
ON THE COEFFICIENTS OF SMALL UNIVALENT FUNCTIONS
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Abstract. For every α > 0 there exists an analytic univalent function f(z) =
a1z + a2z

2 + · · · satisfying

(1− |z|2)|f ′′(z)/f ′(z)| ≤ α for |z| < 1

such that |an| > ncα
2−1 for infinitely many n.

1. Introduction

Let the function

f(z) =
∞∑
n=0

anz
n

be analytic in the unit disk D and let f ′(z) 6= 0. We assume that

(1.1) (1− |z|2)|f ′′(z)/f ′(z)| ≤ α for z ∈ D .
If f us univalent then (1.2) holds with α = 6 [7, Prop.1.2]. Conversely, if (1.2)
holds with α ≤ 1 then f is univalent, and if α < 1 then f(D) is a quasidisk [1]. A
related condition on the Schwarzian Sf is

(1.2) ||Sf || = sup
|z|<1

(1− |z|2)2|Sf(z)| ≤ α .

If f is univalent then ||Sf || ≤ 6. Conversely, if ||Sf || ≤ 2 then f is univalent
[6]; this Nehari class has been studied e.g. in [3], [4]. If f ′′(0) = 0 then

(1.3) ||Sf || ≤ α ≤ 2⇒ (1.2)⇒ ||Sf || ≤ const · α .

We shall study univalent functions that are small in the sense that α > 0 is
small in (1.2) or equivalently in (1.3); see (1.4). This does not imply anything
about the regularity of the boundary. Indeed there are functions satisfying (1.2)
with arbitrarily small α sich that ∂f(D) does not possess a tangent at any point
[7, p.190 and p.193/194].
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We need a result of Makarov [5]; explicit bounds were given by Rohde [7, p.191].

Proposition 1: For small α > 0 there exists a univalent function g(z) = z + · · ·
such that

(1.4) (1− |z|2)|g′′(z)/g′(z)| ≤ α/2 for z ∈ D ,
and, with some constant c0 > 0,

(1.5)

∫ π

−π
|g′(reit)|dt > (1− r)−c0α2

for r0 < r < 1 .

In order to obtain g from the function f constructed by Makarov we set g′ =
(f ′)α/12.

The standard way to obtain an upper bound of the coefficients is to use the
elementary estimate

(1.6) |nan| < const

∫ π

−π
|f ′(reit)|dt , r = 1− const

n
.

Carleson and Jones have shown that, surprisingly, one does not lose much in (1.7);
see [2, Thm. 2] and Proposition 2 below.

If f satisfies (1.2) then [7, Exer. 8.3.4] and (1.7) show that

(1.7) an = O
(
nα

2/4−1
)

(n→∞) .

We shall prove that this estimate is best possible except for the constant.

Theorem: For sufficiently small α > 0, there exists a univalent function with

(1− |z|2)|f ′′(z)/f ′(z)| ≤ α for z ∈ D

such that, with some constant c > 0,

(1.8) |an| > ncα
2−1 for infinitely many n .

2. The Carleson-Jones modification

We shall need the following variant of an important theorem of Carleson and
Jones [2, Th. 1]. Our variant contains information about ψ′′/ψ′.

Proposition 2: Let n > 1600 and ε > 0 be given and let the analytic function
ϕ(z) =

∑
αkz

k satisfy

(2.1) (1− |z|2)|ϕ′′(z)/ϕ′(z)| ≤ γ ≤ 6 for z ∈ D .
Then there exists a function ψ =

∑
βkz

k such that, with r = 1− 1600/n,

(2.2) |βk| ≥ |αk|rk−1for1 ≤ k ≤ n ,
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(2.3) (1− |z|2)|ψ′′(z)/ψ′(z)| < γ + ε for z ∈ D ,

(2.4) |2nβ2n| > c′ε

∫ π

−π
|ϕ′(reit)|dt

where c′ > 0 is an absolute constant.

Proof: Let δ > 0. We consider the polynomial

p(z) =
1

4π

∫ π

−π

2n∑
ν=0

(
1− |ν − n|

n+ 1
ei(n−ν)t

)
|ϕ′(reit)|
ϕ′(reit)

zn+νdt

of degree 3n and for z ∈ D define

(2.5) ψ(z) =
1

r
ϕ(rz) +

δ

n
p(z)ϕ′(rz) .

Then (2.2) holds because p(z) contains no powers zk with k < n. Using the
properties of the Fejér kernel [8, p. I88], Carleson and Jones [2, p.178] have shown
that

(2.6) |β2n| ≥
δ

4πn

∫ π

−π
|ϕ′(reit)|dt− |α2n| ≥

δ

8πn

∫ π

−π
|ϕ′(reit)|dt ;

if the second inequality is false then we simple choose ψ = ϕ instead of (2.6) and
(2.2), (2.3) and (2.4) are trivially true. Furthermore, for z ∈ D

(2.7) |p(z)| ≤ 1 , |p′(z)| ≤ 3n ;

the first estimate follows from (2.5) and then the second from Bernstein’s inequality
[8, p. II 11].

Now we estimate ψ′′/ψ′. Let c1, . . . denote suitable absolute constants. It follows
from (2.6) that, for z ∈ D,

|ψ′(z)| ≥ |ϕ′(rz)| − δ

n
|p′(z)ϕ′(rz) + p(z)ϕ′′(rz)|

(2.8) ≥ |ϕ′(rz)|
(

1− δ

n

(
3n+

γ

1− r2

))
≥ |ϕ′(rz)|(1− c1δ)

by (2,8) and (2.1). Furthermore

(2.9) |ψ′′(z)| ≤ |ϕ′′(rz)|+ δ

n

∣∣p′′(z)ϕ′(rz) + 2rp′(z)ϕ′′(rz) + r2p(z)ϕ′′′(rz)
∣∣ .

Using a standard argument we deduce from (2.8) and (2.1) that

|p′′(z)| ≤ c3n

1− |z|
,

∣∣∣∣ϕ′′′(rz)

ϕ′(rz)

∣∣∣∣ ≤ c4γ

(1− r)(1− |rz|)
≤ c5γn

1− |z|
.
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Hence we obtain from (2.10) by (2.1) and (2.8) that

(1− |z|2)
∣∣∣∣ ψ′′(z)|
|ϕ′(rz)|

∣∣∣∣ ≤ γ + 2δ(c3 + 3γ + c5γ)

1− c1δ
≤ γ + c6δ .

Therefore (2.3) holds is we choose δ = ε/c6, and (2.4) holds by (2.7).

3. Proof of the theorem

(a) By c1, . . . we denote positive absolute constants. Let 0 < α < 1 and let g be
the function in Proposition 1 of Makarov. Let 0 < qk < 1 and let mk be a (large)
integer. For z ∈ D we define hk by

(3.1) h′k(z) = qkg
′(zmk) , hk(0) = 0 .

Let |z| = r < 1 and write m = mk. We obtain from (3.1) and (1.5) that

(3.2) (1− r2)
∣∣∣∣ h′′k(z)|
h′k(rz)

∣∣∣∣ = (1− r2)mrm−1
∣∣∣∣g′′(zm)|
g′(zm|

∣∣∣∣ ≤ αmrm−1(1− r2)
2(1− r2m)

<
α

2
.

If r ≤ 1− 1/
√
m then rm ≤ (1− 1/

√
m)m < e−

√
m and thus

(3.3) (1− r2)|h′′k(z)/h′k(z)| < e
√
m/2

provided that m = mk is large.

It follows from (1.5) ny integration that

(3.4) |g′(z)| ≤ c1(1− r)−1/2

and thus by the maximum principle that |z−1 (g′(z)− 1) | ≤ c2(1− r)−1/2. hence,
by (3.1),

|hk(z)− qkz| = qk

∣∣∣∣∫ z

0

[g′(ζm)− 1] dζ

∣∣∣∣ ≤ c2

∫ 1

0

sm(1− sm)−1/2ds ≤ c3
m
.

Choosing qk = 1− c3m−1k −m
−1/8
k we deduce that

(3.5) |hk(z)| < qk + c3m
−1
k = 1−m−1/8k forz ∈ D .

(b) We will recursively define integers mk and nk with

(3.6) mk > max
[
nk,
(
c4α

−12k+2
)8]

for k = 1, 2, . . .

(see (3.10) below for c4) and functions

(3.7) fk(z) = z +
∞∑
n=2

aknz
n (z ∈ D)



ON THE COEFFICIENTS OF SMALL UNIVALENT FUNCTIONS 5

starting with f0(z) = z. We write

(3.8) ηk = max

(
α

2
, sup
z∈D

(1− |z|2)|f ′′k (z)/f ′k(z)|
)
.

Suppose that ηj and fj have already been constructed for j ≤ k, also mj for
j < k. Let mk satisfy (3.6) and define ϕk = fk ◦ hk. Then

ϕ′′k(z)

ϕ′k(z)
=
h′′k(z)

h′k(z)
+ h′k(z)

f ′′k (hk(z))

f ′k(hk(z))

and thus, for |z| = r < 1,

(3.9) (1− r2)
∣∣∣∣ϕ′′kϕ′k

∣∣∣∣ ≤ (1− r2)
∣∣∣∣h′′kh′k
∣∣∣∣+

(1− r2)|h′k|
1− |hk|2

(1− |hk|2)
∣∣∣∣f ′′k (hk)

f ′k(hk)

∣∣∣∣ .
First suppose that 0 ≤ r ≤ 1−1/

√
mk. Since hk(D) ⊂ D we have (1−r2)|h′k|/(1−

|hk|2) ≤ 1 and thus, by (3.9), (3.2) and (3.8),

(1− r2)
∣∣∣∣ϕ′′kϕ′k

∣∣∣∣ ≤ e−
√
mk/2 + ηk .

Now suppose that 1− 1/
√
mk < r < 1. Then, by (3.9), (3.2), (3.4) and (3.5),

(3.10) (1− r2)
∣∣∣∣ϕ′′kϕ′k

∣∣∣∣ < α

2
+
c1(1− r2)m1/8

k

(1− rmk)1/2
ηk ≤

α

2
+ c4m

−1/8
k ηk .

If mk is sufficiently large we therefore obtain, by (3.8) and (3.6),

(3.11) (1− r2)|ϕ′′k(z)/ϕ′k(z)| < ηk + α2−k−2 for |z| = r < 1 .

This finally determines mk.

Now let fk+1 be the Carleson-Jones modification of ϕk with ε = α2−k−2; see
Proposition 2. Since η0 = α/2 we obtain from (3.8) and (3.11) that, for z ∈ D,

(3.12) (1− |z|2)
∣∣∣∣f ′′k+1(z)

f ′k+1(z)

∣∣∣∣ ≤ ηk+1 <
α

2
+ 2

k∑
j=0

α2−j−2 < α .

Finally we apply Proposition 1. We choose nk+1 > 2nk so large that (see (3.7),
(2.4) and (1.6))∣∣nk+1ak+1,nk+1

∣∣ > c′α

2k+2

∫ π

−π

∣∣∣∣ϕ′k ((1− 3200

nk+1

)
eit
)∣∣∣∣ dt

(3.13) >
c5α

2k+2
nc0α

2

k+1 > nc0α
2

k+1 .

This concludes our recursive construction.
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(c) Since mk > nk by (3.6), it follows from (3.1) and (3.7) that

ϕk(z) = fk(hk(z)) =

nk∑
n=1

qnkaknz
n +O(znk+1) (z → 0) .

The coefficients of the Carleson-Jones modification fk+1 therefore satisfy

|ak+1,n| ≥ qk|ak,n|
(

1− 3200

nk+1

)
for 1 ≤ n ≤ nk

by (2.2). Using that qk = 1 − c3m−1k −m
−1/8
k > 1 − c62−k by (3.6), we therefore

obtain

|ak+1,n| > |aj,n|
k∏
ν=j

[(
1− c6

2ν

)n(
1− 3200

nν+1

)n−1]
for k ≥ j and n ≤ nj. Hence, by (3.13) for k = j − 1,

(3.14) |ak+1,nj
| > c7n

c0α2/2−1
j fork ≥ j

because nν+1 > 2nν .

We select a convergent subsequence from /fk). Its limit f satisfies (1.2) by (3.12)
and satisfies (1.) by (3.14).
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