ON THE COEFFICIENTS OF SMALL UNIVALENT FUNCTIONS

M. CHUAQUI, B. OSGOOD AND CH. POMMERENKE

Abstract. For every $\alpha>0$ there exists an analytic univalent function $f(z)=$
$a_{1} z+a_{2} z^{2}+\cdots$ satisfying $a_{1} z+a_{2} z^{2}+\cdots$ satisfying

$$
\left(1-|z|^{2}\right)\left|f^{\prime \prime}(z) / f^{\prime}(z)\right| \leq \alpha \quad \text { for }|z|<1
$$

such that $\left|a_{n}\right|>n^{c \alpha^{2}-1}$ for infinitely many n.

1. Introduction

Let the function

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

be analytic in the unit disk \mathbb{D} and let $f^{\prime}(z) \neq 0$. We assume that

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|f^{\prime \prime}(z) / f^{\prime}(z)\right| \leq \alpha \quad \text { for } z \in \mathbb{D} \tag{1.1}
\end{equation*}
$$

If f us univalent then (1.2) holds with $\alpha=6$ [7, Prop.1.2]. Conversely, if (1.2) holds with $\alpha \leq 1$ then f is univalent, and if $\alpha<1$ then $f(\mathbb{D})$ is a quasidisk [1]. A related condition on the Schwarzian $S f$ is

$$
\begin{equation*}
\|S f\|=\sup _{|z|<1}\left(1-|z|^{2}\right)^{2}|S f(z)| \leq \alpha . \tag{1.2}
\end{equation*}
$$

If f is univalent then $\|S f\| \leq 6$. Conversely, if $\|S f\| \leq 2$ then f is univalent [6]; this Nehari class has been studied e.g. in [3], [4]. If $f^{\prime \prime}(0)=0$ then

$$
\begin{equation*}
\|S f\| \leq \alpha \leq 2 \Rightarrow(1.2) \Rightarrow\|S f\| \leq \text { const } \cdot \alpha \tag{1.3}
\end{equation*}
$$

We shall study univalent functions that are small in the sense that $\alpha>0$ is small in (1.2) or equivalently in (1.3); see (1.4). This does not imply anything about the regularity of the boundary. Indeed there are functions satisfying (1.2) with arbitrarily small α sich that $\partial f(\mathbb{D})$ does not possess a tangent at any point [7, p. 190 and p.193/194].

Key words: Univalent functions, Schwarzian derivative, coefficients. Mathematics Subject Classification 30C50.

We need a result of Makarov [5]; explicit bounds were given by Rohde [7, p.191].
Proposition 1: For small $\alpha>0$ there exists a univalent function $g(z)=z+\cdots$ such that

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|g^{\prime \prime}(z) / g^{\prime}(z)\right| \leq \alpha / 2 \quad \text { for } z \in \mathbb{D} \tag{1.4}
\end{equation*}
$$

and, with some constant $c_{0}>0$,

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|g^{\prime}\left(r e^{i t}\right)\right| d t>(1-r)^{-c_{0} \alpha^{2}} \quad \text { for } r_{0}<r<1 \tag{1.5}
\end{equation*}
$$

In order to obtain g from the function f constructed by Makarov we set $g^{\prime}=$ $\left(f^{\prime}\right)^{\alpha / 12}$.

The standard way to obtain an upper bound of the coefficients is to use the elementary estimate

$$
\begin{equation*}
\left|n a_{n}\right|<\text { const } \int_{-\pi}^{\pi}\left|f^{\prime}\left(r e^{i t}\right)\right| d t, r=1-\frac{\text { const }}{n} . \tag{1.6}
\end{equation*}
$$

Carleson and Jones have shown that, surprisingly, one does not lose much in (1.7); see [2, Thm. 2] and Proposition 2 below.

If f satisfies (1.2) then [7, Exer. 8.3.4] and (1.7) show that

$$
\begin{equation*}
a_{n}=O\left(n^{\alpha^{2} / 4-1}\right) \quad(n \rightarrow \infty) . \tag{1.7}
\end{equation*}
$$

We shall prove that this estimate is best possible except for the constant.
Theorem: For sufficiently small $\alpha>0$, there exists a univalent function with

$$
\left(1-|z|^{2}\right)\left|f^{\prime \prime}(z) / f^{\prime}(z)\right| \leq \alpha \quad \text { for } z \in \mathbb{D}
$$

such that, with some constant $c>0$,

$$
\begin{equation*}
\left|a_{n}\right|>n^{c \alpha^{2}-1} \quad \text { for infinitely many } n \tag{1.8}
\end{equation*}
$$

2. The Carleson-Jones modification

We shall need the following variant of an important theorem of Carleson and Jones [2, Th. 1]. Our variant contains information about $\psi^{\prime \prime} / \psi^{\prime}$.
Proposition 2: Let $n>1600$ and $\epsilon>0$ be given and let the analytic function $\varphi(z)=\sum \alpha_{k} z^{k}$ satisfy

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\varphi^{\prime \prime}(z) / \varphi^{\prime}(z)\right| \leq \gamma \leq 6 \quad \text { for } z \in \mathbb{D} \tag{2.1}
\end{equation*}
$$

Then there exists a function $\psi=\sum \beta_{k} z^{k}$ such that, with $r=1-1600 / n$,

$$
\begin{equation*}
\left|\beta_{k}\right| \geq\left|\alpha_{k}\right| r^{k-1} \text { for } 1 \leq k \leq n \tag{2.2}
\end{equation*}
$$

$$
\begin{gather*}
\left(1-|z|^{2}\right)\left|\psi^{\prime \prime}(z) / \psi^{\prime}(z)\right|<\gamma+\epsilon \quad \text { for } z \in \mathbb{D} \tag{2.3}\\
\left|2 n \beta_{2 n}\right|>c^{\prime} \epsilon \int_{-\pi}^{\pi}\left|\varphi^{\prime}\left(r e^{i t}\right)\right| d t \tag{2.4}
\end{gather*}
$$

where $c^{\prime}>0$ is an absolute constant.
Proof: Let $\delta>0$. We consider the polynomial

$$
p(z)=\frac{1}{4 \pi} \int_{-\pi}^{\pi} \sum_{\nu=0}^{2 n}\left(1-\frac{|\nu-n|}{n+1} e^{i(n-\nu) t}\right) \frac{\left|\varphi^{\prime}\left(r e^{i t}\right)\right|}{\varphi^{\prime}\left(r e^{i t}\right)} z^{n+\nu} d t
$$

of degree $3 n$ and for $z \in \mathbb{D}$ define

$$
\begin{equation*}
\psi(z)=\frac{1}{r} \varphi(r z)+\frac{\delta}{n} p(z) \varphi^{\prime}(r z) . \tag{2.5}
\end{equation*}
$$

Then (2.2) holds because $p(z)$ contains no powers z^{k} with $k<n$. Using the properties of the Fejér kernel [8, p. I88], Carleson and Jones [2, p.178] have shown that

$$
\begin{equation*}
\left|\beta_{2 n}\right| \geq \frac{\delta}{4 \pi n} \int_{-\pi}^{\pi}\left|\varphi^{\prime}\left(r e^{i t}\right)\right| d t-\left|\alpha_{2 n}\right| \geq \frac{\delta}{8 \pi n} \int_{-\pi}^{\pi}\left|\varphi^{\prime}\left(r e^{i t}\right)\right| d t \tag{2.6}
\end{equation*}
$$

if the second inequality is false then we simple choose $\psi=\varphi$ instead of (2.6) and (2.2), (2.3) and (2.4) are trivially true. Furthermore, for $z \in \mathbb{D}$

$$
\begin{equation*}
|p(z)| \leq 1,\left|p^{\prime}(z)\right| \leq 3 n \tag{2.7}
\end{equation*}
$$

the first estimate follows from (2.5) and then the second from Bernstein's inequality [8, p. II 11].

Now we estimate $\psi^{\prime \prime} / \psi^{\prime}$. Let c_{1}, \ldots denote suitable absolute constants. It follows from (2.6) that, for $z \in \overline{\mathbb{D}}$,

$$
\begin{align*}
\left|\psi^{\prime}(z)\right| \geq & \left|\varphi^{\prime}(r z)\right|-\frac{\delta}{n}\left|p^{\prime}(z) \varphi^{\prime}(r z)+p(z) \varphi^{\prime \prime}(r z)\right| \\
& \geq\left|\varphi^{\prime}(r z)\right|\left(1-\frac{\delta}{n}\left(3 n+\frac{\gamma}{1-r^{2}}\right)\right) \geq\left|\varphi^{\prime}(r z)\right|\left(1-c_{1} \delta\right) \tag{2.8}
\end{align*}
$$

by $(2,8)$ and (2.1). Furthermore

$$
\begin{equation*}
\left|\psi^{\prime \prime}(z)\right| \leq\left|\varphi^{\prime \prime}(r z)\right|+\frac{\delta}{n}\left|p^{\prime \prime}(z) \varphi^{\prime}(r z)+2 r p^{\prime}(z) \varphi^{\prime \prime}(r z)+r^{2} p(z) \varphi^{\prime \prime \prime}(r z)\right| \tag{2.9}
\end{equation*}
$$

Using a standard argument we deduce from (2.8) and (2.1) that

$$
\left|p^{\prime \prime}(z)\right| \leq \frac{c_{3} n}{1-|z|},\left|\frac{\varphi^{\prime \prime \prime}(r z)}{\varphi^{\prime}(r z)}\right| \leq \frac{c_{4} \gamma}{(1-r)(1-|r z|)} \leq \frac{c_{5} \gamma n}{1-|z|}
$$

Hence we obtain from (2.10) by (2.1) and (2.8) that

$$
\left(1-|z|^{2}\right)\left|\frac{\psi^{\prime \prime}(z) \mid}{\left|\varphi^{\prime}(r z)\right|}\right| \leq \frac{\gamma+2 \delta\left(c_{3}+3 \gamma+c_{5} \gamma\right)}{1-c_{1} \delta} \leq \gamma+c_{6} \delta .
$$

Therefore (2.3) holds is we choose $\delta=\epsilon / c_{6}$, and (2.4) holds by (2.7).

3. Proof of the theorem

(a) By c_{1}, \ldots we denote positive absolute constants. Let $0<\alpha<1$ and let g be the function in Proposition 1 of Makarov. Let $0<q_{k}<1$ and let m_{k} be a (large) integer. For $z \in D$ we define h_{k} by

$$
\begin{equation*}
h_{k}^{\prime}(z)=q_{k} g^{\prime}\left(z^{m_{k}}\right), h_{k}(0)=0 . \tag{3.1}
\end{equation*}
$$

Let $|z|=r<1$ and write $m=m_{k}$. We obtain from (3.1) and (1.5) that

$$
\begin{equation*}
\left(1-r^{2}\right)\left|\frac{h_{k}^{\prime \prime}(z) \mid}{h_{k}^{\prime}(r z)}\right|=\left(1-r^{2}\right) m r^{m-1}\left|\frac{g^{\prime \prime}\left(z^{m}\right) \mid}{g^{\prime}\left(z^{m} \mid\right.}\right| \leq \frac{\alpha m r^{m-1}\left(1-r^{2}\right)}{2\left(1-r^{2 m}\right)}<\frac{\alpha}{2} . \tag{3.2}
\end{equation*}
$$

If $r \leq 1-1 / \sqrt{m}$ then $r^{m} \leq(1-1 / \sqrt{m})^{m}<e^{-\sqrt{m}}$ and thus

$$
\begin{equation*}
\left(1-r^{2}\right)\left|h_{k}^{\prime \prime}(z) / h_{k}^{\prime}(z)\right|<e^{\sqrt{m} / 2} \tag{3.3}
\end{equation*}
$$

provided that $m=m_{k}$ is large.
It follows from (1.5) ny integration that

$$
\begin{equation*}
\left|g^{\prime}(z)\right| \leq c_{1}(1-r)^{-1 / 2} \tag{3.4}
\end{equation*}
$$

and thus by the maximum principle that $\left|z^{-1}\left(g^{\prime}(z)-1\right)\right| \leq c_{2}(1-r)^{-1 / 2}$. hence, by (3.1),

$$
\left|h_{k}(z)-q_{k} z\right|=q_{k}\left|\int_{0}^{z}\left[g^{\prime}\left(\zeta^{m}\right)-1\right] d \zeta\right| \leq c_{2} \int_{0}^{1} s^{m}\left(1-s^{m}\right)^{-1 / 2} d s \leq \frac{c_{3}}{m} .
$$

Choosing $q_{k}=1-c_{3} m_{k}^{-1}-m_{k}^{-1 / 8}$ we deduce that

$$
\begin{equation*}
\left|h_{k}(z)\right|<q_{k}+c_{3} m_{k}^{-1}=1-m_{k}^{-1 / 8} \quad \text { for } z \in D \tag{3.5}
\end{equation*}
$$

(b) We will recursively define integers m_{k} and n_{k} with

$$
\begin{equation*}
m_{k}>\max \left[n_{k},\left(c_{4} \alpha^{-1} 2^{k+2}\right)^{8}\right] \quad \text { for } k=1,2, \ldots \tag{3.6}
\end{equation*}
$$

(see (3.10) below for c_{4}) and functions

$$
\begin{equation*}
f_{k}(z)=z+\sum_{n=2}^{\infty} a_{k n} z^{n} \quad(z \in \mathbb{D}) \tag{3.7}
\end{equation*}
$$

starting with $f_{0}(z)=z$. We write

$$
\begin{equation*}
\eta_{k}=\max \left(\frac{\alpha}{2}, \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f_{k}^{\prime \prime}(z) / f_{k}^{\prime}(z)\right|\right) . \tag{3.8}
\end{equation*}
$$

Suppose that η_{j} and f_{j} have already been constructed for $j \leq k$, also m_{j} for $j<k$. Let m_{k} satisfy (3.6) and define $\varphi_{k}=f_{k} \circ h_{k}$. Then

$$
\frac{\varphi_{k}^{\prime \prime}(z)}{\varphi_{k}^{\prime}(z)}=\frac{h_{k}^{\prime \prime}(z)}{h_{k}^{\prime}(z)}+h_{k}^{\prime}(z) \frac{f_{k}^{\prime \prime}\left(h_{k}(z)\right)}{f_{k}^{\prime}\left(h_{k}(z)\right)}
$$

and thus, for $|z|=r<1$,

$$
\begin{equation*}
\left(1-r^{2}\right)\left|\frac{\varphi_{k}^{\prime \prime}}{\varphi_{k}^{\prime}}\right| \leq\left(1-r^{2}\right)\left|\frac{h_{k}^{\prime \prime}}{h_{k}^{\prime}}\right|+\frac{\left(1-r^{2}\right)\left|h_{k}^{\prime}\right|}{1-\left|h_{k}\right|^{2}}\left(1-\left|h_{k}\right|^{2}\right)\left|\frac{f_{k}^{\prime \prime}\left(h_{k}\right)}{f_{k}^{\prime}\left(h_{k}\right)}\right| . \tag{3.9}
\end{equation*}
$$

First suppose that $0 \leq r \leq 1-1 / \sqrt{m_{k}}$. Since $h_{k}(\mathbb{D}) \subset \mathbb{D}$ we have $\left(1-r^{2}\right)\left|h_{k}^{\prime}\right| /(1-$ $\left.\left|h_{k}\right|^{2}\right) \leq 1$ and thus, by (3.9), (3.2) and (3.8),

$$
\left(1-r^{2}\right)\left|\frac{\varphi_{k}^{\prime \prime}}{\varphi_{k}^{\prime}}\right| \leq e^{-\sqrt{m_{k}} / 2}+\eta_{k}
$$

Now suppose that $1-1 / \sqrt{m_{k}}<r<1$. Then, by (3.9), (3.2), (3.4) and (3.5),

$$
\begin{equation*}
\left(1-r^{2}\right)\left|\frac{\varphi_{k}^{\prime \prime}}{\varphi_{k}^{\prime}}\right|<\frac{\alpha}{2}+\frac{c_{1}\left(1-r^{2}\right) m_{k}^{1 / 8}}{\left(1-r^{m_{k}}\right)^{1 / 2}} \eta_{k} \leq \frac{\alpha}{2}+c_{4} m_{k}^{-1 / 8} \eta_{k} \tag{3.10}
\end{equation*}
$$

If m_{k} is sufficiently large we therefore obtain, by (3.8) and (3.6),

$$
\begin{equation*}
\left(1-r^{2}\right)\left|\varphi_{k}^{\prime \prime}(z) / \varphi_{k}^{\prime}(z)\right|<\eta_{k}+\alpha 2^{-k-2} \quad \text { for }|z|=r<1 \tag{3.11}
\end{equation*}
$$

This finally determines m_{k}.
Now let f_{k+1} be the Carleson-Jones modification of φ_{k} with $\epsilon=\alpha 2^{-k-2}$; see Proposition 2. Since $\eta_{0}=\alpha / 2$ we obtain from (3.8) and (3.11) that, for $z \in \mathbb{D}$,

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{f_{k+1}^{\prime \prime}(z)}{f_{k+1}^{\prime}(z)}\right| \leq \eta_{k+1}<\frac{\alpha}{2}+2 \sum_{j=0}^{k} \alpha 2^{-j-2}<\alpha . \tag{3.12}
\end{equation*}
$$

Finally we apply Proposition 1. We choose $n_{k+1}>2 n_{k}$ so large that (see (3.7), (2.4) and (1.6))

$$
\begin{align*}
\left|n_{k+1} a_{k+1, n_{k+1}}\right| & >\frac{c^{\prime} \alpha}{2^{k+2}} \int_{-\pi}^{\pi}\left|\varphi_{k}^{\prime}\left(\left(1-\frac{3200}{n_{k+1}}\right) e^{i t}\right)\right| d t \\
& >\frac{c_{5} \alpha}{2^{k+2}} n_{k+1}^{c_{0} \alpha^{2}}>n_{k+1}^{c_{0} \alpha^{2}} . \tag{3.13}
\end{align*}
$$

This concludes our recursive construction.
(c) Since $m_{k}>n_{k}$ by (3.6), it follows from (3.1) and (3.7) that

$$
\varphi_{k}(z)=f_{k}\left(h_{k}(z)\right)=\sum_{n=1}^{n_{k}} q_{k}^{n} a_{k n} z^{n}+O\left(z^{n_{k}+1}\right) \quad(z \rightarrow 0) .
$$

The coefficients of the Carleson-Jones modification f_{k+1} therefore satisfy

$$
\left|a_{k+1, n}\right| \geq q_{k}\left|a_{k, n}\right|\left(1-\frac{3200}{n_{k+1}}\right) \quad \text { for } 1 \leq n \leq n_{k}
$$

by (2.2). Using that $q_{k}=1-c_{3} m_{k}^{-1}-m_{k}^{-1 / 8}>1-c_{6} 2^{-k}$ by (3.6), we therefore obtain

$$
\left|a_{k+1, n}\right|>\left|a_{j, n}\right| \prod_{\nu=j}^{k}\left[\left(1-\frac{c_{6}}{2^{\nu}}\right)^{n}\left(1-\frac{3200}{n_{\nu+1}}\right)^{n-1}\right]
$$

for $k \geq j$ and $n \leq n_{j}$. Hence, by (3.13) for $k=j-1$,

$$
\begin{equation*}
\left|a_{k+1, n_{j}}\right|>c_{7} n_{j}^{c_{0} \alpha^{2} / 2-1} \quad \text { for } k \geq j \tag{3.14}
\end{equation*}
$$

because $n_{\nu+1}>2 n_{\nu}$.
We select a convergent subsequence from $/ f_{k}$). Its limit f satisfies (1.2) by (3.12) and satisfies (1.) by (3.14).

References

[1] J. Becker, Löwnersche Differentialgleichungen und quasikonform fortsetzbare schlichte Funktione, J. Reine Angew. Math. 255 (1972), 23-43.
[2] L. Carleson and P. Jones, On the coefficient problems for univalent functions and conformal dimension, Duke Math. J. 66 (1992), 169-206.
[3] M. Chuaqui and B. Osgood, Sharp distortion theorems associated with the Schwarzian derivative, J. London Math. Soc. (2) 48 (1993), 289-298.
[4] M. Chuaqui, B. Osgood and Ch. Pommerenke, John domains, quasidisks, and the Nehari class, J. Reine Angew. Math. 471 (1996), 77-114.
[5] N.G. Makarov, A note in the integral means of the derivative in conformal mappings Proc. Amer. Math. Soc. 96 (1986), 233-236.
[6] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.
[7] Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer-Verlag.
[8] A. Zygmund, Trigonometric Series, Vol. I, II, Cambridge University Press, 1968.

