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Abstract

Gehring and Pommerenke have shown that if the Schwarzian deriva-
tive Sf of an analytic function f in the unit disk D satisfies |Sf(z)| <
2(1—12|?)2 then f(D) is a Jordan domain except when f(D) is the image
under a Mobius transformation of an infinite parallel strip. The condition
|Sf(2)| < 2(1—]2|?)"2 is the classical sufficient condition for univalence of
Nehari. In this paper we show that the same type of phenomenon estab-
lished by Gehring and Pommerenke holds for a wider class of univalence
criteria of the form |Sf(z)| < p(|z|) also introduced by Nehari. These in-
clude |Sf(2)] < 72/2 and |Sf(z)| < 4(1 — |2|?)~'. We also obtain results
on Holder continuity and quasiconformal extensions.

1 Introduction and Results

Let f be analytic and locally univalent in the unit disc D. It is well known that
the size of its Schwarzian derivative Sf = (f"/f") —(1/2)(f"/f")? is intimately
related to the global univalence of f in D, and to homeomorphic extensions of
f to C. In important cases this extension will be quasiconformal in C\D. A
classical instance of this is Nehari’s condition

2
S < — 1
1S7)| < = (1)
which implies the univalence of f in D, [11]. If the stronger inequality
2t
S < 2
5:)| < = @)

holds for some 0 < ¢t < 1 then f(D) is a quasidisk, and hence f has a quasi-
conformal extension to the C, [1]; see also [6]. A quasidisk is the image of D



under a quasiconformal mapping of C. Nehari’s univalence criterion was closely
studied in [8], where the authors showed that if

2
‘Sf(2)| < (1 . |Z|2)2
then f(D) is a Jordan domain. It follows that f has a homeomorphic extension
to the plane. This result was also obtained by Epstein [7] by quite different
methods, and in [5] we give a construction of a conformally natural homeomor-
phic extension which is related to critical points of the Poincaré metric. In [8]
the fact that f has a homeomorphic extension follows from the rather surprising
phenomenon that if f satisfies (1.1) then f(D) fails to be a Jordan domain in
essentially one case. To state the result, let us first introduce the function

1+2
1—2"

1
Fo(z) = B log

Then Fj satisfies (1), with equality along the real interval, and Fy(D) is an
infinite parallel strip. We say that f is Mdobius conjugate to Fp if it is of the
form Ty o Fy o Ty, with Ty, T> Mobius, To(D) = D. It follows that such an f
will also satisfy (1), with equality now along some hyperbolic geodesic. This is
a consequence of the chain rule for the Schwarzian

S(fog)=(Sfog)(d)?+ Sy,

the fact that Mobius transformations have identically vanishing Schwarzians,
and that T3 is a hyperbolic isometry of the disk.

Theorem 1 (Gehring-Pommerenke)(A) If f is analytic and locally univalent
in D with 5
S < —

‘ f(Z)| = (1 _ |Z|2)2
then f is univalent in D and has a spherically continuous extension to the closed
disk D. FEither f is Mobius conjugate to Fy or else f(D) is a Jordan domain.

(B) If
limsup(1 — |2]?)?|Sf(2)| < 2

|z|—=1

and if f(D) is a Jordan domain then f(D) is a quasidisk.

The continuous extension to D follows from explicit estimates on the mod-
ulus of continuity. We have written Theorem 1 so it is roughly in parallel with
Theorem 2 below. For the last part of the theorem the authors actually show
(Theorem 4 in [8]) that under just the limsup condition f has a spherically
continuous extension to D and that there exists a number m < oo such that f
assumes every value at most m times in D. If m = 1 then f(D) is a quasidisk.



The purpose of this paper is to observe that Theorem 1 can be extended to
a wider class of univalence criteria introduced by Nehari. Let p(z) be analytic
and even in D, and satisfy the following three conditions:

i) Ip(=)] < p(lz]) ,
i) (1 —22)%p(z) is non-increasing on (0,1),

(
(
(111) the differential equation u” + pu = 0 has a real, non-vanishing solution
on (-1

1)

Neharl showed that if
1Sf(2)] < 2p(]2]) (3)

then f is univalent in D, [12], [13]. This result encompasses (1) as well as the
conditions

1S5f(2)] <

»&w‘:‘w

1Sf(2)] < el (5)

1—|z
nd 25(1 — (5 — 1)]2[2)
|Sf(z)| < (1 — \z|2)2

The condition (4) was in Nehari’s first paper on the subject [11]. (5) was
stated by Pokornyi in [14] and a proof was published by Nehari in [12]. The
interpolating criterion (6) was given in [13]. See also [3] for a study of general
univalence criteria.

In (4), (5), and (6) the extremals (determined up to a Mobius transforma-
tion) are, respectively,

, l<s <2 (6)

Fi(z) = %tanh(ﬁz), Fy(z) = /OZ %’ Fy(2) = /OZ %

Let p an analytic function in the disk satisfying the three conditions above, and
let

F(z) = /O Y0 de,

where the function y solves

y' +py=0,y0)=1,y(0) =0, (7)

in the disk. Then SF(z) = 2p(z), and F(0) = 0, F/(0) = 1 and F”(0) = 0.
The functions Fy through F3 are also normalized in this way. As defined, F' is
known only to be meromorphic. We will show that it is always analytic in the
disk. By (i), F will satisfy (3) and hence will be univalent by Nehari’s theorem.
Note that F' is real-valued on the real axis.

The univalence theorem in [13] only required p to be a real-valued, continuous
function defined on (—1,1), but then there need not be an analytic, univalent



extremal. The fact that the analytic extremals F' share properties with the
logarithmic extremal F{, is one of the points of this paper. However, to draw
a distinction, whereas Fjy becomes infinite at +1, the general F' need not, and
there is an interesting difference between the cases F'(1) finite or infinite. In the
case when F'(1) < oo, for any function f satisfying |Sf(z)| < 2p(|z|) one knows
from the results in [2] that f(D) is a quasidisk. This includes F(D). We are
therefore interested here in the case when F(1) = co. In this case F/(D) clearly
fails to be a Jordan domain as F' is odd, so F'(—1) = F(1) = co as a point on
the sphere. But this is the only way that F(D) fails to be a Jordan domain.
Our main result is thus in several parts.

Theorem 2 Suppose f is analytic and locally univalent in D with

1SF(2)| < 2p(|z])

and that F(1) = oco. B
(A) f is univalent in D and admits a spherically continuous extension to D.
Either f is Mébius conjugate to the extremal F' or else f(D) is a Jordan domain.

(B) If
}:1311(1 —2?)?p(x) < 1,

and if f(D) is a Jordan domain then f(D) is a quasidisk.
(C) F is univalent on D\{—1,1}.

After this work was completed we learned of two interesting papers by Stein-
metz, [15], [16]. In the second paper the author also considers Nehari’s p-
criterion and, by different methods than we use here, he obtains Parts (A) and
(C) above.

Corollary 1 If
1S (2)| < 2p(|z])
then f(D) is a Jordan domain.

Let
p= lim (1~ 22)?p(a). (8)

We will show that z < 1, and that g = 1 if and only if p(x) = (1 — 22)~2. Both
facts will be a consequence of (iii). Thus u = 1 corresponds to the case treated
by Gehring and Pommerenke, while 1 < 1 includes (4), (5) and (6). To prove
Theorem 2 we will use the fact that
limsup(1 — |2[2)2[S(2)] < 25
|z[—1

Next we have two results on Holder continuity for functions satisfying |S f(z)]

2p(|z|). Again the case of interest is when F(1) = occ.

<



Theorem 3 Suppose F(1) = oo, u < 1, that f satisfies |Sf(z)| < 2p(|z|)
with f(0) = 0, and that f is not Mdbius conjugate to F. Then f is Hélder
continuous for any exponent a > /1 — p. If x = 1 is a regular singular point
of (7) then f is Holder continuous with exponent o = /1 — p.

Recall that z = 1 is a regular singular point of (7) when (1 — x)?p(z) is

analytic at * = 1. Such is ths case for the functions p as in (4), (5) and
(6). Tt follows from (7) that the solution y is concave down, and because of
its initial conditions, y is decreasing on (0,1). Hence lim,_ y(z) exists, and
the assumption that F(1) = oo implies that this limit must be 0. The further
assumption that x = 1 is a regular singular point gives enough information on
the order of vanishing of F' to improve the Holder exponent.

The assumption that f”(0) = 0 is not restrictive at all since, as we shall
see, it can always be achieved by taking a suitable Mobius transformation of
f without introducing a pole. The same techniques will also show that the
extremal F' is locally Hélder continuous on dD\{—1,1}, in the sense that for
each w € OD\{—1,1} there exist ¢, e > 0 such that

|[F'(21) — F(22)| < c|z1 — 22|*

for all 21, 20 € D\{—1,1}, |21 — w]|, |22 —w| < €.
For a similar result on Holder continuity see [15].

2 Proofs

We begin by showing that the extremal functions are always analytic as a con-
sequence of a general lemma to that effect. Recall that the conditions (i), (ii)
and (iii) on p are in force.

Lemma 1 If f is meromorphic in D with |Sf(z)| < 2p(|z|) and f”(0) = 0 then
f is analytic in D.
Proof: As above, we let y be the solution of the initial value problem (7),

Y +py=0,y(0)=1,y(0) =0,

and

F(z) = /0 .

First observe that on (—1, 1) the real, even function y cannot vanish. For other-
wise it would have at least two zeros there, which then by the Sturm oscillation-
comparison theorem would force every solution of the differential equation to
vanish at least once in (—1,1), contradicting condition (iii). Hence F is analytic
on a neighborhood of (—1,1) in D.



Without loss of generality we may next assume that f(0) = 0, f/(0) = 1.
Then

f(2) = /0 (e

where

1
v+ i(Sf)v =0, v(0)=1, v'(0)=0.
Since |Sf(2)] < 2p(|z]), it follows from Lemma 2 in [4] that

[v(2)] = y(l2)

in the largest disk |z| < r < 1 on which f is analytic. Hence |f(z)| < F(|z|)
there, which shows that f cannot have a pole in D.

In particular, since |SF(2)| = 2|p(z)| < 2p(|z|) by condition (i), we conclude
that the extremals themselves satisfy |F(z)| < F(|z|) and are analytic in the
disk. Then they are also univalent by Nehari’s p-theorem.

Remark If f is analytic in D with f(z) = z + a22% + ... then the function
ft=f/(1+axf) has fi(2) = 2 + O(2%). If f satisfies |Sf(2)| < 2p(|z|) then
so does fT. It cannot have a pole in D because, again, it will be subject to the
bound |fT(z)] < F(|z|) on the largest disk |z| < 7 < 1 on which it is analytic,
and F' is analytic in all of D. The point is that when the Schwarzian is bounded
in this way it is possible to normalize an analytic function to get f”/(0) = 0 and
still be analytic.

Actually, using the arguments in [4] one can prove sharp distortion theorems
for functions satisfying the hypotheses of Lemma 1. If G is the solution of
SG = —2p with G(0) =0, G’(0) =1 and G”(0) = 0 then

G'(Iz) < If'(2)l < F'(l2D),

G(Iz]) < [£()] < F(|2])-

If equality holds at any point other than the origin in any of the inequalities
then f is equal to the corrresponding function F' or G. We will not prove these
facts here, nor will we make any use of them.

Note also that if F(1) < oo then F(D), and hence f(D), will be bounded.
Even when F(1) = oo, f(D) will be bounded as long as f is not M&bius conju-
gate to F. We show this in Lemma 4, below.

Next, recall that p = lim, .1(1 — 22)?p(x). The following lemma makes
Theorem 1 applicable to the proof of Theorem 2.

Lemma 2 ;<1 and p =1 if and only if p(z) = (1 — 2?)72.

Proof: Suppose first that p > 1. Then p(z) > p(1 — 22)~2, which we shall
show implies that the solution y of

y' +py=0, y(0)=1,y(0)=0



vanishes somewhere on (—1,1). This will contradict (iii). Let v be the solution
n (—1,1) of
" K _ _ ! —
v+ A= 7962)21) =0, v(0)=1,2(0)=0.

The function v is given by

1
v(z) = V1 — 22 cos (glog —HC)

1—=z

where n = /u — 1, see [10], p. 492. In particular, v vanishes on (—1,1) (in-
finitely often). A standard application of the Sturm comparison theorem shows
that v > y as long as y > 0 on a centered interval about the origin. It follows
that y must vanish somewhere on (—1,1) as well.
Hence p < 1, and if p(z) = (1 — 22)~2 then obviously x = 1. Suppose then
that x4 = 1. This time let v(z) = v/1 — 22 be the solution of
1

U//+m'l}:0,'l}(0):1,’l],(0):0,

1 1+ z
Fo(z) = =1 = “2(¢) dt.
o(x) 58T AU (t)

Since y is positive, the comparison theorem gives v > y. We let

F(x) = /0JJ y~2(t) dt

so that

as before, and put H = F~!. Since Fy(—1,1) = R already, then v > y implies
that F' takes (—1,1) onto R too. (Note that in this lemma we are not assuming
at the outset that F(1) = c0.) Let

o(s) = mv (1)

where s € R. This function is defined so that
(Foo H)(s) :/ 0 2(t)dt.
0

A straightforward computation shows that
¢"(s) = (p@) ~ g ) ¥ (@)els) 7 = H(s).
(1—2a2)? ’

Hence ¢ is convex, as p(z) > (1 — 2?)72. In addition, ¢(0) = 1, ¢/(0) = 0.
Suppose p(z) # (1 — 2?)72, say p(zg) > (1 — x3)~2 for some z¢ > 0. Because
s = 0 gives an absolute minimum of ¢ it follows from the convexity that

w(s8) > a+b(s—s0), xo = H(so),



for some constants a,b with b > 0. Therefore

/ 0 2(s)ds < o0,
0

which contradicts the fact that (Fy o H)(0o) = oo. This completes the proof of
the lemma.

We begin the proof of Theorem 2. According to Lemma 2, 4 = 1 is taken
care of by Theorem 1, so we may now assume that ;1 < 1. Let f satisfy |[Sf(z)] <
2p(|z]). By Nehari’s theorem f is univalent, and since

limsup(1 — [22)2[S(2)] < 20 < 2,
|z|—1
another application of Theorem 1 (more properly, the remarks following Theo-
rem 1) implies that f admits a spherically continuous extension to D. Assuming
also that F'(1) = oo, in order to complete the proofs of Parts (A) and (B) of
Theorem 2 it suffices to show that either f is M&bius conjugate to F' or else f
is 1:1 on 9D, in which case f(D) will actually be a quasidisk. For this we need
an observation due to Nehari [12]. We state it here as a separate lemma.

Lemma 3 Let 21,29 € 0D, z1 # 29, and let v be the hyperbolic geodesic in D
joining z1 and zo. Then there exists a Mobius selfmap T of D such that:

(a) T(=1,1) =,
(b) [S(f o T)()| < 2p(|z]) for all z € (=1,1).

Proof: If zq, 25 lie on a diameter then T can be chosen to be a rotation. If not,
using a rotation we may assume that the points z1, z5 lie in the upper half-plane
and that v is symmetric with respect to the imaginary axis. Then for suitable
0<p<l, .

T(z) = 2P

1—1pz
takes (—1,1) to . We also have
S(foT)(z) = Sf(T2)(T"2)?

hence

(A= 12??S(fo D)) = (=[PP |(SHT)T"2
= |(SH(T2)|(1 - |T=*)?
21— |T21*)p(|T2]).

IA

Therefore it suffices to show that |x| < |Tz| for x € (—1,1). But

2., 2
ITz|? = e 2
1+ p2a?



Returning to the proof of Theorem 2, suppose f(z1) = f(z2) for distinct
points on D. Let g = foT with T as in Lemma 3. Then g(1) = g(—1), and by
taking a Mobius transformation of g, we may assume that this common value is
oo. An affine change allows us to normalize further so that g(0) = 0. We write

o) = [ e,

where 1
v+ 5(5’9)1} =0.

As in the proof of Lemma 2, (1), we let

This is defined on F(—1,1) =R, and

mom@wifw*mw.

0

The chain rule for the Schwarzian yields
S(g0G)(s) = (Sg(z) — SF(2))(G'(s))?, = = G(s).

Hence for s € R, Re{S(g o G)(s)} <0, and a direct calculation gives

|//

p(s)]" = a(s)e(s)

where )
1 1 (goG)’
i(6) = ~Re(S(r0 6o} + (3 { LT L) =0

(see [8]). We conclude that |¢| is convex on R. Unless it is constant, it will
be bounded below by a non-horizontal line, which, as in the prooof of Lemma
2, will imply that either (g o G)(00) or (g o G)(—o0) is finite. This contradicts
the fact that g(1) = g(—1) = oo. For this last double equality to happen the
function |¢| must be constant on R. But then ¢(s) = 0, which implies that

{2550} =0

On the other hand, for s € R,

At = —gre{ 12200}




and we conclude that
(9o G)”

X~ 7 = O

oy "
on R, hence everywhere on F'(D). It follows that goG is an affine transformation
and therefore g is Mobius conjugate to F. This finishes the proof of Parts (A)
and (B).

To prove part (C) we proceed similarly. Suppose 21, 22 are distinct points on
0D such that F(z1) = F(z2). Let T be the Mobius transformation provided by
Lemma 3, and let T3 be a second Mébius transformation such that 71 (F(z1)) =
T1(F(z2)) = co. We conclude from Part (A) that 77 o F'oT5 is of the form To F,
T Mobius. By taking Schwarzian derivatives we obtain

S(TyoFoTy)=8(FoTy) = (SF)oTy(Ty)> =S(ToF)=SF,
p(z) = p(T2(2))(T32)*.

Hence for z = xq real

(1 —25)’p(z0) = |(1—25)°p(o)]
= (1= 23)*p(Ta(w0) (T3 (w0))’|
(1 = [Ta(x0)*)*[p(Ta(x0))| -

Next, we saw in the proof of Lemma 3 that unless 75 is a rotation, |T5(zo)| >
||, which by the monotonicity property (ii) implies that (1 — 22)?p(z) is con-
stant for |xo| < x < |[Ta(z0)|- Thus (1 — 22)?p(z) is constant on (—1,1) and
therefore everywhere. In other words,

_ H
p(Z) - (1 _ 22)2 .
In this case the extremal F' can be computed explicitly [4]:

1A+ = (1 =)
PO = v a—an

where n = /1 — p. This function satisfies the Ahlfors-Weill condition (2) and
F (D) is a bounded quasidisk. In particular, F'(1) # oo and F' is not of the form
considered here.

The remaining case is when Ty is a rotation, z +— ¢z, with |¢| = 1. The
equation (2.5) yields

p(2) = *p(cz)

which evaluated at z = 0 gives p(0) = 0 or ¢ = 1. If p(0) = 0 then p(z) = 0,
and all maps are Mobius. If ¢2 = 1 then ¢ = £1, which implies that the points
z1, 29 were =1 to begin with. This finishes the proof of Theorem 2.

10



Corollary 1 is a direct consequence of Theorem 2. We now prove Theorem
3 on Holder continuity. For this we first require an extension of Lemma 1.

Lemma 4 Suppose F/(1) = oo. If [Sf(2)| < 2p(|z]), f"(0) = 0 and f is not
Mébius conjugate to F', then f is bounded on D.

Proof: If | f(w)| = oo for some w € D then the function |¢(s)| defined in (2)
would have to be constant on a half line, and hence S(f o F~!) = 0 there. Thus
S(foF~!)y=0on all of F(D), so fo F~!is a Mébius transformation (in fact
the identity), a contradiction.

For the Holder continuity in the first part of Theorem 3, let § > 0 be such
that u 429 < 1, and let € > 0 be small enough so that

2(p +9)
1Sf(2)] < m

for all 1 —e < |z] < 1. Let w € 9D. Gehring and Pommerenke produced
a conformal mapping ¥ of D onto a circular wedge Q C D, with an arc of
0D centered at w as one if its sides, and such that 1 — e < |z| for all z € Q.
Furthernore, if the wedge is sufficiently narrow then

2(p + 26)
1S(fo)(Q) < W
for all { € D.
Let T be a Mébius transformation such that the map g = T o f o4 has
g9(0) = 0,¢'(0) = 1 and ¢”(0) = 0. Corollary 1 in [4] implies that g is Holder
continuous with exponent

a=+/T1— (ju+20). (2.7)

We want to conclude from here that f is Holder continuous in 2 with the same
exponent. The reflection principle implies that v is analytic in a neighborhood
of ¥~ (w), hence it suffices to show that f; = f o is Holder continuous. We
write g = (af1 +b)/(cf1 +d), ad —bc =1, or

fi = dg—b . (3)
ag —c
But f; is bounded on D by Lemma 4, which shows that ¢/a is not in the closure
of g(D). It follows from (3) that f; is Holder continuous in  as well. To
conclude the Holder continuity everywhere just observe that a finite number of
wedges ) cover a neighborhood in D of 9D.

Next, suppose that = 1 is a regular singular point of (7). To improve the
Holder exponent for f we need the following lemma on the order of vanishing
of the solution at 1.

11



Lemma 5 Suppose x = 1 is a regular singular point of (7). Then the solution

y of (7) satisfies
yx)~1—2z)? |asz—1,

where f = (141 —p)/2.
Proof: The possible orders of vanishing at z = 1 of the solutions of v” 4+ pu = 0
are given by the roots of the inditial equation

2 H

_ 20
m m—|—4 R
which are
1+v1—p 1—y/1—p
lef ) m2=fa

(see, e.g., [9]). Notice that 0 < mg < 1/2 < my < 1. Since F(1) = fol y~2(x)dx =
oo we conclude that y(1) vanishes to order m;.

To finish the proof of Theorem 3 we go back to the proof of Theorem 2. There
we saw that f(D) was a Jordan domain precisely when the convex function |p(s)|
was non-constant. Thus for s > sg there exist constants a,b with b > 0 such
that

lp(s)] = a+b(s — s0) -

Hence
1

(7o FY6)| < g o)
or F)

(@)l < (@ T b @) — s

x=F(s).
It follows that
If'(@)] =00 —a)V'=# 1z —1.

The same argument applied to f(e?2) gives
[f'(2) =001 = [z)VIr =t 2] = 1.

Now a standard technique of integrating along hyperbolic geodesics (see e.g. [8]
or [4]) gives the desired conclusion.

Finally, since the extension of F' to D is finite on dD\{—1,1}, the same
proof as before gives the local Holder continuity of F in D\{-1,1}.

Notice also that the Holder continuity is Lipschitz when p = 0, such as in
(1.5) and (1.6). When F(1) < oo the second part of Theorem 3 was obtained
in [2] (Theorems 2, 3).

12



References

1]

2]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

L. Ahlfors and G. Weill. A uniqueness theorem for Beltrami equations.
Proc. Amer. Math. Soc., 13:975-978, 1962.

M. Chuaqui. On a theorem of Nehari and quasidiscs. Ann. Acad. Sci.
Fenn., 18:117-124, 1993.

M. Chuaqui. A unified approach to univalence criteria in the unit disk and
simply connected domains. Proc. Amer. Math. Soc., to appear.

M. Chuaqui and B. Osgood. Sharp distortion theorems associated with the
Schwarzian derivative. Jour. London Math. Soc.(2), 48:289-298, 1993.

M. Chuaqui and B. Osgood. Ahlfors-Weill extensions of conformal map-
pings and critical points of the Poincaré metric. Comment. Math. Helv., to
appear.

P.L. Duren and O. Lehto. Schwarzian derivatives and homeomorphic ex-
tensions. Ann. Acad. Sci. Fenn. Ser. A 1 Math., 477:3-11, 1970.

C. Epstein. The hyperbolic Gauss map and quasiconformal reflections. J.
reine u. angew. Math., 372:96-135, 1986.

F.W. Gehring and Ch. Pommerenke. On the Nehari univalence criterion
and quasicircles. Comment. Math. Helv., 59:226-242, 1984.

E. Hille. Ordinary differential equations in the complex domain. John Wiley
and Sons, New York, 1976.

E. Kamke. Differentialgleichung. Chelsea, New York, 1948.

Z. Nehari. The Schwarzian derivative and schlicht functions. Bull. Amer.
Math. Soc., 55:545-551, 1949.

Z. Nehari. Some criteria of univalence. Proc. Amer. Math. Soc., 5:700-704,
1954.

Z. Nehari. Univalence criteria depending on the Schwarzian derivative.
Illinois J. of Math., 23:345-351, 1979.

V. Pokornyi. On some sufficient conditions of univalence. Dolk. Akad.
Nauk. USSR, 79:743-746, 1951.

N. Steinmetz. Locally univalent functions in the unit disk. Ann. Acad. Sci.
Fenn., 8:325-332, 1983.

N. Steinmetz. Homeomorphic extensions of univalent functions. Complex
Variables, 6:1-9, 1985.

13



