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Abstract

Gehring and Pommerenke have shown that if the Schwarzian deriva-
tive Sf of an analytic function f in the unit disk D satisfies |Sf(z)| ≤
2(1−|z|2)−2 then f(D) is a Jordan domain except when f(D) is the image
under a Möbius transformation of an infinite parallel strip. The condition
|Sf(z)| ≤ 2(1−|z|2)−2 is the classical sufficient condition for univalence of
Nehari. In this paper we show that the same type of phenomenon estab-
lished by Gehring and Pommerenke holds for a wider class of univalence
criteria of the form |Sf(z)| ≤ p(|z|) also introduced by Nehari. These in-
clude |Sf(z)| ≤ π2/2 and |Sf(z)| ≤ 4(1− |z|2)−1. We also obtain results
on Hölder continuity and quasiconformal extensions.

1 Introduction and Results

Let f be analytic and locally univalent in the unit disc D. It is well known that
the size of its Schwarzian derivative Sf = (f ′′/f ′)′− (1/2)(f ′′/f ′)2 is intimately
related to the global univalence of f in D, and to homeomorphic extensions of
f to C̄. In important cases this extension will be quasiconformal in C\D̄. A
classical instance of this is Nehari’s condition

|Sf(z)| ≤ 2
(1− |z|2)2

, (1)

which implies the univalence of f in D , [11]. If the stronger inequality

|Sf(z)| ≤ 2t
(1− |z|2)2

(2)

holds for some 0 ≤ t < 1 then f(D) is a quasidisk, and hence f has a quasi-
conformal extension to the C̄, [1]; see also [6]. A quasidisk is the image of D
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under a quasiconformal mapping of C̄. Nehari’s univalence criterion was closely
studied in [8], where the authors showed that if

|Sf(z)| < 2
(1− |z|2)2

then f(D) is a Jordan domain. It follows that f has a homeomorphic extension
to the plane. This result was also obtained by Epstein [7] by quite different
methods, and in [5] we give a construction of a conformally natural homeomor-
phic extension which is related to critical points of the Poincaré metric. In [8]
the fact that f has a homeomorphic extension follows from the rather surprising
phenomenon that if f satisfies (1.1) then f(D) fails to be a Jordan domain in
essentially one case. To state the result, let us first introduce the function

F0(z) =
1
2

log
1 + z

1− z
.

Then F0 satisfies (1), with equality along the real interval, and F0(D) is an
infinite parallel strip. We say that f is Möbius conjugate to F0 if it is of the
form T1 ◦ F0 ◦ T2, with T1, T2 Möbius, T2(D) = D. It follows that such an f
will also satisfy (1), with equality now along some hyperbolic geodesic. This is
a consequence of the chain rule for the Schwarzian

S(f ◦ g) = (Sf ◦ g)(g′)2 + Sg ,

the fact that Möbius transformations have identically vanishing Schwarzians,
and that T2 is a hyperbolic isometry of the disk.

Theorem 1 (Gehring-Pommerenke)(A) If f is analytic and locally univalent
in D with

|Sf(z)| ≤ 2
(1− |z|2)2

then f is univalent in D and has a spherically continuous extension to the closed
disk D̄. Either f is Möbius conjugate to F0 or else f(D) is a Jordan domain.
(B) If

lim sup
|z|→1

(1− |z|2)2|Sf(z)| < 2

and if f(D) is a Jordan domain then f(D) is a quasidisk.

The continuous extension to D̄ follows from explicit estimates on the mod-
ulus of continuity. We have written Theorem 1 so it is roughly in parallel with
Theorem 2 below. For the last part of the theorem the authors actually show
(Theorem 4 in [8]) that under just the lim sup condition f has a spherically
continuous extension to D̄ and that there exists a number m <∞ such that f
assumes every value at most m times in D̄. If m = 1 then f(D) is a quasidisk.

2



The purpose of this paper is to observe that Theorem 1 can be extended to
a wider class of univalence criteria introduced by Nehari. Let p(z) be analytic
and even in D, and satisfy the following three conditions:

(i) |p(z)| ≤ p(|z|) ,
(ii) (1− x2)2p(x) is non-increasing on (0, 1) ,
(iii) the differential equation u′′ + pu = 0 has a real, non-vanishing solution

on (−1, 1).
Nehari showed that if

|Sf(z)| ≤ 2p(|z|) (3)

then f is univalent in D, [12], [13]. This result encompasses (1) as well as the
conditions

|Sf(z)| ≤ π2

2
, (4)

|Sf(z)| ≤ 4
1− |z|2

, (5)

and

|Sf(z)| ≤ 2s(1− (s− 1)|z|2)
(1− |z|2)2

, 1 < s < 2. (6)

The condition (4) was in Nehari’s first paper on the subject [11]. (5) was
stated by Pokornyi in [14] and a proof was published by Nehari in [12]. The
interpolating criterion (6) was given in [13]. See also [3] for a study of general
univalence criteria.

In (4), (5), and (6) the extremals (determined up to a Möbius transforma-
tion) are, respectively,

F1(z) =
1
π

tanh(πz) , F2(z) =
∫ z

0

dζ

(1− ζ2)2
, F3(z) =

∫ z

0

dζ

(1− ζ2)s
.

Let p an analytic function in the disk satisfying the three conditions above, and
let

F (z) =
∫ z

0

y−2(ζ) dζ,

where the function y solves

y′′ + py = 0 , y(0) = 1 , y′(0) = 0, (7)

in the disk. Then SF (z) = 2p(z), and F (0) = 0, F ′(0) = 1 and F ′′(0) = 0.
The functions F0 through F3 are also normalized in this way. As defined, F is
known only to be meromorphic. We will show that it is always analytic in the
disk. By (i), F will satisfy (3) and hence will be univalent by Nehari’s theorem.
Note that F is real-valued on the real axis.

The univalence theorem in [13] only required p to be a real-valued, continuous
function defined on (−1, 1), but then there need not be an analytic, univalent
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extremal. The fact that the analytic extremals F share properties with the
logarithmic extremal F0 is one of the points of this paper. However, to draw
a distinction, whereas F0 becomes infinite at ±1, the general F need not, and
there is an interesting difference between the cases F (1) finite or infinite. In the
case when F (1) <∞, for any function f satisfying |Sf(z)| ≤ 2p(|z|) one knows
from the results in [2] that f(D) is a quasidisk. This includes F (D). We are
therefore interested here in the case when F (1) =∞. In this case F (D) clearly
fails to be a Jordan domain as F is odd, so F (−1) = F (1) = ∞ as a point on
the sphere. But this is the only way that F (D) fails to be a Jordan domain.
Our main result is thus in several parts.

Theorem 2 Suppose f is analytic and locally univalent in D with

|Sf(z)| ≤ 2p(|z|)

and that F (1) =∞.
(A) f is univalent in D and admits a spherically continuous extension to D̄.
Either f is Möbius conjugate to the extremal F or else f(D) is a Jordan domain.
(B) If

lim
x→1

(1− x2)2p(x) < 1,

and if f(D) is a Jordan domain then f(D) is a quasidisk.
(C) F is univalent on D̄\{−1, 1}.

After this work was completed we learned of two interesting papers by Stein-
metz, [15], [16]. In the second paper the author also considers Nehari’s p-
criterion and, by different methods than we use here, he obtains Parts (A) and
(C) above.

Corollary 1 If
|Sf(z)| < 2p(|z|)

then f(D) is a Jordan domain.

Let
µ = lim

x→1
(1− x2)2p(x). (8)

We will show that µ ≤ 1, and that µ = 1 if and only if p(x) = (1− x2)−2. Both
facts will be a consequence of (iii). Thus µ = 1 corresponds to the case treated
by Gehring and Pommerenke, while µ < 1 includes (4), (5) and (6). To prove
Theorem 2 we will use the fact that

lim sup
|z|→1

(1− |z|2)2|Sf(z)| ≤ 2µ.

Next we have two results on Hölder continuity for functions satisfying |Sf(z)| ≤
2p(|z|). Again the case of interest is when F (1) =∞.
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Theorem 3 Suppose F (1) = ∞, µ < 1, that f satisfies |Sf(z)| ≤ 2p(|z|)
with f ′′(0) = 0, and that f is not Möbius conjugate to F . Then f is Hölder
continuous for any exponent α >

√
1− µ. If x = 1 is a regular singular point

of (7) then f is Hölder continuous with exponent α =
√

1− µ.

Recall that x = 1 is a regular singular point of (7) when (1 − x)2p(x) is
analytic at x = 1. Such is ths case for the functions p as in (4), (5) and
(6). It follows from (7) that the solution y is concave down, and because of
its initial conditions, y is decreasing on (0, 1). Hence limx→1 y(x) exists, and
the assumption that F (1) = ∞ implies that this limit must be 0. The further
assumption that x = 1 is a regular singular point gives enough information on
the order of vanishing of F to improve the Hölder exponent.

The assumption that f ′′(0) = 0 is not restrictive at all since, as we shall
see, it can always be achieved by taking a suitable Möbius transformation of
f without introducing a pole. The same techniques will also show that the
extremal F is locally Hölder continuous on ∂D\{−1, 1}, in the sense that for
each w ∈ ∂D\{−1, 1} there exist c, ε > 0 such that

|F (z1)− F (z2)| ≤ c|z1 − z2|α

for all z1, z2 ∈ D̄\{−1, 1}, |z1 − w|, |z2 − w| < ε.
For a similar result on Hölder continuity see [15].

2 Proofs

We begin by showing that the extremal functions are always analytic as a con-
sequence of a general lemma to that effect. Recall that the conditions (i), (ii)
and (iii) on p are in force.

Lemma 1 If f is meromorphic in D with |Sf(z)| ≤ 2p(|z|) and f ′′(0) = 0 then
f is analytic in D.

Proof: As above, we let y be the solution of the initial value problem (7),

y′′ + py = 0 , y(0) = 1 , y′(0) = 0 ,

and
F (z) =

∫ z

0

y−2(ζ)dζ .

First observe that on (−1, 1) the real, even function y cannot vanish. For other-
wise it would have at least two zeros there, which then by the Sturm oscillation-
comparison theorem would force every solution of the differential equation to
vanish at least once in (−1, 1), contradicting condition (iii). Hence F is analytic
on a neighborhood of (−1, 1) in D.
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Without loss of generality we may next assume that f(0) = 0, f ′(0) = 1.
Then

f(z) =
∫ z

0

v−2(ζ)dζ

where
v′′ +

1
2

(Sf)v = 0, v(0) = 1, v′(0) = 0.

Since |Sf(z)| ≤ 2p(|z|), it follows from Lemma 2 in [4] that

|v(z)| ≥ y(|z|)

in the largest disk |z| < r ≤ 1 on which f is analytic. Hence |f(z)| ≤ F (|z|)
there, which shows that f cannot have a pole in D.

In particular, since |SF (z)| = 2|p(z)| ≤ 2p(|z|) by condition (i), we conclude
that the extremals themselves satisfy |F (z)| ≤ F (|z|) and are analytic in the
disk. Then they are also univalent by Nehari’s p-theorem.

Remark If f is analytic in D with f(z) = z + a2z
2 + . . . then the function

f† = f/(1 + a2f) has f†(z) = z + O(z3). If f satisfies |Sf(z)| ≤ 2p(|z|) then
so does f†. It cannot have a pole in D because, again, it will be subject to the
bound |f†(z)| ≤ F (|z|) on the largest disk |z| < r ≤ 1 on which it is analytic,
and F is analytic in all of D. The point is that when the Schwarzian is bounded
in this way it is possible to normalize an analytic function to get f ′′(0) = 0 and
still be analytic.

Actually, using the arguments in [4] one can prove sharp distortion theorems
for functions satisfying the hypotheses of Lemma 1. If G is the solution of
SG = −2p with G(0) = 0, G′(0) = 1 and G′′(0) = 0 then

G′(|z|) ≤ |f ′(z)| ≤ F ′(|z|),

G(|z|) ≤ |f(z)| ≤ F (|z|).
If equality holds at any point other than the origin in any of the inequalities
then f is equal to the corrresponding function F or G. We will not prove these
facts here, nor will we make any use of them.

Note also that if F (1) < ∞ then F (D), and hence f(D), will be bounded.
Even when F (1) =∞, f(D) will be bounded as long as f is not Möbius conju-
gate to F . We show this in Lemma 4, below.

Next, recall that µ = limx→1(1 − x2)2p(x). The following lemma makes
Theorem 1 applicable to the proof of Theorem 2.

Lemma 2 µ ≤ 1 and µ = 1 if and only if p(x) = (1− x2)−2.

Proof: Suppose first that µ > 1. Then p(x) ≥ µ(1 − x2)−2, which we shall
show implies that the solution y of

y′′ + py = 0 , y(0) = 1 , y′(0) = 0

6



vanishes somewhere on (−1, 1). This will contradict (iii). Let v be the solution
on (−1, 1) of

v′′ +
µ

(1− x2)2
v = 0 , v(0) = 1 , v′(0) = 0 .

The function v is given by

v(x) =
√

1− x2 cos
(
η

2
log

1 + x

1− x

)
where η =

√
µ− 1, see [10], p. 492. In particular, v vanishes on (−1, 1) (in-

finitely often). A standard application of the Sturm comparison theorem shows
that v ≥ y as long as y > 0 on a centered interval about the origin. It follows
that y must vanish somewhere on (−1, 1) as well.

Hence µ ≤ 1, and if p(x) = (1− x2)−2 then obviously µ = 1. Suppose then
that µ = 1. This time let v(x) =

√
1− x2 be the solution of

v′′ +
1

(1− x2)2
v = 0 , v(0) = 1 , v′(0) = 0 ,

so that
F0(x) =

1
2

log
1 + x

1− x
=
∫ x

0

v−2(t) dt.

Since y is positive, the comparison theorem gives v ≥ y. We let

F (x) =
∫ x

0

y−2(t) dt

as before, and put H = F−1. Since F0(−1, 1) = R already, then v ≥ y implies
that F takes (−1, 1) onto R too. (Note that in this lemma we are not assuming
at the outset that F (1) =∞.) Let

ϕ(s) =
v(H(s))
y(H(s))

, (1)

where s ∈ R. This function is defined so that

(F0 ◦H)(s) =
∫ s

0

ϕ−2(t) dt .

A straightforward computation shows that

ϕ′′(s) =
(
p(x)− 1

(1− x2)2

)
y4(x)ϕ(s) , x = H(s).

Hence ϕ is convex, as p(x) ≥ (1 − x2)−2. In addition, ϕ(0) = 1, ϕ′(0) = 0.
Suppose p(x) 6≡ (1 − x2)−2, say p(x0) > (1 − x2

0)−2 for some x0 > 0. Because
s = 0 gives an absolute minimum of ϕ it follows from the convexity that

ϕ(s) ≥ a+ b(s− s0) , x0 = H(s0),
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for some constants a, b with b > 0. Therefore∫ ∞
0

ϕ−2(s)ds <∞ ,

which contradicts the fact that (F0 ◦H)(∞) =∞. This completes the proof of
the lemma.

We begin the proof of Theorem 2. According to Lemma 2, µ = 1 is taken
care of by Theorem 1, so we may now assume that µ < 1. Let f satisfy |Sf(z)| ≤
2p(|z|). By Nehari’s theorem f is univalent, and since

lim sup
|z|→1

(1− |z|2)2|Sf(z)| ≤ 2µ < 2 ,

another application of Theorem 1 (more properly, the remarks following Theo-
rem 1) implies that f admits a spherically continuous extension to D̄. Assuming
also that F (1) = ∞, in order to complete the proofs of Parts (A) and (B) of
Theorem 2 it suffices to show that either f is Möbius conjugate to F or else f
is 1:1 on ∂D, in which case f(D) will actually be a quasidisk. For this we need
an observation due to Nehari [12]. We state it here as a separate lemma.

Lemma 3 Let z1, z2 ∈ ∂D, z1 6= z2, and let γ be the hyperbolic geodesic in D
joining z1 and z2. Then there exists a Möbius selfmap T of D such that:
(a) T (−1, 1) = γ ,
(b) |S(f ◦ T )(x)| ≤ 2p(|x|) for all x ∈ (−1, 1).

Proof: If z1, z2 lie on a diameter then T can be chosen to be a rotation. If not,
using a rotation we may assume that the points z1, z2 lie in the upper half-plane
and that γ is symmetric with respect to the imaginary axis. Then for suitable
0 < ρ < 1,

T (z) =
z + iρ

1− iρz
takes (−1, 1) to γ. We also have

S(f ◦ T )(z) = Sf(Tz)(T ′z)2

hence

(1− |z|2)2|S(f ◦ T )(z)| = (1− |z|2)2|(Sf)(Tz)||T ′z|2

= |(Sf)(Tz)|(1− |Tz|2)2

≤ 2(1− |Tz|2)2p(|Tz|) .

Therefore it suffices to show that |x| ≤ |Tx| for x ∈ (−1, 1). But

|Tx|2 =
x2 + ρ2

1 + ρ2x2
> x2 .
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Returning to the proof of Theorem 2, suppose f(z1) = f(z2) for distinct
points on ∂D. Let g = f ◦T with T as in Lemma 3. Then g(1) = g(−1), and by
taking a Möbius transformation of g, we may assume that this common value is
∞. An affine change allows us to normalize further so that g(0) = 0. We write

g(z) =
∫ z

0

v−2(ζ)dζ ,

where
v′′ +

1
2

(Sg)v = 0 .

As in the proof of Lemma 2, (1), we let

ϕ(s) =
v(H(s))
y(H(s))

, H = F−1. (2)

This is defined on F (−1, 1) = R, and

(g ◦G)(s) =
∫ s

0

ϕ−2(t) dt .

The chain rule for the Schwarzian yields

S(g ◦G)(s) = (Sg(z)− SF (z))(G′(s))2, z = G(s).

Hence for s ∈ R, Re{S(g ◦G)(s)} ≤ 0, and a direct calculation gives

|ϕ(s)|′′ = q(s)ϕ(s)

where

q(s) = −1
2

Re{S(g ◦G)(s)}+
(

1
2

Im
{

(g ◦G)′′

(g ◦G)′
(s)
})2

≥ 0

(see [8]). We conclude that |ϕ| is convex on R. Unless it is constant, it will
be bounded below by a non-horizontal line, which, as in the prooof of Lemma
2, will imply that either (g ◦ G)(∞) or (g ◦ G)(−∞) is finite. This contradicts
the fact that g(1) = g(−1) = ∞. For this last double equality to happen the
function |ϕ| must be constant on R. But then q(s) ≡ 0, which implies that

1
2

Im
{

(g ◦G)′′

(g ◦G)′
(s)
}
≡ 0.

On the other hand, for s ∈ R,

|ϕ|′

|ϕ|
(s) = −1

2
Re
{

(g ◦G)′′

(g ◦G)′
(s)
}
,
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and we conclude that
(g ◦G)′′

(g ◦G)′
(s) ≡ 0

on R, hence everywhere on F (D). It follows that g◦G is an affine transformation
and therefore g is Möbius conjugate to F . This finishes the proof of Parts (A)
and (B).

To prove part (C) we proceed similarly. Suppose z1, z2 are distinct points on
∂D such that F (z1) = F (z2). Let T2 be the Möbius transformation provided by
Lemma 3, and let T1 be a second Möbius transformation such that T1(F (z1)) =
T1(F (z2)) =∞. We conclude from Part (A) that T1 ◦F ◦T2 is of the form T ◦F ,
T Möbius. By taking Schwarzian derivatives we obtain

S(T1 ◦ F ◦ T2) = S(F ◦ T2) = (SF ) ◦ T2(T ′2)2 = S(T ◦ F ) = SF ,

or
p(z) = p(T2(z))(T ′2z)

2.

Hence for z = x0 real

(1− x2
0)2p(x0) = |(1− x2

0)2p(x0)|
= |(1− x2

0)2p(T2(x0))(T ′2(x0))2|
= (1− |T2(x0)|2)2|p(T2(x0))| .

Next, we saw in the proof of Lemma 3 that unless T2 is a rotation, |T2(x0)| >
|x0|, which by the monotonicity property (ii) implies that (1− x2)2p(x) is con-
stant for |x0| ≤ x ≤ |T2(x0)|. Thus (1 − x2)2p(x) is constant on (−1, 1) and
therefore everywhere. In other words,

p(z) =
µ

(1− z2)2
.

In this case the extremal F can be computed explicitly [4]:

F (z) =
1
η

(1 + z)η − (1− z)η

(1 + z)η + (1− z)η
,

where η =
√

1− µ. This function satisfies the Ahlfors-Weill condition (2) and
F (D) is a bounded quasidisk. In particular, F (1) 6=∞ and F is not of the form
considered here.

The remaining case is when T2 is a rotation, z 7→ cz, with |c| = 1. The
equation (2.5) yields

p(z) = c2p(cz)

which evaluated at z = 0 gives p(0) = 0 or c2 = 1. If p(0) = 0 then p(z) ≡ 0,
and all maps are Möbius. If c2 = 1 then c = ±1, which implies that the points
z1, z2 were ±1 to begin with. This finishes the proof of Theorem 2.
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Corollary 1 is a direct consequence of Theorem 2. We now prove Theorem
3 on Hölder continuity. For this we first require an extension of Lemma 1.

Lemma 4 Suppose F (1) = ∞. If |Sf(z)| ≤ 2p(|z|), f ′′(0) = 0 and f is not
Möbius conjugate to F , then f is bounded on D̄.

Proof: If |f(w)| =∞ for some w ∈ ∂D then the function |ϕ(s)| defined in (2)
would have to be constant on a half line, and hence S(f ◦F−1) ≡ 0 there. Thus
S(f ◦ F−1) ≡ 0 on all of F (D), so f ◦ F−1 is a Möbius transformation (in fact
the identity), a contradiction.

For the Hölder continuity in the first part of Theorem 3, let δ > 0 be such
that µ+ 2δ < 1, and let ε > 0 be small enough so that

|Sf(z)| ≤ 2(µ+ δ)
(1− |z|2)2

for all 1 − ε ≤ |z| < 1. Let w ∈ ∂D. Gehring and Pommerenke produced
a conformal mapping ψ of D onto a circular wedge Ω ⊂ D, with an arc of
∂D centered at w as one if its sides, and such that 1 − ε ≤ |z| for all z ∈ Ω.
Furthernore, if the wedge is sufficiently narrow then

|S(f ◦ ψ)(ζ)| ≤ 2(µ+ 2δ)
(1− |ζ|2)2

for all ζ ∈ D.
Let T be a Möbius transformation such that the map g = T ◦ f ◦ ψ has

g(0) = 0, g′(0) = 1 and g′′(0) = 0. Corollary 1 in [4] implies that g is Hölder
continuous with exponent

α =
√

1− (µ+ 2δ) . (2.7)

We want to conclude from here that f is Hölder continuous in Ω with the same
exponent. The reflection principle implies that ψ is analytic in a neighborhood
of ψ−1(w), hence it suffices to show that f1 = f ◦ ψ is Hölder continuous. We
write g = (af1 + b)/(cf1 + d), ad− bc = 1, or

f1 =
dg − b
ag − c

. (3)

But f1 is bounded on D̄ by Lemma 4, which shows that c/a is not in the closure
of g(D). It follows from (3) that f1 is Hölder continuous in Ω as well. To
conclude the Hölder continuity everywhere just observe that a finite number of
wedges Ω cover a neighborhood in D of ∂D.

Next, suppose that x = 1 is a regular singular point of (7). To improve the
Hölder exponent for f we need the following lemma on the order of vanishing
of the solution at 1.
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Lemma 5 Suppose x = 1 is a regular singular point of (7). Then the solution
y of (7) satisfies

y(x) ∼ (1− x)β , as x→ 1 ,

where β = (1 +
√

1− µ)/2.

Proof: The possible orders of vanishing at x = 1 of the solutions of u′′+pu = 0
are given by the roots of the inditial equation

m2 −m+
µ

4
= 0 ,

which are

m1 =
1 +
√

1− µ
2

, m2 =
1−
√

1− µ
2

,

(see, e.g., [9]). Notice that 0 ≤ m2 < 1/2 < m1 ≤ 1. Since F (1) =
∫ 1

0
y−2(x)dx =

∞ we conclude that y(1) vanishes to order m1.

To finish the proof of Theorem 3 we go back to the proof of Theorem 2. There
we saw that f(D) was a Jordan domain precisely when the convex function |ϕ(s)|
was non-constant. Thus for s ≥ s0 there exist constants a, b with b > 0 such
that

|ϕ(s)| ≥ a+ b(s− s0) .

Hence
|(f ◦ F−1)′(s)| ≤ 1

(a+ b(s− s0))2

or

|f ′(x)| ≤ F ′(x)
(a+ b(F (x)− s0))2

, x = F (s) .

It follows that
|f ′(x)| = O(1− x)

√
1−µ −1 , x→ 1 .

The same argument applied to f(eiθz) gives

|f ′(z)| = O(1− |z|)
√

1−µ −1 , |z| → 1 .

Now a standard technique of integrating along hyperbolic geodesics (see e.g. [8]
or [4]) gives the desired conclusion.

Finally, since the extension of F to D̄ is finite on ∂D\{−1, 1}, the same
proof as before gives the local Hölder continuity of F in ∂D\{−1, 1}.

Notice also that the Hölder continuity is Lipschitz when µ = 0, such as in
(1.5) and (1.6). When F (1) < ∞ the second part of Theorem 3 was obtained
in [2] (Theorems 2, 3).
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