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Abstract

We study the p-version of the boundary element method for a
crack problem in linear elasticity with Dirichlet boundary conditions.
The unknown jump of the traction has strong edge singularities and
is approximated by solving an integral equation of the first kind with
weakly singular operator. We prove a quasi-optimal a priori error
estimate in the energy norm. For sufficiently smooth given data
this gives a convergence like cp−1+ε with ε > 0. Here, p denotes
the polynomial degree of the piecewise polynomial functions used to
approximate the unknown.
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1 Introduction and formulation of the prob-

lem

We analyze the convergence of the p-version of the boundary element
method (BEM) with weakly singular integral operator for problems in IR3.
That is we study approximation properties of piecewise polynomial func-
tions on surfaces in a negative order Sobolev space (order −1/2). To the
knowledge of the authors this is the first paper dealing with this case. The
p-version of the finite element method and the p-version of the BEM on
curves have been widely studied. For the p-version of the BEM dealing
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with problems in three dimensions, however, there are very few results.
The case of hypersingular operators on polyhedral surfaces (the energy
space is H1/2) is analyzed in [7]. There, using H1-regularity of the solu-
tion, the optimal convergence of the p-version has been shown. In [2] we
consider hypersingular operators on open surface, where no H1-regularity
can be assumed, and prove optimal a priori error estimates. The case of
weakly singular integral operators on surfaces has been an open problem so
far. Here we study this situation for the model problem of linear elasticity
with a crack that has a smooth boundary. The solution exhibits in general
strong edge singularities not being L2-regular.

Let us recall the Sobolev spaces used. Then we formulate the model
problem. Let Γ be an open smooth surface in IR3 with smooth boundary
curve γ. Taking a closed smooth surface Γ̃ which contains Γ, we consider
Sobolev spacesH t(Γ̃) for t > 0 being the restriction of H t+1/2(IR3) to Γ̃ and
for t < 0 by duality: H t(Γ̃) = (H−t(Γ̃))′. Using these spaces we define the
Sobolev spaces on the open surface Γ: H̃t(Γ) = {u ∈ Ht(Γ̃); suppu ⊂ Γ̄}
and Ht(Γ) = {u|Γ; u ∈ Ht(Γ̃)} for any real t. We use these notations for
scalar functions as well as for vector functions, using the norms and inner
products componentwise. In the sequel vector functions will be denoted by
bold face symbols.

We consider the Dirichlet boundary value problem for the displacement
field u = (u1, u2, u3) of a homogeneous, isotropic, elastic material covering
the domain ΩΓ := IR3 \ Γ̄: For given u1, u2 ∈ H1/2(Γ) with u1 − u2 ∈
H̃1/2(Γ) find u satisfying

µ∆u + (λ+ µ)grad div u = 0 in ΩΓ, (1.1)

u|Γ1 = u1, u|Γ2 = u2, (1.2)

u(x) = o(1),
∂

∂xj
u(x) = o(|x|−1), j = 1, 2, 3, |x| → ∞. (1.3)

Here, Γi, i = 1, 2, are the two sides of Γ and µ > 0, λ > −2/3µ are the given
Lamé constants. The corresponding Neumann data of the linear elasticity
problem are the tractions

T(u) := λ(div u)n + 2µ
∂u

∂n
+ µn× curl u on Γi, i = 1, 2,

where n is the normal vector exterior to the bounded domain enclosed by Γ̃.
The problem (1.1)–(1.3) can be formulated as an integral equation of

the first kind, see, e.g., [8, 4]: u ∈ H1
loc(IR

3 \ Γ̄) is the solution of the
Dirichlet problem (1.1)–(1.3) if and only if the jump of the traction t :=
T(u)|Γ1 −T(u)|Γ2 ∈ H̃−1/2(Γ) solves the weakly singular integral equation

Vt(x) :=

∫

Γ

E(y, x)t(y) dsy = g(x), x ∈ Γ (1.4)
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where

g(x) =
1

2
(u1 + u2)(x) +

∫

Γ

TyE(y, x)(u1 − u2)(y) dsy .

Here,

E(y, x) =
λ+ 3µ

8πµ(λ+ 2µ)

(
1

|x− y|I +
λ+ µ

λ+ 3µ

(x− y)(x− y)T

|x− y|3
)

denotes the fundamental solution of (1.1) with the identity matrix I . The
solution t of (1.4) yields the solution to problem (1.1)–(1.3) via the repre-
sentation or Betti’s formula

u(x) =

∫

Γ

(
E(y, x)t(y) − (TyE(y, x))T (u1(y)− u2(y))

)
dsy, x 6∈ Γ.

In what follows, together with usual space coordinates (x1, x2, x3) = x ∈ Γ
we will use surface coordinates (s, ρ) in a small neighborhood of γ on Γ such
that s (respectively, ρ) varies in tangential (respectively, normal) direction
to γ. Thus the boundary curve γ is described by the equation ρ = 0, and
in a sufficiently small neighborhood of γ one has s = s(x) and ρ = ρ(x).
Throughout the paper we will specify this small neighborhood of γ as the
boundary strip Γδ of Γ such that for small δ > 0,

Γδ = {x ∈ Γ; 0 < ρ(x) < δ}.

Let us cite the following regularity result from [4].

Proposition 1.1 Let |σ| < 1/2 and uj ∈ H3/2+σ(Γ), j = 1, 2, with

u1−u2 ∈ H̃3/2+σ(Γ). Then the solution t ∈ H̃−1/2(Γ) of the integral
equation (1.4) has the form

t = β(s)ρ−1/2χ(ρ) + t0 (1.5)

with vector functions β ∈ H1/2+σ(γ) and t0 ∈ H̃1/2+σ′(Γ) for any σ′ < σ.
Furthermore, χ ∈ C∞0 (IR) denotes a cut-off function with 0 ≤ χ ≤ 1 and
χ = 1 near zero.

In the next section we formulate the p-version of the BEM for the
approximate solution of (1.4) and state the main result which proves an
almost optimal convergence rate (Theorem 2.1). Technical details and the
proof of Theorem 2.1 are given in Section 3.
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2 The p-version of the BEM

Below p will always denote a polynomial degree, and C is a generic positive
constant independent of p.

In order to define finite dimensional subspaces of H̃−1/2(Γ) we use a
regular parameter representation x = X(u), u ∈ U , U being a compact
region in IR2 whose boundary is mapped onto γ. On U we use a fixed
regular mesh T = {Uj ; j = 1, . . . , J} of quadrilaterals and triangles which
are in general curvilinear such that U is completely discretized. We assume
that for each j = 1, . . . , J there exists a smooth one-to-one mapping Mj

such that Ūj = Mj(K̄) with K = Q or T (here, Q = (−1, 1)2 and T =
{ξ = (ξ1, ξ2); 0 < ξ1 < 1, 0 < ξ2 < ξ1} denote the reference square and
triangle, respectively). The Jacobians of Mj are assumed to be bounded
above and below by positive constants independent of j.

Using the parameter representation X we have a fixed regular mesh
∆ = {Γj = X(Uj); j = 1, . . . , J} on Γ. The union of the elements of ∆
touching the boundary curve γ will be denoted by Aγ , i.e., Āγ = ∪{Γ̄j ; Γ̄j∩
γ 6= ø}. We assume that, close to the γ, the mesh is fine enough such that
Āγ ⊂ (Γδ/2 ∪ γ). We also assume that the cut-off function χ in (1.5) is

chosen such that supp (β(s)ρ−1/2χ(ρ)) ⊂ Āγ .
Now for given integer p we define the space Sp(Γ) of piecewise polyno-

mials on Γ. For K = Q or K = T let Qp(K) be the set of polynomials
of degree ≤ p (in each variable for K = Q and of total degree ≤ p on T ).
Furthermore, for K = I an interval, Qp(I) denotes the set of polynomials
of degree ≤ p on I . We will also use the set Rp(Γj) of polynomials of degree
≤ p in each variable s and ρ on the elements Γj ⊂ Aγ ⊂ Γδ/2. Then using
the notation vj = v|Γj we define

Sp(Γ) := {v; vj ∈ [Rp(Γj)]3 if Γj ⊂ Aγ , and

(vj ◦X ◦Mj) ∈ [Qp(K)]3, K = Q or T, if Γj ⊂ (Γ\Aγ)}

(here, we denote by [·]3 the sets of vector functions with corresponding
polynomial components).

One has Sp(Γ) ⊂ H̃−1/2(Γ), and the p-version of the boundary element
Galerkin method is as follows: For given p find tp ∈ Sp(Γ) such that

〈Vtp,v〉 = 〈g,v〉 ∀v ∈ Sp(Γ). (2.1)

As it is well known, this method converges quasi-optimally, see [3], i.e.,
there exists a constant C > 0 such that for all polynomial degrees p there
holds

‖t− tp‖H̃−1/2(Γ) ≤ C inf{‖t− v‖H̃−1/2(Γ); v ∈ Sp(Γ)}. (2.2)

We now present the main result giving an a priori error estimate.
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Theorem 2.1 Let |σ| < 1/2 and uj ∈ H3/2+σ(Γ), j = 1, 2, with u1−u2 ∈
H̃3/2+σ(Γ). Then there holds the a priori error estimate

‖t− tp‖H̃−1/2(Γ) ≤ Cp−α, α = 1/2 + σ − ε, ε > 0, (2.3)

where C > 0 depends on ε but not on p. Here, t is the solution of (1.4)
and tp is the boundary element approximation to t given by (2.1).

This error estimate is quasi-optimal for sufficiently smooth given data.
More precisely, if σ is large enough then there exists for any ε > 0 a constant
c > 0 such that the p-version converges like cp−1+ε. A convergence like
cp−1 would be optimal, cf. the results in [7, 2]. The sub-optimality of
(2.3) is due to Proposition 1.1 which states the regularity of the term β in
the representation of the exact solution only in standard Sobolev spaces,
which are not appropriate to obtain optimal results. For numerical results
(dealing with the scalar version of the Laplace operator) which underline
the a priori error estimate we refer to [6].

The proof of Theorem 2.1 is given in the next section.

3 Technical details

Before proving Theorem 2.1 we collect several auxiliary results.

Lemma 3.1 Let Ω ⊂ IR2 be a Lipschitz domain. If u ∈ H̃t(Ω) with
0 ≤ t ≤ 1, then for i = 1, 2, ∂u/∂xi ∈ H̃t−1(Ω), and

‖∂u/∂xi‖H̃t−1(Ω) ≤ C‖u‖H̃t(Ω),

where C > 0 is independent of u.

On an interval, this statement is proved in [9, Lemma 3.5]. In two
dimensions the proof is similar and is skipped.

Lemma 3.2 Let Ω, Ω1 be two Lipschitz domains in IRn (n = 1, 2, 3), and
Ω1 ⊂ Ω. Then, for 0 ≤ t < 1/2, there holds

‖u‖H̃−t(Ω1) ≤ C‖u‖H̃−t(Ω) ∀u ∈ H̃−t(Ω), (3.1)

where the constant C > 0 is independent of u.

Proof. For 0 ≤ t < 1/2, the identity H t
0(Ω1) = Ht(Ω1) holds (see,

e.g., [5]). Let us consider the function v ∈ H t(Ω1) = Ht
0(Ω1) and denote

by v the extension of v by zero outside Ω1. Then v ∈ Ht(Ω) = Ht
0(Ω),

‖v‖Ht(Ω) ≤ C
(
‖v‖Ht(Ω1) + ‖v‖Ht(Ω\Ω1)

)
= C‖v‖Ht(Ω1),

and (3.1) follows from the definition of the norm in H̃−t(Ω1). 2
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Lemma 3.3 Let f ∈ H t(K) for real t > 0 with K = I ⊂ IR (respectively,
K = Q or K = T in IR2). Then there exists a sequence fp ∈ Qp(K),
p = 0, 1, 2, . . ., such that

‖f − fp‖L2(K) ≤ C p−t ‖f‖Ht(K).

For a proof of Lemma 3.3 we refer to [1].

Lemma 3.4 [10, Lemma 3.3] Let f(x) ∈ H̃−t1(I1) and g(y) ∈ H̃−t2(I2)
with 0 ≤ t1, t2 ≤ 1. Then f(x)g(y) ∈ H̃−t1−t2(I1 × I2) and

‖f(x)g(y)‖H̃−t1−t2 (I1×I2) ≤ c‖f(x)‖H̃−t1 (I1)‖g(y)‖H̃−t2 (I2).

The constant c is independent of f and g.

To analyze the approximation of the singular part of t in (1.5) we first
study singularities on an interval. Let us consider the singular function

ψ(x) = (1 + x)λ−1χ(x), x ∈ I = (−1, 1), (3.2)

where λ > 0 is real, χ ∈ C∞(I) is a cut-off function with χ(x) = 1 for
x ∈ (−1,−1 + d] and χ(x) = 0 for x ≥ −1 + 2d (0 < d ≤ 1/4).

Observe that ψ ∈ H̃t(I) for −1 ≤ t < min {0, λ− 1/2}.

Theorem 3.1 Let ψ(x) be given by (3.2) with λ > 0. Then there exists a
sequence ψp ∈ Qp(I), p = 1, 2, . . ., such that for −1 ≤ t < min {0, λ−1/2},

‖ψ − ψp‖H̃t(Ĩ) ≤ C p−2(λ−1/2−t), Ĩ = (−1, 0). (3.3)

Proof. Introducing a C∞ cut-off function χ̃(x) such that

χ̃(x) = 1 for x ∈ [−1, 0] and χ̃(x) = 0 for x ≥ 1/2, (3.4)

we define

Ψ(x) := χ̃(x)

x∫

−1

ψ(ξ)dξ, Ψ̂(x) := (1− x)−1Ψ(x), x ∈ I = (−1, 1).

Then Ψ(−1) = Ψ̂(−1) = 0, Ψ(x) = Ψ̂(x) = 0 for x ∈ [1/2, 1], and

Ψ′(x) = ψ(x) for x ∈ Ĩ = (−1, 0). (3.5)

Further, using integration by parts we obtain

Ψ̂(x) =
(1+x)λχ(x)χ̃(x)

λ(1−x)
− χ̃(x)

λ(1−x)

x∫

−1

(1+ξ)λχ′(ξ)dξ =: F (x)−G(x). (3.6)
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Referring to [2, Theorem 3.1] if 0 < λ ≤ 1/2 and to [7, Theorem 5.1] if
λ > 1/2, we find a polynomial Fp ∈ Qp(I) such that Fp(−1) = F (−1) = 0
and

‖F − Fp‖Ht(I) ≤ C p−2(λ+1/2−t), 0 ≤ t < min {1, λ+ 1/2}. (3.7)

For the function G ∈ C∞0 (I) there exists by Lemma 3.3 a polynomial
Gp ∈ Qp(I) such that Gp(±1) = G(±1) = 0, and for arbitrary τ > 0,

‖G−Gp‖Ht(I) ≤ C p−τ , 0 ≤ t ≤ 1. (3.8)

Let us define Ψp(x) := (1 − x)(Fp(x) − Gp(x)). Then Ψp ∈ Qp+1(I),
Ψp(±1) = 0, and for 0 ≤ t < min {1, λ+ 1/2} we deduce from (3.6)–(3.8)

‖Ψ−Ψp‖Ht(I) ≤ C‖Ψ̂− (Fp −Gp)‖Ht(I) ≤ C p−2(λ+1/2−t). (3.9)

Hence

‖Ψ−Ψp‖H̃t(I) ≤ C p−2(λ+1/2−t), t ∈ [0,min {1, λ+ 1/2})\{1/2}, (3.10)

because (Ψ−Ψp) ∈ Ht
0(I) = H̃t(I) for these values of t.

Now we set ψp(x) := Ψ′p(x) for x ∈ I . Then ψp ∈ Qp(I), and recalling

(3.5) we have ψ − ψp = (Ψ −Ψp)
′ on Ĩ . Therefore, using sequentially the

one-dimensional versions of Lemmas 3.2, 3.1, and then estimate (3.10) we
obtain for any fixed t′ ∈ (1/2,min {1, λ+ 1/2})
‖ψ − ψp‖H̃t′−1(Ĩ) = ‖(Ψ−Ψp)

′‖H̃t′−1(Ĩ) ≤ C ‖(Ψ−Ψp)
′‖H̃t′−1(I)

≤ C ‖Ψ−Ψp‖H̃t′ (I) ≤ C p−2(λ+1/2−t′). (3.11)

Thus we have proved (3.3) for t ∈ (−1/2,min{0, λ− 1/2}).
On the other hand, applying Lemma 3.1 and inequality (3.9) we have

‖ψ − ψp‖H̃−1(Ĩ) = ‖(Ψ−Ψp)
′‖H̃−1(Ĩ) ≤ C ‖Ψ−Ψp‖H0(Ĩ) ≤ C p−2(λ+1/2).

Since −1/2 < t′− 1 < min {0, λ− 1/2} in (3.11), the interpolation between
H̃−1(Ĩ) and H̃t′−1(Ĩ) gives (3.3) for any t ∈ [−1,−1/2]. 2

Remark 3.1 When proving Theorem 3.1 we have also established the fol-
lowing inequality (see (3.9))

‖Ψ−Ψp‖L2(I) ≤ C p−2(λ+1/2), (3.12)

where Ψ(x) = χ̃(x)
x∫
−1

ψ(ξ)dξ, Ψp(x) =
x∫
−1

ψp(ξ)dξ, the function ψ(x) is

given by (3.2), and ψp(x) is a polynomial approximation to ψ(x).
Moreover, Ψ(x) ∈ L2(I), and (3.12) yields

‖Ψp‖L2(I) ≤ C. (3.13)
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Now we prove the main result of the paper.

Proof of Theorem 2.1. Due to the regularity result of Proposition 1.1
and the quasi-optimal convergence (2.2) of the BEM, one only needs to
find a piecewise polynomial function that approximates t in (1.5) with the
upper bound stated by (2.3).

For elements at the boundary γ we need covering rectangles in surface
coordinates. Let Γj ⊂ Aγ be an element touching the boundary γ. Since
Aγ ⊂ (Γδ/2 ∪ γ), there exist two points on γ with coordinates (s1, 0) and
(s2, 0) such that

Γj ⊂ Qj = {(s, ρ) ∈ Γδ/2; s1 < s < s2, 0 < ρ < δ/2}.

First, we define an approximation t0,p to the vector function t0 ∈ H̃α(Γ) ⊂
Hα(Γ) (hereafter, α = 1/2+σ−ε > 0 with sufficiently small ε>0). If Γj ⊂
(Γ\Aγ), we apply Lemma 3.3 componentwise on the square (or triangle)
K such that Γj = X(Mj(K)). However, if Γj ⊂ Aγ , we apply Lemma 3.3
on Qj ⊃ Γj . Since Γ is smooth, the function t0 on Γδ ⊃ Aγ has the same
regularity in terms of coordinates (s, ρ) as in terms of space variables x =
X(u). Therefore, recalling the definition of Sp(Γ) and applying Lemma 3.3
as indicated above, we find t0,p ∈ Sp(Γ) such that

‖t0−t0,p‖H̃−1/2(Γj)
≤ ‖t0−t0,p‖L2(Γj) ≤ Cp−α‖t0‖Hα(Γj) ≤ Cp−α (3.14)

if Γj ⊂ (Γ\Aγ), and

‖t0 − t0,p‖H̃−1/2(Γj)
≤ ‖t0 − t0,p‖L2(Γj) ≤ ‖t0 − t0,p‖L2(Qj )

≤ Cp−α‖t0‖Hα(Qj) ≤ Cp−α (3.15)

if Γj ⊂ Aγ .
Now we consider the singular term β(s)ψ(ρ) = β(s)ρ−1/2χ(ρ) in (1.5).

Let Γj ⊂ Aγ , and Γj ⊂ Qj as above. Then using the one-dimensional
version of Lemma 3.3 we approximate the function β(s) ∈ H1/2+σ(γ):
there exists βp(s) ∈ [Qp(s1, s2)]3 satisfying

‖β−βp‖L2(s1,s2) ≤ Cp−(1/2+σ)‖β‖H1/2+σ(s1,s2) ≤ Cp−(1/2+σ)‖β‖H1/2+σ(γ).
(3.16)

For the singular function ψ(ρ) we apply Theorem 3.1, scaled to the interval
(0, δ), with λ = 1/2: there exists a polynomial ψp(ρ) ∈ Qp(0, δ) satisfying

‖ψ − ψp‖H̃−t(0,δ/2) ≤ Cp−2t, 0 < t ≤ 1. (3.17)

Since ψ(ρ) ∈ H̃−t(0, δ/2) with t ∈ (0, 1], we estimate by (3.17)

‖ψp‖H̃−t(0,δ/2) ≤ C, 0 < t ≤ 1. (3.18)
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Furthermore, introducing a C∞ cut-off function χ̃(ρ) such that (cf. (3.4))

χ̃(ρ) = 1 for ρ ∈ [0, δ/2] and χ̃(ρ) = 0 for ρ ≥ 3δ/4

and arguing as in the proof of Theorem 3.1 we obtain (cf. (3.12), (3.13))

‖Ψ−Ψp‖L2(0,δ) ≤ C p−2, ‖Ψp‖L2(0,δ) ≤ C, (3.19)

where Ψ(ρ) = χ̃(ρ)
ρ∫
0

ψ(r)dr and Ψp(ρ) =
ρ∫
0

ψp(r)dr.

Then making use of Lemma 3.2 (which remains valid with Ω1 = Γj ⊂
Qj = Ω), Lemma 3.4, the triangle inequality, and estimates (3.16)–(3.18),
we derive for some fixed t′ ∈ (0, 1/2)

‖βψ − βpψp‖H̃−t′ (Γj)
≤ C

(
‖β(ψ − ψp)‖H̃−t′ (Qj ) + ‖(β − βp)ψp‖H̃−t′ (Qj)

)

≤ C
(
‖β‖L2(s1,s2)‖ψ−ψp‖H̃−t′ (0,δ/2)+‖β−βp‖L2(s1,s2)‖ψp‖H̃−t′ (0,δ/2)

)

≤ Cp−min{1/2+σ,2t′}‖β‖H1/2+σ(γ). (3.20)

On the other hand, using the above notation for Ψ(ρ) and Ψp(ρ) we write

‖βψ − βpψp‖H̃−1(Γj)
=
∥∥∥ ∂
∂ρ

(
β(s)Ψ(ρ)− βp(s)Ψp(ρ)

)∥∥∥
H̃−1(Γj)

.

Then applying Lemma 3.1 in terms of coordinates (s, ρ) ∈ Γj we have

‖βψ − βpψp‖H̃−1(Γj)
≤ C ‖β(s)Ψ(ρ)− βp(s)Ψp(ρ)‖H0(Γj)

≤ C ‖β(s)Ψ(ρ)− βp(s)Ψp(ρ)‖H0(Qj).

Hence

‖βψ − βpψp‖H̃−1(Γj)
≤ C

(
‖β‖L2(s1,s2)‖Ψ−Ψp‖L2(0,δ/2)

+ ‖β−βp‖L2(s1,s2)‖Ψp‖L2(0,δ/2)

)
,

and we estimate by using (3.16), (3.19)

‖βψ − βpψp‖H̃−1(Γj)
≤ Cp−min{1/2+σ, 2}‖β‖H1/2+σ(γ).

Since |σ| < 1/2, we may take t′ in (3.20) such that 0 < 1/2 + σ ≤ 2t′ < 1.
Then interpolating between H̃−1(Γj) and H̃−t

′
(Γj) we prove for any Γj⊂Aγ

‖βψ − βpψp‖H̃−1/2(Γj)
≤ Cp−(1/2+σ)‖β‖H1/2+σ(γ). (3.21)

Now let us define the approximating function vp on Γ as follows: vp|Γj =
βpψp + t0,p|Γj if Γj ⊂ Aγ , and vp|Γj = t0,p|Γj if Γj ⊂ (Γ\Aγ). Then
vp ∈ Sp(Γ), and, due to (3.14), (3.15), (3.21), the error ‖t − vp‖H̃−1/2(Γ)

satisfies the upper bound in (2.3). This proves the theorem. 2
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