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Abstract

We prove an optimal a priori error estimate for the hp-version of the boundary element
method with hypersingular operators on piecewise plane open or closed surfaces. The un-
derlying meshes are supposed to be quasi-uniform.

The solutions of problems on polyhedral or piecewise plane open surfaces exhibit typical
singularities which limit the convergence rate of the boundary element method. On closed
surfaces, and for sufficiently smooth given data, the solution is H1-regular whereas, on open
surfaces, edge singularities are strong enough to prevent the solution from being in H1.

In this paper we cover both cases and, in particular, prove an optimal a priori error esti-
mate for the h-version with quasi-uniform meshes. For open surfaces we prove a convergence
like O(h1/2p−1), h being the mesh size and p denoting the polynomial degree.
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1 Introduction

We study the hp-version of the boundary element Galerkin method (BEM) for hypersingular
integral operators on piecewise plane surfaces. The particularly important case of open surfaces
is included. We prove an optimal a priori error estimate for the hp-version with quasi-uniform
meshes. Fixing polynomial degrees our result yields new optimal error estimates for the h-
version.

The first paper on the p-version of the BEM for problems in three dimensions appeared 1996,
[16]. It covers only polyhedral domains (and hypersingular operators) where solutions are in
H1 (on the boundary). The second paper [13], which appeared 1999, analyses the hp-version
of the BEM with geometrically graded meshes on open surfaces, for hypersingular and weakly
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singular operators. This method uses appropriate combinations of graded meshes and highly
non-uniform polynomial degrees to achieve a convergence that is faster than algebraic, even in
the presence of strong singularities that are inherent to problems on open surfaces. From those
results one cannot, however, deduce a priori error estimates for the p-version or hp-version with
quasi-uniform meshes. In the latter cases polynomial degrees are large also on elements close
to the singularities, whereas the hp-version with geometrically graded meshes uses lowest order
polynomials at the singularities. The hp-version with geometrically graded meshes is numerically
convincing and well analysed. However, the analysis of high order approximations of singularities
is challenging and with this paper we fill one of the gaps in the existing literature.

In our previous paper [7] we studied the p-version of the BEM for hypersingular operators
on open surfaces. The strongest singularities of typical solutions are edge singularities which
behave like y1/2 where y denotes the distance to an edge of the surface. Let us denote this
surface by Γ. Then this edge singularity is in the Sobolev space H 1−ε(Γ) for any ε > 0, but it
is not an element of H1(Γ). The energy space of hypersingular operators is H̃1/2(Γ), sometimes

denoted by H
1/2
00 (Γ). (For a definition of the Sobolev spaces see Section 3 below.) Therefore, in

order to find an optimal a priori error estimate, one has to analyse the approximation in H̃1/2(Γ)
of a function which is not in H1(Γ). One possibility to deal with this is to introduce weighted
Sobolev spaces. In particular, Jacobi-weighted Sobolev and Besov spaces are appropriate to
prove optimal error estimates for the p-version, see [12] for the BEM in two dimensions and
[3, 11] for the FEM in two and three dimensions. In order to obtain error estimates in the
energy norm, a key ingredient is to prove that the interpolation between appropriate weighted
spaces reproduces the energy space. For the space H̃1/2 on open curves or surfaces this result is
not immediate. In two dimensions it can be proved by using arguments of complex analysis (see
[6, Lemma 3.1]) and in three dimensions this is open. In this paper we follow the strategy of
[7] and avoid the use of weighted spaces by performing the approximation analysis in fractional
order Sobolev spaces.

For the particular edge singularity y1/2 we proved a convergence like O(p−1) for the p-
version [7]. Here, p denotes the polynomial degree of the approximating functions. In this
paper, we extend the analysis to the hp-version and the corresponding error estimate for the
edge singularity gives an upper bound that behaves like O(h1/2p−1). Here, h refers to the
maximum diameter of the elements.

Fixing polynomial degrees, our results on the hp-version in particular prove optimal a priori
error estimates for the h-version of the BEM with quasi-uniform meshes. In fact only very
little has been proved for the h-version of the BEM in three dimensions. For problems with
singularities we only know of [20] where von Petersdorff and Stephan present a sub-optimal
error estimate (for quasi-uniform and graded meshes). In the case of an open surface their result
states an error bound like O(h1/2−ε) for piecewise polynomial approximations of lowest order
on quasi-uniform meshes. Here, ε > 0 and the leading error term contains a factor C(ε) whose
behaviour for ε → 0 is unknown. Fixing p in this paper we prove an error bound like O(h1/2)
for any polynomial degree.

To prove results for the hp-version with quasi-uniform meshes one usually tries to make
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use of p-version results by scaling arguments. For the finite element method in two dimensions
see [4] and for the BEM in two dimensions we refer to [18]. There are, however, two principal
difficulties. First, p-version analysis employs different polynomial degrees in different parts of the
approximation. When only p-asymptotic estimates are wanted one approximates, for instance,
polynomial jumps of degree p over element interfaces by polynomial extensions of degree 2p+ 1
(cf. Lemma 3.4 below). This is not possible when aiming at h-version results where polynomial
degrees are fixed (e.g. uniformly at p). In that sense hp-estimates do not directly follow from
corresponding p-estimates by scaling arguments. Second, in this paper we are considering three-
dimensional problems where different types of singularities appear. This fact, together with the
need to directly work in fractional order Sobolev spaces, makes the use of scaling arguments
non-trivial.

Our analysis applies to open and closed surfaces which must be piecewise plane such that they
can be discretised by meshes consisting of triangles and parallelograms. For ease of presentation
we assume that Γ ⊂ IR3 is a plane open surface with polygonal boundary. Our model problem
reads: Find u ∈ H̃1/2(Γ) such that

〈Wu, v〉 = 〈f, v〉 ∀v ∈ H̃1/2(Γ). (1.1)

Here, f ∈ H−1/2(Γ) is a given functional and W is the hypersingular operator

Wu(x) := − 1

4π

∂

∂nx

∫

Γ
u(y)

∂

∂ny

1

|x− y| dSy.

The operator W : H̃1/2(Γ) → H−1/2(Γ) is continuous, symmetric and positive definite such
that any finite element method for (1.1) (then called boundary element method) converges quasi-
optimally, see [9] and [17]. Here, H−1/2(Γ) is the dual space of H̃1/2(Γ) and the latter is defined
below.

The rest of the paper is organised as follows. In the next section we define the hp-version
of the BEM, recall a regularity result for the solution of (1.1), and formulate the main theorem
stating an optimal a priori error estimate for the hp-version of the BEM. In Section 3 we
introduce the Sobolev spaces and collect several technical results. Of particular importance is
Lemma 3.5 which bounds a fractional order norm by local contributions. This is needed to
join local approximation results in fractional spaces to form a global estimate. Sections 4–6
are focused on the approximation analysis of particular singularities. In Section 7 we prove a
general approximation theorem and the main result given in Section 2.

2 hp-BEM and optimal a priori error estimate

For the approximate solution of (1.1) we apply the hp-version of the BEM on quasi-uniform
meshes. In what follows, h > 0 and p ≥ 1 will always specify the mesh parameter and a polyno-
mial degree, respectively. For any Ω ⊂ IR2 we will denote ρΩ = sup{diam(B); B is a ball in Ω}.
By A ' B we mean that A is equivalent to B, i.e., there exists a constant C > 0 such that
C B ≤ A ≤ C−1B where B and A may depend on a parameter (usually h or p) but C does not.
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Let M = {∆h} be a family of meshes ∆h = {Γj ; j = 1, . . . , J} on Γ, where Γj are open
triangles or parallelograms such that Γ̄ = ∪Jj=1Γ̄j. For any Γj ∈ ∆h we will denote hj = diam(Γj)
and ρj = ρΓj . Let h = max

j
hj . In this paper we will consider a family M of quasi-uniform

meshes ∆h on Γ in the sense that there exist positive constants σ1, σ2 independent of h such
that for any Γj ∈ ∆h and arbitrary ∆h ∈M

h ≤ σ1hj , hj ≤ σ2ρj . (2.1)

Let Q = (−1, 1)2 and T = {(x1, x2); 0 < x1 < 1, 0 < x2 < x1} be the reference square and
triangle, respectively. Then for any Γj ∈ ∆h one has Γj = Mj(K), where Mj is an affine
mapping with Jacobian |Jj | ' h2

j and K = Q or T as appropriate.
Below we will refer to three different unions of elements. The union of the elements at a

node v is denoted by Av, i.e., Āv := ∪{Γ̄j; v ∈ Γ̄j}, the union of the elements at one edge e by
Ae (the endpoints of e are not included in e), Āe := ∪{Γ̄j; Γ̄j ∩ e 6= ø}, and Aev := Av ∩Ae.

Further, Pp(I) denotes the set of polynomials of degree ≤ p on an interval I ⊂ IR. Moreover,
P1
p (T ) is the set of polynomials on T of total degree ≤ p, and P 2

p (Q) is the set of polynomials on

Q of degree ≤ p in each variable. Let K ⊂ IR2 be an arbitrary triangle or parallelogram, and let
K = M(T ) or K = M(Q) with an invertible affine mapping M . Then by Pp(K) we will denote
the set of polynomials v on K such that v ◦M ∈ P1

p (T ) if K is a triangle and v ◦M ∈ P2
p (Q) if

K is a parallelogram (in particular, we will use this notation for K = Q and K = T ). For given
p, we then consider the space of continuous, piecewise polynomials on the mesh ∆h ∈M,

V h,p
0 (Γ) := {v ∈ C0(Γ); v|∂Γ = 0, v|Γj ∈ Pp(Γj), j = 1, . . . , J}.

Note that V h,p
0 (Γ) ⊂ H̃1/2(Γ). Now, the hp-version of the BEM is: Find uhp ∈ V h,p

0 (Γ) such that

〈Wuhp, v〉 = 〈f, v〉 ∀v ∈ V h,p
0 (Γ). (2.2)

Before giving our main result stating an optimal a priori error estimate for (2.2) let us recall the
typical structure of the solution of the model problem for a sufficiently smooth right-hand side
function f .

Theorem 2.1 [20] Let V and E denote the sets of vertices and edges of Γ, respectively. For
v ∈ V , let E(v) denote the set of edges with v as an end point. Then, for sufficiently smooth
given f , the solution u of (1.1) has the form

u = ureg +
∑

e∈E
ue +

∑

v∈V
uv +

∑

v∈V

∑

e∈E(v)

uev, (2.3)

where, using local coordinate systems (rv, θv) and (xe1, xe2) with origin v, there hold the following
representations:

(i) The regular part ureg ∈ Hk(Γ), k > 3/2.
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(ii) The edge singularities ue have the form

ue =
me∑

j=1




sej∑

s=0

bejs(xe1)| log xe2|s

xγ

e
j

e2 χ
e
1(xe1)χe2(xe2), (2.4)

where γej+1 ≥ γej ≥ 1
2 , and me, s

e
j are integers. Here, χe1, χe2 are C∞ cut-off functions with

χe1 = 1 in a certain distance to the end points of e and χe1 = 0 in a neighbourhood of these
vertices. Moreover, χe2 = 1 for 0 ≤ xe2 ≤ δe and χe2 = 0 for xe2 ≥ 2δe with some δe ∈ (0, 1

2).
The functions bejsχ

e
1 ∈ Hm(e) for m as large as required.

(iii) The vertex singularities uv have the form

uv = χv(rv)
nv∑

i=1

qvi∑

t=0

Bv
it| log rv|trλ

v
i
v w

v
it(θv), (2.5)

where λvi+1 ≥ λvi > 0, nv, q
v
i ≥ 0 are integers, and Bv

it are real numbers. Here, χv is a C∞

cut-off function with χv = 1 for 0 ≤ rv ≤ τv and χv = 0 for rv ≥ 2τv with some τv ∈ (0, 1
2). The

functions wvit ∈ Hq(0, ωv) for q as large as required. Here, ωv denotes the interior angle (on Γ)
between the edges meeting at v.

(iv) The edge-vertex singularities uev have the form

uev = uev1 + uev2 ,

where

uev1 =
me∑

j=1

nv∑

i=1




sej∑

s=0

qvi∑

t=0

s∑

l=0

Bev
ijlts| log xe1|s+t−l| log xe2|l


xλ

v
i−γej
e1 x

γej
e2 χ

v(rv)χ
ev(θv) (2.6)

and

uev2 =
me∑

j=1

sej∑

s=0

Bev
js (rv)| log xe2|sx

γej
e2 χ

v(rv)χ
ev(θv) (2.7)

with

Bev
js (rv) =

s∑

l=0

Bev
jsl(rv)| log rv|l. (2.8)

Here, qvi , sej, λ
v
i , γej , χv are as above, Bev

ijlts are real numbers, and χev is a C∞ cut-off function

with χev = 1 for 0 ≤ θv ≤ βv and χev = 0 for 3
2βv ≤ θv ≤ ωv for some βv ∈ (0,min{ωv/2, π/8}].

The functions Bev
jsl may be chosen such that

Bev
js (rv)χ

v(rv)χ
ev(θv) = χjs(xe1, xe2)χe2(xe2), (2.9)

where the extension of χjs by zero onto IR2+ := {(xe1, xe2); xe2 > 0} lies in Hm(IR2+) for m as
large as required. Here, χe2 is a C∞ cut-off function as in (ii).

5



Remark 2.1 For an open surface there holds ureg ∈ Hk(Γ) ∩ H1
0 (Γ) and wvit in (2.5) satisfies

wvit ∈ Hq(0, ωv) ∩H1
0 (0, ωv). This will be needed in the proofs of Theorems 6.1 and 7.1.

The following theorem is the main result of this paper.

Theorem 2.2 Let u ∈ H̃1/2(Γ) be the solution of (1.1) with sufficiently smooth given function
f ∈ H1/2(Γ) such that the representation from Theorem 2.1 holds. Let v0 ∈ V , e0 ∈ E(v0) be
such that min{λv0

1 + 1/2, γe01 } = minv∈V,e∈E(v) min{λv1 + 1/2, γe1}, with λv1 and γe1 being as in
(2.4)–(2.7). Then, for any h > 0 and every p ≥ min {λv0

1 , γ
e0
1 − 1/2}, the BE approximation uhp

defined by (2.2) satisfies

‖u− uhp‖H̃1/2(Γ) ≤ C hmin {λv01 +1/2,γ
e0
1 } p−2 min {λv01 +1/2,γ

e0
1 } (1 + log(p/h))β+ν , (2.10)

where

β =

{
qv0

1 + se01 + 1
2 if λv0

1 = γe01 − 1
2 ,

qv0
1 + se01 otherwise,

(2.11)

for numbers qv0
1 , s

e0
1 as given in (2.6), and

ν =

{ 1
2 if p = min {λv0

1 , γ
e0
1 − 1

2},
0 otherwise.

(2.12)

If 1 ≤ p < min {λv0
1 , γ

e0
1 − 1/2}, then for any h > 0 there holds

‖u− uhp‖H̃1/2(Γ) ≤ C hp+1/2. (2.13)

The positive constants C in (2.10) and (2.13) are independent of h and p.

The proof of this Theorem is given in Section 7.

3 Preliminaries

We introduce the Sobolev spaces and prove several technical lemmas.
For details concerning Sobolev spaces we refer to [14, 10]. For a domain Ω ⊂ IRn and an

integer s let Hs(Ω) be the closure of C∞(Ω) with respect to the norm

‖u‖2Hs(Ω) = ‖u‖2Hs−1(Ω) + |u|2Hs(Ω) (s ≥ 1).

Here,

|u|2Hs(Ω) =

∫

Ω
|Dsu(x)|2 dx, and H0(Ω) = L2(Ω),

where |Dsu(x)|2 =
∑
|α|=s |Dαu(x)|2 in the usual notation with multi-index α = (α1, . . . , αn)

and with respect to Cartesian coordinates x = (x1, . . . , xn). For a positive non-integer s with
s = m+ σ with integer m ≥ 0 and 0 < σ < 1, the norm in H s(Ω) is

‖u‖2Hs(Ω) = ‖u‖2Hm(Ω) + |u|2Hs(Ω)
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with semi-norm

|u|2Hs(Ω) =
∑

|α|=m

∫

Ω

∫

Ω

|Dαu(x)−Dαu(y)|2
|x− y|n+2σ

dx dy.

The closure of C∞0 (Ω) with respect to the above norms is denoted byH s
0(Ω). For a domain Ω with

Lipschitz boundary ∂Ω, H̃1/2(Ω) denotes the space of functions in H1/2(Ω) whose extensions by
zero are elements of H1/2(IRn). A norm in this space is

‖u‖2
H̃1/2(Ω)

= ‖u‖2L2(Ω) + |u|2H1/2(Ω) +

∫

Ω

|u(x)|2
dist(x, ∂Ω)

dx.

For non-integer s, we equivalently define the Sobolev spaces by real interpolation:

Hs(Ω) =
(
L2(Ω),H1(Ω)

)
s,2

(0 < s < 1)

and
H̃1/2(Ω) =

(
L2(Ω),Hs

0(Ω)
)

1
2s
,2

(1/2 < s ≤ 1).

For integer k ≥ 0 and µ ∈ [0, 1] we also consider the spaces of continuously differentiable
functions Ck(Ω̄) and Ck,µ(Ω̄) with norms

‖u‖Ck(Ω̄) =
∑

|α|≤k
sup
x∈Ω
|Dαu(x)|

and

‖u‖Ck,µ(Ω̄) = ‖u‖Ck(Ω̄) +
∑

|α|=k
sup

x,y∈Ω, x6=y

|Dαu(x)−Dαu(y)|
|x− y|µ .

Now let us collect several technical lemmas. We will need the following scaling result.

Lemma 3.1 Let Kh and K be two open subsets of IRn such that Kh = M(K) under an invertible
affine mapping M . Let diamKh ' ρKh ' h and diamK ' ρK ' 1. If u ∈ Hm(Kh) with integer
m ≥ 0, then û = u ◦M ∈ Hm(K) and there exists a positive constant C depending on m but
not on h or u such that

|û|Hm(K) ≤ Chm−
n
2 |u|Hm(Kh). (3.1)

Analogously for any û ∈ Hm(K) there holds

|u|Hm(Kh) ≤ Ch
n
2
−m|û|Hm(K). (3.2)

Moreover, if û ∈ Hs(K) with real s ∈ [0,m], then

C1h
n
2 ‖û‖Hs(K) ≤ ‖u‖Hs(Kh) ≤ C2h

n
2
−s‖û‖Hs(K). (3.3)

For the proof of (3.1), (3.2) see [8, Theorem 3.1.2]. Inequalities (3.3) then follow by interpo-
lation (see [2, Lemma 4.3]).
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Remark 3.1 The notation introduced in Lemma 3.1 will be used frequently in this paper. If
not specified otherwise, Kh ⊂ IR2 is assumed to be a triangle or parallelogram (an element of
the mesh ∆h) such that diamKh ' ρKh ' h (see (2.1)) and Kh = M(K), where K ⊂ IR2 is
a triangle or parallelogram with diamK ' ρK ' 1 and M is an invertible affine mapping of
K onto Kh. The functions u and û defined on Kh and K, respectively, satisfy the relations:
û = u ◦M and u = û ◦M−1.

The following two lemmas are Theorem 3.8 and Lemma 5.5 of Chapter 2 in [15] (for the case
of a triangle or parallelogram K).

Lemma 3.2 Let m > 1 be real. Let µ = m− 1 if m < 2, µ < 1 if m = 2, and µ = 1 if m > 2.
Then Hm(K) ⊂ C0,µ(K̄), and

‖u‖C0,µ(K̄) ≤ C ‖u‖Hm(K).

Lemma 3.3 Let u ∈ Hs(K) for real s ≥ 0, and v ∈ C [s]′−1,1(K̄), where [s]′ denotes the minimal
integer such that s ≤ [s]′. Then uv ∈ Hs(K), and

‖uv‖Hs(K) ≤ C ‖u‖Hs(K) ‖v‖C[s]′−1,1(K̄).

The next lemma is the scaled version of Lemma 9.2 in [16].

Lemma 3.4 Let Kh be a triangle (respectively, a parallelogram) satisfying the assumptions
of Lemma 3.1, and let lh be a side of Kh with vertices v1, v2. Let whp ∈ Pp(lh) be such
that whp(v1) = whp(v2) = 0, and ‖whp‖L2(lh) ≤ f(h, p). Then there exists uhp ∈ P2p+1(Kh)

(respectively, uhp ∈ Pp(Kh)) such that uhp = whp on lh, uhp = 0 on ∂Kh\lh, and for 0 ≤ s ≤ 1

‖uhp‖Hs(Kh) ≤ C h1/2−s p−1+2s f(h, p).

Proof. One has (see Remark 3.1) Kh = M(K) with K = T (respectively, K = Q). Let l be a
side of K such that lh = M(l). Then ŵhp = whp ◦M ∈ Pp(l) and by Lemma 3.1 there holds

‖ŵhp‖L2(l) ≤ Ch−1/2‖whp‖L2(lh) ≤ Ch−1/2f(h, p).

Applying now Lemma 9.2 of [16] to the function ŵhp we find a polynomial ûhp ∈ P1
2p+1(K), K =

T (respectively, ûhp ∈ P2
p (K), K = Q) such that ûhp = ŵhp on l, ûhp = 0 on ∂K\l, and for

0 ≤ s ≤ 1
‖ûhp‖Hs(K) ≤ C h−1/2 p−1+2s f(h, p).

Setting uhp = ûhp ◦ M−1 and using again Lemma 3.1 it is easy to see that uhp satisfies all
conditions of the lemma. 2

The next lemma is to split the norm in a fractional order Sobolev space onto sub-domains
and is critical to prove global approximation results by using local approximation results on

8



sub-domains. Since this result is of wider interest we present it in a more general form than
needed in this paper.

Let Γ ⊂ IRn (n = 2, 3) be a polygon (n = 2) or a polyhedron (n = 3), and let ∆ = {Γj} be
a regular mesh on Γ consisting of shape regular elements (being affine mappings of a bounded
number of reference elements). For each Γj ∈ ∆ we denote hj = diam(Γj). In the lemma below
we will consider a locally quasi-uniform mesh ∆ on Γ in the sense that there exists a positive
constant σ1 independent of the mesh such that for any patch δ = {Γi} ⊂ ∆ of neighbouring
elements there holds

max
j: Γj∈δ

hj ≤ σ1hi for each Γi ∈ δ.

Lemma 3.5 Let Γ ⊂ IRn (n = 2, 3) be a polygon (n = 2) or a polyhedron (n = 3), and let
∆ = {Γj} be a locally quasi-uniform mesh on Γ. Then for 0 < s < 1

‖u‖2Hs(Γ) ≥
∑

j

‖u‖2Hs(Γj)
∀u ∈ Hs(Γ), (3.4)

and for 1/2 < s < 1 there holds

‖u‖2Hs(Γ) ≤ C
∑

j

(
h−2s
j ‖u‖2L2(Γj)

+ |u|2Hs(Γj)

)
∀u ∈ Hs(Γ). (3.5)

The positive constants C in (3.4), (3.5) are independent of u and the mesh ∆.

Proof. Since ‖u‖2L2(Γ) =
∑
j
‖u‖2L2(Γj)

, it is enough to consider the semi-norm in H s(Γ). For

s ∈ (0, 1) one has

|u|2Hs(Γ) =
∑

i,j

∫

Γi

∫

Γj

|u(x)− u(y)|2
|x− y|n+2s

dx dy

=

( ∑

i,j: Γ̄i∩Γ̄j=ø
+

∑

i,j: Γ̄i∩Γ̄j 6=ø, i6=j
+
∑

i=j

)∫

Γi

∫

Γj

|u(x)− u(y)|2
|x− y|n+2s

dx dy

=: I1 + I2 + I3. (3.6)

This immediately leads to (3.4), because I1, I2 ≥ 0 and

I3 =
∑

j: Γj∈∆

|u|2Hs(Γj)
. (3.7)

Let 1
2 < s < 1. We will estimate the terms I1 and I2 in (3.6) separately. Let Γi, Γj ∈ ∆ be such

that Γ̄i ∩ Γ̄j = ø. Denoting dij = dist (Γi,Γj) we have

∫

Γi

∫

Γj

|u(x) − u(y)|2
|x− y|n+2s

dx dy ≤ 2

dn+2s
ij

(∫

Γj

|u(x)|2 dx
∫

Γi

dy +

∫

Γj

dx

∫

Γi

|u(y)|2 dy
)

9



≤ C

dn+2s
ij

(
hni ‖u‖2L2(Γj)

+ hnj ‖u‖2L2(Γi)

)
.

Hence

I1 ≤ C
∑

i,j: Γ̄i∩Γ̄j=ø

hni ‖u‖2L2(Γj)
+ hnj ‖u‖2L2(Γi)

dn+2s
ij

= C
∑

i,j: Γ̄i∩Γ̄j=ø

2hnj ‖u‖2L2(Γi)

dn+2s
ij

= C
∑

i

‖u‖2L2(Γi)

∑

j: Γ̄i∩Γ̄j=ø

2hnj

dn+2s
ij

. (3.8)

Let us fix an arbitrary Γi ∈ ∆. We introduce polar coordinates with the origin at some point
xi ∈ Γi and denote by ri = ri(x) = |x − xi| the polar radius. Then there exists a positive
constant C independent of i and the mesh ∆ such that

dij = dist (Γi,Γj) ≥ Cri(x) ∀x ∈ Γj , ∀Γj ∈ {Γj ; Γ̄j ∩ Γ̄i = ø}.

Moreover,
∪{Γ̄j; Γ̄j ∩ Γ̄i = ø} ⊂ {x ∈ Γ̄; κhi ≤ |x− xi| ≤ R}

with some constants κ and R independent of the mesh. Therefore we estimate for fixed Γi

∑

j: Γ̄i∩Γ̄j=ø

hnj

dn+2s
ij

≤ C
∑

j: Γ̄i∩Γ̄j=ø

∫

Γj

dx

dn+2s
ij

≤ C
∑

j: Γ̄i∩Γ̄j=ø

∫

Γj

dx

rn+2s
i (x)

≤ C

R∫

κhi

r−n−2s
i rn−1

i dri ≤ C h−2s
i .

Then we obtain by (3.8)
I1 ≤ C

∑

i: Γi∈∆

h−2s
i ‖u‖2L2(Γi)

. (3.9)

In order to estimate I2 we again fix an arbitrary Γi ∈ ∆ and denote by Khi the patch of
neighbouring elements touching Γi, i.e., K̄hi = ∪{Γ̄j; Γ̄j ∩ Γ̄i 6= ø}. Observe that the number
of elements in any patch Khi is bounded by a constant independent of i and ∆. Let K be an
open subset in IRn such that Khi = M(K), where M is the affine mapping (scaling) satisfying
M : xk = hix̂k, k = 1, . . . , n, x ∈ Khi , x̂ ∈ K. Then K̄ = ∪jK̄j , where Kj = M−1(Γj) for each
Γj ⊂ Khi . Moreover, due to the local quasi-uniformity of the mesh, diamK ' diamKj ' 1 for
each Kj ⊂ K. Therefore

|u|2Hs(Khi) ' h
n−2s
i |û|2Hs(K), ‖u‖2L2(Γj)

' hni ‖û‖2L2(Kj)
, |u|2Hs(Γj)

' hn−2s
i |û|2Hs(Kj)
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with û = u ◦M , and applying Lemma 3.1 of [7] we obtain

|u|2Hs(Khi) ' hn−2s
i |û|2Hs(K) ≤ Chn−2s

i

∑

j:Kj⊂K

(
‖û‖2L2(Kj)

+ |û|2Hs(Kj)

)

≤ Chn−2s
i

∑

j:Γj⊂Khi

(
h−ni ‖u‖2L2(Γj)

+ h−n+2s
i |u|2Hs(Γj)

)

≤ C
∑

j:Γj⊂Khi

(
h−2s
i ‖u‖2L2(Γj)

+ |u|2Hs(Γj)

)
. (3.10)

Since hj ' hi for every Γj ⊂ Khi and each patch Khi has a bounded number of elements, we
estimate by (3.10)

I2 =
∑

i

∑

j: Γ̄j∩Γ̄i 6=ø, j 6=i

∫

Γi

∫

Γj

|u(x) − u(y)|2
|x− y|n+2s

dx dy ≤
∑

i

|u|2Hs(Khi)

≤ C
∑

j: Γj∈∆

(
h−2s
j ‖u‖2L2(Γj)

+ |u|2Hs(Γj )

)
. (3.11)

Now inequality (3.5) follows from (3.7), (3.9), and (3.11) making use of decomposition (3.6). 2

Remark 3.2 Inequality (3.4) was given in [19, Lemma 3.2] for the case when the norm in H s

is defined by the method of complex interpolation, and was proved in [2] in the case of real
interpolation.

4 Auxiliary approximation results

In this section we formulate several results regarding the approximation of smooth and singular
functions. For the approximation of smooth functions we will need the following lemma.

Lemma 4.1 Let Kh and K be two triangles (parallelograms) satisfying the assumptions of
Lemma 3.1, and let l be a side of K. Suppose that u ∈ Hm(Kh). Then û = u ◦M ∈ Hm(K)
and there exists a family of operators {π̂p}, p = 1, 2, . . . , π̂p : Hm(K)→ Pp(K) such that

‖û− π̂pû‖Hq(K) ≤ Chµ−1p−(m−q)‖u‖Hm(Kh), m ≥ 0, 0 ≤ q ≤ m, (4.1)

|(û− π̂pû)(x̂)| ≤ Chµ−1p−(m−1)‖u‖Hm(Kh), m > 1, x̂ ∈ K, (4.2)

‖û− π̂pû‖Hs(l) ≤ Chµ−1p−(m−s−1/2)‖u‖Hm(Kh), m > 3/2, s = 0, 1, (4.3)

where µ = min {m, p + 1}, and the positive constants C in (4.1)–(4.3) are independent of u, p,
and h but depend on m.
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Proof. Making use of Lemma 4.4 in [4], estimates (4.1)–(4.3) follow from the corresponding
results of [5, Lemma 3.1] (for details, see [4, Lemma 4.5], in particular, estimates (4.14), (4.16)
therein). 2

Now we can prove the result on the approximation of smooth functions. It gives estimates
for the error of this approximation in the norms of the spaces H̃1/2(Γ) and Hs(Γ), s ∈ [0, 1].
For the space H1(Γ) this result has been proved before in [4, Theorem 4.6].

Proposition 4.1 Let m > 3/2. Then for u ∈ Hm(Γ) ∩H1
0 (Γ) there exists uhp ∈ V h,p

0 (Γ) such
that for s ∈ [0, 1]

‖u− uhp‖Hs(Γ) ≤ Chµ−sp−(m−s)‖u‖Hm(Γ), µ = min {m, p+ 1} (4.4)

if the mesh ∆h on Γ does not contain triangles, and

‖u− uhp‖Hs(Γ) ≤ Chµ−sp−(m−s̃)‖u‖Hm(Γ) (4.5)

if ∆h contains triangles; here µ is the same as in (4.4) and

s̃ =





1/2 if s ∈ [0, 1/2),

1/2 + ε, ε > 0 if s = 1/2,

s if s ∈ (1/2, 1].

(4.6)

Moreover,
‖u− uhp‖H̃1/2(Γ) ≤ C hmin {m,p+1}−1/2 p−(m−1/2−ε) ‖u‖Hm(Γ), (4.7)

where ε = 0 if ∆h does not contain triangles, and ε > 0 if ∆h contains triangles.

Proof. Let Kh = Γj ∈ ∆h and K = Q (or K = T ) so that Kh = Mj(K). Thus Kh and K
satisfy the assumptions of Lemma 3.1 and, due to Lemma 4.1, there exists v̂j = π̂p(u ◦Mj) ∈
Pp(K) such that for s = 0, 1

‖û− v̂j‖Hs(K) ≤ Chµ−1p−(m−s)‖u‖Hm(Γj), (4.8)

‖û− v̂j‖Hs(l) ≤ Chµ−1p−(m−s−1/2)‖u‖Hm(Γj), (4.9)

where l ⊂ ∂K denotes a side of K, µ = min {m, p+ 1}. Since m > 3/2, we can modify v̂j as in
Theorem 4.1 of [5] to obtain v̂j = û at the vertices of K.

Let vj = v̂j ◦M−1
j . Then vj ∈ Pp(Γj) and we obtain by Lemma 3.1 and (4.8)

‖u− vj‖Hs(Γj) ≤ Chµ−sp−(m−s)‖u‖Hm(Γj), µ = min {m, p+ 1}, s = 0, 1. (4.10)

Further we consider two elements Γi, Γj ∈ ∆h having the common edge lh = Γ̄i ∩ Γ̄j . Let
vi ∈ Pp(Γi) and vj ∈ Pp(Γj) be the polynomials constructed above. Then the jump w =
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(vj − vi)|lh ∈ Pp(lh) vanishes at the end points of lh. Furthermore, using (4.9) and standard
interpolation arguments, we find

‖ŵ‖Hs(l) ≤ ‖û− v̂i‖Hs(l) + ‖û− v̂j‖Hs(l) ≤ Chµ−1p−(m−s−1/2)‖u‖Hm(Γi∪Γj), s = 0, 1, (4.11)

‖ŵ‖H̃1/2(l) ≤ Chµ−1p−(m−1)‖u‖Hm(Γi∪Γj), (4.12)

where l = M−1
i (lh), Mi : K → Γi, µ = min {m, p+ 1}.

We will adjust the function vi on Γi to obtain the continuity of the approximation on the inter-
element edge. If Γi is a parallelogram, we use the constructions from the proof of Theorem 4.1
in [5]. In this case K = Q = I × I, I = (−1, 1) and without loss of generality we can assume
that l = {(x̂1, x̂2); x̂1 ∈ I, x̂2 = −1}. Then there exists a polynomial ψ̂p(x̂2) ∈ Pp(I) such that
(see [5, pp. 759–760])

ψ̂p(−1) = 1, ψ̂p(1) = 0,

and
‖ψ̂p‖Hs(I) ≤ Cps−1/2, s = 0, 1. (4.13)

Let us define ẑ := ŵψ̂p(x̂2). Then ẑ ∈ P2
p (Q), ẑ = ŵ on l, ẑ = 0 on ∂Q\l, and making use of

(4.11), (4.13) we prove

‖ẑ‖H1(Q) ≤ C
(
‖ŵ‖H1(l)‖ψ̂p‖H0(I) + ‖ŵ‖H0(l)‖ψ̂p‖H1(I)

)

≤ Chµ−1p−(m−1)‖u‖Hm(Γi∪Γj),

‖ẑ‖H0(Q) = ‖ŵ‖H0(l)‖ψ̂p‖H0(I) ≤ Chµ−1p−m‖u‖Hm(Γi∪Γj).

If Γi is a triangle, then we use the result of [1, Theorem 1] giving stable, polynomial preserving
trace liftings on Γi: there exists ẑ ∈ P1

p (T ) such that ẑ = ŵ on l, ẑ = 0 on ∂T\l,

‖ẑ‖H1(T ) ≤ C‖ŵ‖H̃1/2(l), ‖ẑ‖H1/2(T ) ≤ C‖ŵ‖L2(l).

Then using (4.11), (4.12), and interpolation arguments we obtain

‖ẑ‖Hs(T ) ≤ Chµ−1p−(m−s)‖u‖Hm(Γi∪Γj), s ∈ [1/2, 1],

‖ẑ‖Hs(T ) ≤ ‖ẑ‖H1/2(T ) ≤ Chµ−1p−(m−1/2)‖u‖Hm(Γi∪Γj), s ∈ [0, 1/2).

Now for both cases considered above we define z := ẑ ◦M−1
i ∈ Pp(Γi). Then setting ṽ = vi + z

on Γi and ṽ = vj on Γj, we find a continuous piecewise polynomial on Γi ∪ Γj ∪ lh such that
‖u− ṽ‖Hs(Γj) is bounded as in (4.10). On Γi we use Lemma 3.1 and corresponding estimates for
‖ẑ‖Hs(K) with K = Q or T :

‖u− ṽ‖Hs(Γi) ≤ ‖u− vi‖Hs(Γi) + Ch1−s‖ẑ‖Hs(Q) ≤ Chµ−sp−(m−s)‖u‖Hm(Γi∪Γj), s = 0, 1
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if Γi is a parallelogram, and

‖u− ṽ‖Hs(Γi) ≤ Chµ−sp−(m−s)‖u‖Hm(Γi∪Γj), s ∈ [1/2, 1], (4.14)

‖u− ṽ‖Hs(Γi) ≤ Chµ−sp−(m−1/2)‖u‖Hm(Γi∪Γj), s ∈ [0, 1/2) (4.15)

if Γi is a triangle.
Repeating these procedures for each pair of adjacent elements as well as for the elements Γi

having the side lh ⊂ ∂Γ we construct the function uhp ∈ V h,p
0 (Γ). If the mesh ∆h on Γ consists

only of parallelograms, then uhp satisfies (4.4) for s = 0, 1. For real s ∈ (0, 1) this result then
follows by interpolation.

If the mesh ∆h on Γ contains triangular elements, then we deduce (4.5) from (4.14), (4.15).
In fact, for s ∈ [0, 1

2), (4.5) immediately follows from (4.15), because H̃s(Γ) = Hs(Γ) = Hs
0(Γ)

for these values of s (see [10]). If s ∈ ( 1
2 , 1), then we use Lemma 3.5 and estimates (4.14), (4.15):

‖u− uhp‖2Hs(Γ) ≤ C

(
h−2s‖u− uhp‖2L2(Γ) +

∑

j:Γj⊂Γ

|u− uhp|2Hs(Γj)

)

≤ C

(
h−2sh2µp−2(m−1/2)‖u‖2Hm(Γ) + h2(µ−s)p−2(m−s)‖u‖2Hm(Γ)

)

≤ Ch2(µ−s)p−2(m−s)‖u‖2Hm(Γ).

For s = 1
2 , estimate (4.5) then follows via interpolation between H s′(Γ) and Hs′′(Γ), where

s′ = 1
2 − 2ε, s′′ = 1

2 + 2ε, 0 < ε < 1
4 .

Since (u− uhp) ∈ Hs
0(Γ) for any s ∈ ( 1

2 , 1], we prove (4.7) (for the meshes of both types) by

interpolation between Hs′
0 (Γ) and Hs′′

0 (Γ) with the same s′, s′′ as above. 2

Let us recall some known results regarding the approximation of singularities by polynomials
of arbitrary degree in fractional order Sobolev spaces on triangles (parallelograms) of fixed size.
In the propositions below K ⊂ IR2 will always denote a triangle or parallelogram satisfying the
assumptions of Lemma 3.1. The particular location of K in IR2 will be additionally specified in
each proposition. We will consider three types of singular functions onK which correspond to the
vertex singularity (see (2.5)) and to the edge-vertex singularities of both types (see (2.6)–(2.9)):

u1(x) = rλ| log r|βχ(r)w(θ), (4.16)

u2(x) = xλ−γ1 xγ2 | log x1|β1 | log x2|β2χ(r)χ̃(θ), (4.17)

u3(x) = xγ2 | log x2|βχ1(x1, x2)χ2(x2), (4.18)

where λ and γ are real parameters to be specified, β, β1, β2 ≥ 0 are integers, (r, θ) are polar
coordinates in IR2, χ, χ̃, χ2 are C∞ cut-off functions satisfying

suppχ ⊂ [0, τ0], supp χ̃ ⊂ [0, β0], suppχ2 ⊂ [0, δ0]

for some τ0, β0, δ0 > 0, and the functions w, χ1 are sufficiently smooth.
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Proposition 4.2 [16, Theorem 8.2] Let K ⊂ IR2 and suppose that the origin O is a vertex of
K. Let u1 be given by (4.16) with λ > 0 and suppχ ⊂ [0, τ0] for 0 < τ0 < ρK. Then there exists
a sequence u1,p ∈ Pp(K), p = 1, 2, . . . , such that for 0 ≤ s ≤ 1

‖u1 − u1,p‖Hs(K) ≤ C p−2(λ+1−s) (1 + log p)β. (4.19)

Moreover, u1,p(0, 0) = 0, u1,p = 0 on the sides li ⊂ ∂K, l̄i 63 O, and

‖u1 − u1,p‖L2(lk) ≤ C p−2(λ+1/2) (1 + log p)β for each side lk ⊂ ∂K, O ∈ l̄k. (4.20)

Proposition 4.3 Let K ⊂ IR2+. Suppose that the origin O is a vertex of K and one of the
other vertices of K lies on the right semi-axis Ox1. Let u2 be given by (4.17) with λ > −1/2,
γ > 0, and assume that suppu2 ⊂ S̄0 = {(r, θ); 0 ≤ r ≤ τ0, 0 ≤ θ ≤ β0 < π

4 } ⊂ K̄.
Then there exists a sequence u2,p ∈ Pp(K), p = 1, 2, . . . , such that u2,p = 0 on ∂K and for
0 ≤ s < min {1, λ + 1, γ + 1/2}

‖u2 − u2,p‖Hs(K) ≤ C p−2(min {λ+1,γ+1/2}−s) (1 + log p)β1+β2+σ, (4.21)

where σ = 1
2 if λ = γ − 1

2 , and σ = 0 otherwise.

This statement was first proved in [16, Theorem 7.2] under the assumptions that λ > 0,
γ > 1

2 . Later, in [7, Theorem 3.5], we generalised that result to λ and γ with 1
2 < min {λ +

1, γ + 1
2} ≤ 1.

Proposition 4.4 Let K ⊂ IR2+ and suppose that at least one vertex of K lies on the axis Ox1.
Let lk ⊂ ∂K (k = 1, 3 or k = 1, 4) denote the sides of K, τ = {lk ⊂ ∂K; l̄k ∩ Ox1 = ø},
and A = {lk ⊂ ∂K; l̄k ∩ Ox1 contains only a single point}. Let u3 be given by (4.18) with
γ > 0, χ1 ∈ Hm(K), m > 2γ + 2, and assume that (suppu3) ∩ l̄k = ø for each lk ∈ τ . Then
there exists a sequence u3,p ∈ Pp(K), p = 0, 1, 2, . . . , such that for 0 ≤ s < min {1, γ + 1/2}

‖u3 − u3,p‖Hs(K) ≤ C (p+ 1)−2(γ+1/2−s) (1 + log(p+ 1))β . (4.22)

Moreover, u3,p vanishes at the vertices of K, u3,p = 0 on (∂K ∩ Ox1) ∪ τ , and for every side
lk ∈ A,

‖u3 − u3,p‖L2(lk) ≤ C (p+ 1)−2(γ+1/2) (1 + log(p+ 1))β . (4.23)

Proof. If p = 0, then we set u3,p = 0 on K, and (4.22), (4.23) are valid. Let p ≥ 1. Then
for γ > 1

2 the assertion is proved in [16, Theorem 6.2]. For 0 < γ ≤ 1
2 see Theorem 3.2 and

estimates (3.20), (3.21) in [7]. 2

Now we will study the approximation of a certain singular function with small support.
For this function we prove an approximation result which plays an essential role in our further
analysis.
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Let e ∈ E be an edge of Γ with vertices v, w. Recalling that Ae denotes the union of elements
at the edge e, we consider the function

u(xe1, xe2) = xγe2| log xe2|βχ1(xe1, xe2)χ2(xe2/h0), (xe1, xe2) ∈ Ae, (4.24)

where γ > 0, β ≥ 0 is integer, h0 = (σ1σ2)−1h with σ1, σ2 being the same as in (2.1), χ2 is a C∞

cut-off function with support in [0, δ] for some 0 < δ < 1, χ1 ∈ Hm(Ae) with integer m > 2γ+2,
and χ1 vanishes on the edges lv, lw ⊂ ∂Ae with l̄v ∩ ē = {v} and l̄w ∩ ē = {w}.

Observe that u ∈ Hs(Ae) for any s ∈ [0, 1/2 + γ). Due to (2.1), h0 ≤ ρj for any Γj ⊂ Ae,
and hence suppu ⊂ Āe.

Lemma 4.2 Let u be given by (4.24). Then for every p = 1, 2, . . . there exists a continuous
function uhp defined on Ae such that uhp ∈ Pp(Γj) for each Γj ⊂ Ae, uhp = 0 on ∂Ae, and for
0 ≤ s < min {1, γ + 1/2}

‖u− uhp‖Hs(Ae) ≤ C hγ+1−s p−2(γ+1/2−s) (1 + log(p/h))β
m∑

t=0

ht−1 |χ1|Ht(Ae). (4.25)

Proof. For simplicity of notation, and when not leading to ambiguity, we will omit e in the
subscripts of the coordinates xe1, xe2. Let Kh = Γj ⊂ Ae, and let K ⊂ IR2+ be a triangle or
parallelogram such that Kh = M(K), where M is the affine mapping

M : xi = hx̂i, i = 1, 2, x ∈ Kh, x̂ ∈ K.

Then at least one vertex of K lies on the axis Ox̂1 and

û(x̂) = u(hx̂1, hx̂2) = hγ x̂γ2 | log(hx̂2)|βχ1(hx̂1, hx̂2)χ2(σ1σ2x̂2),

= hγ x̂γ2

β∑

k=0

(
β

k

)
| log h|k| log x̂2|β−kχ̂1(x̂1, x̂2)χ2(σ1σ2x̂2) = ϕ̂(x̂)χ̂1(x̂),

where

ϕ̂(x̂) = hγ
β∑

k=0

(
β

k

)
| log h|kϕ̂β−k(x̂2) with ϕ̂i(x̂2) = x̂γ2 | log x̂2|iχ2(σ1σ2x̂2), i = 0, . . . , β.

Using Proposition 4.4 for each function ϕ̂i, i = 0, . . . , β, we find polynomials ϕ̂i,p ∈ Pp(K) such
that ϕ̂i,p = 0 at the vertices of K and on (∂K ∩Ox̂1) ∪ τ ,

‖ϕ̂i − ϕ̂i,p‖Hs(K) ≤ C p−2(γ+1/2−s) (1 + log p)i, 0 ≤ s < min {1, γ + 1/2},
‖ϕ̂i − ϕ̂i,p‖L2(l) ≤ C p−2(γ+1/2) (1 + log p)i for every l ∈ A.

Hence, setting

ϕ̂p(x̂) := hγ
β∑

k=0

(
β

k

)
| log h|kϕ̂β−k,p(x̂)
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we obtain the estimates

‖ϕ̂ − ϕ̂p‖Hs(K) ≤ hγ
β∑

k=0

(
β

k

)
| log h|k‖ϕ̂β−k − ϕ̂β−k,p‖Hs(K)

≤ hγp−2(γ+1/2−s)
β∑

k=0

(
β

k

)
C(k) logk(1/h)(1 + log p)β−k

≤ C(β)hγp−2(γ+1/2−s)(1 + log(p/h))β , 0 ≤ s < min {1, γ + 1/2}, (4.26)

‖ϕ̂− ϕ̂p‖L2(l) ≤ C(β)hγ p−2(γ+1/2) (1 + log(p/h))β for every l ∈ A; (4.27)

moreover, ϕ̂p = 0 at the vertices of K and on (∂K ∩Ox̂1) ∪ τ .
Since ϕ̂ ∈ Hs(K) and ‖ϕ̂‖Hs(K) ≤ Chγ logβ(1/h), we estimate by (4.26)

‖ϕ̂p‖Hs(K) ≤ ‖ϕ̂− ϕ̂p‖Hs(K) + ‖ϕ̂‖Hs(K)

≤ Chγ(1 + log(p/h))β , 0 ≤ s < min {1, γ + 1/2}, (4.28)

and similarly by (4.27)

‖ϕ̂p‖L2(l) ≤ Chγ(1 + log(p/h))β for every l ∈ A. (4.29)

Now let us approximate the smooth function χ̂1 ∈ Hm(K). Using [4, Lemma 4.1] we find a
polynomial χ̂1,p = π̂pχ̂1 ∈ Pp(K) satisfying

‖χ̂1 − χ̂1,p‖Hq(K) ≤ Cp−(m−q)‖χ̂1‖Hm(K), 0 ≤ q ≤ m, (4.30)

|(χ̂1 − χ̂1,p)(x̂)| ≤ Cp−(m−1)‖χ̂1‖Hm(K), m > 1, x̂ ∈ K. (4.31)

We define ψ̂(x̂) := ϕ̂p(x̂) χ̂1,p(x̂). Then ψ̂ ∈ P2p(K), ψ̂ = 0 at the vertices of K and on
(∂K ∩Ox̂1) ∪ τ , and for 0 ≤ s < min {1, γ + 1/2}

‖û− ψ̂‖Hs(K) ≤ ‖χ̂1(ϕ̂− ϕ̂p)‖Hs(K) + ‖(χ̂1 − χ̂1,p)ϕ̂p‖Hs(K). (4.32)

First, let us consider the case when 1/2 < s < min {1, γ + 1/2}. Applying Lemma 3.2 and
Lemma 3.3 we have for any ε > 0

‖χ̂1(ϕ̂− ϕ̂p)‖Hs(K) ≤ C‖χ̂1‖C0,1(K̄)‖ϕ̂− ϕ̂p‖Hs(K) ≤ C‖χ̂1‖H2+ε(K)‖ϕ̂− ϕ̂p‖Hs(K).

Hence, taking ε sufficiently small (2 + ε < m) and using estimate (4.26) we find

‖χ̂1(ϕ̂− ϕ̂p)‖Hs(K) ≤ C hγ p−2(γ+1/2−s) (1 + log(p/h))β‖χ̂1‖Hm(K). (4.33)

For the second term on the right-hand side of (4.32) we again use Lemma 3.2, Lemma 3.3, and
then estimates (4.28), (4.30):

‖(χ̂1 − χ̂1,p)ϕ̂p‖Hs(K) ≤ C‖χ̂1 − χ̂1,p‖H2+ε(K)‖ϕ̂p‖Hs(K)
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≤ Chγp−(m−2−ε)(1 + log(p/h))β‖χ̂1‖Hm(K), 2+ε<m. (4.34)

Now we deduce from (4.32)–(4.34) for s ∈ (1/2,min {1, γ + 1/2})

‖û− ψ̂‖Hs(K) ≤ C hγ max
{
p−2(γ+1/2−s), p−(m−2−ε)

}
(1 + log(p/h))β ‖χ̂1‖Hm(K)

≤ C hγ p−2(γ+1/2−s) (1 + log(p/h))β ‖χ̂1‖Hm(K). (4.35)

Here we have chosen ε small enough such that 1+ε < 2s, since then one can estimate p−m+2+ε ≤
p−2γ−1+2s for m > 2γ + 2.

To treat the case s = 0 we use similar arguments relying on the inequality

‖u v‖H0(K) ≤ C‖u‖C0(K̄) ‖v‖H0(K),

the embedding H1+ε(K) ⊂ C0(K̄) (ε > 0), and estimates (4.26), (4.28), (4.31), (4.32):

‖û− ψ̂‖H0(K) ≤ C hγ p−2(γ+1/2) (1 + log(p/h))β ‖χ̂1‖H1+ε(K)

+C hγ p−(m−1) (1 + log(p/h))β ‖χ̂1‖Hm(K)

≤ C hγ p−2(γ+1/2) (1 + log(p/h))β ‖χ̂1‖Hm(K). (4.36)

Analogously, using (4.27), (4.29), (4.31) we obtain for every side l ∈ A

‖û− ψ̂‖L2(l) ≤ C hγ p−2(γ+1/2) (1 + log(p/h))β ‖χ̂1‖Hm(K). (4.37)

Observe that adjusting the constants C in (4.35)–(4.37) we can obtain these estimates for a
polynomial ψ̂ ∈ Pp(K) for every p = 1, 2, . . .. Therefore, recalling the notation Kh = Γj and

setting ψj := ψ̂ ◦M−1 we find a polynomial ψj ∈ Pp(Γj), p = 1, 2, . . ., such that ψj = 0 at the
vertices of Γj, on (∂Γj ∩ ē), and on τ j = M(τ) = {lk ⊂ ∂Γj; l̄k ∩ ē = ø}. Moreover, making use
of Lemma 3.1 we deduce from (4.35)–(4.37)

‖u− ψj‖Hs(Γj) ≤ C hγ+1−s p−2(γ+1/2−s) (1 + log(p/h))β
m∑

t=0

ht−1 |χ1|Ht(Γj) (4.38)

for s ∈ {0} ∪ (1/2,min {1, γ + 1/2}), and

‖u− ψj‖L2(lh) ≤ C hγ+1/2 p−2(γ+1/2) (1 + log(p/h))β
m∑

t=0

ht−1 |χ1|Ht(Γj) (4.39)

for every lh ∈ Aj = M(A).
Suppose that Γi, Γj ⊂ Ae are two elements having the common edge lh = Γ̄i ∩ Γ̄j. Let

ψi ∈ Pp(Γi) and ψj ∈ Pp(Γj) be the approximations to u constructed above and satisfying
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estimates (4.38), (4.39). Then the jump w = (ψj − ψi)|lh vanishes at the end points of lh and,
because of (4.39),

‖w‖L2(lh) ≤ ‖u− ψi‖L2(lh) + ‖u− ψj‖L2(lh)

≤ C hγ+1/2 p−2(γ+1/2) (1 + log(p/h))β
m∑

t=0

ht−1 |χ1|Ht(Γi∪Γj).

In the case that Γi is a parallelogram, we use Lemma 3.4 to find a polynomial z ∈ Pp(Γi) such
that

z = w on lh, z = 0 on ∂Γi\lh, (4.40)

and for 0 ≤ s ≤ 1

‖z‖Hs(Γi) ≤ C hγ+1−s p−2(γ+1−s) (1 + log(p/h))β
m∑

t=0

ht−1 |χ1|Ht(Γi∪Γj). (4.41)

In the case that Γi is a triangle, we note that (4.38) and (4.39) also hold for a polynomial ψj

of degree
[
p−1

2

]
(with different constants C for the upper bounds in (4.38) and (4.39)). Then

Lemma 3.4 yields a polynomial z ∈ Pp(Γi) which satisfies (4.40), (4.41) for Γi being a triangle.
Further we set

ψ̃ = ψi + z on Γi, ψ̃ = ψj on Γj .

Then ψ̃ is continuous on Γi ∪ Γj ∪ lh, the norms ‖u− ψ̃‖Hs(Γj), ‖u− ψ̃‖L2(lh) are bounded as in
(4.38), (4.39), and on the element Γi there holds

‖u− ψ̃‖Hs(Γi) ≤ ‖u− ψi‖Hs(Γi) + ‖z‖Hs(Γi)

≤ C hγ+1−s p−2(γ+1/2−s) (1 + log(p/h))β
m∑

t=0

ht−1 |χ1|Ht(Γi∪Γj).

Using the same arguments as above we can adjust also the polynomial ψi on each element
Γi ⊂ Ae ∩ (Av ∪ Aw). We construct the function ψ̃ satisfying estimates (4.38), (4.39) and
vanishing on the side lh ⊂ ∂Γi such that lh ∩ ē = {v} or lh ∩ ē = {w} (i.e., lh is lv or lw). In
this case the jump is w = (−ψi)|lh and we set ψ̃ = ψi + z on Γi, where z ∈ Pp(Γi) is constructed
using Lemma 3.4. Obviously ψ̃ = 0 on lh, and estimates (4.38), (4.39) remain valid because
u|lh = 0.

Repeating this procedure, we obtain a continuous function uhp defined on Ae such that
uhp ∈ Pp(Γj) for Γj ⊂ Ae, uhp = 0 on ∂Ae, and for s ∈ {0} ∪ (1/2,min {1, γ + 1/2})
∑

j: Γj⊂Ae
‖u−uhp‖2Hs(Γj)

≤ C h2(γ+1−s) p−4(γ+1/2−s) (1+log(p/h))2β
m∑

t=0

h2(t−1) |χ1|2Ht(Ae)
. (4.42)

For s = 0 this immediately leads to (4.25). If 1/2 < s < min {1, γ + 1/2}, then we also obtain
(4.25) from (4.42) by using Lemma 3.5. Estimate (4.25) for any s ∈ (0, 1/2] then follows by
interpolation between H0(Ae) and Hs′(Ae) with 1/2 < s′ < min {1, γ + 1/2}. 2
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5 Approximation of edge-vertex singularities

Let e ∈ E be the edge of Γ with vertices v, w. As before, we denote by lv and lw the edges of
∂Ae such that l̄v ∩ ē = {v} and l̄w ∩ ē = {w}.

Let us consider the cut-off functions χv and χev which appear in the expressions for the
edge-vertex singularities uev1 and uev2 (see (2.6), (2.7)). We adjust the supports of these cut-off
functions as follows:

suppχv ⊂ [0, 2τv ] with 0 < τv < min {1
4 dist {v, w}, 1

2},

suppχev ⊂ [0, 3
2βv] with 0 < βv ≤ min {1

2θ0,
1
2ωv,

π
8 },

where θ0 is the minimal angle of the elements in the mesh ∆h. Then uev1 and uev2 vanish outside
the sector S = {(rv , θv); 0 < rv < 2τv, 0 < θv <

3
2βv}, in particular, uev1 = uev2 = 0 on lv ∪ lw.

In the two sub-sections below we will study the approximation of the singular functions uev1
and uev2 .

5.1 Approximation of the function uev1

Theorem 5.1 Let u = uev1 be given by (2.6). Then there exists uhp ∈ V h,p
0 (Γ) with p ≥

min {λ, γ − 1
2} such that for s ∈ [0,min {1, λ + 1, γ + 1/2}),

‖u− uhp‖Hs(Γ) ≤ C hmin {λ+1,γ+1/2}−s p−2(min {λ+1,γ+1/2}−s) (1 + log(p/h))β+ν , (5.1)

where λ = λv1 > −1/2, γ = γe1 > 0,

β =

{
qv1 + se1 + 1

2 if λv1 = γe1 − 1
2 ,

qv1 + se1 otherwise,

and

ν =

{ 1
2 if p = min {λ, γ − 1

2},
0 otherwise.

If 1 ≤ p < min {λ, γ − 1
2}, then there exists uhp ∈ V h,p

0 (Γ) satisfying for s ∈ [0, 1]

‖u− uhp‖Hs(Γ) ≤ C hp+1−s. (5.2)

Proof. For simplicity we consider the singular function

u(x1, x2) = xλ−γ1 xγ2 | log x1|β1 | log x2|β2χv(r)χev(θ), (5.3)

where λ = λv1 > −1/2, γ = γe1 > 0, and β1, β2 ≥ 0 are integers.
Let us introduce an auxiliary cut-off function χ2 ∈ C∞(IR+) such that for some δ ∈ (0, 1)

χ2(t) = 1 for 0 ≤ t ≤ δ/2 and χ2(t) = 0 for t ≥ δ.
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Denoting h0 = (σ1σ2)−1h we decompose the function u in (5.3) as

u = uχv(r/h0) + u(1− χv(r/h0))χ2(x2/h0) + u(1− χv(r/h0))(1 − χ2(x2/h0))

=: ϕ1 + ϕ2 + ϕ3. (5.4)

We will approximate the functions ϕi (i = 1, 2, 3) in (5.4) separately.

Approximation of ϕ1. Due to the adjustment of the supports of the cut-off functions χv and
χev, the singular function ϕ1 has small support, suppϕ1 ⊂ K̄h, where Kh = Γ1 ⊂ Aev is the
element touching simultaneously the edge e and the vertex v. Let K ⊂ IR2+ be a triangle or
parallelogram such that Kh = M(K), where M is the affine mapping

M : xi = hx̂i, i = 1, 2, x ∈ Kh, x̂ ∈ K.

Then K satisfies the assumptions of Proposition 4.3, and for h < 1
2 we have

ϕ̂1(x̂) = ϕ1(hx̂1, hx̂2)

= hλx̂λ−γ1 x̂γ2

β1∑

k1=0

β2∑

k2=0

(
β1

k1

)(
β2

k2

)
| log h|k1+k2 | log x̂1|β1−k1 | log x̂2|β2−k2χv(σ1σ2r̂)χ

ev(θ̂),

where r̂ = (x̂2
1 + x̂2

2)1/2, θ̂ = arctan(x̂2/x̂1).
By Proposition 4.3, for each pair (k1, k2) with ki = 0, . . . , βi (i = 1, 2) there exists a polyno-

mial ψ̂k1,k2 ∈ Pp(K) vanishing on ∂K and satisfying for 0 ≤ s < min {1, λ + 1, γ + 1/2}
∥∥∥x̂λ−γ1 x̂γ2 | log x̂1|k1 | log x̂2|k2χv(σ1σ2r̂)χ

ev(θ̂)− ψ̂k1,k2

∥∥∥
Hs(K)

≤ C p−2(min {λ+1,γ+1/2}−s) (1 + log p)k1+k2+σ.

Setting

ψ̂1(x̂) := hλ
β1∑

k1=0

β2∑

k2=0

(
β1

k1

)(
β2

k2

)
| log h|k1+k2ψ̂β1−k1,β2−k2(x̂),

we estimate

‖ϕ̂1 − ψ̂1‖Hs(K)

≤ hλ
β1,β2∑

k1,k2=0

(
β1

k1

)(
β2

k2

)
| log h|k1+k2C(k1, k2)p−2(min {λ+1,γ+1/2}−s)(1 + log p)β1+β2−k1−k2+σ

≤ C(β1, β2)hλp−2(min {λ+1,γ+1/2}−s)(1 + log(p/h))β1+β2(1 + log p)σ. (5.5)

Let ψ1 := ψ̂1 ◦ M−1 on Kh = Γ1. Then ψ1 ∈ Pp(Γ1), ψ1 = 0 on ∂Γ1, and making use of
Lemma 3.1 we deduce from (5.5)

‖ϕ1 − ψ1‖Hs(Γ1) ≤ Ch1−s‖ϕ̂1 − ψ̂1‖Hs(K)
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≤ Chλ+1−sp−2(min {λ+1,γ+1/2}−s)(1 + log(p/h))β1+β2(1 + log p)σ, (5.6)

where 0 ≤ s < min {1, λ + 1, γ + 1/2}, σ = 1/2 if λ = γ − 1/2, and σ = 0 otherwise.

Approximation of ϕ2. The function ϕ2 in (5.4) has a singular behaviour only with respect to x2

and has small support, suppϕ2 ⊂ (Āe∩ R̄h1), where Rh1 = {(r, θ); τvh0 < r < 2τv, 0 < θ < 3
2βv}.

Thus we can write ϕ2 in the form given by (4.24):

ϕ2(x1, x2) = xλ−γ1 xγ2 | log x1|β1 | log x2|β2χv(r)χev(θ)(1− χv(r/h0))χ2(x2/h0)

= xγ2 | log x2|β2χ1(x1, x2)χ2(x2/h0),

where
χ1(x1, x2) := xλ−γ1 | log x1|β1χv(r)χev(θ)(1− χv(r/h0)). (5.7)

Note that χ1 ∈ C∞(Ae), suppχ1 ⊂ R̄h1 , in particular, χ1 = 0 on the edges lv, lw ⊂ ∂Ae.
Now we can apply Lemma 4.2 to find a piecewise polynomial approximation of ϕ2 on Ae:

there exists a function ψ2 such that ψ2 ∈ Pp(Γj) for each Γj ⊂ Ae, ψ2 = 0 on ∂Ae, and for
0 ≤ s < min {1, γ + 1/2}

‖ϕ2 − ψ2‖Hs(Ae) ≤ C hγ+1−s p−2(γ+1/2−s) (1 + log(p/h))β2

m∑

t=0

ht−1 |χ1|Ht(Ae) (5.8)

for some integer m > 2γ + 2.
To evaluate semi-norms of the function χ1 given by (5.7) we use the following inequalities:

∣∣∣∣
∂r

∂x1

∣∣∣∣ = | cos θ| ≤ 1,

∣∣∣∣
∂r

∂x2

∣∣∣∣ = | sin θ| ≤ 1,

∣∣∣∣
∂θ

∂x1

∣∣∣∣ =

∣∣∣∣
sin θ

r

∣∣∣∣ ≤
1

r
,

∣∣∣∣
∂θ

∂x2

∣∣∣∣ =

∣∣∣∣
cos θ

r

∣∣∣∣ ≤
1

r
.

Hence it follows by induction that for any integer k, l ≥ 0

∣∣∣∣∣
∂k+lr

∂xk1∂x
l
2

∣∣∣∣∣ ≤ Cr
1−k−l,

∣∣∣∣∣
∂k+lθ

∂xk1∂x
l
2

∣∣∣∣∣ ≤ Cr
−k−l. (5.9)

Furthermore, for any integer k ≥ 1 one has

∣∣∣∣∣
∂k

∂rk

(
1− χv(r/h0)

)∣∣∣∣∣ =

{
0 for 0 < r < τvh0 and r > 2τvh0,

|(χv)(k)|h−k0 for τvh0 ≤ r ≤ 2τvh0

≤ C r−k for r > 0. (5.10)
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Since suppχ1 ⊂ R̄h1 , x1 ' r on Rh1 , and χv, χev ∈ C∞(R+), we estimate by (5.7), (5.9), (5.10)
for t = 0, . . . ,m

|χ1|2Ht(Ae)
≤ C(log(1/h))2β1

∫

Ae∩Rh1

x
2(λ−γ−t)
1 dx ≤ C(log(1/h))2β1

h∫

0

2τv∫

κh

x
2(λ−γ−t)
1 dx1dx2

for a positive constant κ independent of h. Hence

|χ1|Ht(Ae) ≤ C logβ1(1/h)h1/2−t




hλ−γ+1/2 if λ < γ − 1/2,
log1/2(1/h) if λ = γ − 1/2,
1 if λ > γ − 1/2,

and we obtain by (5.8)

‖ϕ2 − ψ2‖Hs(Ae) ≤ C hmin {λ+1,γ+1/2}−s p−2(γ+1/2−s) (log(1/h))β1+σ (1 + log(p/h))β2 , (5.11)

where 0 ≤ s < min {1, γ + 1/2} and σ is the same as in (5.6).

Approximation of ϕ1 and ϕ2 on Γ. Let us extend ψi (i = 1, 2) by zero onto the remaining

parts of Γ. Then ψi ∈ V h,p
0 (Γ), i = 1, 2 and there hold the following estimates

‖ϕ1 − ψ1‖Hs(Γ) ≤ Chλ+1−sp−2(min {λ+1,γ+1/2}−s)(1 + log(p/h))β1+β2(1 + log p)σ (5.12)

for 0 ≤ s < min {1, λ + 1, γ + 1/2}, and

‖ϕ2 − ψ2‖Hs(Γ) ≤ C hmin {λ+1,γ+1/2}−s p−2(γ+1/2−s) (log(1/h))β1+σ (1 + log(p/h))β2 (5.13)

for 0 ≤ s < min {1, γ + 1/2}.
In fact, for s = 0 estimates (5.12) and (5.13) immediately follow from inequalities (5.6) and

(5.11), respectively. If 1/2 < s < 1, then we use Lemma 3.5:

‖ϕ2 − ψ2‖2Hs(Γ) ≤ C

(
h−2s‖ϕ2 − ψ2‖2L2(Γ) +

∑

j:Γj⊂Γ

|ϕ2 − ψ2|2Hs(Γj)

)

≤ C

(
h−2s‖ϕ2 − ψ2‖2L2(Ae)

+
∑

j:Γj⊂Ae
‖ϕ2 − ψ2‖2Hs(Γj)

)

≤ C
(
h−2s‖ϕ2 − ψ2‖2L2(Ae)

+ ‖ϕ2 − ψ2‖2Hs(Ae)

)

and (5.13) follows from (5.11). The estimate (5.12) for 1/2 < s < 1 is proved analogously.
Finally, for 0 < s ≤ 1/2, estimates (5.12), (5.13) follow via interpolation between H 0(Γ) and
Hs′(Γ) for some s′ ∈ (1

2 , 1).

Approximation of ϕ3. Now we approximate the function ϕ3 in (5.4). Observe that ϕ3 ∈
C∞0 (Γ) and suppϕ3 ⊂ Γ̄∩ R̄h1 ∩ R̄h2 , where Rh1 is defined above and Rh2 = {(x1, x2); x2 > δh0/2}
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for some δ ∈ (0, 1). We also note that the mesh contains triangles and/or parallelograms.

Therefore, applying Proposition 4.1, we find ψ3 ∈ V h,p
0 (Γ) such that for s ∈ [0, 1]

‖ϕ3 − ψ3‖Hs(Γ) ≤ Chµ−sp−(m−s̃)‖ϕ3‖Hm(Γ), (5.14)

where m > 3/2, µ = min {m, p+ 1}, and s̃ is defined by (4.6).
Let us estimate the norm ‖ϕ3‖Hm(Γ). Similarly to (5.9), (5.10) one has for k, l ≥ 0

∣∣∣∣∣
∂k+lr

∂xk1∂x
l
2

∣∣∣∣∣ ≤ Crx
−k
1 x−l2 ,

∣∣∣∣∣
∂k+lθ

∂xk1∂x
l
2

∣∣∣∣∣ ≤ Cx
−k
1 x−l2 ,

∣∣∣∣∣
∂k+l

∂xk1∂x
l
2

(1− χv(r/h0))

∣∣∣∣∣ ≤ Cx
−k
1 x−l2 ,

∣∣∣∣∣
dl

dxl2
(1− χ2(x2/h0))

∣∣∣∣∣ ≤ Cx
−l
2 .

Hence, recalling that

ϕ3(x1, x2) = xλ−γ1 xγ2 | log x1|β1 | log x2|β2χv(r)χev(θ)(1− χv(r/h0))(1 − χ2(x2/h0)),

suppϕ3 ⊂ R̄h1 ∩ R̄h2 , and χ2, χ
v , χev ∈ C∞(R+), we can estimate derivatives of ϕ3 as

∣∣∣∣∣
∂k+lϕ3(x)

∂xk1∂x
l
2

∣∣∣∣∣ ≤
{
C(k, l)(log(1/h))β1+β2xλ−γ−k1 xγ−l2 for x ∈ Rh1 ∩Rh2 ,

0 for x ∈ Γ\(Rh1 ∩Rh2 ).

Since (Rh1 ∩ Rh2 ) ⊂ T h = {(x1, x2); κh < x1 < 1, κh < x2 < x1} for some κ > 0, the above
estimates for derivatives of ϕ3 yield

‖ϕ3‖2Hm(Γ) ≤ C(log(1/h))2(β1+β2)
∑

0≤k+l≤m
k,l≥0

C2(k, l)

∫

Rh1∩Rh2

x
2(λ−γ−k)
1 x

2(γ−l)
2 dx

≤ C(m)(log(1/h))2(β1+β2)
∫

Th

x
2(λ−γ)
1 x

2(γ−m)
2 dx.

For any integer m ≥ min {λ+ 1, γ + 1
2} this implies

‖ϕ3‖2Hm(Γ) ≤ C(log(1/h))2(β1+β2)





1∫
κh
x

2(λ−γ)
1

x1∫
κh
x

2(γ−m)
2 dx2dx1 if λ ≥ γ − 1/2,

1∫
κh
x

2(γ−m)
2

1∫
x2

x
2(λ−γ)
1 dx1dx2 if λ < γ − 1/2

≤ Ch2(min {λ+1,γ+1/2}−m)(log(1/h))2(β1+β2+σ+ν), (5.15)

where σ is the same as in (5.6), ν = 1
2 ifm = min {λ+1, γ+ 1

2}, and ν = 0 ifm > min {λ+1, γ+ 1
2}.

Therefore we obtain by (5.14)

‖ϕ3 − ψ3‖Hs(Γ) ≤ Chµ−s+min {λ+1,γ+1/2}−mp−(m−s̃)(log(1/h))β1+β2+σ+ν , s ∈ [0, 1], (5.16)

24



where m ≥ min {λ+ 1, γ + 1/2}, m > 3
2 , µ = min {m, p+ 1}, and s̃ is defined by (4.6).

If p > 2 min {λ+ 1, γ + 1
2} − 1

2 , we select an integer m satisfying

2 min {λ+ 1, γ + 1
2}+ 1

2 < m ≤ p+ 1.

Then µ = m > 3
2 and p−(m−s̃) ≤ p−2(min {λ+1,γ+1/2}−s) for any s ∈ [0, 1].

If min {λ + 1, γ + 1
2} − 1 < p ≤ 2 min {λ + 1, γ + 1

2} − 1
2 (i.e., p is bounded), we choose an

integer m such that

max
{

3
2 , min {λ+ 1, γ + 1

2}
}
< m ≤ p+ 1,

and if p = min {λ+ 1, γ + 1/2} − 1, then we take m = min {λ+ 1, γ + 1
2} = p+ 1. In both these

cases µ = m > 3
2 and p−(m−s̃) ≤ C(λ, γ) p−2(min {λ+1,γ+1/2}−s) for any s ∈ [0, 1].

Thus, for any p ≥ min {λ, γ − 1
2}, selecting m as indicated above we find by (5.16)

‖ϕ3 − ψ3‖Hs(Γ) ≤ Chmin {λ+1,γ+1/2}−sp−2(min {λ+1,γ+1/2}−s)(log(1/h))β1+β2+σ+ν , s ∈ [0, 1].
(5.17)

where σ is the same as in (5.6), ν = 1
2 if p = min {λ, γ − 1

2}, and ν = 0 otherwise.

Approximation of u = ϕ1 + ϕ2 + ϕ3. Let us define uhp := ψ1 + ψ2 + ψ3 ∈ V h,p
0 (Γ). Then

combining estimates (5.12), (5.13), and (5.17) we obtain (5.1).
It remains to consider the case 1 ≤ p < min {λ, γ − 1

2}. In this case one does not need
decomposition (5.4). Since u ∈ Hm(Γ) ∩ H1

0 (Γ) with 3
2 < m < min {λ + 1, γ + 1

2}, we apply

Proposition 4.1 to find uhp ∈ V h,p
0 (Γ) satisfying for s ∈ [0, 1]

‖u− uhp‖Hs(Γ) ≤ Chµ−s‖u‖Hm(Γ), µ = min {m, p+ 1}.

Hence, selecting m ∈ [p+ 1,min {λ+ 1, γ + 1
2}) we prove (5.2). 2

5.2 Approximation of the function uev2

In this sub-section we study the approximation of the edge-vertex singularity uev2 given by (2.7),
(2.9).

Theorem 5.2 Let u = uev2 be given by (2.7), (2.9). Then there exists uhp ∈ V h,p
0 (Γ) with

p ≥ γ − 1
2 such that for s ∈ [0,min {1, γ + 1/2}),

‖u− uhp‖Hs(Γ) ≤ C hγ+1/2−s p−2(γ+1/2−s) (1 + log(p/h))β+ν , (5.18)

where γ = γe1 > 0, β = se1 ≥ 0 is integer, ν = 1
2 if p = γ − 1

2 , and ν = 0 otherwise.

If 1 ≤ p < γ − 1
2 , then there exists uhp ∈ V h,p

0 (Γ) satisfying for s ∈ [0, 1]

‖u− uhp‖Hs(Γ) ≤ C hp+1−s. (5.19)
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Proof. For simplicity we consider one component of the function uev2 . Let

u(x1, x2) = xγ2 | log x2|βχ1(x1, x2)χe2(x2), (5.20)

where γ = γe1 > 0, β ≥ 0 is integer, χe2 ∈ C∞(IR+) is the same as in (2.4), χ1 ∈ Hm(Γ) with m
as large as required. Recalling that the supports of the cut-off functions χv and χev (see (2.9))
were adjusted so that suppuev2 ⊂ S̄ = {(r, θ); 0 ≤ r ≤ 2τv , 0 ≤ θ ≤ 3

2βv} with τv <
1
4 dist {v, w}

and βv ≤ 1
2θ0, we can assume that the function χ1 in (5.20) vanishes on the edges lv, lw ⊂ ∂Ae

(lv and lw have been defined at the beginning of this section). Suppose that h < 1
2 . Letting

h0 = (σ1σ2)−1h we decompose u as

u = uχe2(x2/h0) + u(1− χe2(x2/h0)) =: ϕ1 + ϕ2. (5.21)

The singular part ϕ1 of this decomposition has the form given by (4.24), and ϕ1 = 0 on ∂Ae.
Therefore, applying Lemma 4.2 we find a function ψ1 such that ψ1 ∈ Pp(Γj) for Γj ⊂ Ae, ψ1 = 0
on ∂Ae, and for 0 ≤ s < min {1, γ + 1/2} there holds

‖ϕ1 − ψ1‖2Hs(Ae) ≤ C h2(γ+1−s) p−4(γ+1/2−s) (1 + log(p/h))2β
k∑

t=0

h2(t−1) |χ1|2Ht(Ae) (5.22)

for some integer k > 2γ + 2.
Since meas (Ae) ' h and χ1 ∈ Hm(Γ) for sufficiently large m, we estimate

k∑

t=0

h2(t−1) |χ1|2Ht(Ae) ≤ Ch
−2 ‖χ1‖2Ck(Āe)

meas (Ae) ≤ Ch−1 ‖χ1‖2Ck(Γ̄) ≤ Ch−1 ‖χ1‖2Hm(Γ).

Then we obtain by (5.22)

‖ϕ1 − ψ1‖Hs(Ae) ≤ C hγ+1/2−s p−2(γ+1/2−s) (1 + log(p/h))β , s ∈ [0,min {1, γ + 1/2}). (5.23)

Let us extend ψ1 by zero onto Γ\Ae. Then ψ1 ∈ V h,p
0 (Γ) and the norm ‖ϕ1 − ψ1‖Hs(Γ) is

obviously bounded as in (5.23) for s = 0. Due to Lemma 3.5, this conclusion is also true
for any s ∈ (1/2,min {1, γ + 1/2}). Therefore, by using interpolation, we obtain for any s ∈
[0,min {1, γ + 1/2})

‖ϕ1 − ψ1‖Hs(Γ) ≤ C hγ+1/2−s p−2(γ+1/2−s) (1 + log(p/h))β . (5.24)

To approximate the smooth part ϕ2 ∈ Hm(Γ)∩H1
0 (Γ) of decomposition (5.21) we apply Propo-

sition 4.1. There exists ψ2 ∈ V h,p
0 (Γ) satisfying for s ∈ [0, 1]

‖ϕ2 − ψ2‖Hs(Γ) ≤ Chµ−sp−(k−s̃)‖ϕ2‖Hk(Γ), (5.25)

where k ∈ (3/2,m] is integer, µ = min {k, p+ 1}, and s̃ is defined by (4.6).
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Recalling the definition of the function χe2 in (5.20) (see Theorem 2.1), we conclude that
suppϕ2 ⊂ Γ̄∩R̄h3 , where Rh3 = {(x1, x2); h0δe < x2 < 2δe}. Hence we find by simple calculations

‖ϕ2‖2Hk(Γ) ≤ C(log(1/h))2β

2δe∫

h0δe

x
2(γ−k)
2 dx2.

Then for any k satisfying k > 3
2 and γ + 1

2 ≤ k ≤ m we obtain by (5.25)

‖ϕ2 − ψ2‖Hs(Γ) ≤ Chγ−k+1/2+µ−sp−(k−s̃) logβ+ν(1/h), s ∈ [0, 1], (5.26)

where µ = min {k, p+ 1}, s̃ is defined by (4.6), ν = 1
2 if k = γ + 1

2 , and ν = 0 if k > γ + 1
2 .

Now we set uhp := ψ1 + ψ2 ∈ V h,p
0 (Γ). Then combining estimates (5.24), (5.26), making use

of decomposition (5.21) and the triangle inequality we obtain for any s ∈ [0,min {1, γ + 1/2})

‖u− uhp‖Hs(Γ) ≤ Chγ+1/2−s max
{
p−2(γ+1/2−s), hµ−kp−(k−s̃)

}
(1 + log(p/h))β+ν . (5.27)

Let p > 2γ + 1
2 . Since m is large enough, we can select an integer k satisfying

2γ + 3
2 < k ≤ min {m, p+ 1}.

Then µ = min {k, p+ 1} = k, max
{
p−2(γ+1/2−s), p−(k−s̃)

}
= p−2(γ+1/2−s) for any s ∈ [0, 1], and

(5.27) leads to (5.18).

If γ − 1
2 < p ≤ 2γ + 1

2 (i.e., p is bounded), we select an integer k ∈
(

max {3
2 , γ + 1

2}, p+ 1
]
,

and if p = γ − 1
2 , then we choose k = γ + 1

2 = p + 1. In both these cases µ = k, p−(k−s̃) ≤
C(γ) p−2(γ+1/2−s) for any s ∈ [0, 1], and (5.18) is again deduced from (5.27).

If 1 ≤ p < γ − 1
2 , then u ∈ Hm(Γ) ∩ H1

0 (Γ) with 3
2 < m < γ + 1

2 . In this case we apply

Proposition 4.1 directly to the function u: there exists uhp ∈ V h,p
0 (Γ) satisfying for s ∈ [0, 1]

‖u− uhp‖Hs(Γ) ≤ Chµ−s‖u‖Hm(Γ), µ = min {m, p+ 1}.

Hence, selecting m ∈ [p+ 1, γ + 1
2) we prove (5.19). 2

Remark 5.1 Observe that the proof of Theorem 5.2 also applies to the edge singularity terms
given by (2.4). In fact, adjusting the support of the cut-off function χe1 in (2.4) it is easy to
obtain χe1 = 0 on the edges lv, lw ⊂ ∂Ae. Therefore each component of ue can be written in the
more general form (5.20) and the statement of Theorem 5.2 remains valid for u = ue.
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6 Approximation of vertex singularities

Let v be a vertex of Γ and let Av be the union of elements Γj such that v ∈ Γ̄j.

Theorem 6.1 Let u = uv be given by (2.5). Then there exists uhp ∈ V h,p
0 (Γ) with p ≥ λ such

that for 0 ≤ s ≤ 1,

‖u− uhp‖Hs(Γ) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β+ν , (6.1)

where λ = λv1 > 0, β = qv1 ≥ 0 is integer, ν = 1
2 if p = λ, and ν = 0 otherwise.

If 1 ≤ p < λ, then there exists uhp ∈ V h,p
0 (Γ) satisfying for s ∈ [0, 1]

‖u− uhp‖Hs(Γ) ≤ C hp+1−s. (6.2)

Proof. The idea and arguments in the proof below are the same as in the proofs of Lemma 4.2,
Theorem 5.1, and Theorem 5.2. That is why we outline the proof omitting inessential details.

Let
u = rλ| log r|βχv(r)w(θ), (6.3)

where λ = λv1 > 0, β ≥ 0 is integer, χv is the same as in (2.5), w ∈ Hm(0, ωv) ∩ H1
0 (0, ωv),

ωv denotes the interior angle on Γ at v, and m is as large as required. Note that u ∈ H 1
0 (Γ),

because λ > 0.
We decompose u as u = ϕ1 + ϕ2, where

ϕ1 := uχv(r/h0), ϕ2 := u(1− χv(r/h0)), h0 = (σ1σ2)−1h. (6.4)

The singular function ϕ1 has small support, suppϕ1 ⊂ Āv. Let Kh = Γj ⊂ Av and let K ⊂ IR2

be a triangle or parallelogram such that Kh = M(K) under the affine mapping M : xi =
hx̂i, i = 1, 2, x ∈ Kh, x̂ ∈ K. Then O = (0, 0) is a vertex of K and for h < 1

2 we have

ϕ̂1(x̂) = ϕ1(hx̂1, hx̂2) = hλr̂λ
β∑

k=0

(
β

k

)
| log h|k| log r̂|β−kχv(σ1σ2r̂)w(θ̂).

Let A = {li} contain those sides li ⊂ ∂K for which O ∈ l̄i, and let B be the union of the
other sides of K. Then applying Proposition 4.2 to each function r̂λ| log r̂|kχv(σ1σ2r̂)w(θ̂), k =
0, . . . , β, we find a polynomial φ̂ ∈ Pp(K) such that φ̂(0, 0) = 0, φ̂ = 0 on B,

‖ϕ̂1 − φ̂‖Hs(K) ≤ C(β)hλ p−2(λ+1−s) (1 + log(p/h))β , s = 0, 1, (6.5)

‖ϕ̂1 − φ̂‖L2(l) ≤ C(β)hλ p−2(λ+1/2) (1 + log(p/h))β for every l ∈ A. (6.6)

Let us define φj := φ̂ ◦ M−1. Then φj ∈ Pp(Γj), φj = 0 at the vertex v and on the sides
lhi ∈ Bj = M(B). Furthermore, making use of Lemma 3.1, we obtain by (6.5), (6.6)

‖ϕ1 − φj‖Hs(Γj) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β , s = 0, 1, (6.7)

‖ϕ1 − φj‖L2(lh) ≤ C hλ+1/2 p−2(λ+1/2) (1 + log(p/h))β for every lh ∈ Aj = M(A). (6.8)
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Suppose that Γi, Γj ⊂ Av are two elements having the common edge lh = Γ̄i∩Γ̄j. Let φi ∈ Pp(Γi)
and φj ∈ Pp(Γj) be the approximations of ϕ1 constructed above and satisfying estimates (6.7),
(6.8). Then the jump g = (φj − φi)|lh vanishes at the end points of lh and

‖g‖L2(lh) ≤ C hλ+1/2 p−2(λ+1/2) (1 + log(p/h))β .

Hence, due to Lemma 3.4, there exists z ∈ Pp(Γi) such that z = g on lh, z = 0 on ∂Γi\lh, and

‖z‖Hs(Γi) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β s = 0, 1.

Setting φ̃ = φi + z on Γi and φ̃ = φj on Γj we find a continuous piecewise polynomial φ̃ such
that the norm ‖ϕ1 − ψ̃‖Hs(Γi∪Γj) is bounded as in (6.7) for s = 0, 1.

Let e1, e2 be the edges of Γ meeting at the vertex v. Since w(0) = w(ωv) = 0, the function
ϕ1 vanishes on e1, e2. Therefore, using the same arguments as above we can adjust φi on each
element Γi ⊂ Av∩(Ae1∪Ae2). Then we construct a polynomial φ̃ ∈ Pp(Γi) vanishing on ∂Γi∩ ēk
with k = 1 or 2 as appropriate.

Note that the number νv of elements in Av is independent of h (νv ≤ ωv
θ0

, where θ0 is the
minimal angle of elements in the mesh). Therefore, repeating the above procedure we construct
a continuous function ψ1 such that ψ1 ∈ Pp(Γj) for each Γj ⊂ Av, ψ1 = 0 on ∂Av , and the norm
‖ϕ1 − ψ1‖Hs(Av) for s = 0, 1 is bounded as in (6.7). Extending ψ1 by zero onto Γ\Av we obtain

ψ1 ∈ V h,p
0 (Γ) satisfying for s = 0, 1

‖ϕ1 − ψ1‖Hs(Γ) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β . (6.9)

By interpolation we prove that (6.9) holds for 0 ≤ s ≤ 1.
For the function ϕ2 (see (6.4)) one has

ϕ2 = rλ| log r|βχv(r)(1 − χv(r/h0))w(θ) ∈ Hm(Γ) ∩H1
0 (Γ),

suppϕ2 ⊂ Γ̄ ∩ R̄h, where Rh = {(x1, x2); τvh0 < r < 2τv}.
Hence, using (5.9) and (5.10) we find by simple calculations

‖ϕ2‖2Hk(Γ) ≤ C(log(1/h))2β

2τv∫

τvh0

r2(λ−k) rdr, 0 ≤ k ≤ m. (6.10)

Further, due to Proposition 4.1, there exists ψ2 ∈ V h,p
0 (Γ) such that for s ∈ [0, 1]

‖ϕ2 − ψ2‖Hs(Γ) ≤ Chµ−sp−(k−s̃)‖ϕ2‖Hk(Γ), (6.11)

where k ∈ ( 3
2 ,m] is integer, µ = min {k, p+ 1}, and s̃ is defined by (4.6).

If k satisfies k > 3
2 and λ+ 1 ≤ k ≤ m then (6.10) and (6.11) yield

‖ϕ2 − ψ2‖Hs(Γ) ≤ Chµ−s+λ−k+1p−(k−s̃) logβ+ν(1/h), s ∈ [0, 1], (6.12)
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where ν = 1
2 if k = λ+ 1, and ν = 0 if k > λ+ 1.

If p ≥ λ, then similarly as in the proofs of Theorems 5.1 and 5.2 we select an integer k such
that µ = k in (6.12) and p−(k−s̃) ≤ C(λ) p−2(λ+1−s) for any s ∈ [0, 1]. Then combination of (6.9)

and (6.12) gives (6.1) with uhp := ψ1 + ψ2 ∈ V h,p
0 (Γ).

The proof of estimate (6.2) is analogous to the proof of the corresponding results in Theo-
rems 5.1 and 5.2. 2

7 General approximation result and proof of Theorem 2.2

By combination of the approximation results for singularities from Sections 5 and 6 we obtain
a general approximation result for the function u given by (2.3)–(2.7).

Theorem 7.1 Let the function u be given by (2.3)–(2.7) on Γ with γe1 > 0 and λv1 > 0. Also, let
v0 ∈ V , e0 ∈ E(v0) be such that min{λv0

1 + 1/2, γe01 } = minv∈V,e∈E(v) min {λv1 + 1/2, γe1}, with λv1
and γe1 being as in (2.4)–(2.7). Then, for any h > 0 and every p ≥ min {λv0

1 , γ
e0
1 − 1/2}, there

exists a function uhp ∈ V h,p
0 such that for 0 ≤ s < min {1, λv0

1 + 1, γe01 + 1/2}

‖u− uhp‖Hs(Γ) ≤ C max
{
hmin {k,p+1}−s p−(k−s̃),

hmin {λv01 +1,γ
e0
1 +1/2}−s p−2(min {λv01 +1,γ

e0
1 +1/2}−s)(1 + log(p/h))β+ν

}
,

(7.1)

where β and ν are defined by (2.11) and (2.12), respectively, s̃ = s if the mesh ∆h on Γ does not
contain triangles, and s̃ is defined by (4.6) for meshes containing triangles.

If 1 ≤ p < min {λv0
1 , γ

e0
1 − 1/2}, then for any h > 0 there exists uhp ∈ V h,p

0 such that for
s ∈ [0, 1]

‖u− uhp‖Hs(Γ) ≤ C hmin {k,p+1}−s. (7.2)

Proof. To approximate the smooth part ureg ∈ Hk(Γ) ∩ H1
0 (Γ) of decomposition (2.3) we

use Proposition 4.1, and applying Theorems 5.1, 5.2, and 6.1 we find piecewise polynomial
approximations for the singularities uev, uv, and ue on Γ (see also Remark 5.1). Then combining
the corresponding error estimates from these statements we obtain (7.1) and (7.2). 2

Proof of Theorem 2.2. Due to the regularity result of Theorem 2.1 and the quasi-optimal
convergence of the BEM (see, e.g., [17]), one needs to find piecewise polynomial functions ap-
proximating the solution u in (2.3) and satisfying the upper bounds stated in (2.10), (2.13).

Let p ≥ min {λv0
1 , γ

e0
1 − 1/2}. Then applying Theorem 7.1 we find vhp ∈ V h,p

0 (Γ) satisfying
the upper bound given by (7.1). Since (u − vhp) ∈ Hs′

0 (Γ) for some s′ ∈ (1
2 , 1), we obtain by

interpolation between H0(Γ) and Hs′
0 (Γ)

‖u− vhp‖H̃1/2(Γ) ≤ C max
{
hmin {k,p+1}−1/2 p−(k−1/2−ε),

hmin {λv01 +1/2,γ
e0
1 } p−2 min {λv01 +1/2,γ

e0
1 }(1 + log(p/h))β+ν

}
, (7.3)
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where ε > 0 and β, ν are the same as in (7.1).
Let us select k > 2 min {λv0

1 + 1
2 , γ

e0
1 }+ 1

2 ≥ 3
2 . Then for sufficiently small ε > 0

hmin {k,p+1}−1/2 p−(k−1/2−ε) ≤ hmin {λv01 +1/2,γ
e0
1 } p−2 min {λv01 +1/2,γ

e0
1 },

and the desired error bound (see (2.10)) follows from (7.3).
If 1 ≤ p < min {λv0

1 , γ
e0
1 −1/2}, then u ∈ Hm(Γ)∩H1

0 (Γ) with 3
2 < m < min {λv0

1 +1, γe01 + 1
2}.

Selecting m ∈ [p+ 1,min {λv0
1 + 1, γe01 + 1

2}) and applying Proposition 4.1 we find vhp ∈ V h,p
0 (Γ)

such that
‖u− vhp‖H̃1/2(Γ) ≤ C hmin {m,p+1}−1/2 ‖u‖Hm(Γ) ≤ C hp+1/2,

which proves (2.13). 2
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