\right]^{n / 2} \tag{3}
\end{equation*}
$$

The momentum $M_{B}$ is larger than that of the aforementioned disk, that is,

$$
\begin{equation*}
M_{B} \geq c_{n} \frac{\epsilon}{2}\left[1-(\epsilon / 2)^{2}\right]^{n / 2} \cdot \frac{3 \epsilon}{4} \tag{4}
\end{equation*}
$$

It follows from (3) and (4) that, for $\epsilon$ fixed, $M_{B}>M_{A}$ for all large $n$,
Lemma 2: The heights $h(n)$ are decreasing with $n$.
Proof: The expression $h=h(n)$ is determined by the equation:

$$
\begin{equation*}
\int_{0}^{h}(h-x)\left(1-x^{2}\right)^{n / 2} d x=\int_{h}^{1}(x-h)\left(1-x^{2}\right)^{n / 2} d x . \tag{5}
\end{equation*}
$$

Let $\alpha(s), \beta(s)$ be defined by

$$
\alpha(s)=\int_{s}^{1}(x-s)\left(1-x^{2}\right)^{n / 2} d x \quad, \quad \beta(s)=\int_{0}^{s}(s-x)\left(1-x^{2}\right)^{n / 2} d x .
$$

It is easy to see that

$$
\alpha^{\prime}(s)=-\int_{s}^{1}\left(1-x^{2}\right)^{n / 2} d x<0 \quad, \quad \beta^{\prime}(s)=\int_{0}^{s}\left(1-x^{2}\right)^{n / 2} d x>0
$$

and that

$$
\alpha(0)>0, \alpha(1)=0, \beta(0)=0, \beta(1)>0 .
$$

With this, the value $h=h(n)$ for which (5) hold is unique. On the other hand,

$$
\frac{\partial \alpha}{\partial n}=\frac{1}{2} \int_{s}^{1}(x-s)\left(1-x^{2}\right)^{n / 2} \log \left(1-x^{2}\right) d x
$$

y

$$
\frac{\partial \beta}{\partial n}=\frac{1}{2} \int_{0}^{s}(s-x)\left(1-x^{2}\right)^{n / 2} \log \left(1-x^{2}\right) d x
$$

Since (5) holds, one can see that

$$
\int_{0}^{h}(h-x)\left(1-x^{2}\right)^{n / 2} \log \left(1-x^{2}\right) d x>\int_{h}^{1}(x-h)\left(1-x^{2}\right)^{n / 2} \log \left(1-x^{2}\right) d x
$$

es decir,

$$
\frac{\partial \beta}{\partial n}(h)>\frac{\partial \alpha}{\partial n}(h) .
$$

This ensure that the point of intersection of the graphs of $\alpha \mathrm{y} \beta$ moves to the left as $n$ increases.

