
Ahlfors-Weill Extensions of Conformal Mappings and Critical
Points of the Poincaré Metric
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1 Introduction

Nehari showed in [9] that if f is analytic in the unit disk D and if its Schwarzian derivative
Sf = (f ′′/f ′)′ − (1/2)(f ′′/f ′)2 satisfies

|Sf(z)| ≤ 2

(1− |z|2)2
, (1.1)

then f is univalent in the disk. Ahlfors and Weill showed in [1] that if the Schwarzian satisfies
the stronger inequality

|Sf(z)| ≤ 2t

(1− |z|2)2
(1.2)

for some 0 ≤ t < 1 then, in addition, f has a quasiconformal extension to the sphere. They
gave an explicit formula for the extension.

The class of analytic functions satisfying either of these conditions is quite large. It was
shown by Paatero in [12] that any convex univalent function satisfies (1.1). This was later
established in a different way by Nehari in [10], and he went on to prove that a bounded
convex function satisfies the Ahlfors-Weill condition.

In [5], Gehring and Pommerenke made a careful study of Nehari’s original univalence
criterion and showed, among other things, that the condition (1.1) implies that f(D) is a
Jordan domain except when f is a Möbius conjugation of the logarithm,

F0(z) =
1

2
log

1 + z

1− z
. (1.3)

The function F0 has SF0(z) = 2/(1− z2)2, and F0(D) is an infinite parallel strip.
For topological reasons, it then follows from the Gehring-Pommerenke theorem that other

than in the exceptional case f has a homeomorphic extension to the sphere. See also [4].
The main result in this paper is that the same Ahlfors-Weill formula defines a homeomorphic
extension of f , though it will not in general be a quasiconformal extension. We discuss this
phenomenon via a relationship between the Ahlfors-Weill extension and the Poincaré metric
of the image of f . This may be of independent interest.

For economy of notation, though at the risk of sinking a crowded ship, we introduce
explicitly several subclasses of univalent functions associated with Nehari type bounds. Thus
we let N denote the set of analytic functions in the disk satisfying (1.1), N∗ the elements
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of N other than Möbius conjugations of the function F0, and N t those functions satisfying
(1.2). We use the notation N0, N0

∗, N0
t to indicate that a function f in any of the classes

has the normalization f(0) = 0, f ′(0) = 1, f ′′(0) = 0. If f(z) = z + a2z
2 + . . . is in any of

the classes, then f/(1 + a2f) is in the corresponding class of normalized functions, the point
being that the normalized function is still analytic, [2]. The function F0 is normalized in this
way. Furthermore, according to [3], Lemma 4, functions in N0

∗ are bounded. The family of
normalized extremals for the Ahlfors-Weill condition (1.2) is

At(z) =
1

α

(1 + z)α − (1− z)α

(1 + z)α + (1− z)α
, α =

√
1− t. (1.4)

2 Preliminary Estimates

Several distortion theorems for the classes N0 and N0
t were proved in [2] using comparison

theorems for the second order, ordinary differential equation associated with the Schwarzian.
We continue somewhat in the same vein here for a few basic estimates. We refer to our earlier
paper for further background.

Lemma 1 If f ∈ N0 then ∣∣∣∣∣f ′′f ′ (z)

∣∣∣∣∣ ≤ 2|z|
1− |z|2

. (2.1)

Equality holds at a single z 6= 0 if and only if f is a rotation of F0(z). If f ∈ N0
t then∣∣∣∣∣f ′′f ′ (z)

∣∣∣∣∣ ≤ 2t|z|
1− |z|2

. (2.2)

The inequality (2.2) is not sharp. The proof will show how one may obtain a sharp
estimate, but it is not as convenient and explicit as the one given here.

Proof: Let y = f ′′/f ′. Then

y′ =
1

2
y2 + 2p, y(0) = 0,

with 2p(z) = Sf(z). We consider the real equation

w′ =
1

2
w2 +

2

(1− x2)2
, w(0) = 0

on (−1, 1), whose solution is w(x) = 2x/(1− x2). We want to show that |y(z)| ≤ w(|z|).
Fix z0, |z0| = 1 and let

ϕ(τ) = |y(τz0)|, 0 ≤ τ < 1.
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Unless f(z) = z identically the zeros of ϕ are isolated. Away from these zeros ϕ is
differentiable and ϕ′(τ) ≤ |y′(τz0)|. Since |p(τz0)| ≤ 1/(1− τ 2)2 we obtain

d

dτ
(ϕ(τ)− w(τ)) ≤ |y′(τz0)| − w′(τ) ≤ 1

2
(|y(τz0)|2 − w2(τ))

=
1

2
(ϕ(τ)− w(τ))(ϕ(τ) + w(τ)).

This, together with ϕ(0)− w(0) = 0, implies that ϕ(τ)− w(τ) can never become positive.
Now suppose that equality holds in (2.1) at z1 6= 0. Let z0 = z1/|z1| and let ϕ(τ) be

defined as above. Then ϕ(|z1|) = w(|z1|) which, by the previous analysis, can happen only
if ϕ(τ) = w(τ), first on [0, |z1|], and then for all τ ∈ [0, 1) since both functions are analytic.
Hence y(τz0) is of the form eiθ(τ)w(τ). Since all inequalities above must be equalities, it
follows easily that θ(τ) must be constant. From this, it follows in turn that y(z) = cw(z̄0z)
for all |z| < 1, with |c| = 1. Integrating this equation and appealing to the normalizations
on f shows that f(z) = e−iθF0(eiθz). This proves the first part of the Lemma.

Next, suppose that f ∈ N0
t. The proof that |f ′′/f ′| has the bound in (2.2) proceeds

exactly as above with the single difference that the comparison equation is

w′ =
1

2
w2 +

2t

(1− x2)2
, w(0) = 0.

The solution is given by

w(x) =
2x

1− x2
− 2α2

1− x2
At(x),

where At(x) is defined in (1.4). It can be checked that At(x) is convex on [0, 1], and hence

min
0≤x≤1

At(x)

x
= At

′(0) = 1.

Hence
1− x2

2x
w(x) ≤ 1− α2 = t,

which proves (2.2).

3 Bounds for the Poincaré metric

The Poincaré metric λΩ|dw| of a simply connected domain Ω is defined by

λΩ(f(z))|f ′(z)| = λD(z) =
1

1− |z|2
, (3.1)

where f :D → Ω is a conformal mapping of the unit disk onto Ω. From Schwarz’s lemma
and the Koebe 1/4−theorem one has the the sharp inequalities

1

4

1

d(z, ∂Ω)
≤ λΩ(z) ≤ 1

d(z, ∂Ω)
,
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where d(z, ∂Ω) denotes the Euclidean distance from z to the boundary.
Writing w = f(z) and taking the ∂z = ∂/∂z derivative of the logarithm of (3.1) gives

∂wλΩ

λΩ

(f(z))f ′(z) =
z̄

1− |z|2
− 1

2

f ′′

f ′
(z). (3.2)

Observe that for a normalized function f ∈ N0 the Poincaré metric λΩ of the image Ω
has a critical point at w = 0, and that this must be the unique critical point if f is not a
rotation of the logarithm F0. In the latter case Ω is a parallel strip and the critical points of
λΩ are all the points of the axis of symmetry of Ω.

Lemma 2 If f ∈ N is bounded, then λΩ has a unique critical point.

Proof: Since Ω = f(D) is bounded and λΩ(w) → ∞ as w → ∂Ω, λΩ must have at least
one critical point. By replacing f by f ◦ T1 where T1 is a Möbius transformation of the disk
to itself, and then by T2 ◦ f ◦ T1, where T2 is an affine transformation, we may assume that
one such critical point is w = 0 = f(0), and that f ′(0) = 1. The identity (3.2) then forces
f ′′(0) = 0, i.e., that f ∈ N0

∗. Hence, as above, w = 0 is the unique critical point for λΩ since
f cannot be a rotation of the log.

From the fact that N contains the convex conformal mappings we obtain a result of Kim
and Minda [6].

Corollary 1 If Ω is a bounded, convex domain, then λΩ has a unique critical point.

In [11] it was shown that

|∇ log λΩ| ≤ 4λΩ (3.3)

as a consequence of (3.2) and the classical bound for |f ′′/f ′| that holds for any univalent
function in the disk. The inequality (3.3) is equivalent to the coefficient inequality |a2| ≤ 2.

We now give some lower bounds for |∇ log λΩ|.

Lemma 3 If f ∈ N0
∗, then there exists a constant c > 0 such that

|∇ log λΩ(w)| ≥ c|w|λΩ(w)1/2. (3.4)

If f ∈ N0
t, then

|∇ log λΩ(w)| ≥ 2(1− t)3/2|w|λΩ(w). (3.5)

Recall that a function f ∈ N0
∗ is bounded. The constant in (3.4) depends on the bound

for f . In an appendix we will give an example to show that the exponent 1/2 is essentially
best possible in (3.4).

Proof: The estimate (3.4) is implicit in [5]. We show how it can be deduced, adopting the
notation used there. Let h be the inverse of F0 and let g = f ◦ h. For τ ∈ R we have
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2|g′(τ)| = (1 − |h(τ)|2)|f ′(h(τ))| = λΩ(g(τ))−1. It was shown in [5] that v = |g′|−1/2 is
convex, with v(0) = 1, v′(0) = 0. It is not constant when f is not equal to F0. Now,

2
v′

v
(τ) =

d

dτ
log λΩ(g(τ)) ≤ |∇ log λΩ(g(τ))||g′(τ)| = |∇ log λΩ(g(τ))|v(τ)−2,

hence
|∇ log λΩ(g(τ))| ≥ 2v(τ)v′(τ) = 23/2v′(τ)λΩ(g(τ))1/2.

Since v is not constant and f is bounded, it follows that there exists a constant a > 0 such
that v′(τ) ≥ a|g(τ)| for τ ≥ 0. The estimates can be made uniformly on different rays from
the origin by considering f(eiθh). This proves (3.4).

Now suppose that f ∈ N0
t and write w = f(z). Using (3.2),

1

2
|∇ log λΩ(w)| = |(∂wλΩ)(f(z))|

λΩ(f(z))
=

∣∣∣∣∣z̄ − 1

2
(1− |z|2)

f ′′

f ′
(z)

∣∣∣∣∣
(1− |z|2)|f ′(z)|

.

From Lemma 1, (2.2) we then obtain

|∇ log λΩ(w)| ≥ 2(1− t)|z|
(1− |z|2)|f ′(z)|

= 2(1− t)|z|λΩ(w),

with w = f(z). But from [2], a function in N0
t is subject to the sharp bound |f(z)| ≤ At(|z|),

where At was defined in (1.4). This can be rearranged to

|z| ≥ (1 + α|w|)1/α − (1− α|w|)1/α

(1 + α|w|)1/α + (1− α|w|)1/α
= ψ(α|w|), α =

√
1− t.

The function ψ(s) is concave on [0, 1] with ψ(0) = 0 and ψ(1) = 1. Hence ψ(s) ≥ s and
(3.5) follows.

4 Homeomorphic Extensions

Let f ∈ N with f(z) = z + a2z
2 + . . .. It was shown in [2] that −1/a2 6∈ f(D), and it

follows from Lemma 4 in [3] that unless f is conjugate to F0 the point −1/a2 will actually
lie outside f(D). For a fixed ζ ∈ D renormalize in the usual way to

g(z) =

f

(
z + ζ

1 + ζ̄z

)
− f(ζ)

(1− |ζ|2)f ′(ζ)
,

which is again in N , and which has g(0) = 0 and g′(0) = 1. To say that −2/g′′(0) 6∈ g(D) is
equivalent to saying that

Ef (ζ) = f(ζ) +
(1− |ζ|2)f ′(ζ)

ζ̄ − 1

2
(1− |ζ|2)

f ′′

f ′
(ζ)

6∈ f(D), (4.1)
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and, again, if f is not conjugate to F0 then

Ef (ζ) 6∈ f(D). (4.2)

Ef is precisely the Ahlfors-Weill extension. For f satisfying |Sf(z)| ≤ 2t(1− |z|2)−2 the
function

F (z) =

{
f(z) |z| ≤ 1

Ef (1/z̄) |z| > 1
(4.3)

is a 1+t
1−t−quasiconformal mapping which extends f . (A function inN0

t is already
√

1− t−Hölder

continuous in D. In particular, it can be extended to D, see [2].)
The extension Ef has the other interesting property that it commutes with Möbius

transformations of f . If T is a Möbius transformation, then

ET◦f = T (Ef ). (4.4)

This can be checked directly from the definition, first for affine transformations and then,
less obviously, for an inversion.

In terms of the Poincaré metric, Ef has the expression

Ef (z) = f(z) +
1

∂w(log λΩ)(f(z))
, (4.5)

by (3.2). We point out one quick consequence of this. If f ∈ N then, using (4.1), since
Ef (z) 6∈ f(D) = Ω for z ∈ D, it must be that |Ef (z) − f(z)| ≥ d(f(z), ∂Ω). Thus (4.5)
implies |∇ log λΩ(w)| ≤ 1/d(w, ∂Ω). This becomes an equality for the upper half-plane. This
estimate was proved for convex domains by Minda in [8].

Theorem 1 If f ∈ N∗ then the function F defined in (4.3) is a homeomorphism of the
sphere extending f .

Proof: First, recall that by the Gehring-Pommerenke theorem f has a homeomorphic ex-
tension to D. Next, using (4.4) we may normalize further and first assume that f ∈ N0

∗. It
is clear from

Ef (z) = f(z) +
(1− |z|2)f ′(z)

z̄ − 1

2
(1− |z|2)

f ′′

f ′
(z)

that F is continuous; from Lemma 1 the denominator vanishes only at z = 0, which corre-
sponds to ∞ under the reflection in |z| = 1.

We next show that Ef is injective. Suppose that Ef (z1) = Ef (z2). Appealing again to
(4.4) we may change f to T ◦f by an appropriate Möbius transformation T and assume that
this common value is∞. But (4.2) now implies that f must be bounded, while on the other
hand (4.5) shows that an infinite value of Ef must be a critical point of log λΩ. By Lemma
2 such a critical point must be unique, hence z1 = z2 because f is univalent.

The mapping Ef is continuous and injective and hence a homeomorphism onto its range.
Since f(D) is a Jordan domain, to complete the proof we must see that Ef matches with f
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along |z| = 1. We use (4.4) one more time to go back to the normalization f ∈ N0
∗. Then

f(D) = Ω is bounded and it suffices to show that Ef (z) − f(z) → 0 as |z| → 1. This is
equivalent to |∇ log λΩ(w)| → ∞ as w → ∂Ω which follows from the first part of Lemma 3.
This completes the proof of the Theorem.

The complex dilatation µF = ∂z̄F/∂zF of the Ahlfors-Weill extension at a point ζ in the
exterior of the disk is

µF (ζ) = −1

2
(1− |z|2)2Sf(z),

where z = 1/ζ̄. It will therefore not define a quasiconformal mapping at points where |Sf(z)|
is at least 2/(1 − |z|2)2. In the case when |Sf(z)| ≤ 2t(1 − |z|2)2, t < 1, i.e., f ∈ N t, the
Gehring-Pommerenke result and the fact that we obtain a homeomorphic extension via Ef
gives a somewhat more direct approach to the Ahlfors-Weill theorem than the original proof.
There it was necessary to dilate so the map becomes regular on the boundary, and to use
a topological argument based on the Monodromy Theorem to get global injectivity of the
extended mapping; see also [7].

It is also intresting to note that all the functions f with Sf(z) = −2t/(1 − z2)2 for
1 ≤ t < 3 map the disk onto quasidisks, and hence do have quasiconformal extensions.
Normalized examples are the functions A−t(z), 1 ≤ t < 3, where At is defined in (1.4). They
map the disk onto the interior of the union of the circles through the points 1/α, −1/α and
±i(1/α) tan(πα/4), where α =

√
1 + t.

Appendix: An Example

We return to the first part of Lemma 3. We want to construct a function f ∈ N0
∗ showing

that the exponent 1/2 in the bound |∇ log λΩ(w)| ≥ c|w|λΩ(w)1/2, Ω = f(D), is, in general,
best possible. As the proof of Lemma 3 shows, this will be the case provided the convex
function v, introduced in the proof, has bounded derivative.

The extremal F0 maps the disk onto the strip −π/4 < Imw < π/4. We want to construct
g, analytic in this strip, so that f = g ◦ F0 will be in N0

∗, and v(τ) = |g′(τ)|−1/2 will be
convex with bounded derivative for τ on the real axis.

Let a > 0, to be chosen, and let

g′(ζ) =
a

a+ ζ2
.

If a >
√
π/2 then g′ will be regular in the strip and v(τ), τ ∈ R, will be a convex function

with bounded derivative. We compute the Schwarzian of g to be

Sg(ζ) =
−2a

(a+ ζ2)2
.

Then f = g ◦ F0 is normalized and

Sf(z) = Sg(F0(z))(F0
′(z))2 + SF0(z) =

2

(1− z2)2

{
1− 4a

(a+ ζ2)2

}
, ζ = F0(z).
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It is not hard to show that if a sufficiently large then∣∣∣∣∣1− 4a

(a+ ζ2)2

∣∣∣∣∣ ≤ 1,

so that f ∈ N0
∗.
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