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Abstract

We extend Ahlfors’ definition of the Schwarzian derivative for curves in euclidean space to
include curves on arbitrary manifolds, and give applications to the classical spaces of constant
curvature. We also derive in terms of the Schwarzian a sharp criterion for a closed curve in R3

to be unknotted.

1. INTRODUCTION

This paper is a continuation of [ChG], in which we developed sharp bounds on the real part of
Ahlfor’s Schwarzian derivative for curves C in Rn [Ah] which imply that C is simple. We begin
with a geometrically simpler definition of the Schwarzian for such curves, the real part S1f of which
coincides with that of Ahlfors. This approach has the advantage of suggesting a Schwarzian for
curves in arbitrary manifolds, the results we obtain strongly suggesting that its real part, at least,
is appropriately defined. After our discussion of the Schwarzian for curves in the general manifold
context we focus on the particular cases of hyperbolic n-space Hn and the n-sphere Sn and derive
the relationship between S1f as calculated with respect to the metrics on Hn and Sn on the one
hand, and with respect to the euclidean metric on the underlying ball and Rn ∪{∞}, on the other.
Using these calculations together with results of [ChG] we obtain very short proofs of a theorem of
C. Epstein [E] to the effect a curve in Hn is necessarily simple if the absolute value of its geodesic
curvature is everywhere bounded by 1 and its spherical counterpart. Lastly, we derive a sharp
bound on S1f which implies that the corresponding curve is unknotted.

2. PRELIMINARIES

Let f : (a, b) → Rn be a C3 curve with f ′ 6= 0, and let X · Y stand for the euclidean inner
product of vectors X,Y in Rn and |X|2 = X ·X. As we pointed out in [ChG], it is easy to see that
the real part of Ahlfors’ Schwarzian, defined by

S1f =
f ′ · f ′′′
|f ′|2 − 3

(f ′ · f ′′)2
|f ′|4 +

3
2
|f ′′|2
|f ′|2 ,

can be written in terms of the velocity v = |f ′| and the curvature k of the trace of f as

S1f =
(

v′

v

)′
− 1

2

(
v′

v

)2

+
1
2
v2k2 , (1)
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and that this expression is invariant under the Möbius transformations of Rn ∪ {∞}. Our main
result in [ChG] was:

Theorem A: Let p = p(x) be a continuous real-valued function on an open interval I such that
any nontrivial solution of u′′+pu = 0 has at most one zero on I. Let f : I → Rn be a C3 curve with
f ′ 6= 0. If S1f ≤ 2p, then f is one-to-one on I and admits a spherically continuous extension to the
closed interval, which is also one-to-one unless the trace of f is a circle, in which case S1f ≡ 2p.

Although the formal expression on the right side of (1) is meaningful in the context of manifolds,
its appropriateness is made apparent by the following considerations. Let T denote the tangent
vector along the trace of f , and let ∇ stand for usual covariant differential operator on M . Then
∇T T corresponds to f ′′. We regard the 2-dimensional subspace spanned by T and ∇T T as the
complex plane C (the orientation of which being irrelevant), so that T = a = a(t) and ∇T T = b(t)
are complex valued functions of the parametrizing variable t ∈ I. Following the classical definition
of the Schwarzian, given by (

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

,

we are led to consider the complex function
(

b

a

)′
− 1

2

(
b

a

)2

(2)

as the manifold analogue of the Schwarzian. A straightforward calculation shows that the real part
of the expression in (2) coincides with (1).

Let Hn denote the hyperbolic n-space with constant sectional curvature −1, for which we use
the standard model Bn = {x ∈ Rn : |x| < 1} with metric tensor gh = 4(1− |x|2)−2g, where g is the
euclidean metric. Let Sn stand for the n-dimensional sphere, as modelled by Rn ∪ {∞} with the
metric ge = 4(1 + |x|2)−2g; here the sectional curvature is 1. Both are special cases of a domain
Ω ⊂ Rn endowed with a conformal metric tensor, that is, a metric tensor of the form ḡ = e2ϕ(x)g.
In this generality one can relate the Schwarzian corresponding to the resulting manifold M with
the standard euclidean Schwarzian defined on Ω itself. To do so one needs to determine how the
velocity and curvature of a curve change under conformal changes of metric. Any object (velocity,
curvature, covariant derivative, etc.) associated with the manifold M will be distinguished from
the corresponding object in the underlying Ω by a bar. Thus, let v, k denote the velocity and
curvature on Ω so that v̄, k̄ are their counterparts on M . Obviously, v̄ = eϕv, from which routine
calculations yield

(
v̄′

v̄

)′
− 1

2

(
v̄′

v̄

)2

=
(

v′

v

)′
− 1

2

(
v′

v

)2

+ v2Hess(ϕ)(t, t) + v2k(gradϕ · n)− 1
2

v2(gradϕ · t)2 , (3)

where t and n are the euclidean unitary tangent and normal vectors to the curve, Hess(ϕ) is the
(euclidean) Hessian bilinear form and grad is the standard gradient.

In order to derive the relationship between k and k̄ one needs to know how covariant derivative
changes under conformal changes of metric. This classical formula is given by

∇XY = ∇XY + (gradϕ ·X)Y + (gradϕ · Y )X − (X · Y )gradϕ . (4)

The curvature k̄ is determined by the equation

∇t̄t̄ = k̄n̄ ,
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where t̄ = e−ϕt and n̄ = e−ϕn. Using (4) one obtains that

∇t̄t̄ = e−2ϕ [kn + (gradϕ · t)t− gradϕ] .

After taking euclidean norm on both sides it follows that

k̄2 = e−2ϕ
[
k2 − (gradϕ · t)2 − 2k(gradϕ · n) + |gradϕ|2] ,

and using (3) we have that

S1f = S1f + v2Hess(ϕ)(t, t)− v2(gradϕ · t)2 +
v2

2
|gradϕ|2 . (5)

The terms on the right hand side depending on ϕ are best expressed in terms of the Schwarzian
tensor B(ϕ) of the metric ḡ with respect to g, as defined in [OS] by

B(ϕ) = Hess(ϕ)− dϕ⊗ dϕ− 1
n

(∆ϕ− |gradϕ|2)g . (6)

Then (5) can be rewritten as

S1f = S1f + v2B(ϕ)(t, t) +
v2

n
∆ϕ +

n− 2
2n

v2|gradϕ|2

= S1f + v2B(ϕ)(t, t)− v2

2
scal(ḡ)
n(n− 1)

e2ϕ , (7)

where scal(ḡ) is the scalar curvature of the metric ḡ, that is, the sum of the sectional curvatures of
any complete set orthogonal 2-planes of the tangent space at a given point. The Schwarzian tensor
appears in the work of Osgood and Stowe as a suitable generalization of the classical Schwarzian
derivative when studying conformal local diffeomorphisms between Riemannian manifolds, or more
generally, when studying metrics on a given manifold that are conformally related. They show that
conformal changes of metric with vanishing Schwarzian tensor, called Möbius changes of metric, are
rare on arbitrary manifolds. On euclidean space, nevertheless, Möbius changes can be described
completely and include, in particular, the hyperbolic and the spherical metric. In other words,
B(ϕ) = 0 when eϕ is either 2(1− |x|2)−1 or 2(1 + |x|2)−1.

Since scal(ḡ) = −n(n− 1) when ḡ = gh we obtain from (7)

Sh
1 f = S1f +

v2

2
e2ϕ . (8)

For the spherical metric we have scal(ḡ) = n(n− 1), hence (7) gives

Ss
1f = S1f − v2

2
e2ϕ . (9)

We use (8) to give a very short proof of the following theorem of C. Epstein [E].

Theorem 1: Let γ ⊂ Hn be a curve with geodesic curvature bounded in absolute value by 1. Then
γ is simple.

Proof: Let f : (−l, l) → γ be a hyperbolic arclength parametrization. Note that the value l = ∞
is possible. Then vh ≡ 1, so that Sh

1 f = k2
h/2. But since v = e−ϕ = (1− |x|2)/2 it follows from (8)

that

S1f =
k2

h − 1
2

≤ 0 .
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By appealing now to Theorem A with the choice p(x) ≡ 0, we conclude that γ is simple.

In the same vein, we can use (9) to derive corresponding criteria for curves on Sn to be simple.

Theorem 2: Let γ ⊂ Sn be a curve of length l ≤ 2π and geodesic curvature ks satisfying

k2
s ≤

4π2 − l2

l2
.

Then γ is simple except when it is a circle of constant curvature
√

4π2 − l2/l.

Proof: We proceed as before and consider f : [0, l] → γ a spherical arclength parametrization.
Then Ss

1f = k2
s/2 and vs = (1 + |x|2)/2, so that (9) gives

S1f =
1 + k2

s

2
≤ 2π2

l2
.

This time we apply now Theorem A with p(x) ≡ π2/l2 to conclude that f((0, l)) is simple. The
extended curve f([0, l]) will remain simple unless it is a circle, of constant curvature

√
4π2 − l2/l.

3. KNOTS

In this section we will prove the following theorem.

Theorem 3: Let f : [−1, 1) → R3 parametrize a simple closed curve in R3. If the periodic
continuation of f is C3 and S1f(t) ≤ 2π2 for all t ∈ (−1, 1), then f([−1, 1)) is unknotted.

Proof: The idea is to show that, if knotted, the curve Γ = f([−1, 1]) can be laid out to form a
planar, closed, non-simple curve for which the real part of the Schwarzian has not increased. The
process used to do this is based on ideas developed by Brickell and Hsiung [BH] in the course of
their proof of the Fary-Milnor theorem, and which we now describe.

For p ∈ R3 we define the shell Cp of Γ with vertex p to be the developable surface made
up of all segments [p, q] with q 6= p on Γ. The indicatrix of Cp, denoted by Ip, is the curve on
S2 = {u ∈ R3 : |u| = 1} traced by the vectors (q − p)/|q − p|; its length l(Ip) is called the total
angle of Ip. A key fact established in [BH] is that Γ is unknotted if l(Ip) < 3π for all p ∈ Γ. The
proof of this uses Crofton’s formula

∫
n(G)dG = 4l(Ip)

that gives the length of Ip in terms of the number n(G) of intersections points of Ip with great
circles G ⊂ S2. The integral is performed over S2, after identifying a point on the sphere with the
normal direction of a plane containing a great circle. The authors show that n(G) ≥ 1 for all G
and that {G : n(G) = 2} has measure zero (Lemma 8, p. 188 [BH]). Since the measure of the entire
set of great circles is 4π, if l(Ip) < 3π then {G : n(G) = 1} must have positive measure. It follows
that there exists at least one great circle G with n(G) = 1, which means that there exists one
plane through the point p intersecting Γ at exactly one other point q 6= p. Such a plane is called
transversal to Γ. The curve Γ is said to have the transversal property if for any p ∈ Γ there exists
a plane through p transversal to Γ. Finally, they establish Theorem 6 (p. 191):

Theorem: Let C be a closed smooth curve embedded in hyperbolic or euclidean space of dimension
three. If C has the transversal property then C is a trivial knot.
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We conclude from this discussion that if Γ is a knot then there is a point p ∈ Γ for which l(Ip) ≥
3π. The two cases l(Ip) > 3π and l(Ip) = 3π require a slightly different analysis. Suppose first that
l(Ip) > 3π. As we move p to a point p′ slightly away from Γ, the number l(Ip′) varies continuously,
except for jump increment in π. It follows that there exists p′ /∈ Γ for which l(Ip′) > 4π. On the
other hand, since l(Ir) is a continuous function of r ∈ R3\Γ and since l(Ir) → 0 as |r| → ∞, we can
find p0 /∈ Γ such that l(Ip0) = 4π. We now lay out the shell Cp0 isometrically onto the plane in a
way that Γ traces out a closed curve γ that is not simple. To do this, let Γ = Γ(s) be an arclength
parametrization, 0 ≤ s ≤ L, and let r(s) = |Γ(s)− p0|. We lay out Γ onto the plane curve γ given
by z = z(s) = r(s)eiθ(s), where the function θ is chosen so that |z′(s)| = 1, that is, so that

|r′(s) + ir(s)θ′(s)| = 1 .

The function

θ(s) =
∫ s

0

√
1− (r′(t))2

r(t)
dt ,

has this property. The point p0 corresponds to z = 0 /∈ γ, and the polar angle θ = θ(s) increases
at the same rate as the spatial angle of the rays [p0,Γ(s)] at the vertex p0. Because l(Ip0) = 4π it
follows that γ is a closed curve with winding number 2 with respect to the origin.

If, on the other hand, l(Ip) = 3π then we let p0 = p and lay out Γ as before. We may assume
that p0 = Γ(0). Since the point p0 belongs to Γ, the curve γ obtained is closed because r(s) → 0
as s → 0+ and as s → L−. Also, because Γ possesses a tangent line at p0, it is easy to see that
the integrand in the equation for θ(s) above behaves like h(s)/

√
s(L− s) where h is continuous on

[0, L]. In other words, γ(s) = z(s) is a planar curve passing through z = 0 with the property that
θ(s) = arg{z(s)} is increasing and has total variation of 3π. A variant of the argument principle
allowing for zeros on the curve (see, e.g., [p. 131, N]) implies that γ cannot be simple: the point
0 ∈ γ contributes π to the total variation of argument and therefore γ must in addition wind around
the origin once.

In either case, let g : [−1, 1) → R2 be the induced parametrization of γ defined on the original
interval of definition of f . We claim that S1g ≤ S1f . First, vg = |g′| = |f ′| = vf because the
process of laying preserves arclength. And secondly, the term involving the curvature does not
increase because the curvature of γ is equal to the curvature of Γ relative to the surface Cp0 , i.e.,
equal to the length of the projection of the curvature vector of Γ in R3 onto the tangent plane to
the shell. We see from (1) that S1g ≤ S1f .

Since γ is not simple, it can be subdivided into closed curves γ1, γ2 which are differentiable
except at the point where γ has self-intersection. Because g is periodic, one can find intervals
[a, b], [c, d] of total length 2 such that
(i) g1 = g|[a,b] : [a, b] → γ1 and g2 = g|[c,d] : [c, d] → γ2;
(ii) the parametrizations g1, g2 are C3 on the open subintervals.

The following sketch represents the case when p0 /∈ Γ together with the corresponding non-
simple curve g.
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Γ

P0

γ1 γ 2

We will show that both γ1 and γ2 are circles and that and each subinterval [a, b], [c, d] has length 1.
In effect, it follows from Theorem A that the optimal C constant for a univalence criterion S1h ≤ C
on an open interval of length d is C = 2π2/d, and that the extended curve can be closed only if it
is a circle and S1h ≡ 2π2/d. Because S1g1, S1g2 are bounded above by 2π2 on the open intervals
and the curves γ1 and γ2 are closed, we conclude that the length of each subinterval [a, b], [c, d]
cannot be less than 1. Because the total length is 2, each subinterval must have length 1, and since
γ1 and γ2 are closed, they must be circles with S1g1 = S1g2 ≡ 2π2. Hence S1g ≡ 2π2, which can
only happen if S1f ≡ 2π2 and the curvature of γ remains the same as that of Γ. Hence Γ is an
asymptotic curve, that is, the normal curvature vanishes at each point of Γ. Because the segments
[p0, q] on the shell Cp0 are lines of curvature with corresponding principal curvature equal to zero,
it follows that either Γ lies entirely on one such segment or else the shell is planar. In the first case,
Γ could not be closed, and in the second, it could not be knotted. This contradiction proves the
theorem.

4. EXAMPLE

In this final section we will show with that the assumption in Theorem 3 that the periodic
continuation of f be smooth is essential. We will construct a closed curve f : [−1, 1] → R3 with
S1f ≤ 2π2 on (−1, 1), whose image is a knot that is not of class C3 at f(1) = f(−1). The function
f will be a Möbius transformation of the following curve g.

Let g : (−1, 1) → C. We write

S1g =
(

v′

v

)′
− 1

2

(
v′

v

)2

+
1
2
k2v2 = 2q +

1
2
k2v2 . (10)

We will make S1g ≤ 2π2 everywhere on the open interval, but with different weights for the terms
2q = (v′/v)′ − (1/2)(v′/v)2 and k2v2/2. Intuitively, the term q determines how fast one traverses
the curve, while the second term determines the shape.

Let δ > 0 be small. On [−1
2 + δ, 1

2 − δ] the curve g will have q ≡ 0, v ≡ 1 and k ≡ 2π. In
other words, on this interval g describes almost a complete circle. We define g on (1

2 − δ, 1) =
(1
2 − δ, 1

2 + δ] ∪ (1
2 + δ, 1), and on (−1,−1

2 + δ) in a symmetric way. On (1
2 − δ, 1

2 + δ] we increase
the value of q smoothly; this produces an increment in v, which forces us to decrease the value of
k. We will do this in a way that

∫ 1
2
+δ

1
2
−δ

kvdx =
∫

kds = 2πδ . (11)
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Because of the symmetry on [−1
2 − δ,−1

2 + δ) we will have

∫ 1
2
+δ

− 1
2
−δ

kvdx =

(∫ − 1
2
+δ

− 1
2
−δ

+
∫ 1

2
−δ

− 1
2
+δ

+
∫ 1

2
+δ

1
2
−δ

)
kvdx = 2π . (12)

On the remaining interval (1
2 +δ, 1) we will decrease k sharply to 0, shifting all the weight to q ≡ π2.

Therefore, g will map this interval to a straight line. We will show that this can done in a way that
the value of v′/v at x = 1

2 + δ is large enough to allow the parametrization of a straight line with
S1g = 2π2 on an interval of length 1

2 − δ to reach the point at infinity.
The details are as follows:

I) The interval (1
2 − δ, 1

2 + δ]:

We see from (10) that kv =
√

4π2 − 4q = 2π
√

1− h, where h = q/π2. From (11), we seek
0 ≤ h = h(x) ≤ 1 such that ∫ 1

2
+δ

1
2
−δ

√
1− h dx = δ . (13)

If we shift the interval in question to (0, 2δ], we can choose h, for example, so that

√
1− h(x) = 1− x

2δ
,

that is,

h(x) =
x

δ
−

( x

2δ

)2
.

(This choice requires only to be smoothed out at the endpoints of the interval.) With this,

∫ 2δ

0

√
1− h dx = 2δ − 1

2δ

(2δ)2

2
= δ .

Observe that ∫ 2δ

0
hdx =

∫ 2δ

0

[
x

δ
−

( x

2δ

)2
]

dx =
(2δ)2

2δ
− (2δ)3

3(2δ)2
=

4δ

3
, (14)

a fact that will be important ahead.

II) The term v′/v:

Let y = v′/v. Then

y′ = 2q +
1
2
y2 = 2π2h +

1
2
y2 . (15)

For convenience, once more we replace the interval (1
2 − δ, 1

2 + δ] by (0, 2δ]. The initial condition for
(15) is y(0) = 0. We want to know whether y(2δ) (which corresponds to the original value of v′/v
at 1

2 + δ) is sufficiently large so that the parametrization of a straight line with velocity v = e
∫

ydx

reaches the point at infinity before time 1
2 − δ.

The parametrization of a straight line with Schwarzian identically equal to 2π2 reaches the
point at infinity in time exactly 1

2 if its initial velocity has v′ = 0. To verify this we consider the
differential equation

w′ = 2π2 +
1
2
w2 , w(0) = 0 ,
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which has the solution w(x) = 2π tan(πx). The corresponding parametrization of the straight is
then given by 1

π tan(πx), which indeed becomes infinite at x = 1
2 . Now we need to verify that the

solution y of (15) has
y(2δ) > w(δ) . (16)

By integrating (15) we see from (14) that

y(2δ) > 2π2

∫ 2δ

0
hdx =

8π2δ

3
,

while
w(δ) = 2π2δ + O(δ3) ,

so that (16) will hold if δ is small enough. Thus g reaches the point at infinity symmetrically at 1−ε
and −1 + ε, for some ε = O(δ). In order to rectify the fact that g is defined only on (−1 + ε, 1− ε),
we consider the scaled parametrization g((1 − ε)x) defined on (−1, 1), the Schwarzian of which is
equal to (1 − ε)2S1g < 2π2. We keep the notation g for the scaled curve; its trace together with
the knot to be produced are shown in the following figure.

In the final step we produce a knot on g with a very small cost in S1g. The knot can be
accomplished by replacing a small portion of one of the arcs at the point of self-intersection of g
by a very thin tubular neighborhood, along which the new arc of g will go around once. Although
this procedure introduces torsion, S1g does not depend on it. It is easy to see that both the
modified curvature and velocity remain arbitrarily close to their original values as long as the tubular
neighborhood is thin enough. To finish the construction, we consider some Möbius transformation
T for which f = T (g) lies in the finite plane.

Acknowledgements: We thank Julian Gevirtz for many conversations regarding different parts
of this paper, in particular, the proof of Theorem 3 and bringing up to our attention the work of
Brickell and Hsiung.
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