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Abstract

We show that a domain R ⊂ H = {z : <z > 0} has the property that f(D) is a quasidisk for
all f for which f ′(D) ⊂ R if and only if there is a compact K ⊂ H such that rK ∩ (H \R) 6= ∅
for all r > 0. This constitutes a refinement of the well known Noshiro-Warschawski univalence
criterion.

1. Introduction

It is well known that an analytic function f on D = {z : |z| < 1} for which f ′(D) ⊂ H =
{z : <z > 0} is necessarily univalent. This fact, frequently referred to as the Noshiro-Warschawski
criterion [7],[11], was also independently discovered by Wolff [12] somewhat later; refinements of
this criterion have, moreover, been obtained by several subsequent authors (see, for example [5],
[9], [10] ). It is an easy matter to see that this criterion is sharp in the sense that if U is any
domain which properly contains H, then there are nonunivalent f on D for which f ′(D) ⊂ U . It is
likewise immediate that if f ′(D) ⊂ H and f has a continuous extension to D, then f is one-to-one
on D. It has been shown that deeper sharp sufficient conditions for univalence involving bounds
on the Schwarzian Sf or f ′′/f ′ have strengthened forms which imply that the image is actually a
quasidisk. The first such result, due to Ahlfors and Weill [1], was vastly generalized by Gehring
and Pommerenke [4], who proved that for a univalence criterion of the form |Sf(z)| ≤ ρ(z) on a
quasidisk Ω the stronger bound |Sf(z)| ≤ tρ(z), 0 ≤ t < 1 implies that f(Ω) is also a quasidisk,
and also pointed out that a similar statement is true for f ′′/f ′.

When the Noshiro-Warschawski criterion is expressed in the form |= log f ′(z)| ≤ π/2 these
results prompt one to seek corresponding strengthenings, an obvious (and correct) thought being
that |= log f ′(z)| ≤ tπ/2, 0 ≤ t < 1 should imply that f(D) is a quasidisk. In this paper we consider
the problem of determining a much wider family of strengthenings, to which end we completely
characterize those domains R ⊂ H with the property that f ′(D) ⊂ R implies that f(D) is a quasidisk
by showing that they are precisely the ones for which there exists a compact K ⊂ H such that
rK ∩ (H \R) 6= ∅ for all r > 0.

2. Preliminaries and Statement of Main Result
∗Both authors were partially supported by Fondecyt Grants # 1000629 and # 7000629.
Key words: Noshiro-Warschawski criterion, quasidisk, John domain, linearly connected.
2000 AMS Subject Classification #: 30C35, 30C45.
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In what follows the symbols C,C ′, C1, C2, . . . will denote absolute constants; a given such symbol
may be used to denote different constants when context precludes confusion. Several definitions are
necessary before we give complete and precise statements of the results and pertinent motivating
comments. We begin with the following (see [8])

Definition. A domain G is said to be a John domain if
(i) G is bounded and simply connected;
(ii) there is a constant C1 such that for every linear crosscut [a, b] of G

diamH ≤ C1|b− a|

holds for one of the two components H of G\[a, b].
The domain G is said to be linearly connected if it satisfies (i) and
(iii) there is a constant C2 such that any two points w1, w2 ∈ G can be joined by a curve Γ ⊂ G
for which

diam Γ ≤ C2|w2 − w1| .

Finally, G is said to be a quasidisk if it is a linearly connected John domain.

Definition 1. A closed subset X of H will be said to have property M∞ (M0) if there exists a
compact K ⊂ H and an r1 > 0 such that for all r ≥ r1 (0 < r ≤ r1), rK ∩X 6= ∅. Furthermore, X
will be said to have property M if it has both properties M∞ and M0.

As is easily shown (see Proposition 1 at the beginning of Section 3) X has property M if and
only if there is a compact K ⊂ H such that rK ∩X 6= ∅ for all r > 0; we have however, chosen to
break this condition into M∞ and M0 for notational reasons as well as to be able to discuss these
partial conditions individually.

The main result of this paper is the following

Theorem. Let R ⊂ H be a domain. Then f(D) is a quasidisk for all f analytic in D for which
f ′(D) ⊂ R if and only if H\R has property M . Furthermore, the constants in the definition of
quasidisk depend only on the set R.

We mention in passing that the first sentence of this theorem can be stated in the somewhat
more general, but clearly equivalent form, as follows. Let X be a closed subset of H. Then f(D)
is a quasidisk for all f for which f ′(D) ⊂ H\X if and only if the set H\E has the property M for
each component E of H\X. In what follows, however, we will work with the theorem as originally
stated and R will always denote a subdomain of H. The symbol X will denote a closed subset of
H. With reference to Definition 1, the size of X varies inversely with that of K, and the smallest
possible K are those consisting of a single point z0, for which the corresponding sets X are slits
at ∞ and 0 in the direction of z0. The theorem says that X = H\R can be a much smaller set,
such as {tnz0 : n ∈ Z}, t > 1, which is easily seen to have property M when K is taken to be the
segment [z0, tz0]. We were led to the theorem by the observation that if f ′(D) ⊂ H and f ′ is C1 on
an open arc A ⊂ ∂D for which f ′(A) is tangent to ∂H at 0, then f(D) will have an entrant cusp,
and therefore will not be a linearly connected domain. A analogous state of affairs in regard to
the John condition occurs if f(A) is tangent to ∂H at ∞. The idea of the theorem is for f ′(D) to
omit minimal subsets of H whose absence prevents the argument of f ′(ζ) from suddenly jumping
by π or −π at any point on ∂D, thereby keeping f(D) from having such cusps. A quantification of
how far away a measurable real-valued function u on ∂D satisfying |u| ≤ π

2 stays from having such
jumps is given in Definition 2 below.
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When viewed in light of these comments, it is tempting to believe, as we originally did, that if
H\R has property M0 alone, then f ′(D) ⊂ R implies that f(D) is linearly connected and that an
analogous statement holds relating M∞ and the John property (ii). We will show in Section 6 that
neither of the suppositions is true and, moreover, that in the theorem the disk cannot be replaced
by an arbitrary convex domain.

As we have indicated, in order to establish the sufficiency of the condition in the theorem, it
is necessary to work with the boundary value function u(θ) = uf (θ) = ={log f ′(ei θ)}, which is
measurable and satisfies

|u(θ)| ≤ π/2 a.e. on ∂D (1)

(see, e.g., [6], p. 38). For a given such u and a given interval I = [α, β] we define

u(t, I) = u(
α+ β

2
+ t) − u(

α+ β

2
− t) ,

t ∈ [− |I|2 ,
|I|
2 ], so that u is in effect twice the odd part of u with respect to the midpoint α+β

2 of I.

Definition 2. Let 0 < τ < 1. A measurable function on ∂D which satisfies (1) has the property
M∗∞(τ) (respectively M∗0 (τ)) if

2
|I|π

∫ |I|/2
0

u(t, I) dt ≤ 1− τ (≥ τ − 1)

for all intervals I of length at most τ . Such a function has property M∗(τ) if it has both of these
properties.

For convenience, we will use the notation

FX = {g : g(D) ⊂ H\X} .

3. Some Auxiliary Propositions

Proposition 1. If X has property M , then there is some compact K1 ⊂ {z : |=z| < π
2 } such that

K1 ∩ (t+ logX) 6= ∅

for all t ∈ R.

Proof. By definition there is a compact K and positive numbers r0 ≤ r1 such that rK ∩X 6= ∅
for 0 < r ≤ r0 and r > r1. Let z0 ∈ X and let K ′ = {ρz0 : 1

r1
≤ ρ ≤ 1

r0
}. Then rK ′ ∩X 6= ∅ for

r0 ≤ r ≤ r1, so that r(K ∪K ′) ∩X 6= ∅ for all r > 0; that is, log(K ∪K ′) ∩ (t+ logX) 6= ∅ for all
t ∈ R. �

Proposition 2. Let X have property M . Then there exists some τ = τX > 0 such that u(θ) =
={log h(eiθ)} has property M∗(τ) for all h ∈ FX .

Proof. For given X with property M we show that there is a τ = τX such that all of the
corresponding u have property M∗∞(τ); that they have property M∗0 (τ ′) for some τ ′ = τ ′X follows
in the same way. Let K1 ⊂ {z : |=z| < π

2 } be the compact set of Proposition 1.
If no such τ existed then there would be a sequence {hn} in FX and a sequence {εn} with εn

decreasing to 0 such that
1
εnπ

∫ εn

0
un(t, In) dt → 1 ,
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where un(θ) = ={log hn(eiθ)} and In = (−π
2 − εn,−

π
2 + εn). Let T (z) = i z−iz+i , which maps the

upper half-plane iH onto D with T (0) = −i. Let T−1(eiIn) = (−ε′n, ε′n), so that ε′n also decreases
to 0. Since T ′(0) = 2, it follows that εn/ε′n → 2 and that if

gn(z) = log(
hn(T (ε′nz))
|hn(T (ε′ni))|

) , (2)

then
1
π

∫ 1

0
={gn(t)− gn(−t)}dt→ 1 (3)

and
gn(iH) 6⊃ t+K1 for any t ∈ R ; n ∈ N . (4)

Since |=gn(t)| ≤ π
2 , (3) implies that

=gn →
π

2
(χ(0,1) − χ(−1,0)) in L1(−1, 1) . (5)

It is well known (see [6]) that if w is analytic in the upper-half plane iH and has bounded real part
there, then <w has nontangential boundary values u(t) for almost all t ∈ R, u is measurable, and
in terms of u, w is given by the Poisson integral formula

w(z) =
i

π

∫ ∞
−∞

1 + zt

(z − t)(1 + t2)
u(t)dt+ ={w(i)} .

Writing gn as 1
i (ign), and taking into account that, by (2), <{gn(i)} = 0, this formula says that

gn(z) = − 1
π

∫ ∞
−∞

1 + zt

(z − t)(1 + t2)
=gn(t) dt = − 1

π

∫ 1

−1

=gn(t)
z − t

dt+ qn(z) ,

where

qn(z) = − 1
π

∫
|t|≥1

1 + zt

(z − t)(1 + t2)
=gn(t)dt− 1

π

∫ 1

−1

t

1 + t2
=gn(t)dt .

The sequence {qn} is obviously analytic and uniformly bounded on 1
2D, and furthermore, ={qn(0)} =

0. By (5), gn(z)− qn(z) tends locally uniformly in iH to

1
2
{
∫ 0

−1

1
z − t

dt−
∫ 1

0

1
z − t

dt} = − log z +
1
2

log(z2 − 1) ,

where ={log z} is taken to lie in (0, 2π) for z ∈ C\{x : x ≥ 0}. From this together with the fact
that qn(z) is uniformly bounded on 1

2D and ={qn(0)} = 0, a simple application of the argument
principle shows that given any ε,M > 0 there exists a t ∈ R and an n ∈ N such that gn(iH) contains
t+Rε,M , where

Rε,M = {z : 0 < <z < M, |=z| < π

2
− ε} .

But for ε sufficiently small and M sufficiently large, t′+K1 ⊂ t+Rε,M ⊂ gn(iH) for some t′, which
contradicts (4). �

Next we have
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Proposition 3. There is an absolute constant C and a function α = α(τ), 0 < α < 1 with the
following property: if g is analytic on D with |={g(z)}| ≤ π

2 in D and is such that u(eiθ) = ={g(eiθ)}
has property M∗(τ), then

|g(z)− g(0)| ≤ α log
1

1− |z|
+ C , for all z ∈ D .

Proof. It is clearly enough to show this for z = −iy, y ∈ (0, 1). Again, it is easiest to switch
attention to the upper half-plane iH via the transformation T (z) = i z−iz+i , which maps [0, i] ⊂ iH
onto [−i, 0] ⊂ D. If we write u∗(z) = u(T (z)), then it is easy to see that

| 1
βπ

∫ β

0
u∗(t) dt| ≤ 1− τ1 , 0 < β ≤ 1 , (6)

where τ1 = τ1(τ) > 0 and u∗(t) = u∗(t)− u∗(−t). Now, T ′(iy) = 2
(y+1)2

, so that

1
2
≤ T ′(iy) ≤ 2 , 0 ≤ y ≤ 1 .

This implies that it is sufficient to show that for 0 ≤ y < 1

|g(T (iy))− g(T (i))| ≤ α log
1
y

+ C

for some α ∈ (0, 1) and some C.
Since |u∗(t)| ≤ π

2 , we have by the Poisson integral formula that for 0 ≤ y < 1,

|g(T (iy))− g(T (i))| ≤ |<{g(T (iy))− g(T (i))}|+ π ≤
∣∣∣∣ 1π
∫ ∞
−∞
<{ 1 + iyt

(iy − t)(1 + t2)
}u∗(t) dt

∣∣∣∣+ π

≤ 1
π

∣∣∣∣∫ 1

−1

t(y2 − 1)
(y2 + t2)(1 + t2)

u∗(t) dt
∣∣∣∣+ C1 =

1
π

∣∣∣∣∫ 1

0

t(y2 − 1)
(y2 + t2)(1 + t2)

u∗(t) dt
∣∣∣∣+ C1

=
1
π

∣∣∣∣∫ 1

0
t
( 1

1 + t2
− 1
y2 + t2

)
u∗(t) dt

∣∣∣∣+ C1 ≤
1
π

∣∣∣∣∫ 1

0

t

y2 + t2
u∗(t) dt

∣∣∣∣+ C2 .

If we let v(s) =
∫ s
0 u
∗(t) dt, then (6) implies that |v(s)| ≤ πs(1− τ1), 0 ≤ s ≤ 1. Upon integrating

by parts we have∫ 1

0

t

y2 + t2
u∗(t) dt =

v(1)
y2 + 1

+
∫ y

0

t2 − y2

(y2 + t2)2
v(t) dt+

∫ 1

y

t2 − y2

(y2 + t2)2
v(t) dt .

Now, ∣∣∣∣∫ y

0

t2 − y2

(y2 + t2)2
v(t) dt

∣∣∣∣ ≤ π(1− τ1)
∫ y

0

y2 − t2

(y2 + t2)2
t dt =

π

2
(1− τ1)(1− log 2) ,

and ∣∣∣∣∫ 1

y

t2 − y2

(y2 + t2)2
v(t) dt

∣∣∣∣ ≤ π(1− τ1)
∫ 1

y

t2 − y2

(y2 + t2)2
t dt

= π(1− τ1)
{1

2
log(1 + y2) +

(y2 − 1)
2(1 + y2)

− 1
2

log 2− log y
}
,
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so that we have

|g(T (iy))− g(T (i))| ≤ (1− τ1) log
1
y

+ C3 ,

as desired. �

Before continuing we note several consequences of Proposition 3. In the first place, it follows
immediately from this estimate together with Proposition 2 that if X is a closed subset of H with
property M and f ′ ∈ FX , then

|f ′(z)| ≤ C ′ |f
′(0)|

(1− |z|)α
, (7)

where C ′ = eC , and here and in what follows α(τX) is abbreviated as α. Although it is known that
(7) implies Hölder continuity (see [4]), we include a derivation of this fact since later on we shall
use one of the estimates obtained on the way (see (8) below). If ζ = reiφ ∈ D, the function

h(z) =
e−iφ

1− r
f(ζ + (1− r)eiφz)

satisfies h′(D) ⊂ H\X. Then by (7)

|h′(z)| ≤ C ′ |f
′(ζ)|

(1− |z|)α
,

and therefore if r ≤ ρ ≤ ρ′ < 1,

|f(ρ′eiφ)− f(ρeiφ)| ≤
∫

ρ′−r
1−r

ρ−r
1−r

∣∣∣∣ ddtf(ζ + (1− r)eiφt)
∣∣∣∣ dt ≤ (1− r)C ′|f ′(ζ)|

∫
ρ′−r
1−r

ρ−r
1−r

1
(1− t)α

dt

=
(1− r)C ′|f ′(ζ)|

1− α
(
(
1− ρ
1− r

)1−α − (
1− ρ′

1− r
)1−α

)
. (8)

This implies, in particular, that
f(eiφ) = lim

ρ→1−
f(ρeiφ)

exists, and with r = 0, ρ′ = 1 that

|f(eiφ)− f(ρeiφ)| ≤ C ′|f ′(0)|
1− α

(1− ρ)1−α . (9)

Since by (7) we have that

|f(ρeiφ1)− f(ρeiφ2)| ≤ C ′|f ′(0)|ρ
(1− ρ)α

|φ1 − φ2| ,

it follows, with 1− ρ = |φ1 − φ2| < 1, that

|f(eiφ1)− f(eiφ2)| ≤ |f(eiφ1)− f(ρeiφ1)|+|f(ρeiφ1)− f(ρeiφ2)|+ |f(ρeiφ2)− f(eiφ2)|

≤ C ′|f ′(0)|( 2
1− α

+ 1)|φ1 − φ2|1−α , (10)

for |φ1 − φ2| ≤ 1.

With these preliminaries we can now prove
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Proposition 4. If X has property M , and f ′ ∈ FX , then f has a continuous extension to D and
f(eiθ) satisfies (9). Furthermore, for such X the class { 1

|f ′(0)|f : f ′ ∈ FX} is uniformly Hölder

continuous on D, with the constant and exponent depending only on X.

Proof. From (9) and (10) it follows that there exists a constant A depending only on X such that
|f(z1) − f(z2)| ≤ A|f ′(0)||z1 − z2|1−α for z1 ∈ D and z2 ∈ ∂D. If z1, z2 ∈ D with |z1| ≤ |z2|, then
g(z) = 1

|z2|f(|z2|z) satisfies the same hypothesis as f with g′(0) = f ′(0), so that

|f(z1)− f(z2)| = |f(|z2|
z1
|z2|

)− f(|z2|
z2
|z2|

)| = |z2||g(
z1
|z2|

)− g(
z2
|z2|

)|

≤ A|z2||f ′(0)|
∣∣∣∣ z1|z2| − z2

|z2|

∣∣∣∣1−α = A|z2|α|f ′(0)||z1 − z2|1−α ,

from which the desired conclusion follows immediately. �

Next we prove

Proposition 5. Let f ′ ∈ FX , where X has property M , and let z0 be the midpoint of the
hyperbolic geodesic which joins points a, b ∈ ∂D. Let E denote the shorter of the arcs of ∂D joining
a and b. Let Q be the curvilinear quadrilateral

Q = [a, |z0|a] ∪ |z0|E ∪ [|z0|b, b] ∪ E .

Then there is absolute constant C4 such that

diamf(Q) ≤ C4

1− α
|f ′(z0)|(1− |z0|) .

Proof. First of all,
|f ′(ζ)| ≤ C5|f ′(z0)| , (11)

for all ζ ∈ |z0|E. To see this, we recall that for normalized univalent functions g in D, |g′(z)| ≤
(1 + |z|)/(1 − |z|)3 (see, for example [2]), so that the derivatives of such functions are uniformly
bounded on 1

2D. Since |z0|E can be covered be a bounded number of open disks of radius 1
2(1−|z0|),

with centers z0, z1, · · · ∈ |z0|E, (11) follows upon application of the stated fact to the functions
f(zi + (1 − |z0|)z)/(1 − |z0|) in succession. Applying (8) with ζ ∈ |z0|E, ρ = r = |z0| = |ζ| and
r ≤ ρ′ ≤ 1, we have that

diamf([ζ, ζ/|ζ|]) ≤ C ′C5

1− α
|f ′(z0)|(1− |z0|) (12)

for ζ ∈ |z0|E. Since (11) implies that

diamf(|z0|E) ≤ C6|f ′(z0)||b− a| ,

and |b− a| ≤ 2(1− |z0|), we conclude from (12) that

diamf(Q) ≤ 2(
C ′C5

1− α
+ C6)|f ′(z0)|(1− |z0|) ,

as desired. �
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The final proposition is a very weak form of the Gehring-Hayman theorem (see [3] and [8, p.88]).

Proposition 6. For each closed X ⊂ H with property M there is a constant C = CX depending
solely on X with the following property: let S be the hyperbolic geodesic joining any two points
z1, z2 ∈ ∂D. Then for any f with f ′ ∈ FX and any Jordan arc Γ joining z1, z2 in D

diamf(S) ≤ CXdiamf(Γ) .

Proof. If this were not true, then there would exist a sequence {fn} with f ′n ∈ FX and sequences
{z(n)

1 }, {z
(n)
2 }, Sn,Γn, where z(n)

1 , z
(n)
2 ∈ ∂D, and Sn and Γn are, respectively, the hyperbolic segment

and a Jordan arc joining these points in D, such that

diamf(Γn)
diamf(Sn)

→ 0 . (13)

By a simple compactness argument based on Proposition 4 it follows that |z(n)
1 − z(n)

2 | → 0 and,
after replacing fn(z) by e−iφnf(eiφnz) with appropriate φn, we can assume that

z
(n)
1 = −ie−iτn and z

(n)
2 = −ieiτn , (14)

where τn > 0 and τn → 0. Let z(n)
0 = −i|z(n)

0 | be the midpoint of Sn. Let

gn(z) =
fn((1− |z(n)

0 |)z − i)− fn(z(n)
0 )

(1− |z(n)
0 |)

(15)

on the disk Dn = 1

1−|z(n)
0 |

(D + i). Obviously, g′n(Dn) ⊂ H\X. Let hn(z) = gn(z)/|g′n(i)| and

S′n = 1

1−|z(n)
0 |

(Sn+i). Then it folows from standard bounds for the derivatives of univalent functions

(see [2]) and Proposition 4 that there exist positive constants K1 and K2 (which depend only on
X) such that

K1 ≤ diamhn(S′n) ≤ K2 , (16)

and that for N ∈ N and any given ρ > 0, the family {hn : n ≥ N} is uniformly bounded and
equicontinuous in DN ∩ ρD with the bound and the modulus of equicontinuity depending only on
ρ and X. Thus there is a subsequence, which for convenience we continue to call {hn}, which
converges locally uniformly in iH to a function h which has a continuous extension to iH.

Let w(n)
k = 1

1−|z(n)
0 |

(z(n)
k + i), k = 1, 2 and Γ′n = 1

1−|z(n)
0 |

(Γn + i). Then w(n)
k → −1, 1, for k = 1, 2,

respectively. It follows from (13) and (16) that diamhn(Γ′n)→ 0, so that h(−1) = h(1). From this
and the fact that h′(iH) ⊂ H it follows that h([−1, 1]) is a vertical segment.

We claim that for each x ∈ (−1, 1) and each ε > 0, Γ′n ∩ (x + εD) 6= ∅ for infinitely many n.
If this is not true, then there are x0 ∈ (−1, 1), ε > 0 and M ∈ N, such that for all n ≥ M the set
(x0 + εD) ∩ Dn lies inside the Jordan curve Γ′n ∪ An, where An is the shorter arc of ∂Dn joining
w

(n)
1 to w(n)

2 . However, since |h′n(i)| = 1, there is some δ > 0 such that hn((x0 + εD)∩Dn) contains
a disk of radius δ for all n ≥M , so that for all such n the image of the interior domain of Γ′n ∪An
contains such a disk. But this contradicts the argument principle since for all sufficiently large
n, hn(Γ′n ∪ An) ⊂ h([−1, 1]) + (δ/2)D, since h([−1, 1]) is a vertical line segment. This establishes
the claim, from which it follows immediately that h([−1, 1]) = {h(1)} in light of the fact that
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diamhn(Γ′n)→ 0. Thus (by the reflection principle, for example), h is constant. This, however, is
a contradiction since |h′(i)| = 1. �

4. Sufficiency of Property M

Throughout this section we assume that X has property M and that f ′(D) ⊂ H\X. We begin by
showing that f(D) is a John domain. Let a, b ∈ ∂D be such that [f(a), f(b)] is a rectilinear crosscut
of f(D). Let S be the non-Euclidean segment joining a to b in D and let A = f−1([f(a), f(b)]).
Then Proposition 6 says that

diamf(S) ≤ CX diamf(A) = CX |f(b)− f(a)| . (17)

If z0 is the midpoint of S, then the 1/4-theorem says that

diamf(S) ≥ 1
4
|f ′(z0)|(1− |z0|) . (18)

Let E,Q be as in Proposition 5. From (17) and (18) together with Proposition 5 we have

1
4
|f ′(z0)|(1− |z0|) ≤ diamf(S) ≤ CX |f(b)− f(a)|

≤ C4CX
|f(b)− f(a)||f ′(z0)|(1− |z0|)

(1− α(τX))diamf(Q)
,

so that
diamf(Q) ≤ 4C4CX

1− α(τX)
|f(b)− f(a)| .

But since one of the components of f(D)\[f(a), f(b)] has as its boundary [f(a), f(b)]∪ f(E) whose
diameter is bounded above by

|f(b)− f(a)|+ diamf(Q) ≤ (4C4CX + 1)|f(b)− f(a)|
(1− α(τX))

,

we see that f(D) is indeed a John domain. The constant

C ′X =
(4C4CX + 1)
(1− α(τX))

in the definition of John domain depends solely on X.
To finish the proof we show that f(D), which is bounded by the Jordan curve f(∂D) (that f

is one-to-one on ∂D follows trivially from the fact that f ′(D) ⊂ H), is also linearly connected and
that the relevant constant can be taken to depend only on X. We assume that this is not the case
and proceed as in the proof of Proposition 6 to conclude that there must be a sequence of functions
{fn} with f ′n ∈ FX and sequences {z(n)

1 }, {z
(n)
2 } with |z(n)

1 | = |z
(n)
2 | = 1 and z

(n)
1 6= z

(n)
2 such that

diamfn([z(n)
1 , z

(n)
2 ])

|f(z(n)
1 )− f(z(n)

2 )|
→ ∞ . (19)

As in that proof, it follows that |z(n)
1 −z

(n)
2 | → 0 and we may assume that (14) holds. Let z(n)

0 be the
midpoint of the hyperbolic geodesic joining z(n)

1 to z(n)
2 , and let Qn be the curvilinear quadrilateral

9



of Proposition 5 with {a, b} = {z(n)
1 , z

(n)
2 }. Since [z(n)

1 , z
(n)
2 ] ⊂ Qn, it follows from the 1/4-theorem,

Proposition 5 and Proposition 6 that

1
4CX

|f ′(z(n)
0 )|(1− |z(n)

0 |) ≤ diam f([z(n)
1 , z

(n)
2 ]) ≤ diam f(Qn) ≤ C ′′X |f ′(z

(n)
0 )|(1− |z(n)

0 |) , (20)

where C ′′X = C4
1−α(τX) depends only on X.

Let gn be as in (15) on the disk Dn = 1

1−|z(n)
0 |

(D + i), and hn(z) = gn(z)/|g′n(i)|. Then

exactly as in the proof of Proposition 6 some subsequence of {hn}, which we continue to call
{hn}, converges locally uniformly in H to a function h which has a continuous extension to H.
Since g′n(i) = f ′n(−|z(n)

0 |i) = f ′n(z(n)
0 ), it follows from (19) and (20) that h(−1) = h(1), so that in

light of (20) h([−1, 1]) is a nondegenerate vertical segment. But it then follows that there is some
ζ ∈ (−1, 1) such that h is analytic at ζ and h′(ζ) = 0. Let K1 be the compactum of Proposition 1.
Obviously, there are N ∈ N and s ∈ R such that

log h′n(DN ∩ (D + ζ)) ⊃ K1 + s

for some n ≥ N . However, this implies that

log f ′n(D) ⊃ K1 + s+ log |fn(z(n)
0 )| ,

which contradicts Proposition 1. �

5. Necessity of Property M

In this section we construct mappings which show that if X = H\R does not have property
M0, then there is an f with f ′ ∈ FX for which f(D) is not linearly connected. The idea is quite
simple: given an X which does not have this property, there is a sequence of disjoint semi-disks
of the form rn((D ∩ H) + 1

n), with rn → 0, none of which intersect X; that such a sequence of
disks exists follows immediately if we take K = D ∩H + 1

n in the definition of property M0. These
semi-disks can be connected by thin curvilinear strips to form a Jordan domain G. When this is
done in the manner that we will indicate in the details to follow, G will come close enough, in a
qualitative sense, to containing a neighborhood of 0 ∈ H for the antiderivative f of a one-to-one
mapping of D onto G to map D onto a domain that is not linearly connected. The construction
can be modified in a simple manner to show that if X does not have property M∞, then there is a
corresponding f for which f(D) fails to satisfy (ii) in the definition of quasidisk in Section 2.

We begin with some general considerations regarding the attachment of a semi-disk to a domain
G by a thin curved strip, as alluded to in the preceding paragraph. Let G be a Jordan domain
with piecewise smooth boundary for which

min{<z : z ∈ G} = ∆ > 0 .

Let z0 ∈ G, ε > 0 and let r > 0 be so small that r(1 + ε) < ∆. Let S be a simple arc which
joins a point of ∂G at which ∂G is analytic to the point r(1 + ε) in the half-plane <z > r(1 + ε)
but outside of G. Let

Gδ = r((D ∩H) + ε) ∪G ∪ (S + δD) .

Obviously, there is a δ0 > 0 such that Gδ is a Jordan domain lying to the right of <z = rε for
δ ∈ (0, δ0]; we consider only such δ. Let hδ denote the canonical mapping of D onto Gδ with

10



hδ(0) = z0 and h′δ(0) > 0. In reference to this mapping let aδ, ζδ, bδ be the points of ∂D which
correspond to the points r(i + ε), rε, r(−i + ε). By the reflection principle hδ is analytic on the
open arc Eδ of ∂D which contains ζδ and has endpoints aδ, bδ. We write

αδ = arg
ζδ
aδ

and arg
bδ
ζδ

= ξδαδ .

Let P+ and P− be the set of δ ∈ (0, δ0] for which ξδ ≥ 1 and ξδ ≤ 1, respectively. Assume that
0 ∈ P+, the contrary case being the same except for minor notational differences. We claim that

r

4αδ
≤ |h′δ(ζδ)| ≤

2πr
αδ

, for δ ∈ P+ , (21)

and
αδ → 0 as δ → 0 in P+ . (22)

To see this let D1 = C\(∂D\Eδ), let βδ = |aδ− ζδ|, that is, the minimum distance of ζδ to ∂D1,
and let hδ now stand for the continuation of the original hδ to all of D1 by reflection. Note that
because all of Gδ lies to the right of the line <z = rε, hδ is univalent in D1. Then gδ defined by

gδ(z) =
1
r
hδ(βδz + ζδ)− ε

is analytic in D and satisfies gδ(0) = 0. Furthermore, gδ is continuous and one-to-one on D. Now,

aδ − ζδ
βδ

∈ ∂D and gδ(
aδ − ζδ
βδ

) = i .

Upon applying the 1/4-theorem to gδ we conclude that

| r

βδh
′
δ(ζδ)

| ≥ 1
4
. (23)

Now, the inverse g−1
δ of gδ is analytic and univalent in D and maps D onto a subdomain of 1

βδ
(D1−ζδ)

which does not contain the point aδ−ζδ
βδ

, which has modulus 1. Application of the 1/4-theorem to
g−1
δ then shows that

|
βδh

′
δ(ζδ)
r

| ≥ 1
4
. (24)

The desired conclusion (21) follows from (23) and (24) since 1 ≤ αδ
βδ
≤ π

2 .
If h0 is the mapping of D onto G with h0(0) = z0 and h′(0) > 0 then it follows immediately by

the Caratheodory kernel convergence theorem that hδ → h0 locally uniformly in D as δ → 0. From
this in turn it follows that if Γ ⊂ ∂G is an open analytic arc not containing the point joined by S to
r(1+ ε) and which corresponds under h0 to E ⊂ ∂D, then for any compact subarc E′ of E, hδ → h0

uniformly in a neighborhood of E′ also. To see this one simply observes that the inverses of the hδ
converge uniformly in a neighborhood of any compact subarc of Γ. With this one concludes that if
∂G is analytic at the point joined by S to r(1 + ε), then

Λ(h−1
δ (∂Gδ\∂G))→ 0 as δ → 0 ,

where Λ denotes length. This clearly implies (22).
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Now let {rn} be a positive sequence tending to 0 for which rn+1 <
rn
2n and let

Dn = rn((D ∩H) +
1
n

) ,

so that each of these semi-disks lies to the left of its predecessor. Let Sn be a smooth simple curve
which joins the point

rn(
1 + i√

2
+

1
n

) ∈ ∂Dn

to the rightmost point rn+1(1 + 1
n+1) of ∂Dn+1 in the strip

{z : rn(1 +
1
n

) > <z > rn+1(1 +
1

n+ 1
)} .

Then a straightforward recursive construction based on the foregoing considerations shows that for
fixed z0 ∈ D1 there is a sequence {δn} of positive numbers such that

G =
∞⋃
n=1

{Dn ∪ (Sn + δnD)}

is a Jordan domain, and, because of (21), is such that if En, with endpoints an and bn, is the arc
of ∂D corresponding to the diameter segment of ∂Dn under the canonical mapping h of D onto G
with h(0) = z0 and h′(0) > 0, and if ζn is the preimage under h of the midpoint rn

n of the diameter
segment of ∂Dn, then

1
4π

min{arg
ζn
an
, arg

bn
ζn
} ≤ rn
|h′(ζn)|

≤ 8 min{arg
ζn
an
, arg

bn
ζn
} . (25)

If X does not have property M0, then there clearly exist sequences {rn}, {Sn} and {δn} such
that the corresponding domain G just constructed is contained in R = H\X. (Recall that R is
connected.) Without loss of generality we may assume that the set N of n for which

min{arg
ζn
an
, arg

bn
ζn
} = arg

ζn
an

is infinite; the contrary case is handled in exactly the same manner. Fix n ∈ N and as above let
αn = arg ζn

an
. We now use the same transformation that we used in the proof of Proposition 6 (see

(14), et seq.). Let f ′ = h and let

fn(z) =
f((αnz − i)iζn)− f(ζn)

αnrn
, z ∈ D + i

αn
.

Then fn(0) = 0 and 1
8 ≤ |f

′′
n(0)| ≤ 4π by (25), and f ′n is regular on an arc of length 2 of D+i

αn

centered at 0 (it maps this arc onto an interval of the diameter segment of iζn
rn
∂Dn). From this it

follows that some subsequence of {f ′n : n ∈ N} converges uniformly to a function on iH which has
nonvanishing derivative and which maps (−1, 1) onto an interval of R containing 0. This clearly
shows that f(D) is not linearly connected.

Finally, we see what happens if X does not have property M∞. In this case, 1/X does not
have property M0, and we consider the function h corresponding to 1/X defined in the preceding
paragraph but one. Let g′(z) = 1/h(z). The argument used in the immediately preceding paragraph
then produces a function on iH whose derivative is of the form 1/k(z), where k(z) maps (−1, 1)
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onto and interval containing 0. From this it follows that g(D) is not a John domain. It should be
noted that by making the δn small enough one can insure that for the g so constructed g(D) is a
non-John Jordan domain, and furthermore, that if X = H\R has neither of the properties M0 or
M∞, then by a combination of the constructions one can obtain a g with g′(D) ⊂ R for which g(D)
is a Jordan domain which is neither linearly connected nor has the John property. �

6. Additional Counterexamples

In this section we construct a function f on D for which f ′(D) ⊂ H ∩ D but for which f(D) is
not a John domain; this shows that if X has property M∞ alone f ′(D) ⊂ H\X does not imply that
the image is a John domain. To see how to construct such a function, let 0 < δ < 1 and consider

q(z, δ) = log(z − δ) + log(z + δ)− log z − 1
2

(log(z − 1) + log(z + 1)) ,

where we are using the principal branch of log z, that is, the branch whose imaginary part is in
(0, π) for z ∈ iH. A simple calculation shows that the boundary values of ={q(x, δ)} on iH are
given by the following combination of characteristic functions

ω(x, δ) =
π

2
{χ(0,δ)(x)− χ(−δ,0)(x) + χ(−1,−δ)(x)− χ(δ,1)(x)} ,

so that eq(z,δ) =
z2 − δ2

z
√
z2 − 1

maps iH onto H. It is also a straightforward matter to see that if f is

an antiderivative of eq(z,δ) on iH, then as x moves along R rightward starting at −∞, f(x) moves
horizontally until one reaches −1, where it makes a left turn, moves vertically up to some point
f(−δ) = f(−1) + ib, then reverses direction and moves vertically downward to f(0) = f(−1)− i∞,
then vertically upward to f(1) + ib, then vertically downward to f(1), and finally rightward once
again to ∞. The image f(iH) thus has an infinite downward protuberance pushed into the upper
half-plane. The idea of the construction is to smooth out q(z, δ), in essence by replacing it with
q(z + iδ3/2, δ), so as to keep the resulting exponential bounded. The image domain so obtained
will have a thin downward protuberance emanating from the top a even deeper indentation. Then,
on the basis of this construction of a function on iH one manufactures a mapping of D with the
same behavior repeated with thinner and thinner projections in such a way that the condition (ii)
in the definition of quasidisk is violated. The following paragraphs give the analytic details of this
construction.

Throughout the following development x and z will represent real and complex variables, re-
spectively, and 0 < δ ≤ 1

4 . We begin by analyzing the behavior of q(z+ iδ3/2, δ), for which purpose
we consider

ξ(x, δ) = <{log((x+ iδ3/2)2 − δ2)− log(x+ iδ3/2)}

= A(x, δ) +B(x, δ) ,

where
A(x, δ) =

1
2

log((x2 − δ3 − δ2)2 + 4δ3x2)

and
B(x, δ) = −1

2
log(x2 + δ3) .

For |x| ≤ δ we have

A(x, δ) ≤ 1
2

log((3δ2)2 + 4δ5) ≤ 1
2

log(13δ4) ≤ log 4 + 2 log δ ,
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and
B(x, δ) ≤ −1

2
log δ3 = −3

2
log δ .

Thus, for |x| ≤ δ
ξ(x, δ) ≤ log 4 +

1
2

log δ ≤ log 4 .

For 1 > |x| ≥ δ we have

A(x, δ) ≤ 1
2

log((3x2)2 + 4|x|5) ≤ log 4 + 2 log |x| ,

and
B(x, δ) ≤ −1

2
log x2 = − log |x| ,

so that
ξ(x, δ) ≤ log 4 , for |x| < 1 , 0 < δ ≤ 1

4
.

Since for |x| ≤ 1
2 and 0 < δ ≤ 1

4

−1
2
<{log((x+ iδ3/2)2 − 1)} ≤ log 2 ,

we have that

<{q(x+ iδ3/2, δ)} = ξ(x, δ)− 1
2
<{log((x+ iδ3/2)2 − 1)} ≤ log 4 + log 2 ≤ log 8 (26)

for all such x, δ.
Let η ∈ C∞(R) satisfy 0 ≤ η(x) ≤ 1, η(x) = 1 for |x| ≤ 5/8 and η(x) = 0 for |x| ≥ 3/4. Let

q1(z, δ) = − 1
π

∫ ∞
−∞

1 + zt

(z − t)(1 + t2)
η(t)=q(t+ iδ3/2, δ) dt .

Then we claim that the following are true:
(i) =q1(x, δ) = 0 for |x| ≥ 3/4;
(ii) q1(z, δ)− q(z + iδ3/2, δ) is analytic and bounded for z ∈ 1

2D uniformly in δ;
(iii) q1(z, δ) is bounded in iH\(1

2D) uniformly in δ;
(iv) q1(z, δ)→ 0 uniformly in δ as z →∞ in iH;
(v) <{q1(z, δ)} is uniformly bounded above in iH.

Statement (i) is obvious from the defintion of q1. Statement (ii) follows from the Poisson integral
formula since the boundary values of ={q1(z, δ)−q(z+iδ3/2, δ)} vanish on [−5

8 ,
5
8 ] and are uniformly

bounded in δ on the rest of R and <{q1(i, δ) − q(i + iδ3/2, δ)} is uniformly bounded in δ. To see
that (iii) is true we break the expression for q1(z, δ) into two integrals, I1 + I2, the first having
as its domain of integration [−3

8 ,
3
8 ] and the second R\[−3

8 ,
3
8 ]. The first integral has the desired

properties since [−3
8 ,

3
8 ] is disjoint from iH\(1

2D). That I2 is bounded follows (by integration by
parts) from the uniform boundedness of the derivative of η(t)={q(t + iδ3/2, δ) outside of [−3

8 ,
3
8 ].

Statement (iv) follows from the uniform boundedness of η(t)={q(t + iδ3/2, δ) and the fact that it
vanishes outside of [−1, 1]. Finally, (v) follows from (ii) and (iii) together with (26).
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We now proceed to examine the behavior of the antiderivatives of eq1(z,δ). It follows from (ii)
that if w = z + iδ3/2, then

s(z, δ) = q1(z, δ)− log(w2 − δ2) + logw = q1(z, δ)− q(w, δ)− 1
2

log(w2 − 1)

is analytic for z ∈ 1
2D. Let c ∈ (0, 1) be fixed and let a0 = a0(δ) = es(0,δ) = |a0|/i, the last equality

holding since the definition of s(z, δ) implies that ={s(0, δ)} = −π
2 . Since s(z, δ) is analytic and

uniformly bounded in 1
2D, es(z,δ) = a0 +O(z). Since for z ∈ R, |z| ≤ |w|, we have (with integration

being performed along the real axis) that∫ cδ

−cδ
eq1(z,δ)dz =

∫ cδ

−cδ

w2 − δ2

w
(a0 +O(z))dz = a0

∫ cδ

−cδ

w2 − δ2

w
dz +

∫ cδ

−cδ
(w − δ2

w
)O(z)dz

= a0

∫ cδ

−cδ

w2 − δ2

w
dz +O(δ3) .

Now,

a0

∫ cδ

−cδ

w2 − δ2

w
dz = a0(2cδ5/2i− δ2 log(−c+ i

√
δ

c− i
√
δ

) = a0iπδ
2 +O(δ5/2) = |a0|πδ2 +O(δ5/2) ,

so that ∫ cδ

−cδ
eq1(z,δ)dz ∼ |a0|iπδ2 as δ → 0 . (27)

Note that the imaginary part of log(− c+i
√
δ

c−i
√
δ
) is indeed negative, as direct examination of the relevant

part of the integral reveals. On the other hand, we see in the same manner that∫ ±cδ
0

eq1(z,δ)dz =
∫ ±cδ

0

w2 − δ2

w
(a0 +O(z))dz

= a0

(
1
2

(δ3/2i± cδ)2 − 1
2

(δ3/2i)2 − δ2 log
δ3/2i± cδ
δ3/2i

)
+O(δ3) ∼ |a0|

2i
δ2 log δ as δ → 0 . (28)

Because |=q(z, δ)| ≤ π
2 in iH, the same bound holds for =q1(z, δ), so that <eq1(z,δ) > 0 in iH.

Relations (27) and (28) thus tell us that the image of (−cδ, cδ) under the antiderivatives of eq1(z,δ) is
a downward pointing arm of length and width asymptotic to |a0|δ2 log 1

δ and |a0|πδ2, respectively.
This arm hangs down from the top a deep indentation.

To finish the construction we have merely to put into the image a collection of such projections
corresponding to a sequence of δ’s tending to 0, which we do as follows. In accordance with (v) let
K be an upper bound for the real part of q1(z, δ). We define

p(z, δ, ρ, x) = q1(
z − x
ρ

, δ) .

It is now a simple matter to see that for any function γ(z) which is analytic in iH and for which
γ(0) 6= 0 and any sequence {δk} of positive numbers approaching 0, there are sequences {ρk} and
{xk} approaching 0 such that S(z) =

∑
k p(z, δk, ρk, xk) satisfies

|eS(z)| ≤ e2K and |=S(z)| ≤ π

2
,
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(the first by (iv) and (v), and the second by (i) and is such that for

Q(z, γ) =
∫ z

i
eS(ζ)γ(ζ)dζ ,

the image Q(D ∩ H, γ) fails to be a John domain (in light of the estimates (27) and (28) and the
comment about the image of the antiderivatives of eq1(z,δ) immediately following the latter). As
previously, we let T (z) = i z−iz+i , which maps iH onto D, and consider

P (z) =
∫ z

0
eS(T−1(ζ))dζ =

∫ T−1(z)

i
eS(w)T ′(w)dw = Q(T−1(z), γ) ,

with γ = T ′. By the foregoing P (D) = Q(H, γ) is not a John domain, even though P ′(D) ⊂
iH ∩ (e2KD).

Virtually the same construction yields a function f for which f ′(D) ⊂ H\(rD), but such that
f(D) violates condition (iii) in the defintion of a quasidisk in Section 2. Indeed, one simply has
to replace q and q1 by their negatives throughout, so that what were thiner and thiner spikes now
become narrower and narrower indentations. Moreover, by choosing sufficiently small ρk’s one can
ensure that f ′ ∈ H1(D), so that f(D) is a Jordan domain.

We finish by mentioning that there are bounded convex domains D such that the theorem is
not true when D is replaced by D. Indeed, let 0 ∈ ∂D and D ⊂ {z : −α < arg z < α} = S,
where α < π

2 . Then 1/D ⊂ S, so that f(z) = log z satisfies f ′(D) ⊂ H\X, where X = Rei
π+2α

4 .
Obviously, X satisfies the hypothesis of the theorem but f(D) does not satisfy the John condition
(ii) of the definition of quasidisk.
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