ON THE COEFFICIENTS OF SMALL UNIVALENT FUNCTIONS
M. CHUAQUI , B. OSGOOD AND CH. POMMERENKE

ABSTRACT. For every o > 0 there exists an analytic univalent function f(z) =
a1z + agz® + - - - satisfying

="/ f () <o for|z] <1

such that |a,| > nc®*=1 for infinitely many n.

1. INTRODUCTION

Let the function

anz"

be analytic in the unit disk D and let f z) # 0. We assume that

(1.1) L= [P/ f(2) <a forzeD.
If f us univalent then (1.2) holds with o = 6 [7, Prop.1.2]. Conversely, if (1.2)

holds with o« <1 then f is univalent, and if & < 1 then f(DD) is a quasidisk [1]. A
related condition on the Schwarzian S'f is

(1.2) 1Sf1] = sup (1 = [2[*)*[Sf(2)] < o

l2[<1

If f is univalent then ||Sf|] < 6. Conversely, if ||Sf|| < 2 then f is univalent
[6]; this Nehari class has been studied e.g. in [3], [4]. If f”(O) = 0 then

—~

(1.3) |1SfIl<a<2=(12)=||Sf]| < const-a.

We shall study univalent functions that are small in the sense that a@ > 0 is
small in (1.2) or equivalently in (1.3); see (1.4). This does not imply anything
about the regularity of the boundary. Indeed there are functions satisfying (1.2)
with arbitrarily small « sich that 0 f(ID) does not possess a tangent at any point
[7, p.190 and p.193/194].
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We need a result of Makarov [5]; explicit bounds were given by Rohde [7, p.191].

Proposition 1: For small o > 0 there exists a univalent function g(z) = z + - - -
such that

(1.4) (1-12R)Ig"(2)/d (=) < a/2 forz €D,
and, with some constant ¢y > 0,

(1.5) / g (re™)|dt > (1 — 1)~ forrg<r<1.

—Tr

In order to obtain ¢ from the function f constructed by Makarov we set ¢’ =
( f/)a/ 12

The standard way to obtain an upper bound of the coefficients is to use the
elementary estimate

(1.6) | < const/ e, r=1—

const

n

Carleson and Jones have shown that, surprisingly, one does not lose much in (1.7);
see [2, Thm. 2] and Proposition 2 below.
If f satisfies (1.2) then [7, Exer. 8.3.4] and (1.7) show that

(1.7) a, =0 (no‘2/4_1> (n — 00).
We shall prove that this estimate is best possible except for the constant.

Theorem: For sufficiently small o > 0, there exists a univalent function with

L= PIf"()/f() <a forzeD
such that, with some constant ¢ > 0,

(1.8) |a,| > n° "1 for infinitely many n .

2. THE CARLESON-JONES MODIFICATION

We shall need the following variant of an important theorem of Carleson and
Jones [2, Th. 1]. Our variant contains information about " /4.

Proposition 2: Let n > 1600 and € > 0 be given and let the analytic function
0(2) = apz® satisfy

(2.1) L= 2P)¢"(2)/¢' ()| <7 <6 forzeD.

Then there exists a function ¢ = Y B.2* such that, with r = 1 — 1600/n,

(2.2) |1Br| > | |r*Horl <k <n,
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(2.3) (L= () /¢ (2)] <v+e forzeD,

™

(2.4) 12nBon| > e / | (reit)dt

—T
where ¢ > 0 is an absolute constant.

Proof: Let 6 > 0. We consider the polynomial

T 2n
/ n zn V)t |90( )‘ n—i—l/dt
T 4r e n+1 ¢ (rett)

of degree 3n and for z € DD define
1 )
(2.5) V(z) = —lrz) + —p(2)¢(r2).

Then (2.2) holds because p(z) contains no powers z® with k¥ < n. Using the
properties of the Fejér kernel [8, p. 188], Carleson and Jones [2, p.178] have shown
that

20 1Bulz o [ el = ol 2 o [ e

if the second inequality is false then we simple choose ¥ = ¢ instead of (2.6) and
(2.2), (2.3) and (2.4) are trivially true. Furthermore, for z € D

(2.7) p()| <1, [p'(2)] < 3n;

the first estimate follows from (2.5) and then the second from Bernstein’s inequality
8, p. 11 11].

Now we estimate 1" /4. Let ci, ... denote suitable absolute constants. It follows
from (2.6) that, for z € D,

()| = [¢'(r2)] = %Ip’(zw’(%) +p(2)¢" (r2)]

(23) > o) (1- 2 (34 125 ) ) 2 020 - )

n

by (2,8) and (2.1). Furthermore

(2.9)  W'GRI<I"(rz)+ - |p @' (rz) + 2rp/ (2)¢" (rz) + r?p(2) " (r2)] -
Using a standard argument we deduce from (2.8) and (2.1) that

Cqa7Y Csn
(=)= rzl) T 1= [

" csn O (rz)
<
s 2 |50
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Hence we obtain from (2.10) by (2.1) and (2.8) that

"( ’y—|—25 (e34+ 37+ ¢57)
(112
"(rz ] 1 —c6

<7 +ce0.

Therefore (2.3) holds is we choose = €/cg, and (2.4) holds by (2.7).

3. PROOF OF THE THEOREM

(a) By ¢4, ... we denote positive absolute constants. Let 0 < a < 1 and let g be
the function in Proposition 1 of Makarov. Let 0 < g, < 1 and let m;, be a (large)
integer. For z € D we define hy by

(3.1) B(2) = aug (™), ha(0) = 0.
Let |z] =7 < 1 and write m = my. We obtain from (3.1) and (1.5) that

2y | hi(2)] g"(z")| _ amr™ (1 —1r?)
(32) (1 -r ) m g’(zm| 2(1 _ sz)

m—1

=(1—rHmr <%~

If r <1—1/y/mthen r™ < (1 —1/y/m)™ < e~V™ and thus
(3.3) (1= 72)Ihi(2) /B (2)] < ™2
provided that m = m,, is large.

It follows from (1.5) ny integration that
(3.4 92| < a1 =)V

and thus by the maximum principle that |27 (¢'(2) — 1) | < ¢2(1 — 7)~/2. hence,
by (3.1),

1

/Z [g'(¢C™) — 1] dC’ < 02/ s™(1— sm)_1/2d3 < &
0 0

m

|7 (2) = qrz| = a

Choosing ¢, = 1 — 03m,:1 — m]:1/8 we deduce that

(3.5) | (2)| < qr +camy =1 — mgl/s forz € D.

(b) We will recursively define integers my, and n; with
(3.6) my > max [nk, (6404_12“2)8} for k=1,2

(see (3.10) below for ¢4) and functions

(3.7) fo(2) =24 a2 (2 €D)
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starting with fy(z) = 2. We write
«Q " /
39 e = mae 5 sup(1 = [P/ A

Suppose that n; and f; have already been constructed for j < k, also m; for
j < k. Let my, satisfy (3.6) and define ¢y = f o hg. Then

AR M) )
IO O R ATE)

and thus, for |z| =7 < 1,

o vl =r?)|hy fx ()
(3.9) (1—r?) soz < (1-7% h—: +?hk|g’“(1—|hkl2) f’Z(hk)

First suppose that 0 < r < 1—1/,/my,. Since h;(D) C D we have (1—r2)|h,|/(1—
|hi]?) <1 and thus, by (3.9), (3.2) and (3.8),

1
G- %
P
Now suppose that 1 —1/,/my < r < 1. Then, by (3.9), (3.2), (3.4) and (3.5),

< e V2 4y

1/8

@ ci(1—=rHm «
(3.10) (1—12) goz < 5 + - rmk)l/kz e < 5+ eamy Ve,
If my, is sufficiently large we therefore obtain, by (3.8) and (3.6),
(3.11) (1 =)@l (2)/0e(2)] < me +a27F72 for |z| =7 < 1.

This finally determines my.

Now let fiy1 be the Carleson-Jones modification of ¢; with € = a27%72; see
Proposition 2. Since 7y = «/2 we obtain from (3.8) and (3.11) that, for z € D,

fk+1(2)
fk+1(2)

Finally we apply Proposition 1. We choose nyy1 > 2ny so large that (see (3.7),

(2.4) and (1.6))
A5 )

da [T
|nk+1@k+1,nk+1| > ok+2
Csx coa coa?

(3.13) > oki2 ok+2 k1 > Mgy -

(3.12) (1—1z]%)

k

(6] i

gnk+1<§+2§ Oa? I <.
]:

This concludes our recursive construction.
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(c) Since my, > ny by (3.6), it follows from (3.1) and (3.7) that

or(2) = frlhe(z ZEWMZ+OWWU (z—=0).

The coefficients of the Carleson-Jones modification fi,; therefore satisfy
3200

Nk+1

|ak+1,n| > ka|ak,n| (1 — ) for 1 <n <ny

by (2.2). Using that g, = 1 — czm, ' — m,;l/g > 1—c627% by (3.6), we therefore

obtain
3200\ """
|ak+1n|>|ajn|H (-3 (1= 22)

ny+1

for k > 7 and n < n;. Hence, by (3.13) for k =7 —1,

coa?/2—1

(3.14) Qg1 | > 7 n; fork > j

because n,.1 > 2n,.

We select a convergent subsequence from / fy). Its limit f satisfies (1.2) by (3.12)
and satisfies (1.) by (3.14).
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