Spheres in \mathbb{R}^n

Let c_n be the volume in \mathbb{R}^n bounded by

$$x_1^2 + \dots + x_n^2 = 1$$

It is easy to se that

$$c_{n+1} = 2c_n \int_0^1 (1 - x^2)^{n/2} dx \,, \tag{1}$$

which implies that $\lim_{n\to\infty} c_n = 0$.

We want to study the behavior of the center of gravity of the region bounded by a hemisphere H_n as $n \to \infty$. In \mathbb{R}^{n+1}) the region is given by

$$x_1^2 + \dots + x_n^2 + x_{n+1}^2 \le 1$$
, $x_{n+1} \ge 0$,

and the center of gravity will be

$$G_n = (0, \dots, 0, h), \quad h = h(n) > 0.$$

Intuition suggests h(n+1) < h(n), and we will furthermore show that

Lemma 1: The center of gravity G_n tends to the origin as $n \to \infty$, that is,

$$\lim_{n \to \infty} h(n) = 0 \, .$$

Proof: Let $\epsilon > 0$. We will show first that there exists n_0 so that $h(n) < \epsilon$ if $n \ge n_0$. Let $A = A(n, \epsilon)$ be the subregion of H_n where $x_{n+1} \ge \epsilon$, and let $B = B(n, \epsilon)$ be its complement in H_n . Then

$$\operatorname{Vol}(A) = c_n \int_{\epsilon}^{1} (1 - x^2)^{n/2} dx \le c_n \left[1 - \epsilon^2 \right]^{n/2} \,,$$

while

$$\operatorname{Vol}(B) = c_n \int_0^{\epsilon} (1 - x^2)^{n/2} dx \ge c_n(\epsilon/2) \left[1 - (\epsilon/2)^2 \right]^{n/2} \, .$$

The second bound follows from the fact that B contains a "disk" of height $\epsilon/2$ and radius $\sqrt{1 - (\epsilon/2)^2}$. We will show that if n is sufficiently large, then the region A produces a momentum with respect to the hyperplane $x_{n+1} = \epsilon$ that is smaller than that momentum of the region B. This shows that for such large values of n, the center of gravity must lie below ϵ .

The momentum produced by A is $M_A = Vol(A) \cdot [a(n) - h(n)]$, where a(n) represents the position on its axis of symmetry of the center of gravity of A. It follows that

$$M_A \le \operatorname{Vol}(A) \le c_n \left[1 - \epsilon^2\right]^{n/2} \,. \tag{3}$$

The momentum M_B is larger than that of the aforementioned disk, that is,

$$M_B \ge c_n \frac{\epsilon}{2} \left[1 - (\epsilon/2)^2 \right]^{n/2} \cdot \frac{3\epsilon}{4} \,. \tag{4}$$

It follows from (3) and (4) that, for ϵ fixed, $M_B > M_A$ for all large n,

Lemma 2: The heights h(n) are decreasing with n.

Proof: The expression h = h(n) is determined by the equation:

$$\int_{0}^{h} (h-x)(1-x^{2})^{n/2} dx = \int_{h}^{1} (x-h)(1-x^{2})^{n/2} dx.$$
 (5)

Let $\alpha(s), \beta(s)$ be defined by

$$\alpha(s) = \int_{s}^{1} (x-s)(1-x^{2})^{n/2} dx \quad , \quad \beta(s) = \int_{0}^{s} (s-x)(1-x^{2})^{n/2} dx \, .$$

It is easy to see that

$$\alpha'(s) = -\int_s^1 (1-x^2)^{n/2} dx < 0 \quad , \quad \beta'(s) = \int_0^s (1-x^2)^{n/2} dx > 0 \, ,$$

and that

$$\alpha(0) > 0 , \ \alpha(1) = 0 , \ \beta(0) = 0 , \ \beta(1) > 0$$

With this, the value h = h(n) for which (5) hold is unique. On the other hand,

$$\frac{\partial \alpha}{\partial n} = \frac{1}{2} \int_{s}^{1} (x-s)(1-x^{2})^{n/2} \log(1-x^{2}) \, dx$$

у

$$\frac{\partial \beta}{\partial n} = \frac{1}{2} \int_0^s (s-x)(1-x^2)^{n/2} \log(1-x^2) \, dx \, .$$

Since (5) holds, one can see that

$$\int_0^h (h-x)(1-x^2)^{n/2}\log(1-x^2)\,dx > \int_h^1 (x-h)(1-x^2)^{n/2}\log(1-x^2)\,dx$$

es decir,

$$\frac{\partial \beta}{\partial n}(h) > \frac{\partial \alpha}{\partial n}(h)$$

This ensure that the point of intersection of the graphs of α y β moves to the left as n increases.