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Abstract

We study piecewise polynomial approximations in negative order Sobolev norms of singu-
larities which are inherent to Neumann data of elliptic problems of second order in polyhedral
domains. The worst case of exterior crack problems in three dimensions is included. As an
application, we prove an optimal a priori error estimate for the p-version of the BEM with
weakly singular operators on polyhedral surfaces and piecewise plane open screens.
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1 Introduction and formulation of the problem

In this paper, we prove an optimal error estimate for the p-version of the boundary element
method (BEM) with weakly singular operators on open and closed piecewise plane surfaces.
The energy space, H̃−1/2(Γ), is a Sobolev space of negative order and the problems under
consideration have singularities which can be less than L2(Γ) regular. In [4] we considered
the case of hypersingular operators where the energy space is H̃1/2(Γ) (for a definition of the
Sobolev spaces see §3). There, we generalised known results from Schwab and Suri [10] to
situations where solutions are not in H1(Γ). Here, we approximate singular functions in H̃s(Γ)
for negative s. We use directional antiderivatives to transform these approximation problems
to corresponding ones for singularities in Sobolev spaces of positive order, where techniques
analogous to [4, 10] can be used.
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This idea of directional antiderivatives works well for singularities of tensor product form but
fails for general functions (cf. Remark 3.13). In a previous paper [3] we studied the case of weakly
singular operators on open surfaces with smooth boundary curve (where one has to deal with
only one particular edge singularity). In that situation we were able to reduce the approximation
problem to a one-dimensional situation where standard derivatives and antiderivatives can be
used to map between a scale of Sobolev spaces (see Stephan and Suri [12, Lemma 3.5]). In
this paper we consider the general case of singular functions including vertex and edge-vertex
singularities. We still use the idea of Stephan and Suri, but have to analyse the full two-
dimensional (surface) situation. As mentioned before, having transformed the approximation
problems to perform the analysis in Sobolev spaces of positive order, techniques are similar to
the ones for hypersingular operators in [4]. However, in order to apply the tool of directional
antiderivatives we have to consider model situations on special elements (with small angles
at surface vertices). The generalisation to arbitrary elements then uses affine mappings. The
analysis of this generalisation is somewhat technical (and details are given in several appendices)
since one needs to show that the necessary transformation of singularities does not change their
overall behaviour (in the sense of convergence rates of the p-version).

An outcome of this paper is that conjectured results [7] on the convergence order of p-version
BE schemes with weakly singular operators are true. In the particular situation of the Laplacian
in the domain exterior to an open screen of the form of a square, our results prove a convergence
like O(p−1). Here, p denotes the polynomial degree of the ansatz functions. For details and
numerical results (confirming this convergence rate) see [7].

In what follows, the analysis applies to open and closed surfaces which must be piecewise
plane such that they can be discretised by meshes consisting of triangles and parallelograms. For
ease of presentation, however, let us assume that Γ ⊂ IR3 is a plane open surface with polygonal
boundary. Then, our model integral equation is

V u(x) :=
1

4π

∫

Γ

u(y)

|x− y| dSy = f(x), x ∈ Γ.

It is well known that this equation governs a Dirichlet problem for the Laplacian in the domain
exterior to Γ, with given Dirichlet datum f on Γ, see [5, 11]. The solution u of the integral
equation is the jump across Γ of the normal derivative of the solution to the Dirichlet problem.
The weak form of this integral equation is: Find u ∈ H̃−1/2(Γ) such that

〈V u, v〉 = 〈f, v〉 ∀v ∈ H̃−1/2(Γ). (1.1)

Here, 〈·, ·〉 denotes the dual pairing between H 1/2(Γ) and H̃−1/2(Γ). The latter space is defined
in §3 below.

The remainder of this paper is as follows. In the next section we review regularity results
for our model problem which are essential to prove the exact convergence rate of the BEM.
We define the scheme of the p-version and state our main result (Theorem 2.1) specifying the
convergence rate. The subsequent sections give precise details of the approximation analysis.
Main result there is a general approximation theorem for singular functions (Theorem 3.7).

2



First, definitions of Sobolev spaces are recalled at the beginning of §3. Some auxiliary lemmas
are collected in §3.1. Our general tool of directional antiderivatives is presented and analysed
in §3.2. This tool is then used to analyse edge-, edge-vertex, and vertex singularities in §§3.3,
3.4, and 3.5, respectively. The general approximation theorem is given in §3.6. Detailed proofs
of some technical lemmas from §§3.3, 3.4 and 3.5 are postponed to an appendix, see §§4.1, 4.2
and 4.3, respectively.

Throughout the paper, C denotes a generic positive constant which is independent of the
polynomial degree p.

2 The rate of convergence of the p-version.

Before presenting and analysing the p-version of the BEM let us recall the typical structure of
the solution of our model problem for a sufficiently smooth right-hand side function f . We use
the notation of [4, 10] and refer for more details to [14, 13].

Let V and E denote the sets of vertices and edges of Γ, respectively. For v ∈ V , let E(v)
denote the set of edges with v as an end point. Then, the solution u of (1.1) has the form

u = ureg +
∑

e∈E
ue +

∑

v∈V
uv +

∑

v∈V

∑

e∈E(v)

uev, (2.1)

where, using local coordinate systems (rv, θv) and (xe1, xe2) with origin v, there hold the following
representations:

(i) For the regular part there holds ureg ∈ Hk(Γ), k > 1/2.
(ii) The edge singularities ue have the form

ue =
me∑

j=1




sej∑

s=0

bejs(xe1)| log xe2|s

xγ

e
j−1

e2 χe1(xe1)χe2(xe2), (2.2)

where γej+1 ≥ γej ≥ 1
2 , and me, s

e
j are integers. Here, χe1, χe2 are C∞ cut-off functions with χe1 = 1

in a certain distance to the end points of e and χe1 = 0 in a neighbourhood of these vertices.
Moreover, for a ρe > 0, χe2 = 1 for 0 ≤ xe2 ≤ ρe and χe2 = 0 for xe2 ≥ 2ρe. The functions bejsχ

e
1

are in Hm(e) for m as large as required.
(iii) The vertex singularities uv have the form

uv = χv(rv)
nv∑

i=1

qvi∑

t=0

Bv
it| log rv|trλ

v
i−1
v wvit(θv), (2.3)

where λvi+1 ≥ λvi > 0, nv, q
v
i ≥ 0 are integers, and Bv

it are real numbers. Here, χv is a C∞ cut-off
function with χv = 1 for 0 ≤ rv ≤ τv and χv = 0 for rv ≥ 2τv for some τv > 0. The functions wvit
are in Hq(0, ωv) for q as large as required. Here, ωv denotes the interior angle (on Γ) between
the edges meeting at v.
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(iv) The edge-vertex singularities uev have the form

uev = uev1 + uev2 ,

where

uev1 =
me∑

j=1

nv∑

i=1




sej∑

s=0

qvi∑

t=0

s∑

l=0

Bev
ijlts| log xe1|s+t−l| log xe2|l


xλ

v
i−γej
e1 x

γej−1

e2 χv(rv)χ
ev(θv) (2.4)

and

uev2 =
me∑

j=1

sej∑

s=0

Bev
js (rv)| log xe2|sx

γej−1

e2 χv(rv)χ
ev(θv) (2.5)

with

Bev
js (rv) =

s∑

l=0

Bev
jsl| log rv|l. (2.6)

Here, qvi , sej, λ
v
i , γ

e
j , χ

v are as above, Bev
ijlts are real numbers, and χev is a C∞ cut-off function

with χev = 1 for 0 ≤ θv ≤ β and χev = 0 for 3
2β ≤ θv ≤ ωv for some 0 < β ≤ min{ωv/2, π/8}.

The functions Bev
jsl may be chosen such that

Bev
js (rv)χ

v(rv)χ
ev(θv) = ξjs(xe1, xe2)χe2(xe2),

where the extension of ξjs by zero onto IR2+ := {(xe1, xe2); xe2 > 0} lies in Hm(IR2+), with m
as in (ii). Here, χe2 is a C∞ cut-off function like in (ii).

Analogously to [4, Remark 2.1] we note the following on the values of the essential parameters
γe1 and λv1:

Remark 2.1 The edge and vertex-edge singularities in (ii) and (iv) satisfy γ e1 ≥ 1/2. The case
γe1 = 1/2 is possible for open surfaces and for closed surfaces there holds γ e1 > 1/2. When
γe1 = 1/2 then one has to expect that ue, uev 6∈ L2(Γ) such that no standard approximation
theory in L2(Γ) is possible (it would not give optimal results, whatsoever). For singular right-
hand sides f in (1.1), it also may occur that γe1 assumes any positive value, which is the minimum
requirement to guarantee u ∈ H̃−1/2(Γ). Our analysis will cover this case.

For our approximation analysis below, and in order to ensure u ∈ H̃−1/2(Γ), it suffices to
require λv1 > −1/2 in (iv). Note that in [4], where we studied the trace of a Neumann problem,
the restriction λv1 > 0 was necessary to ensure that the trace is in H̃1/2(Γ). We do not need this
restriction here.

To introduce the p-version of the BEM we discretise Γ by a fixed mesh {Γj ; j = 1, . . . , J}
consisting of triangles and parallelograms. Below we will refer to three different unions of
elements. The union of the elements at a node v is denoted by Av, Āv := ∪{Γ̄j; v ∈ Γ̄j},
the union of the elements at one edge e by Ae (the endpoints of e are not included in e),
Āe := ∪{Γ̄j; Γ̄j ∩ e 6= ø}, and Aev := Av ∩Ae.
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Let Q = (−1, 1)2 and T = {(x1, x2); 0 < x1 < 1, 0 < x2 < x1} be the reference square and
triangle, respectively. For K = Q or T , Qp(K) denotes the set of polynomials on K of degree
≤ p in each variable. Moreover, Pp(T ) is the set of polynomials on T of total degree ≤ p. For
given p we consider the space of piecewise polynomials on the mesh introduced before,

V p(Γ) := {v ∈ L2(Γ); v|Γj ◦ Tj ∈ Qp(Q) or Pp(T ), j = 1, . . . , J}.

Here, Tj is an affine mapping with Tj(K) = Γj , K = Q or T as appropriate.
The p-version of the BEM then is: Find up ∈ V p(Γ) such that

〈V up, v〉 = 〈f, v〉 ∀v ∈ V p(Γ). (2.7)

The main result of this paper is the following theorem.

Theorem 2.1 Let u ∈ H̃−1/2(Γ) be the solution of (1.1) with sufficiently smooth given function
f ∈ H1/2(Γ) such that the representation (2.1)–(2.6) holds. Let v0 ∈ V , e0 ∈ E(v0) be such that
min{λv0

1 + 1/2, γe01 } = minv∈V,e∈E(v) min{λv1 + 1/2, γe1}, with λv1 and γe1 being as in (2.2)–(2.5).
Then denote

β =

{
se01 + qv0

1 + 1/2 if λv0
1 = γe01 − 1/2,

se01 + qv0
1 otherwise,

where the numbers se01 , qv0
1 are given in (2.4). Then the BE approximation up defined by (2.7)

satisfies

‖u− up‖H̃−1/2(Γ) ≤ C | log p|βp−2 min{γe01 ,λ
v0
1 + 1

2
},

where C > 0 is a constant which is independent of p.

Proof. By the quasi-optimal convergence of the BEM (see, e.g., [11]) the proof of the theorem
is obtained by using Theorem 3.7 below. 2

3 Technical details

In this section we give several technical details and prove approximation results for different
types of singularities. The outcome is a general approximation theorem (Theorem 3.7) which
collects the individual results. In particular, this theorem proves the optimal rate of convergence
of the BE scheme (2.7), as stated by Theorem 2.1 before.

First, let us recall the Sobolev norms and spaces that will be used, see [8, 6]. For a domain
Ω ⊂ IRn and integer s let Hs(Ω) be the closure of C∞(Ω) with respect to the norm

‖u‖2Hs(Ω) = ‖u‖2Hs−1(Ω) + |u|2Hs(Ω) (s ≥ 1),

where

|u|2Hs(Ω) =

∫

Ω
|Dsu(x)|2 dx, and H0(Ω) = L2(Ω).
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Here, |Dsu(x)|2 =
∑
|α|=s |Dαu(x)|2 in the usual notation with multi-index α = (α1, . . . , αn) and

with respect to Cartesian coordinates x = (x1, . . . , xn). For non-integer s, the Sobolev spaces
are defined by interpolation. We use the real K-method (see [8]) to define

Hs(Ω) =
(
L2(Ω),H1(Ω)

)
s,2

(0 < s < 1)

and
H̃r(Ω) =

(
L2(Ω),Hs

0(Ω)
)
r
s
,2

(1/2 < s ≤ 1, 0 < r < s).

Here, Hs
0(Ω) (0 < s ≤ 1) is the completion of C∞0 (Ω) inHs(Ω) and we identifyH1

0 (Ω) and H̃1(Ω).
It is well-known that the norms in Hs(Ω), Hs

0(Ω) and H̃s(Ω) are equivalent for 0 < s < 1/2.
For 1/2 < s < 1, only the norms in Hs

0(Ω) and H̃s(Ω) are equivalent.
For s ∈ [−1, 0) the spaces are defined by duality:

Hs(Ω) = (H̃−s(Ω))′, H̃s(Ω) = (H−s(Ω))′.

For integer k ≥ 0 and µ ∈ [0, 1] we also consider the spaces of continuously differentiable
functions Ck(Ω̄) and Ck,µ(Ω̄) with norms

‖u‖Ck(Ω̄) =
∑

|α|≤k
sup
x∈Ω
|Dαu(x)|

and

‖u‖Ck,µ(Ω̄) = ‖u‖Ck(Ω̄) +
∑

|α|=k
sup

x,y∈Ω, x6=y

|Dαu(x)−Dαu(y)|
|x− y|µ .

An overview of this section is as follows. In §3.1 we collect several technical lemmas. In §3.2 we
present a general scheme that is used to deal with the approximation of functions in Sobolev
spaces of negative order. Typical edge and edge-vertex singularities are analysed in §§3.3 and
3.4. In §3.5 we study vertex singularities, and the general approximation result for a function
which includes all the different types of singularities is given in §3.6.

3.1 Auxiliary lemmas

We collect several technical results.

Lemma 3.1 [3, Lemma 3.1] Let Ω ⊂ IR2 be a Lipschitz domain. If u ∈ H̃s(Ω) with 0 ≤ s ≤ 1,
then for i = 1, 2, ∂u

∂xi
∈ H̃s−1(Ω), and

∥∥∥∥
∂u

∂xi

∥∥∥∥
H̃s−1(Ω)

≤ C‖u‖H̃s(Ω),

where C > 0 is independent of u.
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Lemma 3.2 [3, Lemma 3.2] Let Ω, Ω1 be two Lipschitz domains in IRn, and Ω1 ⊂ Ω. Then,
for 0 ≤ s < 1/2, there holds

‖u‖H̃−s(Ω1) ≤ C‖u‖H̃−s(Ω) ∀u ∈ H̃−s(Ω), (3.1)

where the constant C > 0 is independent of u.

Let K be a triangle or parallelogram. We quote the following two lemmas (restricted to K)
from [9] (see Theorem 3.8 and Lemma 5.5 in Chapter 2 therein).

Lemma 3.3 Let m > 1 be real. Let µ = m− 1 if m < 2, µ < 1 if m = 2, and µ = 1 if m > 2.
Then Hm(K) ⊂ C0,µ(K̄), and

‖u‖C0,µ(K̄) ≤ C ‖u‖Hm(K).

Lemma 3.4 Let u ∈ Hs(K) for real s ≥ 0, and v ∈ C [s]′−1,1(K̄), where [s]′ denotes the minimal
integer such that s ≤ [s]′. Then uv ∈ Hs(K), and

‖uv‖Hs(K) ≤ C ‖u‖Hs(K) ‖v‖C[s]′−1,1(K̄).

Then we use these two lemmas to prove the following statement.

Lemma 3.5 Let u ∈ H̃−s(K) for real s ∈ [0, 1], and ϕ ∈ Hm(K) with m > 2. Then uϕ ∈
H̃−s(K), and

‖uϕ‖H̃−s(K) ≤ C ‖u‖H̃−s(K) ‖ϕ‖Hm(K).

Proof. Let v ∈ Hs(K) with s ∈ [0, 1]. Applying Lemmas 3.3 and 3.4 we conclude that
vϕ ∈ Hs(K), and

‖vϕ‖Hs(K) ≤ C ‖v‖Hs(K) ‖ϕ‖C0,1(K̄) ≤ C ‖v‖Hs(K) ‖ϕ‖Hm(K). (3.2)

Since u ∈ H̃−s(K), we use (3.2) to obtain for any v ∈ Hs(K)

|(v, uϕ)L2(K)| = |(vϕ, u)L2(K)| ≤ ‖u‖H̃−s(K) ‖vϕ‖Hs(K) ≤ C ‖u‖H̃−s(K) ‖v‖Hs(K) ‖ϕ‖Hm(K).

Hence

‖uϕ‖H̃−s(K) = sup
v∈Hs(K)

|(v, uϕ)L2(K)|
‖v‖Hs(K)

≤ C‖u‖H̃−s(K)‖ϕ‖Hm(K),

which proves the lemma. 2
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3.2 The general scheme of the error analysis

Our analysis of polynomial approximations for all typical singular functions in (2.1) will follow
the same scheme described in this section.

Let K be a triangle or parallelogram. The typical situation in the sections below is as follows:
given a singular function u ∈ H̃s(K) with −1 ≤ s < s0, find an approximating polynomial up
and estimate (u − up) in the norm of H̃s(K) for any −1 ≤ s < s0. Here, s0 ∈ (−1

2 , 0] depends
on the regularity of u. The main steps of our analysis are as follows.

First, we consider a triangle (or quadrilateral) Ω0 such that K ⊂ Ω0 and define a function
U satisfying the following properties:

U = 0 on ∂Ω0; (3.3)

∂U(x)

∂x2
= u(x) for x ∈ K. (3.4)

Then for given p ≥ 2 we find a polynomial Up approximating the function U on Ω0 such that
Up ∈ Qp(Ω0), Up = 0 on ∂Ω0, and

‖U − Up‖H̃s(Ω0) ≤ C p−2(α−s) | log p|β, 0 ≤ s < s0 + 1, (3.5)

where α > 0 and β ≥ 0 are independent of s and p.
Having (3.5) we can prove the result on the polynomial approximation of the singular function

u ∈ H̃s(K) (−1 ≤ s < s0).

Lemma 3.6 If the function U satisfies properties (3.3), (3.4), and if Up ∈ Qp(Ω0), Up = 0 on
∂Ω0 and inequality (3.5) holds, then there exists a polynomial up ∈ Qp(K) such that

‖u− up‖H̃s(K) ≤ C p−2(α−1−s) | log p|β, −1 ≤ s < s0. (3.6)

Here, α and β are the parameters from (3.5).

Proof. Let us define the polynomial up as

up(x) :=
∂Up(x)

∂x2
, x ∈ Ω0.

Then up ∈ Qp(Ω0), and recalling (3.4) one has

(u− up)(x) =
∂

∂x2
(U − Up)(x) for x ∈ K.

Therefore, using Lemma 3.2, Lemma 3.1 and estimate (3.5) we obtain for any fixed s ′ ∈ (1/2, s0+
1)

‖u− up‖H̃s′−1(K) =

∥∥∥∥
∂

∂x2
(U − Up)

∥∥∥∥
H̃s′−1(K)

≤ C
∥∥∥∥
∂

∂x2
(U − Up)

∥∥∥∥
H̃s′−1(Ω0)
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≤ C ‖U − Up‖H̃s′ (Ω0) ≤ C p−2(α−s′)| log p|β. (3.7)

Hence we have proved (3.6) for s = s′ − 1 ∈ (−1
2 , s0). On the other hand, applying Lemma 3.1

and inequality (3.5) with s = 0, we have

‖u− up‖H̃−1(K) =

∥∥∥∥
∂

∂x2
(U − Up)

∥∥∥∥
H̃−1(K)

≤ C ‖U − Up‖H0(K)

≤ C ‖U − Up‖H0(Ω0) ≤ C p−2α| log p|β.

Since −1/2 < s′−1 < s0 in (3.7) and α, β are independent of s′, interpolation between H̃−1(K)
and H̃s′−1(K) gives (3.6) for any s ∈ [−1,−1/2]. 2

Thus the problem of defining and analysing a polynomial approximation for a singular func-
tion u ∈ H̃s(K) is reduced to the construction of a function U satisfying properties (3.3), (3.4)
and the definition of a polynomial approximation Up of U which satisfies (3.5).

3.3 Approximation of edge singularities

Let K = Γj be one of the elements along an edge e, i.e., K̄ ∩ e 6= ø. We will study polynomial
approximations of the edge singularity term ue given by (2.2) over the element K. Without loss
of generality we assume that

ue(x1, x2) = xγ−1
2 | log x2|βχ1(x1)χ2(x2), (3.8)

where γ > 0, β ≥ 0 is integer, χ1 ∈ Hm(e) with m > 2γ + 2, χ1 vanishes in neighbourhoods of
the vertices v1, v2 ∈ ē, and χ2 is a C∞ cut-off function satisfying

χ2(x2) = 1 for 0 ≤ x2 ≤ ρe/2 and χ2(x2) = 0 for x2 ≥ ρe, (3.9)

for some ρe > 0. Here, for simplicity we write (x1, x2) for the local coordinates used in (2.2).
Observe that ue ∈ H̃s(K) for any s ∈ [−1, s0) with s0 = min {0, γ − 1/2} ∈ (−1/2, 0].

Let ρ1, ρ2, and d be real numbers such that the interval (ρ1, ρ2) (respectively, the interval
(0, d)) is the orthogonal projection of the element K onto the coordinate line x2 = 0 (respectively,
x1 = 0) (see Figure 1). We introduce two more C∞ cut-off functions χ̃1(x1) and χ̃2(x2) satisfying

χ̃1(x1) = 1 for x1 ∈ [ρ1, ρ2] and χ̃1(x1) = 0 for x1 ∈ IR\(ρ1 − ε, ρ2 + ε), (3.10)

χ̃2(x2) = 1 for 0 ≤ x2 ≤ d and χ̃2(x2) = 0 for x2 ≥ d+ ε (3.11)

with some ε > 0.
Let Q1 be the square (a1, a2)× (0, d1) with base along the line x2 = 0, where

a1 < ρ1 − ε < ρ2 + ε < a2, d1 > d+ ε. (3.12)
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Then we define the function U as

U(x) := χ̃1(x1)χ̃2(x2)

x2∫

0

ue(x1, ξ2)dξ2, x ∈ Q1.

x 2

x1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������������������������������������������������ρ −ε
1 2

ρ +ε

Q

K

1

0 ρ ρ a

d

d

d+

a 1 1

1

2 2 edge

ε

e

Figure 1: The element K along the edge e.

Remark 3.1 Observe that U = 0 on the line x2 = 0. Moreover, due to (3.10)–(3.12), the
function U vanishes in neighbourhoods of the lines x1 = a1, x1 = a2, x2 = d1 (hence U = 0 on
∂Q1), and on the element K one has

∂U(x)

∂x2
=

∂

∂x2




x2∫

0

ue(x1, ξ2)dξ2


 = ue(x), x ∈ K. (3.13)

Lemma 3.7 There exists a sequence Up ∈ Q2p+2(Q1), p = 2, 3, . . ., such that Up = 0 on ∂Q1,
and for 0 ≤ s < min {1, γ + 1/2}

‖U − Up‖H̃s(Q1) ≤ C p−2(γ+1/2−s) | log p|β. (3.14)

Proof. Introducing an auxiliary function Û by

Û(x) := [(x1 − a1)(x1 − a2)(x2 − d1)]−1U(x), x ∈ Q1,

and recalling properties of the function U (see Remark 3.1), we see that Û = 0 on ∂Q1. Fur-
thermore, one has

Û(x) =
χ̃1(x1)χ̃2(x2)

(x1 − a1)(x1 − a2)(x2 − d1)

x2∫

0

ue(x1, ξ2)dξ2
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=
χ1(x1)χ̃1(x1)χ̃2(x2)

(x1 − a1)(x1 − a2)(x2 − d1)

x2∫

0

ξγ−1
2 | log ξ2|βχ2(ξ2)dξ2

and after integration by parts (see Lemma 4.1 for details)

=
β∑

k=0

Ck(γ, β)xγ2 | log x2|k
χ1(x1)χ̃1(x1)χ̃2(x2)

(x1 − a1)(x1 − a2)(x2 − d1)
χ2(x2)

− χ1(x1)χ̃1(x1)χ̃2(x2)

(x1 − a1)(x1 − a2)(x2 − d1)

β∑

k=0

Ck(γ, β)

x2∫

0

ξγ2 | log ξ2|kχ′2(ξ2)dξ2

=: V (x)−W (x), Ck(γ, β) =
β!

γβ−k+1k!
. (3.15)

Here we used the fact that γ > 0. Observe that χ1(x1), when extended by zero onto IR, belongs
to Hm(IR). Hence

χ1(x1)χ̃1(x1)χ̃2(x2)

(x1 − a1)(x1 − a2)(x2 − d1)
∈ Hm(Q1) for m > 2γ + 2.

For the polynomial approximation of V in (3.15) we refer to [4, Theorem 3.2] if 0 < γ ≤ 1/2
and to [10, Theorem 6.1] if γ > 1/2: there exists a polynomial Vp ∈ Q2p(Q1) such that Vp = 0
on the line x2 = 0 and

‖V − Vp‖Hs(Q1) ≤ C p−2(γ+1/2−s) | log p|β, 0 ≤ s < min {1, γ + 1/2}. (3.16)

On the other hand, the integral in the expression of W in (3.15) is an analytic function of x2

vanishing in the neighbourhood of zero. Also χ′2(ξ2) = 0 for ξ2 ∈ (0, ρe/2) ∪ (ρe,+∞) and
therefore, W ∈ Hm

0 (Q1). Hence the standard approximation result [1, Theorem 4.1] yields a
polynomial Wp ∈ Qp+1(Q1) vanishing on ∂Q1 such that

‖W −Wp‖Hs(Q1) ≤ C p−(m−1) ‖W‖Hm(Q1), 0 ≤ s ≤ 1. (3.17)

Define Ûp := Vp−Wp. Then Ûp ∈ Q2p(Q1), Ûp = 0 on the line x2 = 0, and by (3.15)–(3.17) one
has for 0 ≤ s < min {1, γ + 1/2}

‖Û − Ûp‖Hs(Q1) ≤ C p−2(γ+1/2−s) | log p|β +C p−(m−1) ≤ C p−2(γ+1/2−s) | log p|β (3.18)

since m > 2γ + 2 ≥ 2γ + 2− 2s.
Now the polynomial Up(x) := (x1 − a1)(x1 − a2)(x2 − d1)Ûp(x) ∈ Q2p+2(Q1) satisfies the

conditions of the lemma. In fact, Up = 0 on ∂Q1, and for s ∈ [0,min {1, γ + 1/2}) \ {1/2}
inequality (3.14) is obtained by using (3.18):

‖U − Up‖H̃s(Q1) ≤ C ‖U − Up‖Hs(Q1) ≤ C ‖Û − Ûp‖Hs(Q1)
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≤ C p−2(γ+1/2−s) | log p|β , 0 ≤ s < min {1, γ + 1/2}, s 6= 1/2.

Here we used the fact that (U − Up) ∈ Hs
0(Q1) = H̃s(Q1) for the above values of s. Estimate

(3.14) for s = 1/2 then follows by interpolation between H 0(Q1) and H̃s′(Q1) with 1/2 < s′ <
min {1, γ + 1/2}. 2

Remark 3.2 If γ > 1/2 in (3.8), then U ∈ H1
0 (Q1), and inequality (3.16) in the proof of

Lemma 3.7 remains valid for s = 1, cf. [10, Theorem 6.1]. Therefore, in this case estimate
(3.14) holds for any s ∈ [0, 1].

Thus given the singular function ue in (3.8), we have defined the function U vanishing on ∂Q1

and satisfying (3.13). We have also found the polynomial Up(x) ∈ Q2p+2(Q1) approximating U
on Q1. Since Up = 0 on ∂Q1 and inequality (3.14) holds for the error of approximation (U−Up),
the application of Lemma 3.6 with Ω0 = Q1 ⊃ K = Γj , s0 = min {0, γ − 1/2} and α = γ + 1/2
gives the following result.

Theorem 3.1 Let ue be given by (2.2) on the element Γj. Then there exists a sequence uep ∈
Q2p+2(Γj), p = 2, 3, . . ., such that

‖ue − uep‖H̃s(Γj)
≤ C p−2(γ−1/2−s) | log p|β , −1 ≤ s < min {0, γ − 1/2}, (3.19)

where γ = γe1 > 0 and β = se1 ≥ 0 is an integer.

Remark 3.3 If γe1 > 1/2 in (2.2) then, due to Remark 3.2, estimate (3.19) holds for any
s ∈ [−1, 0].

Using the result of Theorem 3.1 we now study polynomial approximations of the edge-vertex
singularities uev2 . To this end, for a given edge e and vertex v ∈ ē, we consider an element
Γj ∈ Aev such that Γ̄j ∩ e 6= ø and v ∈ Γ̄j simultaneously.

Theorem 3.2 Let uev2 be given by (2.5) on the element Γj. Then there exists a sequence uev2,p ∈
Q3p+2(Γj), p = 2, 3, . . ., such that

‖uev2 − uev2,p‖H̃−1/2(Γj)
≤ C p−2γ | log p|β, (3.20)

where γ = γe1 > 0 and β = se1 ≥ 0 is an integer.

Proof. Assume that
uev2 (x1, x2) = xγ−1

2 | log x2|βχ2(x2)χ(x1, x2), (3.21)

where γ > 0, β ≥ 0 is integer, χ2 is a C∞ cut-off function defined by (3.9), and the function χ
extended by zero onto IR2+ := {(x1, x2); x2 > 0} lies in Hm(IR2+) with m > 2γ + 2.
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Let us denote f(x2) = xγ−1
2 | log x2|βχ2(x2), so that uev2 (x1, x2) = f(x2)χ(x1, x2). The func-

tion f has the same form as in (3.8) (with χ1(x1) ≡ 1). Therefore, repeating for the function f
the arguments which led us to Theorem 3.1, we find a polynomial fp ∈ Q2p+2(Γj) such that

‖f − fp‖H̃−1/2(Γj)
≤ C p−2γ | log p|β. (3.22)

Moreover, since f ∈ H̃−1/2(Γj),
‖fp‖H̃−1/2(Γj)

≤ C. (3.23)

The function χ (or its extension by zero) lies in Hm(Γj) with m > 2γ + 2 > 2. Therefore, using
Theorem 3.1 in [2], we find a polynomial χp ∈ Qp(Γj) satisfying

‖χ− χp‖Hs(Γj) ≤ C p−(m−s) ‖χ‖Hm(Γj), 0 ≤ s ≤ m. (3.24)

Now let us define uev2,p(x) := fp(x)χp(x) ∈ Q3p+2(Γj). Then recalling again that m > 2 we use
Lemma 3.5 and inequalities (3.22)–(3.24) to obtain for a fixed ε > 0

‖uev2 − uev2,p‖H̃−1/2(Γj)
≤ ‖χ(f − fp)‖H̃−1/2(Γj)

+ ‖fp(χ− χp)‖H̃−1/2(Γj)

≤ C‖f − fp‖H̃−1/2(Γj)
‖χ‖Hm(Γj) + C‖fp‖H̃−1/2(Γj)

‖χ− χp‖H2+ε(Γj)

≤ C p−2γ | log p|β + C p−(m−2−ε). (3.25)

We choose ε in (3.25) small enough such that 0 < ε ≤ m− 2γ − 2. Then p−(m−2−ε) ≤ p−2γ and
estimate (3.20) follows. 2

Remark 3.4 Polynomial approximations for the function uev2 given by (2.5) also satisfy the
more general estimate

‖uev2 − uev2,p‖H̃s(Γj)
≤ C p−2(γ−1/2−s) | log p|β, −1 ≤ s < min {0, γ − 1/2}. (3.26)

This fact is established by using the same arguments as in the proof of Theorem 3.2. We assume
that the function χ in (3.21), extended by zero onto IR2+, lies in Hm(IR2+) with m > 2γ + 3.
Then, instead of (3.25), we have for −1 ≤ s < min {0, γ − 1/2}

‖uev2 − uev2,p‖H̃s(Γj)
≤ C‖f − fp‖H̃s(Γj)

‖χ‖Hm(Γj ) + C‖fp‖H̃s(Γj)
‖χ− χp‖H2+ε(Γj)

≤ C p−2(γ−1/2−s) | log p|β + C p−(m−2−ε) ≤ C p−2(γ−1/2−s) | log p|β.

Here we chose ε such that 0 < ε ≤ m−2γ−3, since then the estimate p−(m−2−ε) ≤ p−2(γ−1/2−s)

holds for any s ∈ [−1,min {0, γ − 1/2}).
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3.4 Approximation of edge-vertex singularities

Before analysing the approximation of a general edge-vertex singularity we study a model sit-
uation of an element which has an angle less than π/4 at the vertex, see Figure 2. The corre-
sponding main result is given by Theorem 3.3 below. The general situation is then considered
by using affine transformations and proving that such transformations essentially do not alter
the singular behaviour of the edge-vertex singularity (in the sense that the convergence order of
the p-approximation is not affected), see Theorem 3.4.

For the model situation let Q = (0, 1) × (0, 1), T = {(x1, x2) ∈ Q; x2 < x1}, and let K ⊂ T
be a parallelogram with vertices (0, 0), (a, 0), (a cosϕ, a sinϕ), (a(1 + cosϕ), a sinϕ), where
0 < a < 1, 0 < ϕ < π/4 (see Figure 2). We consider a component of the edge-vertex singularity
terms uev1 over the square Q:

u(x1, x2) = xλ−γ1 xγ−1
2 | log x1|β1 | log x2|β2χ(r)χ̃(θ), (3.27)

where λ > −1/2, γ > 0, βi ≥ 0 (i = 1, 2) are integers, and χ, χ̃ ∈ C∞(IR+) are cut-off functions
satisfying

χ(r) = 1 for 0 ≤ r ≤ a/4 and χ(r) = 0 for r ≥ a/2,
χ̃(θ) = 1 for 0 ≤ θ ≤ ϕ/3 and χ̃(θ) = 0 for θ ≥ ϕ/2.

Here, (r, θ) denote the polar coordinates with origin at (0, 0).
Observe that u ∈ H̃s(K) for any s ∈ [−1, s0) with s0 = min {0, λ, γ − 1/2} ∈ (−1/2, 0].

Now we choose the domain Ω0 (that appears in the general procedure of Section 3.2) to be the
triangle defined before, Ω0 = T ⊃ K, and define the function U satisfying properties (3.3), (3.4).
To this end, we introduce an auxiliary cut-off function χ̃1 ∈ C∞(IR+),

χ̃1(θ) = 1 for 0 ≤ θ ≤ ϕ and χ̃1(θ) = 0 for θ ≥ π/4, (3.28)

and a function U ,

U(x) := χ̃1(θ)

x2∫

0

u(x1, ξ2)dξ2, x ∈ Q. (3.29)

Remark 3.5 Observe that U = 0 on ∂T and on [ a2 , 1]× [0, 1]. Moreover, due to (3.28), one has

∂U(x)

∂x2
=

∂

∂x2




x2∫

0

u(x1, ξ2)dξ2


 = u(x), x ∈ K.

In the following lemma we study polynomial approximations of U . This result is of central
importance to apply the procedure from Section 3.2 which is used to prove Theorem 3.3 below.
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Figure 2: The parallelogram K and support of the function u in (3.27).

Lemma 3.8 There exists a sequence Up ∈ Qp+3(T ), p = 2, 3, . . ., such that Up = 0 on ∂T , and
for 0 ≤ s < min {1, λ + 1, γ + 1/2}

‖U − Up‖H̃s(T ) ≤ C p−2(min {λ+1,γ+1/2}−s) | log p|β , (3.30)

where

β =

{
β1 + β2 + 1/2 if λ = γ − 1/2,
β1 + β2 otherwise.

(3.31)

The proof of Lemma 3.8 has a structure similar to the proof of Theorem 7.1 in [10]. Let

ξ(x1, x2) := x2(x1 − x2) = x1x2
x1 − x2

x1
= x1x2(1− tan θ), (3.32)

and

U0(x1, x2) :=
U(x1, x2)

ξ(x1, x2)
=

Φ(θ)

x1x2

x2∫

0

u(x1, ξ2)dξ2, (3.33)

where Φ(θ) = χ̃1(θ)
1−tan θ . Note that Φ ∈ C∞(0, π/2), Φ(0) = 1, and Φ(θ) = 0 for θ ≥ π/4, because

the function χ̃1 ∈ C∞(IR+) satisfies (3.28). Introducing a cut-off function ω such that

ω ∈ C∞(IR), ω(z) = 0 for z ≤ 1, ω(z) = 1 for z ≥ 2, (3.34)

we define for a small ∆ ∈ (0, 1)

ω∆(x2) = ω
(
x2
∆

)
, ω̃∆(x2) = 1− ω∆(x2), x2 ≥ 0. (3.35)
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Then we split U0 into a smooth function v0 and a function w0 with small support:

U0(x1, x2) =
U(x1, x2)

ξ(x1, x2)
= U0(x1, x2)ω∆(x2) + U0(x1, x2)ω̃∆(x2)

=: v0(x1, x2) + w0(x1, x2). (3.36)

In order to approximate the smooth part v0 in (3.36), we will need the following auxiliary
result whose proof is given in the appendix (Section 4.2).

Lemma 3.9 For any integers k, l ≥ 0 there exists a positive constant C(k + l) independent of
∆ such that for (x1, x2) ∈ Q

∣∣∣∣∣
∂k+lv0

∂xk1∂x
l
2

∣∣∣∣∣ ≤ C(k + l)

{
0 for x2 < ∆ or x2 > x1,

xλ−γ−1−k
1 xγ−1−l

2 | log ∆|β1+β2 otherwise.
(3.37)

Since v0 satisfies (3.37), the approximation result for this function immediately follows
from [10] (see the proof of Theorem 7.1 and Remark 7.1 therein):

Lemma 3.10 Let ∆ = p−2. If v0 satisfies (3.37), then there exists a sequence vp ∈ Qp+2(Q),
p = 2, 3, . . ., such that vp = 0 on the lines x2 = 0 and x1 = x2, and for any 0 ≤ s ≤ 1

‖ξv0 − vp‖Hs(T ) ≤ C p−2(min {λ+1,γ+1/2}−s) | log p|β1+β2 , (3.38)

where T = {(x1, x2); 0 < x1 < 1, 0 < x2 < x1}, and the constant C > 0 is independent of p.

The function w0 in (3.36) has small support,

suppw0 ⊂ R̄∆ =
{

(x1, x2) ∈ T̄ ; x1 ≤ a
2 , x2 ≤ 2∆

}
.

We approximate the function ξw0 by zero and study the error of this approximation in the norm
of the space Hs(T ).

Lemma 3.11 Let ∆ = p−2. Then for 0 ≤ s < min {1, λ + 1, γ + 1/2}
‖ξw0‖Hs(T ) ≤ C p−2(min {λ+1,γ+1/2}−s) | log p|σ, (3.39)

where σ = β1 + β2 if λ < γ − 1/2, σ = β1 + β2 + 1/2 if λ = γ − 1/2, σ = β2 otherwise, and
C > 0 is independent of p.

The proof of this lemma is given in the appendix (Section 4.2).

Remark 3.6 If λ > 0 and γ > 1/2 in (3.27) (i.e., min {2λ−1, 2γ−2} > −1), then U ∈ H 1
0 (T ),

and by using the same arguments as in the proof of Lemma 3.11 it is easy to show that
∣∣∣∣
∂(ξw0)

∂xi

∣∣∣∣ ≤ Cx
λ−γ
1 xγ−1

2 | log x1|β1 | log x2|β2 , i = 1, 2, x ∈ R∆,

and
‖ξw0‖H1(T ) ≤ C∆min {λ,γ−1/2}| log ∆|σ.

Thus, in this case estimate (3.39) holds for any s ∈ [0, 1].
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Proof of Lemma 3.8. Let us consider the function Û(x) = (1 − x1)−1U(x) for x ∈ Q. Then
analogously to (3.36) we define functions v0 and w0 such that

Û0(x) = Û(x)/ξ(x) = Û0(x)ω∆(x2) + Û0(x)ω̃∆(x2) =: v0(x) + w0(x), (3.40)

where ξ, ω∆, and ω̃∆ are introduced in (3.32) and (3.35).
Recalling Remark 3.5 we conclude that Û = 0 on ∂T and in the rectangle [ a2 , 1]× [0, 1]. Since

the factor (1 − x1)−1 does not alter the character of singular behaviour of U , the function v0

satisfies (3.37) and Lemmas 3.10, 3.11 remain valid. The application of Lemma 3.10 gives a
polynomial vp ∈ Qp+2(Q) vanishing on the lines x2 = 0 and x1 = x2. Then using (3.38), (3.39),
and decomposition (3.40) we obtain

‖Û − vp‖Hs(T ) ≤ ‖ξv0 − vp‖Hs(T ) + ‖ξw0‖Hs(T )

≤ Cp−2(min {λ+1,γ+1/2}−s)| log p|β, 0 ≤ s < min {1, λ + 1, γ + 1/2}, (3.41)

where β is defined by (3.31). Let us define Up(x) := (1− x1) vp(x). Then Up ∈ Qp+3(T ), Up = 0
on ∂T , and estimate (3.41) yields

‖U − Up‖Hs(T ) ≤ C ‖Û − vp‖Hs(T ) ≤ C p−2(min {λ+1,γ+1/2}−s) | log p|β. (3.42)

Since U = Up = 0 on ∂T , (U −Up) ∈ Hs
0(T )=H̃s(T ) for any s∈[0,min {1, λ+1, γ+ 1

2})\{1
2}, and

(3.42) immediately leads to (3.30) for these values of s. For s = 1
2 , estimate (3.30) then follows

by interpolation between H0(T ) and H̃s′(T ) with 1
2 < s′ < min {1, λ+1, γ+ 1

2}. 2

Thus we conclude that the function U defined by (3.29) and its polynomial approximation
Up satisfy all assumptions of Lemma 3.6 with Ω0 = T ⊃ K, s0 = min {0, λ, γ − 1/2}, α =
min {λ+ 1, γ+ 1/2}, and error estimate (3.5) being provided by Lemma 3.8. The application of
Lemma 3.6 gives the following result.

Theorem 3.3 Let u be given by (3.27) with λ > −1/2, γ > 0, and integers βi ≥ 0 (i = 1, 2).
Then there exists a sequence up ∈ Qp+3(K), p = 2, 3, . . ., such that

‖u− up‖H̃s(K) ≤ C p−2(min {λ,γ−1/2}−s) | log p|β, −1 ≤ s < min {0, λ, γ − 1/2}, (3.43)

where β is defined by (3.31), and K ⊂ T is a parallelogram with vertices (0, 0), (a cosϕ, a sinϕ),
(a, 0), (a(1 + cosϕ), a sinϕ) for some 0 < a < 1 and 0 < ϕ < π/4.

Remark 3.7 If λ > 0 and γ > 1/2 in (3.27), then due to the statement in Remark 3.6, estimate
(3.30) holds for any s ∈ [0, 1]. Therefore, in this case estimate (3.43) is true for any s ∈ [−1, 0].

Remark 3.8 Note that all the results above for edge-vertex singularities uev1 remain valid if,

instead of (3.27), the function u is defined as u(x1, x2) = xλ−γ1 xγ−1
2 | log x1|β1 | log x2|β2f(r, θ),

where f(r, θ) is a sufficiently smooth function vanishing for r ≥ a
2 and θ ≥ ϕ

2 .
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Now we consider a general element and prove an approximation result for edge-vertex sin-
gularities by applying an affine transformation and using Theorem 3.3. For a given edge e and
a vertex v ∈ ē let Γj be an element of Aev such that Γ̄j ∩ e 6= ø and v ∈ Γ̄j . We obtain the
following main result on the approximation of edge-vertex singularities on a general element
(touching the respective edge and vertex).

Theorem 3.4 Let uev1 be given by (2.4) on Γj. Then there exists a sequence uev1,p ∈ Qp+3(Γj),
p = 2, 3, . . ., such that

‖uev1 − uev1,p‖H̃s(Γj)
≤ C p−2(min {λ,γ−1/2}−s) | log p|β, −1 ≤ s < min {0, λ, γ − 1/2}, (3.44)

where λ = λv1 > −1/2, γ = γe1 > 0, β = qv1 +se1 +1/2 if λv1 = γe1−1/2, and β = qv1 +se1 otherwise.

Proof. Without loss of generality, we assume that

uev1 (xe1, xe2) = xλ−γe1 xγ−1
e2 | log xe1|β1 | log xe2|β2χv(rv)χ

ev(θv), (3.45)

and Γj is a parallelogram with vertices (0, 0), (b, 0), (b cosψ, b sinψ), (b(1+cosψ), b sinψ), where
b > 0 is the length of each side of Γj , ψ ∈ (0, π) is the inner angle of Γj at the vertex v = (0, 0).
Let K be the parallelogram considered in Theorem 3.3 (see Figure 2). Then Γj is the image of
K under the linear invertible mapping M given by

M :




xe1 = b

a

(
x1 + cosψ−cosϕ

sinϕ x2

)
,

xe2 = b sinψ
a sinϕ x2.

(3.46)

If f is a function defined on Γj , then we will denote by f̃ = f ◦ M the corresponding func-
tion defined on K. We may assume that the cut-off functions χv, χev in (3.45) are such that
supp (χvχev) ⊂ [0, 1)2, and

supp (χ̃vχ̃ev) ⊂ S =
{
(r, θ); 0 ≤ r ≤ a

2 , 0 ≤ θ ≤ ϕ
2

}
.

We also note that

xe1 =
b

a

(
x1 +

cosψ − cosϕ

sinϕ
x2

)
=
b (sinϕ+ (cosψ − cosϕ) tan θ)

a sinϕ
x1, (3.47)

and for θ ∈ [0, ϕ/2] one has

sinϕ+ (cosψ − cosϕ) tan θ ≥ min {sinϕ, sinϕ+ (cosψ − cosϕ) tan ϕ
2 }

= min {sinϕ, sinϕ+ (cosψ + 1) tan ϕ
2 − (1 + cosϕ) tan ϕ

2 }

= min {sinϕ, (cosψ + 1) tan ϕ
2 } > 0.
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Hence we deduce from (3.45)–(3.47)

ũev1 (x1, x2) = xλ−γ1 xγ−1
2

β1∑

k=0

β2∑

l=0

| log x1|k| log x2|lfk,l(θ)(χ̃vχ̃ev)(r, θ),

where fk,l(θ) are smooth functions on S.
We see that each component of ũev1 has the same form as the function u in (3.27) multiplied

by a smooth function F (r, θ). Therefore, applying Theorem 3.3 (see also Remark 3.8) we find a
polynomial approximation ũev1,p for the function ũev1 on K. Then the polynomial uev1,p = ũev1,p◦M−1

satisfies the conditions of the theorem. 2

3.5 Approximation of vertex singularities

In this section we analyse the approximation of vertex singularities. As before for edge-vertex
singularities, we first study a model situation on an element with restricted angle condition (the
corresponding result is given by Theorem 3.5). This theorem is then used to prove the analogous
result on general elements (Theorem 3.6).

For the model situation let κ > 1 and denote Sκ = {x ∈ Q; κ−1x1<x2<κx1}. Let K be a
parallelogram such that K ⊂ Q, (0, 0) is a vertex of K, the measure of the inner angle of K at
this vertex is equal to ϕ ∈ (0, π2 ), the length of each side of K is equal to a ∈ (0, 1), and K is
symmetric with respect to the line x1 = x2 (see Figure 3). Then

K ⊂ Sκ0 with κ0 = tan
(π

4 + ϕ
2

)
.

We consider a component of the vertex singularity terms over the square Q:

u(r, θ) = rλ−1| log r|βχ(r)w(θ), (3.48)

where (r, θ) denote local polar coordinates with origin at (0, 0), λ > −1/2, β ≥ 0 is an integer,
w(θ) is sufficiently smooth, and χ is a C∞ cut-off function satisfying

χ(r) = 1 for 0 ≤ r ≤ δ/2 and χ(r) = 0 for r ≥ δ. (3.49)

Here, δ ∈ (0, 1) is assumed to be small enough. Observing that u ∈ H̃s(K) for any s ∈ [−1, s0)
with s0 = min {0, λ} ∈ (−1/2, 0], we study polynomial approximations for u.

Assume that 0 < δ < κ−1
0 and choose κ such that

1 < κ0 < κ < δ−1. (3.50)

We introduce a C∞ cut-off function χ̃ satisfying

χ̃(θ) = 1 for arctan κ−1
0 ≤ θ ≤ arctan κ0,

χ̃(θ) = 0 for θ ≤ arctan κ−1 and θ ≥ arctan κ.

(3.51)
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Figure 3: The parallelogram K and the domains Sκ0 , Sκ.

Then we define

U(x) := χ̃(θ)

x2∫

0

u(r(x1, ξ2), θ(x1, ξ2))dξ2, x ∈ Q. (3.52)

Remark 3.9 Observe that U = 0 in [δ, 1]× [0, 1] because of (3.49). Moreover, due to (3.50) and
(3.51), U = 0 on ∂Sκ and in neighbourhoods of the lines xi = 1 (i = 1, 2). We also note that
for any x ∈ K there holds

∂U(x)

∂x2
=

∂

∂x2




x2∫

0

u(r(x1, ξ2), θ(x1, ξ2))dξ2


 = u(r(x), θ(x)).

In the following lemma we study polynomial approximations of U . As for the edge-vertex
singularities, this result is of central importance to apply the procedure from Section 3.2 which
is used to prove Theorem 3.5 below.

Lemma 3.12 There exists a sequence Up ∈ Qp+3(Sκ), p = 2, 3, . . ., such that Up = 0 on ∂Sκ
and for 0 ≤ s < min {1, λ + 1}

‖U − Up‖H̃s(Sκ) ≤ C p−2(λ+1−s) | log p|β. (3.53)

For the proof of Lemma 3.12 we use the approach applied first in [1] and developed later
in [10] (see, in particular, Theorem 5.1 in [1] and Theorem 8.1 in [10]). Let

ξ(x1, x2) = (x1 − κx2)(κx1 − x2) = r2Φ1(θ)
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and

U0(x1, x2) =
U(x1, x2)

ξ(x1, x2)
= r−2Φ2(θ)

x2∫

0

u(r(x1, ξ2), θ(x1, ξ2))dξ2,

where Φ2(θ) = χ̃(θ)/Φ1(θ) is a smooth function vanishing for θ ≤ arctan κ−1 and for θ ≥
arctan κ. Then we introduce a cut-off function ω by (3.34) and decompose U0 as

U0(x1, x2) =
U(x1, x2)

ξ(x1, x2)
= U0(x1, x2)ω∆(r) + U0(x1, x2)ω̃∆(r)

=: v0(x1, x2) + w0(x1, x2), (3.54)

where ω∆ and ω̃∆ were defined in (3.35) for a small ∆ ∈ (0, 1).
Thus we have a smooth function v0 vanishing for 0 ≤ r ≤ ∆ and a function w0 with small

support, suppw0 ⊂ K̄∆ = {x ∈ S̄κ; 0 ≤ r ≤ 2∆}. For the approximation of v0 we will need the
following lemma. Its proof is given in the appendix (Section 4.3).

Lemma 3.13 Let k and l be non-negative integers. Then there exists a constant C(k + l)
independent of ∆ such that for (x1, x2) ∈ Q and for i = 1, 2

∣∣∣∣∣
∂k+lv0

∂xk1∂x
l
2

∣∣∣∣∣ ≤ C(k + l)

{
0 for 0 < r < ∆,

xλ−2−k−l
i | log ∆|β otherwise.

(3.55)

Let us now assume that v0 satisfies (3.55) and not necessarily has the explicit form considered
above. The approximation of such functions by polynomials was investigated in [1] when proving
Theorem 5.1 therein, and was also studied in [10, Theorem 8.1]. The estimate for the error of
this approximation in the norm of H1(Sκ) immediately follows from [1], while [10] gives also
the estimate in the L2-norm and then, by interpolation, in the norm of H s(Sκ) with 0 ≤ s ≤ 1.
Thus the following statement holds.

Lemma 3.14 Let ∆ = p−2. If v0 satisfies (3.55), then there exists a sequence vp ∈ Qp+2(Q),
p = 2, 3, . . ., such that vp = 0 on the lines x1 = κx2 and x2 = κx1, and for any 0 ≤ s ≤ 1

‖ξv0 − vp‖Hs(Sκ) ≤ C p−2(λ+1−s) | log p|β. (3.56)

Recalling that suppw0 ⊂ K̄∆ = {x ∈ S̄κ; 0 ≤ r ≤ 2∆} (see (3.54)) we approximate the
function ξw0 by zero.

Lemma 3.15 Let ∆ = p−2. Then for 0 ≤ s < min {1, λ + 1}

‖ξw0‖Hs(Sκ) ≤ C p−2(λ+1−s) | log p|β. (3.57)

A proof of Lemma 3.15 is given in the appendix.
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Remark 3.10 If λ > 0 in (3.48), then U ∈ H1
0 (Sκ), and arguing as in the proof of Lemma 3.15

one can show that ∣∣∣∣
∂(ξw0)

∂xi

∣∣∣∣ ≤ Crλ−1| log r|β, i = 1, 2, x ∈ K∆,

and
‖ξw0‖H1(Sκ) ≤ C∆λ| log ∆|β.

Therefore, in this case estimate (3.57) holds for any s ∈ [0, 1].

Now we can prove the above formulated result on the approximation of the function U on Sκ.

Proof of Lemma 3.12. Considering the function Û(x) := (1 − x1)−1(1 − x2)−1U(x) for
x ∈ Q and recalling Remark 3.9 we note that Û = 0 on ∂Sκ and in neighbourhoods of the lines
xi = 1 (i = 1, 2). Then the proof repeats the same steps as the ones in the proof of Lemma 3.8:

i) Analogously to (3.54) we define v0 and w0 such that

Û0(x) = Û(x)/ξ(x) = Û0(x)ω∆(r) + Û0(x)ω̃∆(r) =: v0(x) +w0(x). (3.58)

ii) Since the factor (1−x1)−1(1−x2)−1 does not alter the character of the singular behaviour
of U , the function v0 satisfies (3.55), and Lemmas 3.14, 3.15 are valid. The application
of Lemma 3.14 gives a polynomial vp ∈ Qp+2(Q) vanishing on the lines x1 = κx2 and
x2 = κx1. Then Up(x) = (1 − x1)(1 − x2) vp(x) ∈ Qp+3(Q), Up = 0 on ∂Sκ, and using
(3.56), (3.57), (3.58) we prove the estimate

‖U − Up‖Hs(Sκ) ≤ Cp−2(λ+1−s)| log p|β, 0 ≤ s < min {1, λ + 1}. (3.59)

iii) Since U=Up=0 on ∂Sκ, estimate (3.59) leads to (3.53) for any s∈[0,min {1, λ+1})\{ 1
2},

because (U−Up) ∈ Hs
0(Sκ) = H̃s(Sκ) for these values of s. For s = 1

2 estimate (3.53) then

follows by interpolation between H0(Sκ) and H̃s′(Sκ) with 1
2 < s′ < min {1, λ + 1}. 2

We use the result of Lemma 3.12 to estimate the approximation error for the typical vertex
singularity u given by (3.48).

Theorem 3.5 Let u be given by (3.48) with λ > −1/2 and integer β ≥ 0. Then there exists a
sequence up ∈ Qp+3(K), p = 2, 3, . . ., such that

‖u− up‖H̃s(K) ≤ C p−2(λ−s) | log p|β, −1 ≤ s < min {0, λ}, (3.60)

where K is the parallelogram shown in Figure 3.
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Proof. Let the function U be defined by (3.52), and let Up be its polynomial approximation

given by Lemma 3.12. Since U = Up = 0 on ∂Sκ, ∂U(x)
∂x2

= u(x) for x ∈ K ⊂ Sκ (see Remark 3.9),
and inequality (3.53) holds, the desired statement follows by application of Lemma 3.6 with
Ω0 = Sκ, s0 = min {0, λ}, and α = λ+ 1. 2

Remark 3.11 If λ > 0 in (3.48) then, due to Remark 3.10, inequalities (3.56), (3.57), and
hence (3.53) are satisfied for 0 ≤ s ≤ 1. Therefore, in this case estimate (3.60) holds for any
s ∈ [−1, 0].

Remark 3.12 Analogously to Remark 3.8, the results of Lemma 3.12 and Theorem 3.5 remain
valid if, instead of (3.48), the function u has the form u(r, θ) = rλ−1| log r|βf(r, θ), where f(r, θ)
is sufficiently smooth and vanishes for r ≥ δ.

Now, using Theorem 3.5, we prove an approximation result for vertex singularities on a
general element attaching the vertex. For a given vertex v of Γ let Γj be an element with v ∈ Γ̄j.
We then have the following result.

Theorem 3.6 Let uv be given by (2.3) on Γj. Then there exists a sequence uvp ∈ Qp+3(Γj),
p = 2, 3, . . ., such that

‖uv − uvp‖H̃s(Γj)
≤ C p−2(λ−s) | log p|β, −1 ≤ s < min {0, λ},

where λ = λv1 > −1/2 and β = qv1 ≥ 0 is integer.

Proof. Without loss of generality we assume that

uv(rv, θv) = rλ−1
v | log rv|βχv(rv)wv(θv) (3.61)

and that Γj is the parallelogram shown in Figure 4 with all sides having the length b > 0. The
interior angle at the vertex v = (0, 0) is ψ = ψ2−ψ1 ∈ (0, π). Note that ψ1 ∈ [0, π) is permitted
(thus an edge of the element may coincide with part of the boundary of Γ).

If K is the parallelogram considered in Theorem 3.5 (see Figure 3), then Γj is the image of
K under the linear invertible mapping M given by

M :

{
xe1 = A1x1 +B1x2,

xe2 = A2x1 +B2x2,
(3.62)

where

A1 =
b (cosψ1 cosϕ1 − cosψ2 sinϕ1)

a cos 2ϕ1
, B1 =

b (cosψ2 cosϕ1 − cosψ1 sinϕ1)

a cos 2ϕ1
,

A2 =
b (sinψ1 cosϕ1 − sinψ2 sinϕ1)

a cos 2ϕ1
, B2 =

b (sinψ2 cosϕ1 − sinψ1 sinϕ1)

a cos 2ϕ1
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vertex v=(0,0)

edge e



















Γj

ψ

ψ2

ψ1

(bcosψ1,bsin ψ1)

(bcosψ2,b ψ2)

xe2

xe1

sin

Figure 4: The element Γj at the vertex v.

with ϕ1 = π
4 −

ϕ
2 . Hence

r2
v = x2

e1 + x2
e2 = (A2

1 +A2
2)x2

1 + (B2
1 +B2

2)x2
2 + 2(A1B1 +A2B2)x1x2,

and recalling that ψ2 − ψ1 = ψ, 2ϕ1 = π
2 − ϕ, we obtain by simple calculations

r2
v =

b2

a2 sin2 ϕ

(
(1− cosψ cosϕ)(x2

1 + x2
2) + 2(cosψ − cosϕ)x1x2

)

=
b2

a2 sin2 ϕ

(
1− cosψ cosϕ+ (cosψ − cosϕ) sin 2θ

)
r2. (3.63)

Note that for any θ ∈ [0, 2π) one has

1− cosψ cosϕ+(cosψ− cosϕ) sin 2θ

≥ min {(1− cosψ)(1+ cosϕ), (1+ cosψ)(1− cosϕ)} > 0. (3.64)

Now for any function f defined on Γj we denote by f̃ = f ◦M the corresponding function defined
on K. We may assume that the cut-off function χv in (3.61) is such that suppχv ⊂ [0, 1), and
supp χ̃v ⊂ S1 = {(r, θ); 0 ≤ r ≤ δ, 0 ≤ θ < 2π}. Therefore, we deduce from (3.61)–(3.64) that

ũv(r, θ) = rλ−1
β∑

k=0

| log r|kfk(r, θ),

where fk(r, θ) are smooth functions vanishing for r ≥ δ.
We see that the function ũv has the same form as given in Remark 3.12. Applying The-

orem 3.5 to this function, we find a polynomial approximation ũvp on K whose transform
uvp = ũvp ◦M−1 satisfies the conditions of the theorem. 2
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3.6 The general approximation result

Collecting the results of the previous sections, we are now able to estimate the error of approx-
imation of the function u given by (2.1)–(2.6).

Theorem 3.7 Let the function u be given by (2.1)–(2.6) on Γ. Also, let v0 ∈ V , e0 ∈ E(v0)
be such that min{λv0

1 + 1/2, γe01 } = minv∈V,e∈E(v) min{λv1 + 1/2, γe1}, with λv1 and γe1 being as in
(2.2)–(2.5). Then, for every p = 2, 3, . . . , there exists a function up ∈ V p such that

‖u− up‖H̃s(Γ) ≤ C max
{
p−k, p−2(min {λv01 ,γ

e0
1 −1/2}−s) | log p|β

}
(3.65)

for −1 ≤ s < min {0, λv0
1 , γ

e0
1 − 1/2}, and β is defined as in (3.31) (in terms of qv0

1 and se01 ).

Proof. We use Theorem 3.1, Theorem 3.2 together with Remark 3.4, Theorems 3.4 and 3.6 to
find piecewise polynomials uep, u

ev
2,p, u

ev
1,p, and uvp defined on Ae, Aev, Aev, and Av, respectively.

Extending uep, u
ev
2,p, u

ev
1,p and uvp by zero onto the remaining parts of Γ, we see that ‖ue−uep‖H̃s(Γ),

‖uev2 −uev2,p‖H̃s(Γ), ‖uev1 −uev1,p‖H̃s(Γ) and ‖uv−uvp‖H̃s(Γ) are bounded as in (3.19), (3.26), (3.44) and

(3.60), respectively. For the regular part ureg of u in (2.1) we use a standard L2 approximation
result giving a piecewise polynomial ureg,p which satisfies

‖ureg − ureg,p‖H̃s(Γ) ≤ ‖ureg − ureg,p‖L2(Γ) ≤ C p−k‖ureg‖Hk(Γ), −1 ≤ s ≤ 0.

Making use of the regularity as given by the parameters in (2.2)–(2.6), applying the triangle
inequality, and combining all the estimates, we obtain (3.65). 2

Remark 3.13 In the proof of Theorem 3.7 we used standard L2 approximation and the trivial
inclusion L2(Γ) ⊂ H̃s(Γ) (−1 ≤ s < 0) to estimate the approximation error for the regular part
of u. This individual estimate is not optimal but does not influence the optimality of the combined
estimate when considering enough singularity terms to obtain a sufficiently high regularity for
ureg. We do not know of any technique to directly estimate approximation errors in negative
order Sobolev norms, and the general technique of directional antiderivatives presented in §3.2
does not work for functions whose regularity is known only in Sobolev spaces.
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4 Appendix

4.1 Edge singularities

We proof a technical result which is used in Section 3.3.

Lemma 4.1 Let γ > 0, β ≥ 0 an integer and let the function χ2 be defined by (3.9). Then

x2∫

0

ξγ−1
2 | log ξ2|βχ2(ξ2)dξ2

=
β∑

k=0

Ck(γ, β)xγ2 | log x2|kχ2(x2)−
β∑

k=0

Ck(γ, β)

x2∫

0

ξγ2 | log ξ2|kχ′2(ξ2)dξ2

with Ck(γ, β) = β!
γβ−k+1k!

.

Proof. We define

J =

x2∫

0

ξγ−1
2 | log ξ2|βχ2(ξ2)dξ2

and perform integration by parts.
First let us assume that x2 ∈ (0, 1). Then for any ξ2 ∈ (0, x2) one has | log ξ2| = − log ξ2.

Hence

J = (−1)β
x2∫

0

ξγ−1
2 (log ξ2)βχ2(ξ2)dξ2

=

∣∣∣∣∣∣∣∣∣

ū = χ2(ξ2), dv̄ = ξγ−1
2 (log ξ2)βdξ2;

dū = χ′2(ξ2)dξ2, v̄ = ξγ2
β∑
k=0

(−1)β+kβ!
γβ−k+1k!

(log ξ2)k = (−1)βξγ2
β∑
k=0

Ck(γ, β)| log ξ2|k,

Ck(γ, β) = β!
γβ−k+1k!

∣∣∣∣∣∣∣∣∣

= ξγ2χ2(ξ2)
β∑

k=0

Ck(γ, β)| log ξ2|k
∣∣∣∣
x2

0
−

β∑

k=0

Ck(γ, β)

x2∫

0

ξγ2 | log ξ2|kχ′2(ξ2)dξ2

=
β∑

k=0

Ck(γ, β)xγ2 | log x2|kχ2(x2)−
β∑

k=0

Ck(γ, β)

x2∫

0

ξγ2 | log ξ2|kχ′2(ξ2)dξ2; (4.1)

here we used the fact that γ > 0.
Now suppose that x2 ≥ 1. Since χ2(ξ2) = 0 for ξ2 ≥ ρe, we have for sufficiently small ρe (in

particular, we assume here that ρe < 1, so that ρe < 1 ≤ x2)

J =

ρe∫

0

ξγ−1
2 (log ξ2)βχ2(ξ2)dξ2
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and analogously as above

= ξγ2χ2(ξ2)
β∑

k=0

Ck(γ, β)| log ξ2|k
∣∣∣∣
ρe

0
−

β∑

k=0

Ck(γ, β)

ρe∫

0

ξγ2 | log ξ2|kχ′2(ξ2)dξ2. (4.2)

Recalling again that χ2(ρe) = χ2(x2) = 0 and χ′2(ξ2) = 0 for ξ2 > ρe, we rewrite (4.2) as

J =
β∑

k=0

Ck(γ, β)xγ2 | log x2|kχ2(x2)−
β∑

k=0

Ck(γ, β)

x2∫

0

ξγ2 | log ξ2|kχ′2(ξ2)dξ2, x2 ≥ 1.

Therefore we conclude that equality (4.1) holds for any x2 ≥ 0. 2

4.2 Edge-vertex singularities

In this section we give detailed proofs for technical results stated in Section 3.4. The notation
of that section is used here.

We will use the following inequalities:

∣∣∣∣
∂r

∂x1

∣∣∣∣ = | cos θ| ≤ 1,

∣∣∣∣
∂r

∂x2

∣∣∣∣ = | sin θ| ≤ 1,

∣∣∣∣
∂θ

∂x1

∣∣∣∣ =

∣∣∣∣
sin θ

r

∣∣∣∣ =
| sin θ cos θ|

x1
≤ 1

x1
,

∣∣∣∣
∂θ

∂x2

∣∣∣∣ =

∣∣∣∣
cos θ

r

∣∣∣∣ =
| sin θ cos θ|

x2
≤ 1

x2
.

(4.3)

Furthermore, for any integer k ≥ 1, we derive by (3.34), (3.35)

∣∣∣∣∣
∂kω∆(x2)

∂xk2

∣∣∣∣∣ =

∣∣∣∣∣
∂kω̃∆(x2)

∂xk2

∣∣∣∣∣ =

{
0 for 0 < x2 < ∆ or x2 > 2∆,∣∣∣ω(k)

(
x2
∆

)∣∣∣
(

1
∆

)k
for ∆ ≤ x2 ≤ 2∆

≤ C x−k2 for x2 > 0. (4.4)

We will also need estimates for derivatives of the function u given by (3.27),

u(x1, x2) = xλ−γ1 xγ−1
2 | log x1|β1 | log x2|β2χ(r)χ̃(θ),

on the triangle T . Since χ, χ̃ ∈ C∞(IR+), one has for (x1, x2) ∈ T and for any ξ2 ∈ [0, x2]

|u(x1, ξ2)| ≤ Cxλ−γ1 ξγ−1
2 | log x1|β1 | log ξ2|β2 , (4.5)

and
∣∣∣∣
∂u(x1, ξ2)

∂x1

∣∣∣∣ = ξγ−1
2 | log ξ2|β2

∣∣∣∣
∂

∂x1

(
xλ−γ1 | log x1|β1χ(r(x1, ξ2))χ̃(θ(x1, ξ2))

)∣∣∣∣
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≤ Cξγ−1
2 | log ξ2|β2

[
xλ−γ−1

1 | log x1|β1 + β1x
λ−γ−1
1 | log x1|β1−1

+
∣∣∣xλ−γ1 | log x1|β1χ′(r) ∂r

∂x1
χ̃(θ)

∣∣∣+
∣∣∣xλ−γ1 | log x1|β1χ(r)χ̃′(θ) ∂θ

∂x1

∣∣∣
]

≤ Cξγ−1
2 | log ξ2|β2xλ−γ−1

1 max
{
β1| log x1|β1−1, | log x1|β1

}

≤ Cξγ−1
2 | log ξ2|β2xλ−γ−1

1 max
{

1, | log x1|β1

}
.

Here we applied inequalities (4.3) and used the fact that x1 ∈ (0, 1). Repeating this procedure
we obtain

∣∣∣∣∣
∂ku(x1, ξ2)

∂xk1

∣∣∣∣∣ ≤ Cξ
γ−1
2 | log ξ2|β2xλ−γ−k1 max

{
1, | log x1|β1

}
, ξ2 ∈ [0, x2], k ≥ 0, (4.6)

and, by similar arguments,

∣∣∣∣∣
∂k+lu(x1, x2)

∂xk1∂x
l
2

∣∣∣∣∣ ≤ Cx
λ−γ−k
1 xγ−1−l

2 max
{

1, | log x1|β1

}
max

{
1, | log x2|β2

}
, k, l ≥ 0. (4.7)

Proof of Lemma 3.9. Using (3.33) and (3.36) we write

∂k+lv0

∂xk1∂x
l
2

=
∑

k1+k2=k
k1,k2≥0

C(k1, k2)
∑

l1+l2=l
l1,l2≥0

C(l1, l2)
∂k1+l1

∂xk1
1 ∂x

l1
2

(
Φ(θ)ω∆(x2)

x1x2

)

× ∂l2

∂xl22

( x2∫

0

∂k2u(x1, ξ2)

∂xk2
1

dξ2

)
. (4.8)

Note that by the definition of v0 there holds

∂k+lv0

∂xk1∂x
l
2

= 0 outside the triangle T∆ =
{

(x1, x2) ∈ T ; x1 <
a
2 , x2 > ∆

}
.

Suppose now that x ∈ T∆. Since Φ(θ) = χ̃1(θ)/(1 − tan θ) is smooth we obtain with (4.3)

∣∣∣∣∣
∂|α|Φ

∂xα1
1 ∂xα2

2

∣∣∣∣∣ ≤ C x
−α1
1 x−α2

2 , α1, α2 ≥ 0, |α| = α1 + α2. (4.9)

Derivatives of ω∆(x2) for x2 ≥ ∆ satisfy estimates (4.4). Hence

∣∣∣∣∣
∂k+l

∂xk1∂x
l
2

(
ω∆(x2)x−1

1 x−1
2

)∣∣∣∣∣ ≤ C x
−1−k
1 x−1−l

2 for k, l ≥ 0,
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and by (4.9) we find
∣∣∣∣∣
∂k1+l1

∂xk1
1 ∂x

l1
2

(
Φ(θ)ω∆(x2)

x1x2

)∣∣∣∣∣ ≤ C x
−1−k1
1 x−1−l1

2 , k1, l1 ≥ 0. (4.10)

Derivatives of the function u on T∆ are estimated by using (4.6), (4.7):
∣∣∣∣∣
∂ku(x1, ξ2)

∂xk1

∣∣∣∣∣ ≤ Cξ
γ−1
2 | log ξ2|β2xλ−γ−k1 | log ∆|β1 , ξ2 ∈ [0, x2], k ≥ 0,

and ∣∣∣∣∣
∂k+lu(x1, x2)

∂xk1∂x
l
2

∣∣∣∣∣ ≤ Cx
λ−γ−k
1 xγ−1−l

2 | log ∆|β1+β2 , k, l ≥ 0,

because ∆ < x2 < x1 < 1 with sufficiently small ∆ > 0. Therefore,

∣∣∣∣∣

x2∫

0

∂k2u(x1, ξ2)

∂xk2
1

dξ2

∣∣∣∣∣ ≤ C xλ−γ−k2
1 | log ∆|β1

x2∫

0

ξγ−1
2 | log ξ2|β2dξ2

≤ C xλ−γ−k2
1 xγ2 | log ∆|β1+β2 , k2 ≥ 0,

∣∣∣∣∣
∂l2

∂xl22

( x2∫

0

∂k2u(x1, ξ2)

∂xk2
1

dξ2

)∣∣∣∣∣ =

∣∣∣∣∣
∂k2+l2−1u(x1, x2)

∂xk2
1 ∂x

l2−1
2

∣∣∣∣∣

≤ Cxλ−γ−k2
1 xγ−l22 | log ∆|β1+β2 , k2≥0, l2≥1.

(4.11)

Then the desired estimate in (3.37) is derived by using representation (4.8) and inequalities
(4.10), (4.11). 2

Proof of Lemma 3.11. According to equalities (3.29) and (3.36) one has

ξ(x)w0(x) = U(x)ω̃∆(x2) = χ̃1(θ)ω̃∆(x2)

x2∫

0

u(x1, ξ2)dξ2, x ∈ T.

Then using inequality (4.5) we estimate the norm ‖ξw0‖L2(T ) for sufficiently small ∆ > 0:

‖ξw0‖2L2(T ) = ‖ξw0‖2L2(R∆) ≤ C
2∆∫

0

a/2∫

x2

( x2∫

0

|u(x1, ξ2)|dξ2

)2

dx1 dx2

≤ C

2∆∫

0

a/2∫

x2

x
2(λ−γ)
1 | log x1|2β1

( x2∫

0

ξγ−1
2 | log ξ2|β2dξ2

)2

dx1 dx2
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≤ C

2∆∫

0

a/2∫

x2

x
2(λ−γ)
1 x2γ

2 | log x1|2β1 | log x2|2β2 dx1 dx2

≤ C





2∆∫
0
x2γ

2 | log x2|2β2x
2(λ−γ)+1
2 | log x2|2β1 dx2 if λ < γ − 1/2,

2∆∫
0
x2γ

2 | log x2|2β2 | log x2|2β1+1 dx2 if λ = γ − 1/2,

2∆∫
0
x2γ

2 | log x2|2β2 dx2 if λ > γ − 1/2

≤ C∆min {2λ+2,2γ+1}| log ∆|2σ, min {λ+ 1, γ + 1/2} > 0, (4.12)

where σ = β1 + β2 if λ < γ − 1/2, σ = β1 + β2 + 1/2 if λ = γ − 1/2, and σ = β2 otherwise.
For 0 < s < min {1, λ+ 1, γ + 1/2} we have

‖ξw0‖2Hs(T ) =

∞∫

0

t−2sK2(t, ξw0)
dt

t
, (4.13)

where
K2(t, ξw0) = inf

ξw0=w1+w2

(
‖w1‖2L2(T ) + t2 ‖w2‖2H1(T )

)
.

Let us define for any t ∈ (0,∆)

ωt(x2) = ω
(
x2
t

)
, ω̃t(x2) = 1− ωt(x2), x2 ≥ 0, (4.14)

where ω is as in (3.34). Then by (4.13) we have

‖ξw0‖2Hs(T ) ≤
∆∫

0

t−2s−1
(
‖ξw0ω̃t‖2L2(T ) + t2 ‖ξw0ωt‖2H1(T )

)
dt+

∞∫

∆

t−2s−1‖ξw0‖2L2(T )dt. (4.15)

We estimate the norms on the right-hand side of (4.15). Since ω̃t(x2) = 0 for x2 ≥ 2t, we use
the same arguments as in (4.12) to obtain

‖ξw0ω̃t‖2L2(T ) =

∥∥∥∥∥χ̃1(θ)ω̃∆(x2)ω̃t(x2)

x2∫

0

u(x1, ξ2)dξ2

∥∥∥∥∥

2

L2(R∆)

≤ C

2t∫

0

a/2∫

x2

( x2∫

0

|u(x1, ξ2)|dξ2

)2

dx1 dx2 ≤ Ctmin {2λ+2,2γ+1}| log t|2σ . (4.16)

In order to prove the upper bound for the norm ‖ξw0ωt‖H1(T ) we estimate derivatives of this
function on T . Since ωt(x2) = 0 for 0 ≤ x2 ≤ t, the function ξw0ωt vanishes outside the domain
R1

∆ = {(x1, x2) ∈ T ; x1 <
a
2 , t < x2 < 2∆}.
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Let x ∈ R1
∆. Then

∣∣∣∣
∂

∂x1
(ξ(x)w0(x)ωt(x2))

∣∣∣∣ ≤ C

∣∣∣∣
∂

∂x1
(ξ(x)w0(x))

∣∣∣∣ = C

∣∣∣∣∣∣
∂

∂x1

(
χ̃1(θ)ω̃∆(x2)

x2∫

0

u(x1, ξ2)dξ2

)∣∣∣∣∣∣

≤ C



∣∣∣∣
∂χ̃1

∂θ

∣∣∣∣
∣∣∣∣
∂θ

∂x1

∣∣∣∣

x2∫

0

|u(x1, ξ2)|dξ2 +

x2∫

0

∣∣∣∣
∂u(x1, ξ2)

∂x1

∣∣∣∣ dξ2


 ,

and applying inequalities (4.3), (4.5), (4.6) we have

∣∣∣∣
∂(ξw0ωt)

∂x1

∣∣∣∣ ≤ Cxλ−γ−1
1 | log x1|β1

x2∫

0

ξγ−1
2 | log ξ2|β2dξ2

≤ Cxλ−γ−1
1 xγ2 | log x1|β1 | log x2|β2 ≤ Cxλ−γ1 xγ−1

2 | log x1|β1 | log x2|β2 . (4.17)

Here we also used the fact that x2 < x1 <
a
2 < 1 on R1

∆.
Derivatives of the function ωt(x2) satisfy estimates similar to (4.4). Therefore, using (4.3)–

(4.5), we find

∣∣∣∣
∂

∂x2
(ξ(x)w0(x)ωt(x2))

∣∣∣∣ = C

∣∣∣∣∣∣
∂

∂x2

(
χ̃1(θ)ω̃∆(x2)ωt(x2)

x2∫

0

u(x1, ξ2)dξ2

)∣∣∣∣∣∣

≤ C

(∣∣∣∣
∂χ̃1

∂θ

∣∣∣∣
∣∣∣∣
∂θ

∂x2

∣∣∣∣+
∣∣∣∣∣
∂ω̃∆

∂x2

∣∣∣∣∣+

∣∣∣∣
∂ωt
∂x2

∣∣∣∣

) x2∫

0

|u(x1, ξ2)|dξ2 + C|u(x1, x2)|

≤ C


x−1

2 xλ−γ1 | log x1|β1

x2∫

0

ξγ−1
2 | log ξ2|β2dξ2 + xλ−γ1 xγ−1

2 | log x1|β1 | log x2|β2




≤ Cxλ−γ1 xγ−1
2 | log x1|β1 | log x2|β2 . (4.18)

Since ξw0ωt vanishes on ∂T and outside R1
∆, there holds

‖ξw0ωt‖2H1(T ) ≤ C|ξw0ωt|2H1(T ) ≤ C|ξw0ωt|2H1(R1
∆).

Hence we deduce from (4.17), (4.18)

‖ξw0ωt‖2H1(T ) ≤ C

2∆∫

t

a/2∫

x2

x
2(λ−γ)
1 x

2(γ−1)
2 | log x1|2β1 | log x2|2β2dx1dx2

≤ C

2∆∫

t

x
min {2λ−1,2γ−2}
2 | log x2|2σdx2
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≤ C

{
tmin {2λ,2γ−1}| log t|2σ if min {2λ− 1, 2γ − 2} < −1,

∆min {2λ,2γ−1}| log ∆|2σ if min {2λ− 1, 2γ − 2} > −1,
(4.19)

where σ is the same as in (4.12).
If min {2λ − 1, 2γ − 2} = −1, then we introduce a small ε such that 0 < ε < 2 − 2s and

estimate the norm ‖ξw0ωt‖H1(T ) as follows

‖ξw0ωt‖2H1(T ) ≤ C
2∆∫

t

x−1
2 | log x2|2σdx2 ≤ C| log t|2σ

2∆∫

t

x−1−ε
2 xε2dx2 ≤ C∆εt−ε| log t|2σ. (4.20)

Now using estimates (4.12), (4.16), and (4.19) for the norms we obtain by (4.15) for 0 < s <
min {1, λ+ 1, γ + 1/2}

‖ξw0‖2Hs(T ) ≤ C

∆∫

0

t−2s−1tmin {2λ+2,2γ+1}| log t|2σdt+ C∆min{2λ+2,2γ+1}| log ∆|2σ
∞∫

∆

t−2s−1dt

≤ C∆min{2λ+2,2γ+1}−2s| log ∆|2σ if min {2λ− 1, 2γ − 2} < −1, (4.21)

‖ξw0‖2Hs(T ) ≤ C

∆∫

0

t−2s−1tmin {2λ+2,2γ+1}| log t|2σdt+ C∆min {2λ,2γ−1}| log ∆|2σ
∆∫

0

t−2s−1 t2dt

+C∆min{2λ+2,2γ+1}| log ∆|2σ
∞∫

∆

t−2s−1dt

≤ C∆min {2λ+2,2γ+1}−2s| log ∆|2σ if min {2λ− 1, 2γ − 2} > −1. (4.22)

In the case when min {2λ−1, 2γ−2} = −1 we proceed similarly and use estimate (4.20) instead
of (4.19). Then recalling that 0 < ε < 2− 2s we have for 0 < s < 1

‖ξw0‖2Hs(T ) ≤ C

∆∫

0

t−2s−1
(
t2 + t2∆εt−ε

)
| log t|2σdt+ C∆2| log ∆|2σ

∞∫

∆

t−2s−1dt

≤ C




∆∫

0

t−2s+1| log t|2σdt+ ∆ε

∆∫

0

t−2s+1−ε| log t|2σdt+ ∆2−2s| log ∆|2σ



≤ C∆2−2s| log ∆|2σ if min {2λ − 1, 2γ − 2} = −1. (4.23)

Combining (4.12) and (4.21)–(4.23) we conclude that for any λ and γ such that min {λ+ 1, γ +
1/2} > 0 there holds

‖ξw0‖Hs(T ) ≤ C∆min {λ+1,γ+1/2}−s| log ∆|σ 0 ≤ s < min {1, λ+ 1, γ + 1/2}, (4.24)

where σ is the same as in (4.12), and C > 0 is independent of ∆.
Taking ∆ = p−2 and using (4.24) we obtain estimate (3.39). 2
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4.3 Vertex singularities

In this section we give detailed proofs for technical results stated in Section 3.5. The notation
of that section is used here.

We will need estimates for the function u given by (3.48) and for its derivatives over the
domain Sκ. Let us denote u(x1, ξ2) = u(r(x1, ξ2), θ(x1, ξ2)) for ξ2 ∈ [0, x2].

We recall that for any x ∈ Sκ there holds κ−1x1 < x2 < κx1. Then

xi ≤ r(x1, x2) = (x2
1 + x2

2)1/2 ≤ C(κ)xi for i = 1, 2, (4.25)

and for any ξ2 ∈ [0, x2] one has

x1 ≤ r(x1, ξ2) = (x2
1 + ξ2

2)1/2 ≤ r(x1, x2) ≤ C(κ)x1.

Therefore,
|u(x1, ξ2)| ≤ Cxλ−1

1 | log x1|β for any ξ2 ∈ [0, x2], (4.26)

and
∣∣∣∣
∂u(x1, ξ2)

∂x1

∣∣∣∣ ≤ C

[
rλ−2(x1, ξ2)

∣∣∣ ∂r∂x1

∣∣∣| log r(x1, ξ2)|β + βrλ−2(x1, ξ2)
∣∣∣ ∂r∂x1

∣∣∣| log r(x1, ξ2)|β−1+

+ rλ−1(x1, ξ2)| log r(x1, ξ2)|β
(∣∣∣χ′(r) ∂r

∂x1

∣∣∣+
∣∣∣w′(θ) ∂θ

∂x1

∣∣∣
) ]

≤ C
[
xλ−2

1 | log x1|β + βxλ−2
1 | log x1|β−1 + xλ−1

1 | log x1|β + xλ−2
1 | log x1|β

]

≤ Cxλ−2
1 max

{
1, | log x1|β

}
,

because χ and w are smooth. Repeating this procedure we obtain
∣∣∣∣∣
∂ku(x1, ξ2)

∂xk1

∣∣∣∣∣ ≤ Cx
λ−1−k
1 max

{
1, | log x1|β

}
, ξ2 ∈ [0, x2], k ≥ 0. (4.27)

Using similar arguments and inequalities (4.25) we find
∣∣∣∣∣
∂k+lu(x1, x2)

∂xk1∂x
l
2

∣∣∣∣∣ ≤ Cx
λ−1−k−l
i max

{
1, | log xi|β

}
, i = 1, 2, k, l ≥ 0. (4.28)

Proof of Lemma 3.13. For derivatives of v0 we write

∂k+lv0

∂xk1∂x
l
2

=
∑

k1+k2=k
k1,k2≥0

C(k1, k2)
∑

l1+l2=l
l1,l2≥0

C(l1, l2)
∂k1+l1

∂xk1
1 ∂x

l1
2

(
Φ2(θ)ω∆(r)r−2

)

× ∂l2

∂xl22

( x2∫

0

∂k2u(r(x1, ξ2), θ(x1, ξ2))

∂xk2
1

dξ2

)
. (4.29)
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Observe that by the definition of v0 we have

∂k+lv0

∂xk1∂x
l
2

= 0 for 0 < r < ∆ and outside Sκ.

Therefore, let us assume that x ∈ Sκ and r(x) > ∆ in the following. Then xi >
∆√

1+κ2
, and for

sufficiently small ∆ > 0 one has

max {1, | log xi|} ≤ C| log ∆|, i = 1, 2. (4.30)

Since Φ2 = χ̃/Φ1 is smooth and the derivatives of ω∆(r) satisfy estimates (4.4) with x2 replaced
by r, we obtain

∣∣∣∣∣
∂k+l

∂rk∂θl

(
Φ2(θ)ω∆(r)r−2

)∣∣∣∣∣ ≤ C
∑

k1+k2=k
k1,k2≥0

∣∣∣∣∣
∂k1ω∆(r)

∂rk1

∣∣∣∣∣

∣∣∣∣∣
∂k2r−2

∂rk2

∣∣∣∣∣ ≤ C r
−2−k, k, l ≥ 0.

Then we find by using (4.3) and (4.25)

∣∣∣∣∣
∂k1+l1

∂xk1
1 ∂x

l1
2

(
Φ2(θ)ω∆(r)r−2

)∣∣∣∣∣ ≤ C x
−2−k1−l1
i , i = 1, 2, k1, l1 ≥ 0. (4.31)

Estimates for the derivatives of the function u follow from inequalities (4.27), (4.28), and (4.30):

∣∣∣∣∣
∂ku(r(x1, ξ2), θ(x1, ξ2))

∂xk1

∣∣∣∣∣ ≤ C xλ−1−k
1 | log ∆|β, ξ2 ∈ [0, x2], k ≥ 0,

∣∣∣∣∣
∂k+lu(r(x1, x2), θ(x1, x2))

∂xk1∂x
l
2

∣∣∣∣∣ ≤ C xλ−1−k−l
i | log ∆|β, i = 1, 2, k, l ≥ 0.

Therefore,

∣∣∣∣∣

x2∫

0

∂k2u(r(x1, ξ2), θ(x1, ξ2))

∂xk2
1

dξ2

∣∣∣∣∣ ≤ C

x2∫

0

xλ−1−k2
1 | log ∆|βdξ2

≤ C xλ−k2
i | log ∆|β , k2 ≥ 0,

∣∣∣∣∣
∂l2

∂xl22

( x2∫

0

∂k2u(r(x1, ξ2), θ(x1, ξ2))

∂xk2
1

dξ2

)∣∣∣∣∣ =

∣∣∣∣∣
∂k2+l2−1u(r(x1, x2), θ(x1, x2))

∂xk2
1 ∂x

l2−1
2

∣∣∣∣∣

≤ C xλ−k2−l2
i | log ∆|β, k2 ≥ 0, l2 ≥ 1

(4.32)
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for i = 1, 2. Then representation (4.29) and estimates (4.31), (4.32) give the required bound in
(3.55). 2

Proof of Lemma 3.15. According to equality (3.52) and decomposition (3.54) we have

ξ(x)w0(x) = U(x)ω̃∆(r) = χ̃(θ)ω̃∆(r)

x2∫

0

u(r(x1, ξ2), θ(x1, ξ2))dξ2, x ∈ Sκ.

Then for sufficiently small ∆ > 0 we obtain, by using (4.26), (hereafter, θ1 = arctan κ−1, θ2 =
arctan κ, and u(x1, ξ2) = u(r(x1, ξ2), θ(x1, ξ2)))

‖ξw0‖2L2(Sκ) = ‖ξw0‖2L2(K∆) ≤ C
2∆∫

0

θ2∫

θ1

( x2∫

0

|u(x1, ξ2)|dξ2

)2

r dθdr

≤ C

2∆∫

0

θ2∫

θ1

x2λ−2
1 | log x1|2β x2

2 r dθdr

≤ C

2∆∫

0

r2λ+1| log r|2βdr ≤ C∆2λ+2| log ∆|2β, λ > −1, (4.33)

where C > 0 is independent of ∆. Let 0 < s < min {1, λ + 1}. Then

‖ξw0‖2Hs(Sκ) =

∞∫

0

t−2s inf
ξw0=w1+w2

(
‖w1‖2L2(Sκ) + t2 ‖w2‖2H1(Sκ)

) dt
t

≤
∆∫

0

t−2s−1
(
‖ξw0ω̃t‖2L2(Sκ) + t2 ‖ξw0ωt‖2H1(Sκ)

)
dt+

∞∫

∆

t−2s−1‖ξw0‖2L2(Sκ)dt,

(4.34)

where ωt and ω̃t are defined by (4.14) for any t ∈ (0,∆).
Now we estimate the norms on the right-hand side of (4.34). Since ω̃t(r) = 0 for r ≥ 2t, we

use the same arguments as in (4.33) to obtain

‖ξw0ω̃t‖2L2(Sκ) =

∥∥∥∥∥χ̃(θ)ω̃∆(r)ω̃t(r)

x2∫

0

u(x1, ξ2)dξ2

∥∥∥∥∥

2

L2(K∆)

≤ C

2t∫

0

θ2∫

θ1

( x2∫

0

|u(x1, ξ2)|dξ2

)2

r dθdr ≤ Ct2λ+2| log t|2β . (4.35)
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In order to estimate the norm ‖ξw0ωt‖H1(Sκ), we note that ξw0ωt = 0 outside the domain
K1

∆ = {(x1, x2) ∈ Sκ; t < r < 2∆} because ωt(r) = 0 for 0 ≤ r ≤ t. Let x ∈ K1
∆. Then

∣∣∣∣
∂(ξw0ωt)

∂x1

∣∣∣∣ =

∣∣∣∣∣∣
∂

∂x1

(
χ̃(θ)ω̃∆(r)ωt(r)

x2∫

0

u(x1, ξ2)dξ2

)∣∣∣∣∣∣

≤ C

(∣∣∣∣
∂χ̃

∂θ

∣∣∣∣
∣∣∣∣
∂θ

∂x1

∣∣∣∣+

∣∣∣∣
∂ω̃∆

∂r

∣∣∣∣
∣∣∣∣
∂r

∂x1

∣∣∣∣+

∣∣∣∣
∂ωt
∂r

∣∣∣∣
∣∣∣∣
∂r

∂x1

∣∣∣∣

) x2∫

0

|u(x1, ξ2)|dξ2 + C

x2∫

0

∣∣∣∣
∂u(x1, ξ2)

∂x1

∣∣∣∣dξ2

≤ C
(
r−1xλ−1

1 | log x1|βx2 + xλ−2
1 | log x1|βx2

)
≤ Crλ−1| log r|β. (4.36)

Here we applied inequalities (4.3), (4.26), (4.27) and also used the fact that the derivatives of
ω̃∆(r) and ωt(r) satisfy estimates (4.4) with x2 replaced by r. Similarly, using (4.3), (4.4), and
(4.26) we find

∣∣∣∣
∂(ξw0ωt)

∂x2

∣∣∣∣ ≤ C
(
r−1

x2∫

0

|u(x1, ξ2)|dξ2 + |u(x1, x2)|
)
≤ Crλ−1| log r|β. (4.37)

Since ξw0ωt vanishes on ∂Sκ and outside K1
∆, we deduce from (4.36), (4.37) that

‖ξw0ωt‖2H1(Sκ) ≤ C|ξw0ωt|2H1(K1
∆) ≤ C

2∆∫

t

θ2∫

θ1

r2λ−2| log r|2β r dθdr

≤ C

2∆∫

t

r2λ−1| log r|2βdr ≤ C





t2λ| log t|2β if λ < 0,

∆εt−ε| log t|2β if λ = 0,

∆2λ| log ∆|2β if λ > 0.

(4.38)

Here, for λ = 0, we introduced a small ε such that 0 < ε < 2− 2s, cf. (4.20).
Using estimates (4.33), (4.35), (4.38) for the norms on the right-hand side of (4.34) and

repeating the same arguments as in (4.21)–(4.23), we obtain

‖ξw0‖2Hs(Sκ) ≤ C∆2λ+2−2s| log ∆|2β , 0 < s < min {1, λ + 1}, λ > −1, (4.39)

where C > 0 is independent of ∆.
Taking ∆ = p−2 and using (4.33), (4.39) we prove estimate (3.57). 2
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