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Abstract

We prove an optimal a priori error estimate for the hp-version of the boundary element
method with hypersingular operators on piecewise plane open or closed surfaces. The un-
derlying meshes are supposed to be quasi-uniform.

The solutions of problems on polyhedral or piecewise plane open surfaces exhibit typical
singularities which limit the convergence rate of the boundary element method. On closed
surfaces, and for sufficiently smooth given data, the solution is H!'-regular whereas, on open
surfaces, edge singularities are strong enough to prevent the solution from being in H'.

In this paper we cover both cases and, in particular, prove an optimal a priori error esti-
mate for the h-version with quasi-uniform meshes. For open surfaces we prove a convergence
like O(h'/?p~1), h being the mesh size and p denoting the polynomial degree.
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1 Introduction

We study the hp-version of the boundary element Galerkin method (BEM) for hypersingular
integral operators on piecewise plane surfaces. The particularly important case of open surfaces
is included. We prove an optimal a priori error estimate for the hp-version with quasi-uniform
meshes. Fixing polynomial degrees our result yields new optimal error estimates for the h-
version.

The first paper on the p-version of the BEM for problems in three dimensions appeared 1996,
[16]. It covers only polyhedral domains (and hypersingular operators) where solutions are in
H' (on the boundary). The second paper [13], which appeared 1999, analyses the hp-version
of the BEM with geometrically graded meshes on open surfaces, for hypersingular and weakly
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singular operators. This method uses appropriate combinations of graded meshes and highly
non-uniform polynomial degrees to achieve a convergence that is faster than algebraic, even in
the presence of strong singularities that are inherent to problems on open surfaces. From those
results one cannot, however, deduce a priori error estimates for the p-version or Ap-version with
quasi-uniform meshes. In the latter cases polynomial degrees are large also on elements close
to the singularities, whereas the hp-version with geometrically graded meshes uses lowest order
polynomials at the singularities. The hp-version with geometrically graded meshes is numerically
convincing and well analysed. However, the analysis of high order approximations of singularities
is challenging and with this paper we fill one of the gaps in the existing literature.

In our previous paper [7] we studied the p-version of the BEM for hypersingular operators
on open surfaces. The strongest singularities of typical solutions are edge singularities which
behave like y'/2 where y denotes the distance to an edge of the surface. Let us denote this
surface by I'. Then this edge singularity is in the Sobolev space H'!~¢(T) for any € > 0, but it
is not an element of H'(T). The energy space of hypersingular operators is H'/2(T), sometimes

denoted by H0162(F). (For a definition of the Sobolev spaces see Section 3 below.) Therefore, in
order to find an optimal a priori error estimate, one has to analyse the approximation in H/? ()
of a function which is not in H!(T'). One possibility to deal with this is to introduce weighted
Sobolev spaces. In particular, Jacobi-weighted Sobolev and Besov spaces are appropriate to
prove optimal error estimates for the p-version, see [12] for the BEM in two dimensions and
[3, 11] for the FEM in two and three dimensions. In order to obtain error estimates in the
energy norm, a key ingredient is to prove that the interpolation between appropriate weighted
spaces reproduces the energy space. For the space H'/2 on open curves or surfaces this result is
not immediate. In two dimensions it can be proved by using arguments of complex analysis (see
[6, Lemma 3.1]) and in three dimensions this is open. In this paper we follow the strategy of
[7] and avoid the use of weighted spaces by performing the approximation analysis in fractional
order Sobolev spaces.

For the particular edge singularity y'/2 we proved a convergence like O(p~!) for the p-
version [7]. Here, p denotes the polynomial degree of the approximating functions. In this
paper, we extend the analysis to the hp-version and the corresponding error estimate for the
edge singularity gives an upper bound that behaves like O(hl/ 2p~1). Here, h refers to the
maximum diameter of the elements.

Fixing polynomial degrees, our results on the Ap-version in particular prove optimal a priori
error estimates for the h-version of the BEM with quasi-uniform meshes. In fact only very
little has been proved for the h-version of the BEM in three dimensions. For problems with
singularities we only know of [20] where von Petersdorff and Stephan present a sub-optimal
error estimate (for quasi-uniform and graded meshes). In the case of an open surface their result
states an error bound like O(hl/ 2-¢) for piecewise polynomial approximations of lowest order
on quasi-uniform meshes. Here, ¢ > 0 and the leading error term contains a factor C'(g) whose
behaviour for € — 0 is unknown. Fixing p in this paper we prove an error bound like O(hl/ 2)
for any polynomial degree.

To prove results for the hp-version with quasi-uniform meshes one usually tries to make



use of p-version results by scaling arguments. For the finite element method in two dimensions
see [4] and for the BEM in two dimensions we refer to [18]. There are, however, two principal
difficulties. First, p-version analysis employs different polynomial degrees in different parts of the
approximation. When only p-asymptotic estimates are wanted one approximates, for instance,
polynomial jumps of degree p over element interfaces by polynomial extensions of degree 2p 4 1
(cf. Lemma 3.4 below). This is not possible when aiming at h-version results where polynomial
degrees are fixed (e.g. uniformly at p). In that sense hp-estimates do not directly follow from
corresponding p-estimates by scaling arguments. Second, in this paper we are considering three-
dimensional problems where different types of singularities appear. This fact, together with the
need to directly work in fractional order Sobolev spaces, makes the use of scaling arguments
non-trivial.

Our analysis applies to open and closed surfaces which must be piecewise plane such that they
can be discretised by meshes consisting of triangles and parallelograms. For ease of presentation
we assume that I' C R? is a plane open surface with polygonal boundary. Our model problem
reads: Find v € HY/?(T) such that

(Wu,v) = (f,v) Yve HY*(T). (1.1)

Here, f € H1/2 (T") is a given functional and W is the hypersingular operator

1 0 0 1

The operator W : HY?(I') — H~'/2(I') is continuous, symmetric and positive definite such
that any finite element method for (1.1) (then called boundary element method) converges quasi-
optimally, see [9] and [17]. Here, H~'/2(T") is the dual space of H'/?(T') and the latter is defined
below.

The rest of the paper is organised as follows. In the next section we define the hp-version
of the BEM, recall a regularity result for the solution of (1.1), and formulate the main theorem
stating an optimal a priori error estimate for the hp-version of the BEM. In Section 3 we
introduce the Sobolev spaces and collect several technical results. Of particular importance is
Lemma 3.5 which bounds a fractional order norm by local contributions. This is needed to
join local approximation results in fractional spaces to form a global estimate. Sections 4-6
are focused on the approximation analysis of particular singularities. In Section 7 we prove a
general approximation theorem and the main result given in Section 2.

2 hp-BEM and optimal a priori error estimate

For the approximate solution of (1.1) we apply the hp-version of the BEM on quasi-uniform
meshes. In what follows, h > 0 and p > 1 will always specify the mesh parameter and a polyno-
mial degree, respectively. For any Q € R? we will denote pg = sup{diam(B); B is a ball in Q}.
By A ~ B we mean that A is equivalent to B, i.e., there exists a constant C' > 0 such that
C B < A< C~!'B where B and A may depend on a parameter (usually & or p) but C does not.



Let M = {A} be a family of meshes A, = {I';; j =1,...,J} on I', where I'; are open
triangles or parallelograms such that I’ = U}J:lf‘j. For any I'; € Ay, we will denote h; = diam(T';)
and p; = pr;. Let h = maxh;. In this paper we will consider a family M of quasi-uniform

meshes Ay, on I' in the sense that there exist positive constants o1, oo independent of h such
that for any I'; € Aj, and arbitrary Aj) € M

h S Ulhj, h]‘ S O'ij. (2.1)

Let @ = (—1,1)2 and T = {(z1,22); 0 < 21 < 1,0 < x5 < 21} be the reference square and
triangle, respectively. Then for any I'; € Aj one has I'; = M;(K), where M; is an affine
mapping with Jacobian |J;| ~ h? and K = @ or T as appropriate.

Below we will refer to three different unions of elements. The union of the elements at a
node v is denoted by A,, i.e., 4, := U{I—‘j; v E f’j}, the union of the elements at one edge e by
A, (the endpoints of e are not included in e), A, := U{l'j; T'; Ne # ¢}, and A, := A4, N A..

Further, P, (/) denotes the set of polynomials of degree < p on an interval I C R. Moreover,
73; (T') is the set of polynomials on T of total degree < p, and PS(Q) is the set of polynomials on
Q of degree < p in each variable. Let K C R? be an arbitrary triangle or parallelogram, and let
K = M(T) or K = M(Q) with an invertible affine mapping M. Then by P,(K) we will denote
the set of polynomials v on K such that vo M € P}(T) if K is a triangle and vo M € P2(Q) if
K is a parallelogram (in particular, we will use this notation for K = @ and K = T'). For given
p, we then consider the space of continuous, piecewise polynomials on the mesh Ay € M,

Voh’p(F) ={ve C’O(F); vlor = 0, vlr; € Pp(ly), j=1,...,J}.
Note that Voh’p(F) C HY?(T'). Now, the hp-version of the BEM is: Find up, € Voh’p(I’) such that
(Wupp, v) = (f,v) Yo e Vg"’(D). (2.2)

Before giving our main result stating an optimal a priori error estimate for (2.2) let us recall the
typical structure of the solution of the model problem for a sufficiently smooth right-hand side
function f.

Theorem 2.1 [20] Let V and E denote the sets of vertices and edges of T', respectively. For
v €V, let E(v) denote the set of edges with v as an end point. Then, for sufficiently smooth
given f, the solution u of (1.1) has the form

u:ureg—l—Zue—i—Zuv—i—Z Z u, (2.3)

eEFR veV veV e€E(v)

where, using local coordinate systems (14,,0,) and (Te1, Tez) with origin v, there hold the following
representations:
(i) The regular part uyeg € H¥(T'), k > 3/2.



(i) The edge singularities u® have the form

Mme s; e
u® = Z (Z bjs(xel)‘ log 3362‘8) HUZ% X1 (Te1)X5(Te2), (2.4)

Jj=1 \s=0

1 e
5, and me, $

5 are integers. Here, X{, x5 are C™ cut-off functions with
X = 1 in a certain distance to the end points of e and x§ = 0 in a neighbourhood of these
vertices. Moreover, x5 =1 for 0 < xeo < 6. and x5 = 0 for xeo > 26, with some . € (0, %)
The functions b5,x7 € H™(e) for m as large as required.

(7ii) The vertex singularities u® have the form

where 7%,y 2 75 >

qv
ny 4

AV
Z BZH log ro|'ro’ wh (6,), (2.5)

where \] 1 > N] > 0, ny, qf > 0 are integers, and By, are real numbers. Here, x" is a C™
cut-off function with x* =1 for 0 < r, <7, and x* =0 for r, > 27, with some 7, € (0, %) The
functions w}, € H1(0,w,) for q as large as required. Here, w, denotes the interior angle (on T')
between the edges meeting at v.

(iv) The edge-vertex singularities u’ have the form

uev — u?v + USU,
where
Me Mo 85 @ s AV e
=32 B, log wer T log weal! | i ad x(ro)x(8s)  (26)
j=1i=1 \s=0¢=0 =0
and
ZZBW )| log Tea|*x 52 X (o)X (0) (2.7)
j=1s=0
with
B (r ZB]sl 7)) log o' (2.8)
Here, g7, s§, A}, 75, x" are as above, Glts aTe real numbers, and x is a C* cut-off function

with x¢° =1 for0 <6, < B, and x¢* =0 for %ﬂv < 0y < wy for some B, € (0, min{w, /2, 7/8}].
The functions BSg may be chosen such that

B;g(rv) XU(TU)XEU(GU) = st(xely xe2) X;($e2)a (29)

where the extension of xjs by zero onto R*T := {(2¢1,Ze2); Tea > 0} lies in H™(R?Y) for m as
large as required. Here, x5 is a C* cut-off function as in (ii).



Remark 2.1 For an open surface there holds uyeg € H¥(T') N HY(T) and w}, in (2.5) satisfies
wY, € H1(0,w,) N HE(0,w,). This will be needed in the proofs of Theorems 6.1 and 7.1.

The following theorem is the main result of this paper.

Theorem 2.2 Let u € ﬁ1/2(I’) be the solution of (1.1) with sufficiently smooth given function
f € HY?(T) such that the representation from Theorem 2.1 holds. Let vg € V, eq € E(uvg) be
such that min{A{® + 1/2,77°} = min,cv cep) min{A] 4+ 1/2,7{}, with XY and 7§ being as in
(2.4)-(2.7). Then, for any h > 0 and every p > min{A]°,7{° — 1/2}, the BE approzimation up,
defined by (2.2) satisfies

v

ot = gl g agpy < € IR p2min TR (1 g log(p/m)PHY, (2.10)

where

1 . 1
8= {quo 0ty A=y (2.11)

q7° + s7° otherwise,

€0

for numbers ¢{°, s° as given in (2.6), and

l ) = ] vo o - l
L { 5 if p = min {>\1 s M 2}’ (2.12)
0 otherwise.

If 1 <p <min{\[°,~77° — 1/2}, then for any h > 0 there holds
e = wnpll ooy < CH2, (2.13)
The positive constants C' in (2.10) and (2.13) are independent of h and p.

The proof of this Theorem is given in Section 7.

3 Preliminaries

We introduce the Sobolev spaces and prove several technical lemmas.
For details concerning Sobolev spaces we refer to [14, 10]. For a domain Q@ C R" and an
integer s let H*(2) be the closure of C°°(€2) with respect to the norm

HUH%‘{S(Q) = Hquqs—l(Q) + \u’%{s(g) (s =1).

Here,

ulfoy = [ ID"u@)? d, and HO() = Ly(®),
where |D%u(z)|? = Xlal=s |D%u(x)|? in the usual notation with multi-index a = (aq, ..., ay)
and with respect to Cartesian coordinates x = (x1,...,2,). For a positive non-integer s with

s =m + o with integer m > 0 and 0 < o < 1, the norm in H*(2) is
HUH%{s(Q) = HUH%JM(Q) + W%{s(g)
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with semi-norm

2 |Du(w) — Du(y)[?
|ulFrs (o) Z // |x—y|"+20 dx dy.

The closure of C§°(£2) with respect to the above norms is denoted by H(2). For a domain Q with
Lipschitz boundary 89, H/? (©) denotes the space of functions in H 1/ 2(Q) whose extensions by
zero are elements of H'/2(R™). A norm in this space is

’2
L T R A e e

For non-integer s, we equivalently define the Sobolev spaces by real interpolation:

HY(Q) = (Lo(), H'(Q))  (0<s<1)

5,2

and
H'2(Q) = (L2(Q), Hy(@) , | (1/2<s<1).
2s?
For integer & > 0 and p € [0,1] we also consider the spaces of continuously differentiable
functions C*(Q) and C*#(Q) with norms

lull k) = Y sup|D%u(z)]

|Oé‘§k‘er
and Deu(a) - Deu(y)
u(z) — D%u(y
lullokmy = luloxa + 3 sup
. |az:k Y€, zy |z —y|*

Now let us collect several technical lemmas. We will need the following scaling result.

Lemma 3.1 Let K" and K be two open subsets of R™ such that K" = M (K) under an invertible
affine mapping M. Let diam K" ~ pyn ~ h and diam K ~ px ~ 1. Ifu € H™(K") with integer
m >0, then & = uo M € H™(K) and there exists a positive constant C depending on m but
not on h or u such that .

|| prm () < CR™7 2 |ul g gy, (3.1)

Analogously for any t € H™(K) there holds
| grm (eny < Ch2 ™ gm (1) (3.2)
Moreover, if 4 € H*(K) with real s € [0,m], then
Cvh3 (| s a6y < Ml e (acny < Coh™* @ o ) (3.3)

For the proof of (3.1), (3.2) see [8, Theorem 3.1.2]. Inequalities (3.3) then follow by interpo-
lation (see [2, Lemma 4.3]).



Remark 3.1 The notation introduced in Lemma 3.1 will be used frequently in this paper. If
not specified otherwise, K" C R? is assumed to be a triangle or parallelogram (an element of
the mesh Ay) such that diam K" ~ prn ~ h (see (2.1)) and K" = M(K), where K C R? is
a triangle or parallelogram with diam K ~ pg ~ 1 and M is an invertible affine mapping of
K onto K". The functions u and @ defined on K" and K, respectively, satisfy the relations:
G=uoM andu=10o0oM1L.

The following two lemmas are Theorem 3.8 and Lemma 5.5 of Chapter 2 in [15] (for the case
of a triangle or parallelogram K).

Lemma 3.2 Let m > 1 bereal. Let p=m—14ifm<2, p<lifm=2, and u=11if m > 2.
Then H™(K) Cc CY*(K), and

[ullconzy < Cllullamx)-

Lemma 3.3 Let u € H*(K) for real s > 0, and v € C¥'=V1(K), where [s]’ denotes the minimal
integer such that s < [s|". Then uwv € H*(K), and

vl sy < Cllullgs ey vl tear-11(z)-
The next lemma is the scaled version of Lemma 9.2 in [16].

Lemma 3.4 Let K" be a triangle (respectively, a parallelogram) satisfying the assumptions
of Lemma 3.1, and let 1" be a side of K" with vertices vi, va. Let wy, € Pp(I") be such
that wpp(v1) = wpp(ve) = 0, and ||wppllp,qny < f(h,p). Then there exists up, € Popr1(K")
(respectively, up, € Pp(K")) such that up, = wpy on 1", up, =0 on OKMN\I", and for 0 < s <1

[npll s remy < ChM275 p= 128 f(h, p).

Proof. One has (see Remark 3.1) K" = M(K) with K = T (respectively, K = Q). Let [ be a
side of K such that I* = M(l). Then wp, = wp, o M € P,(I) and by Lemma 3.1 there holds

npll Loy < Ch 2 wppllp,qny < Ch™Y2 f(h, p).

Applying now Lemma 9.2 of [16] to the function 1y, we find a polynomial wy, € P21p+1 (K), K =
T (respectively, wp, € Pg(K), K = @) such that up, = Wy, on [, up, = 0 on OK\l, and for
0<s<1

[l s iy < CRTH2p~ 142 f(h, p).

Setting upp = fpp 0 M1 and using again Lemma 3.1 it is easy to see that uy, satisfies all
conditions of the lemma. O

The next lemma is to split the norm in a fractional order Sobolev space onto sub-domains
and is critical to prove global approximation results by using local approximation results on



sub-domains. Since this result is of wider interest we present it in a more general form than
needed in this paper.

Let I' C R" (n = 2,3) be a polygon (n = 2) or a polyhedron (n = 3), and let A = {I';} be
a regular mesh on I' consisting of shape regular elements (being affine mappings of a bounded
number of reference elements). For each I'; € A we denote h; = diam(I';). In the lemma below
we will consider a locally quasi-uniform mesh A on I' in the sense that there exists a positive
constant o1 independent of the mesh such that for any patch § = {I';} C A of neighbouring
elements there holds

max h; < o1h; for each I'; € 6.
j:T;€ed

Lemma 3.5 Let ' C R" (n = 2,3) be a polygon (n = 2) or a polyhedron (n = 3), and let
A ={T';} be a locally quasi-uniform mesh on I'. Then for 0 < s <1

lllZrsy = D lullfs o,y Vu € HA(D), (3.4)
J
and for 1/2 < s < 1 there holds

luliraey < €32 (B Nullfyr)) + lulfsr,) V€ HY (D). (35)
J

The positive constants C in (3.4), (3.5) are independent of w and the mesh A.

Proof. Since |]uH%2(F) =3 HUH%Q(rjy it is enough to consider the semi-norm in H*(T"). For
J

€ (0,1) one has
Ju(z) —u(y)l?
\U’?{s(r) = Z// |n+25 dz dy
Ju(z) — u(y)2
= ( Z + —i—Z)// ]w— ’n+25 dz dy

i,j:0inly=0  4,j5:TinNLy #@ i#j =)
=: I1—|—I2+13. (36)

This immediately leads to (3.4), because I, Is > 0 and

L= Y |ufisr, (3.7)

j:FjEA

Let % < s < 1. We will estimate the terms I; and I5 in (3.6) separately. Let I';, I'; € A be such
that T; N fj = ¢. Denoting d;; = dist (I';,I';) we have

dedy < ——s= d d d d
/ / |$ _ |n+23 ¥y = d%JrQs r, |u(:n)] €z r, Yy + r, €z r, |U(y)| Yy



C
< o (WPl e,y + B3l )
ij
Hence

g L P 1 e 207 [l r)

Il < c Z dn+2s =C Z dn+25 i
Qh”
2
i ] r; ﬂF =0

Let us fix an arbitrary T'; € A. We introduce polar coordinates with the origin at some point
2" € T; and denote by r; = 7;(z) = |x — 2%| the polar radius. Then there exists a positive
constant C independent of 4 and the mesh A such that

dij = dist (I';,I';) > Cri(x) Ve el;, VI;e{ly; fj AT, = o}.
Moreover,
U{Ty; T, NT; =0} C {z €T; kh; < |z — ;] < R}
with some constants x and R independent of the mesh. Therefore we estimate for fixed I';
hn

Z dn+2s < c Z / dn+25 — <C Z / n+2s

]FOF =0 ]FOF =0 ]FOF =0

< C / ri 2 e e, < C Ry,
kh;
Then we obtain by (3.8)
L<C Y h* ”UH%Q(FZ-)- (3.9)

I EA

In order to estimate I, we again fix an arbitrary T'; € A and denote by K" the patch of
neighbouring elements touching I';, i.e., K" = U{l;; ['; NT; # ¢}. Observe that the number
of elements in any patch K" is bounded by a constant independent of s and A. Let K be an
open subset in R™ such that K" = M(K), where M is the affine mapping (scaling) satisfying
Mz, =higr, k=1,....,n,z € K™ & e K. Then K = U; K, where K; = M~ ur ;) for each
I'ycK hi . Moreover, due to the local quasi-uniformity of the mesh, dlamK diam K; ~ 1 for
each K; C K. Therefore

—2s| ~ —2s| ~
|u|§{S(Khi) ~ by 8|u|§{S(K)’ ||U||%2(rj) 2h?||u||%2(1r<j)a |U|§{s(rj) ~ hi 8|u|§{S(Kj)

10



with 4 = uwo M, and applying Lemma 3.1 of [7] we obtain

ulFrogensy = BTl S CRFTH Y (”a”%ﬂf{j)ﬂaﬁ”(&))

JK;CK
< om0 (Nl e, + e el )
j:FjCKhi
< ¢ Y (WElul,e, + b)) - (3.10)
j:FjCKhi

Since hj ~ h; for every I'; C K hi and each patch K" has a bounded number of elements, we
estimate by (3.10)

2
n=Y o e iy < X oy

i giDN0i#P, j#i

C > (W=l + lulis,)) - (3.11)
j:FJ‘EA

IN

Now inequality (3.5) follows from (3.7), (3.9), and (3.11) making use of decomposition (3.6). O

Remark 3.2 Inequality (3.4) was given in [19, Lemma 3.2] for the case when the norm in H*®
is defined by the method of complex interpolation, and was proved in [2] in the case of real
interpolation.

4 Auxiliary approximation results

In this section we formulate several results regarding the approximation of smooth and singular
functions. For the approximation of smooth functions we will need the following lemma.

Lemma 4.1 Let K" and K be two triangles (parallelograms) satisfying the assumptions of
Lemma 3.1, and let | be a side of K. Suppose that uw € H™(K"). Then & = uo M € H™(K)

and there ezists a family of operators {mp}, p=1,2,..., 71p: H™(K) — P,(K) such that
6 = piill gagey < CH* p™ "D ful| g geny, m >0, 0< g <m, (4.1)
(6 — i) (@) < CH ™™ D ery, m > 1, G €K, (42)
i — 7yl sy < CRP L p™ V2 ]| ey, M > 3/2, 5=0,1, (4.3)

where = min {m,p + 1}, and the positive constants C in (4.1)—(4.3) are independent of u, p,
and h but depend on m.

11



Proof. Making use of Lemma 4.4 in [4], estimates (4.1)—(4.3) follow from the corresponding
results of [5, Lemma 3.1] (for details, see [4, Lemma 4.5], in particular, estimates (4.14), (4.16)
therein). 0

Now we can prove the result on the approximation of smooth functions. It gives estimates
for the error of this approximation in the norms of the spaces HY/2(T') and H*(T), s € [0,1].
For the space H!(I') this result has been proved before in [4, Theorem 4.6].

Proposition 4.1 Let m > 3/2. Then for u € H™(') N H}(T') there exists up, € Vbh’p(l“) such
that for s € [0,1]

lw = wnpllgzry < CH*=*p™ " ]| gy, = min {m, p + 1} (4.4)
if the mesh Ay, on I' does not contain triangles, and
llw = wnpll s (ry < Ch“_sp_(m_g)HUHHm(F) (4.5)

if Ay, contains triangles; here u is the same as in (4.4) and

1/2 if s€10,1/2),
§=¢1/24¢,e>0 if s=1/2, (4.6)
s if s e (1/2,1].
Moreover, .
s — wnpll oy < C ABRIRPHIZ1/2 p=(mot/229) (4.7)

where € = 0 if Ay, does not contain triangles, and € > 0 if Ay contains triangles.

Proof. Let K" =T; € A and K = Q (or K = T) so that K" = M;(K). Thus K" and K
satisfy the assumptions of Lemma 3.1 and, due to Lemma 4.1, there exists v; = 7p(u o M;) €
Pp(K) such that for s =0,1

% — 04 s (1) < Chﬂflpf(mfs)”UHHm(Pj), (4.8)

4 — 05l sy < Ch“_lp_(m_s_l/Q)HUHHm(Fj), (4.9)
where [ C 0K denotes a side of K, yt = min {m,p + 1}. Since m > 3/2, we can modify 9; as in
Theorem 4.1 of [5] to obtain ©; = @ at the vertices of K.

Let vj = v; 0 Mj_l. Then v; € Pp(I';) and we obtain by Lemma 3.1 and (4.8)
lu = vjllzzs e,y < CRP*p~ " |jul | gpm(r,y, = min{m,p+1}, s=0,1. (4.10)

Further we consider two elements I';, I'; € Aj having the common edge " =T;n fj. Let
v; € Pp(I;) and v; € P,(I';) be the polynomials constructed above. Then the jump w =
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(vj — vi)|;» € Pp(I") vanishes at the end points of I*. Furthermore, using (4.9) and standard
interpolation arguments, we find

@] =y < i = Dill sy + 6 = Ol ety < CRPp~ D] g ryiry ) § = 0,1, (4.11)

10| 172y < Ch“_lp_(m_l)HUHHm(Fquj), (4.12)

where [ = M; ("), M; : K — T';, p = min {m,p + 1}.

We will adjust the function v; on I'; to obtain the continuity of the approximation on the inter-
element edge. If I'; is a parallelogram, we use the constructions from the proof of Theorem 4.1
in [5]. In this case K = Q =1 x I, I = (—1,1) and without loss of generality we can assume
that [ = {(#1,42); &1 € I,49 = —1}. Then there exists a polynomial ¢, (i2) € P,(I) such that
(see [5, pp. 759-760])

and A
[l < Cp*~ 72, s =0,1. (4.13)

Let us define 2 := m[)p(@). Then 2 € PE(Q), Z=wonl, Z=0on dQ\l, and making use of
(4.11), (4.13) we prove

IN

121l (@) C (ol @y o lazo ) + Il zr0 0y 10l )

< Ch“_lp_(m_l)||U||Hm(1“iurj)a

121l 0@y = @]l zro ) ¥l rocry < CH*~p™ ™l grom ryr) -

If T; is a triangle, then we use the result of [1, Theorem 1] giving stable, polynomial preserving
trace liftings on I';: there exists 2 € P, (T) such that £ =1 on I, 2 =0 on 9T\[,

121y < Clldll gz 12l 172y < Cll@ll L)
Then using (4.11), (4.12), and interpolation arguments we obtain
12 asmy < Ch”_lp_(m_s)HUHHm(Fquj), s € [1/2,1],
12lmey < WEllgreery < CR o™ lull gmeoryy, s € 10,1/2).

Now for both cases considered above we define z := Z o Mi_1 € Pp(T'i). Then setting v = v; + 2
on I'; and © = v; on I';, we find a continuous piecewise polynomial on I'; UT; U 1" such that
||lu— f)HHs(Fj) is bounded as in (4.10). On I'; we use Lemma 3.1 and corresponding estimates for
12|l s 5y with K = Q or T*

—(m—s

lw =0l ms ) < llw = wvill gsqyy + CR |2y < CR*~°p Nullgmr,or,), 5= 0,1
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if I'; is a parallelogram, and

IN

lu—lliewy < CH =~ fullmr,ory), s € [1/2,1], (4.14)
lu—dllgey < CH* ™Y ull ey, s € [0,1/2) (4.15)

if I'; is a triangle.

Repeating these procedures for each pair of adjacent elements as well as for the elements I';
having the side [* C 9T' we construct the function uy, € Voh’p (T). If the mesh Ay on I consists
only of parallelograms, then wp, satisfies (4.4) for s = 0,1. For real s € (0,1) this result then
follows by interpolation.

If the mesh Ay, on I' contains triangular elements, then we deduce (4.5) from (4.14), (4.15).
In fact, for s € [0, 1), (4.5) immediately follows from (4.15), because H*(T') = H*(I') = H{(T)
for these values of s (see [10]). If s € (1,1), then we use Lemma 3.5 and estimates (4.14), (4.15):

=l < C(h >l + X = sl )
j:T,;CT

C<h_28h2"1)_2(m_1/2) [l Frm oy + hQ(“_S)p_z(m_s)HUH%{m(F))

IN

< CRPH ) p 203 oy

5, estimate (4.5) then follows via interpolation between H $(I') and H*"(T), where
s’z%—?a, s”z%—i—?a, 0<5<%.

Since (u — upp) € H§(T') for any s € (1,1], we prove (4.7) (for the meshes of both types) by
interpolation between H§ (') and Hg' (') with the same ', s as above. ]

For s = 1

Let us recall some known results regarding the approximation of singularities by polynomials
of arbitrary degree in fractional order Sobolev spaces on triangles (parallelograms) of fixed size.
In the propositions below K C R? will always denote a triangle or parallelogram satisfying the
assumptions of Lemma 3.1. The particular location of K in R? will be additionally specified in
each proposition. We will consider three types of singular functions on K which correspond to the
vertex singularity (see (2.5)) and to the edge-vertex singularities of both types (see (2.6)-(2.9)):

uy (x) = rlog r|Px (r)w(8), (4.16)
us(z) = 27 "3] log 21| | log wa| X (r)X(9), (4.17)
uz(z) = 23| log x| x1 (x1, m2) X2 (22), (4.18)

where A and ~ are real parameters to be specified, (3, 81, f2 > 0 are integers, (r,) are polar
coordinates in R?, x, X, x2 are C® cut-off functions satisfying

supp x C [0,70], suppX C [0,050], suppxz C [0, o]

for some 19, By, 5o > 0, and the functions w, y1 are sufficiently smooth.
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Proposition 4.2 [16, Theorem 8.2] Let K C R? and suppose that the origin O is a vertex of
K. Let uy be given by (4.16) with A > 0 and supp x C [0,79] for 0 < 79 < px. Then there exists
a sequence uy p € Pp(K), p=1,2,..., such that for 0 < s <1

lur = urplls iy < Cp~ 279 (1 + log p)”. (4.19)
Moreover, uy ,(0,0) =0, u1, =0 on the sides l; C 0K, 1; # O, and
lur — w1 pllr,) < Cp 202 (1 4 1ogp)®  for each side Iy, Cc OK, O €. (4.20)

Proposition 4.3 Let K C R*Y. Suppose that the origin O is a vertex of K and one of the
other vertices of K lies on the right semi-azis Oxy. Let ug be given by (4.17) with A > —1/2,
v > 0, and assume that suppus C Sop = {(r,0); 0 < r < 719, 0 <0 < By < it c K.
Then there exists a sequence us, € Pp(K), p = 1,2,..., such that uz,, = 0 on 0K and for
0<s<min{l,\+1,v+1/2}

lug — ugpll sy < Cp 2 FLITZ=9) (1 4 Jog p)fithate, (4.21)

where 0 = % ifA=~— %, and o = 0 otherwise.

This statement was first proved in [16, Theorem 7.2] under the assumptions that A > 0,

v > % Later, in [7, Theorem 3.5|, we generalised that result to A\ and v with % < min{A +

Ly+3i} <1

Proposition 4.4 Let K C R?>T and suppose that at least one vertex of K lies on the azis Ox1.
Let I, C OK (k = 1,3 or k = 1,4) denote the sides of K, 7 = {lx C 0K; I}, N Ox1 = o},
and A = {l, C OK; l;, N Ox1 contains only a single point}. Let ug be given by (4.18) with
v >0, x1 € H*(K), m > 2y + 2, and assume that (suppuz) Nl = & for each Iy € 7. Then
there exists a sequence uz, € Pp(K), p=0,1,2,..., such that for 0 < s <min{l,y + 1/2}

lus — s pll sy < C (p+ 172027 (1 4 log(p + 1)), (4.22)

Moreover, ug ), vanishes at the vertices of K, uz, = 0 on (0K N Ox1) UT, and for every side
), € .A,
lus = uz pll o) < C 0+ 17202 (14 1og(p +1))°. (4.23)

Proof. If p =0, then we set uz, = 0 on K, and (4.22), (4.23) are valid. Let p > 1. Then
for v > % the assertion is proved in [16, Theorem 6.2]. For 0 < v < % see Theorem 3.2 and

estimates (3.20), (3.21) in [7]. O
Now we will study the approximation of a certain singular function with small support.

For this function we prove an approximation result which plays an essential role in our further
analysis.
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Let e € FE be an edge of I" with vertices v, w. Recalling that A, denotes the union of elements
at the edge e, we consider the function

u(xeh er) = x22’ 108; weQWXl(xela er)XQ(er/hO)v (mely er) S Ae7 (424)

where v > 0, 3 > 0 is integer, hg = (0102)~'h with o1, o9 being the same as in (2.1), x2 is a C™®
cut-off function with support in [0, §] for some 0 < § < 1, x1 € H™(A,) with integer m > 2y +2,
and x1 vanishes on the edges l,, [, C A, with I, Né = {v} and I, N & = {w}.

Observe that v € H*(A.) for any s € [0,1/2 4+ ). Due to (2.1), hg < p; for any I'; C A,
and hence suppu C A..

Lemma 4.2 Let u be given by (4.24). Then for every p = 1,2,... there exists a continuous
function up, defined on A, such that upy, € Pp(I';) for each I'j C Ae, upp = 0 on 0A., and for
0<s<min{l,v+1/2}

m

= wnpllzrsany < ORI p 2020 (1 log(p/m)? YK Dlegay. (425)
t=0

Proof. For simplicity of notation, and when not leading to ambiguity, we will omit e in the
subscripts of the coordinates x.i, Ze2. Let KM = I'; C Ag, and let K C R?T be a triangle or
parallelogram such that K" = M(K), where M is the affine mapping

M:z;=h#;, i=1,2, ze K" #ekK.
Then at least one vertex of K lies on the axis Oz and

ZAL(CZ‘) = u(h:&l, hi‘g) = hvfé” log(hﬁ?g)wxl (h:i‘l, h:i‘g)Xg(O’lo'gig),

5
= Wa3Y <g> |log h|*|log &a|*~* %1 (81, &2)x2(010082) = G(2)X1 (),
k=0

B

p(@)=n"Y (i) [log h|* @k (22) with @;(22) = #3|log #2|'xa(010282), i =0,..., 0.
k=0

Using Proposition 4.4 for each function ¢;, i =0,..., 3, we find polynomials ¢; , € P,(K) such
that ¢; , = 0 at the vertices of K and on (0K N O%1) UT,

16i — Gipllars ey < Cp 207279 (1 +logp)’, 0<s<min{l,y+1/2},
loi — @i,p”Lg(l) < Cp72(7+1/2) (1+ logp)i for every [ € A.

Hence, setting
B

@p(@) = h7 Z <£> |log h’k@#k,p(@)

k=0
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we obtain the estimates

IN

5

A 8 . .

16 = @pllm=x) Ry (k | log k" |G sk — Gp—rpll i)
k=0

g
< WA Y (i) C(k)log"(1/h)(1 + logp)*~*
k=0
< CBRp 2021 +log(p/h))?, 0 <s <min{l,y+1/2}, (4.26)
16— @pllay < CB)A p20+1/2) (1+ log(p/h))ﬁ for every | € A; (4.27)

moreover, ¢, = 0 at the vertices of K and on (0K NOz;)UT.
Since ¢ € H*(K) and ||| gs () < ChY log?(1/h), we estimate by (4.26)

IPpllers(ry < 16— @pllars () + 1P s (1)

IN

ChY(1 +1log(p/h))®, 0<s<min{l,y+1/2}, (4.28)
and similarly by (4.27)
H@p”Lg(l) < Ch"(1+ log(p/h))ﬁ for every [ € A. (4.29)

Now let us approximate the smooth function x; € H™(K). Using [4, Lemma 4.1] we find a
polynomial X1, = X1 € Pp(K) satisfying

X1 = Xiplaay < Co " fallgm), 0<g<m, (4.30)
(X1 — X1) @) < Cp " VNxallgm@y, m>1, & €K. (4.31)

We define (&) = $p(&) X1,(#). Then ¢ € Pyy(K), b = 0 at the vertices of K and on
(0K NOz1)UT, and for 0 < s < min{1,v+ 1/2}

18 =l rey < %28 = @)l sy + 1 (Ra = X1.0) Bl s sy (4.32)

First, let us consider the case when 1/2 < s < min{l,v + 1/2}. Applying Lemma 3.2 and
Lemma 3.3 we have for any £ > 0

1X1(2 = &p)llms iy < Cllxallcor izl — Ppllms ) < Clixallmz+ex)ll6 — @pll s ()

Hence, taking e sufficiently small (2 + ¢ < m) and using estimate (4.26) we find

1R1(8 = @p)llas sy < C BT p~20H279) (1 log(p/h) [ %1 | e 1)- (4.33)

For the second term on the right-hand side of (4.32) we again use Lemma 3.2, Lemma 3.3, and
then estimates (4.28), (4.30):

(X1 = X1p)Ppllas ey < ClIXt = Xapll v (1) |9p | 15 (1)
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< Chp 72791+ log(p/h)) X1 || (xc)s 2+e <m.  (4.34)

Now we deduce from (4.32)—(4.34) for s € (1/2,min {1,v + 1/2})
o= Pllaeaey < ChY max {p=2041/279) p=(m=2=9L (1 4 log (p/h)) |11l 1 1)
< O p 2O (1t dog(p/h)) I e - (4.35)

Here we have chosen € small enough such that 1+¢ < 2s, since then one can estimate p~"+2+¢ <
p~ 27128 for m > 2y + 2.
To treat the case s = 0 we use similar arguments relying on the inequality

[wvllgory < Cllull oy [0l o (s
the embedding H'*¢(K) Cc C°(K) (¢ > 0), and estimates (4.26), (4.28), (4.31), (4.32):
e = Pllmoey < CRYp 202 (14 log(p/h)” |[Rall e ey
+C R p~ "D (1 + log(p/h)” 1%l )
< CH p 20D (14 log(p/h))” |11l rm i) (4.36)
Analogously, using (4.27), (4.29), (4.31) we obtain for every side [ € A
i = Pl ) < C R p~20F 2 (1 4 log(p/B) %1l ) - (4.37)

Observe that adjusting the constants C' in (4.35)—(4.37) we can obtain these estimates for a
polynomial 12) € Py(K) for every p = 1,2,.... Therefore, recalling the notation KM = I'; and
setting 1; = th o M~ we find a polynomial i € Pp(I'y), p=1,2,..., such that ¢; = 0 at the
vertices of I'j, on (OT'; Né), and on 79 = M (1) = {lx C 9Tj; I N & = ¢}. Moreover, making use
of Lemma 3.1 we deduce from (4.35)—(4.37)

m

lw—¥illEs ;) < C RS p=201/279) (1 - log(p/h))P > ontt IX1]ae(r)) (4.38)
=0
for s € {0} U (1/2,min {1, + 1/2}), and
lu—=vjllL,am < C P2 p2012) (1 4 log(p/h))P Y b X1zt ;) (4.39)
=0

for every I" € AV = M(A).
Suppose that I';, I'; C A, are two elements having the common edge " =1;n fj. Let
;i € Pp(I';) and ¢; € Pp(I'j) be the approximations to w constructed above and satisfying
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estimates (4.38), (4.39). Then the jump w = (¢); — ;)|;» vanishes at the end points of I" and,
because of (4.39),

lwllz,any < llw—illpyany + lu — ¥l 0y
m
< CHHZp 02 (1 log(p/h)? D BT Il r,or,)-
=0
In the case that I'; is a parallelogram, we use Lemma 3.4 to find a polynomial z € P,(I';) such
that

z=w on I z=0 on OT;\l", (4.40)
and for 0 < s <1
120 s (ryy < C BT p 20179 (1 4 log(p/h)) Z |X1|Ht(riurj)- (4.41)
=0

In the case that I'; is a triangle, we note that (4.38) and (4.39) also hold for a polynomial v;

of degree [p—gl} (with different constants C' for the upper bounds in (4.38) and (4.39)). Then
Lemma 3.4 yields a polynomial z € P,(I';) which satisfies (4.40), (4.41) for I'; being a triangle.
Further we set
TZJZ"LM—FZ on Fi; 1;:1% on Fj.
Then ) is continuous on I'; UT; UI", the norms |lu — ’(LHHS(Fj), [lu — 1,Z~)||L2(lh) are bounded as in
(4.38), (4.39), and on the element I'; there holds

llu — 1/7HH5(F¢) < = Yillas gy + 121 sy
< CRYTEpT 20279 (1 log(p/h)) Z W= xal e o)

Using the same arguments as above we can adjust also the polynomial 1; on each element
I € A, N (A, U A,). We construct the function v satisfying estimates (4.38), (4.39) and
vanishing on the side [* C dT'; such that (" ne = {v} or I"Ne = {w} (e, "is 1, or l,). In
this case the jump is w = (—;)|;» and we set ¥ = ); 4+ z on I';, where z € 73 »(T'i) is constructed
using Lemma 3.4. Obviously 1) = 0 on 1", and estimates (4.38), (4.39) remain valid because
ulp = 0.

Repeating this procedure, we obtain a continuous function up, defined on A, such that
upp € Pp('y) for I'; C Ae, upp = 0 on 0A,, and for s € {0} U (1/2,min {1,v + 1/2})

Yo lu—unpllFpar,) < OO pm 027 (1log (p/h))* Zh“ Ve a, (442)
j: T CAe t=0

For s = 0 this immediately leads to (4.25). If 1/2 < s < min{1,~ + 1/2}, then we also obtain
(4.25) from (4.42) by using Lemma 3.5. Estimate (4.25) for any s € (0,1/2] then follows by
interpolation between H°(A,) and H* (A.) with 1/2 < s’ < min {1,~ + 1/2}. O
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5 Approximation of edge-vertex singularities

Let e € E be the edge of I' with vertices v, w. As before, we denote by [, and [, the edges of
OA, such that [, Né = {v} and [, N e = {w}.

Let us consider the cut-off functions x¥ and x®’ which appear in the expressions for the
edge-vertex singularities u§¥ and u$§” (see (2.6), (2.7)). We adjust the supports of these cut-off
functions as follows:

supp " C [0,27,] with 0 < 7, < min {3 dist {v,w}, 3},

supp x*’ C [0, %BU] with 0< 3, < min{%@o, %wv, b
where 6 is the minimal angle of the elements in the mesh Aj. Then u{¥ and u$¥ vanish outside
the sector S = {(ry,60y); 0 <1y < 27, 0 <6, < %&}, in particular, uf¥ = u$’ = 0 on I, U ly,.
In the two sub-sections below we will study the approximation of the singular functions u§”
and u$”.

5.1 Approximation of the function u{’

Theorem 5.1 Let u = u{’ be given by (2.6). Then there exists up, € Voh’p(I’) with p >
min {\, v — 3} such that for s € [0, min {1, A\ + 1,y +1/2}),

HU _ uthHS(I‘) <C hmin {A+1,7+1/2}—s p72(min{/\+1,'y+1/2}fs) (1 + lOg(p/h))’Ger, (5.1)

where A= \) > —1/2, vy =~{ > 0,
g Jairsity if A=ni-y,
qi + st otherwise,
and . ' )
V:{g if p=min{A v— 3},
0 otherwise.

If 1 <p<min{\~y— 1}, then there exists uy, € Voh’p(F) satisfying for s € [0,1]
[ — unpll s ry < CHPHI2 (5.2)
Proof. For simplicity we consider the singular function
u(wy, ) = 21" Y| log w1t [log wa| 2 X" (r)x " (6), (5.3)

where A = A} > —1/2, vy =4¢ > 0, and (1, B2 > 0 are integers.
Let us introduce an auxiliary cut-off function yo € C*°(R™) such that for some ¢ € (0, 1)

x2(t) =1 for 0 <t <4/2 and xa(t) =0 fort>4.
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Denoting hg = (0102)~'h we decompose the function v in (5.3) as

u = ux’(r/ho) +u(l = x"(r/ho))x2(x2/ho) + u(l = x"(r/ho))(1 — x2(x2/ho))

= P12t s (5.4)
We will approximate the functions ¢; (i = 1,2,3) in (5.4) separately.

Approximation of ;. Due to the adjustment of the supports of the cut-off functions y¥ and
X, the singular function ¢ has small support, suppp; C K" where K" =T'; C A,, is the
element touching simultaneously the edge e and the vertex v. Let K € R?' be a triangle or
parallelogram such that K = M(K), where M is the affine mapping

M:z;=h#;, i=1,2 ze K" iekK.
Then K satisfies the assumptions of Proposition 4.3, and for h < % we have
¢1(8) = pu1(hdy, hiz)
B1 B2

= P73y Y < )( >|1 g hT*2|log &1 |7 7H [log 2o| 2 2 x ¥ (01097)x " (),

k1=0 ko=

where 7 = (&3 4+ #2)1/2, 0 = arctan(io/21).
By Proposition 4.3, for each pair (k1,ke) with k; =0,...,5; (i = 1,2) there exists a polyno-
mial Yy, 1, € Pp(K) vanishing on 0K and satisfying for 0 < s <min{1,A + 1,7+ 1/2}

#1733 tog 1™ | 1og "2 X" (01027)X** (6) = ey 1,

H(K)

< Cpr(rnin{/\Jrl,'erl/Q}fs) (1 + logp)lierJrU.

Setting
B B
hA Z Z < >< )“0gh‘kl+k2¢51 k1,B2— kQ( )
k1=0 ko=

we estimate

11 — V1l s ()
61762 ﬁl .
S h)\ Z ‘ lo h’kl+k2C(k)1, kz)p—Q(mln {)\+1,’y+1/2}—8) (1 + logp>ﬁl+ﬁ2—k1—k2+a
o k1 k
1,k2=0
< OBy, Bo) P p 20 LRI (1 4 log(p /1)) 1472 (1 + Tog p) . (5.5)

Let 1 = 12)1 o M1 on K" = T'y. Then 1 € Pp(I'1), 1 = 0 on 0I'y, and making use of
Lemma 3.1 we deduce from (5.5)

ler =il < CR*ll¢1 — il s (i)
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< CpMTImep2min AR (1 4 Jog(p/h)) (1 + log p)?, (5.6)

where 0 < s <min{1l,A+ 1,74+ 1/2}, 0 =1/2 if A =y —1/2, and o = 0 otherwise.

Approximation of . The function ¢ in (5.4) has a singular behaviour only with respect to x4
and has small support, supp o C (A, N RY), where R = {(r,0); T,hog <7 < 27,, 0< 0 < %ﬁv}.
Thus we can write g in the form given by (4.24):

where

pa(wr,wa) = @y a3 logai|* [log wa| X" (r)x™(0)(1 — X" (r/ho))xa(w2/ho)

= x3|log 2|7 x1 (1, 22)x2(22/ho),

X (1, a2) == 277 log 21 [P XY ()X (8) (1 — x(r /o). (5.7)

Note that x; € C*(A,), supp x1 C R?, in particular, x; = 0 on the edges l,, 1, C OA..

Now we can apply Lemma 4.2 to find a piecewise polynomial approximation of o on A.:
there exists a function ¢ such that 1 € Pp(I';) for each I'; C A, 12 = 0 on dA., and for
0<s<min{l,y+1/2}

2 — Yallgs(a,y < CHYTIp= 20279 (1 4 log(p/h)? S A7 Ixalgega,) (5.8)
=0

for some integer m > 2y + 2.
To evaluate semi-norms of the function y; given by (5.7) we use the following inequalities:

or or

—_— | = <1 — | =|si <1
Py |cos | <1, ‘3362’ |sinf]| <1,
00 sinﬁ‘ 1 00 cos@’ 1
| = <=, | = < =
0x1 r | T r 0x9 r r

Hence it follows by induction that for any integer k,{ > 0

okt oktlp
< Cpth < Cr kTl 5.9
oxhoxh| — " © o |oxkoxl |~ " (5.9)
Furthermore, for any integer £ > 1 one has
ok 0 for 0 < r < 1p,hg and r > 27,hg,
— (1 =x"(r/h
|07"k'( X(r/ 0))| { |(x*) B |hg® for T,ho <7 < 27,hg

IN

Cr* for r > 0. (5.10)

22



Since supp x1 C RF, #1 ~ r on R}, and ¥, x** € C®°(R"), we estimate by (5.7), (5.9), (5.10)
fort=0,...,m

27Ty

h
alfea,) < Clos(/m)P [ i s < Clog(1/m)* [ [ #07 dwday
AeﬁR? 0 kh

for a positive constant x independent of h. Hence

PATYHZ N <y —1/2,
X1lmt(a,) < Clog? (1/h)RY27 L log2(1/R) i A=~ —1/2,
1 if A >y —1/2,

and we obtain by (5.8)
g2 — Vol gega,y < CREROFIAFLY2=s y=2041/229) (165(1 /7)) 5140 (1 + log(p/h))*2,  (5.11)

where 0 < s < min {1,v + 1/2} and o is the same as in (5.6).

Approximation of ¢; and ¢y on I'. Let us extend v; (i = 1,2) by zero onto the remaining
parts of I'. Then v; € Voh’p ("), ¢ =1,2 and there hold the following estimates

lor = ull sy < CRAFZop 2R PHIFUZIZ) (1 o log(p/h)) P H2 (1 +logp)”  (5.12)
for 0 < s <min{l, A+ 1,7+ 1/2}, and
o = ol sy < CR™ROFLAHYZE0 p=2041279) (log (1/1))7147 (1 + log(p/h)®  (5.13)
for 0 < s <min{l,vy+1/2}.

In fact, for s = 0 estimates (5.12) and (5.13) immediately follow from inequalities (5.6) and
(5.11), respectively. If 1/2 < s < 1, then we use Lemma 3.5:

o= walley < (W lea = tallamy + 2 loa =l
J:I;cr
< (o —valllyay + X N2~ alliec,
j:FJ'CAe

< C (h*QSHch —allF, a0 + o2 — wQH%HS(Ae))

and (5.13) follows from (5.11). The estimate (5.12) for 1/2 < s < 1 is proved analogously.
Finally, for 0 < s < 1/2, estimates (5.12), (5.13) follow via interpolation between H(T') and
H*¥(T) for some s’ € (1,1).

Approximation of ¢3. Now we approximate the function ¢3 in (5.4). Observe that @3 €
C3°(T) and supp 3 C I'N R N RE, where R} is defined above and R} = {(x1,72); x2 > Sho/2}
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for some § € (0,1). We also note that the mesh contains triangles and/or parallelograms.
Therefore, applying Proposition 4.1, we find 3 € Voh’p(F) such that for s € [0,1]

s — Wsllarsry < CRP*p™ "9 || g ry, (5.14)

where m > 3/2, = min{m,p+ 1}, and § is defined by (4.6).
Let us estimate the norm ||¢3|| gm (ry. Similarly to (5.9), (5.10) one has for k,1 > 0

8k+lr ak—i—le

—k, .-l —k, .-l

m S CTl’l .%'2 s m S Cl'l .%'2 s
okl e d! .
m(l = x"(r/ho))| < Cay "y, ‘d—mé(l = x2(22/ho))| < Czy .

Hence, recalling that
A—
(w1, w2) = 2y a3 log a1|™ [log wa X" (r) X (8) (1 = X"(r/ho))(1 — x2(x2/ho)),
supp 3 C RPN RE, and x2, XV, x& € C®(R™T), we can estimate derivatives of ¢3 as

Ot oz (x)
Oxkoxl,

C(k,1)(log(1/h))P1HP2g2 =77k 270 for 2 € RPN RY,
0 for z € T\ (R} N RY).

Since (R} N RY) € T = {(x1,22); kh < 71 < 1, kh < x5 < 21} for some x > 0, the above
estimates for derivatives of @3 yield

sl < Clog(U/m)*@+) 5= Gt [ ai* 7 Maf0 s
0<k+I<m

h h
120 RMRE

< C(m)(log(1/h))*#+5) / 220 20-m) g
Th

For any integer m > min{\ + 1,y + %} this implies

{20 T 2(-m) .

J = J x5 drodry if A>y—1/2,
rh

Kkh
loslZmy < Cllog(1/h))*Pr+e2)

1 1
J a3 [ af P drdey, i A<y —1/2

kh T2

< OpAmin ALy HL/2k=m) (1601 1)) 2B +Batoty), (5.15)

where o is the same asin (5.6), v = 3 if m = min {A\+1,7+1}, and v = 0 if m > min {\+1,y+1}.
Therefore we obtain by (5.14)

s — 3]l graqry < CRATSTmIn LYY/ 2} mmy,=(m=8) (og (1 /p)) I EA 4ot s € [0,1],  (5.16)
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where m > min {\ + 1,7+ 1/2}, m > 3, u = min {m, p + 1}, and § is defined by (4.6).
Ifp>2min{\A+1,v+ %} — %, we select an integer m satisfying

2min{A+Ly+3it+i<m<p+1

Then p=m > 3 and p~ (M=% < p=2min AL +1/2}=5) for any s € [0, 1).
Fmn{A+1,v+3}—1<p<2min{\+1,7+3}—1 (ie, p is bounded), we choose an
integer m such that
max {%, min {\+ 1,7y + %}} <m<p+1,

and if p = min {A 41,7 +1/2} — 1, then we take m = min {A + 1,y + 3} = p+ 1. In both these
cases p =m > 3 and p~(m=5) < C(A, ) p~2min 0+19+1/23=5) for any s € [0, 1].
Thus, for any p > min {\,y — %}, selecting m as indicated above we find by (5.16)

”903 - 7/13”Hs(F) < O pin {)\+1,'y+1/2}—sp—2(min {A+1,7+1/2}—s) (log(l/h))ﬁ1+52+a+u7 se [07 1}_
(5.17)

where o is the same as in (5.6), v = 3 if p=min{\,y — 1}, and v = 0 otherwise.

Approximation of u = ¢1 + @2 + ¢3. Let us define upy := 91 + Yo + 93 € Voh’p(I‘). Then
combining estimates (5.12), (5.13), and (5.17) we obtain (5.1).

It remains to consider the case 1 < p < min{\,y — %} In this case one does not need
decomposition (5.4). Since u € H™(I') N H (') with 2 < m < min{\ + 1,7 + 3}, we apply
Proposition 4.1 to find wup, € Vbh’p(l“) satisfying for s € [0, 1]

v = vnpll sy < CR*F||ullgm(ry, p=min{m,p+1}.

Hence, selecting m € [p+ 1, min {\ + 1,7 + 1}) we prove (5.2). O

5.2 Approximation of the function u§’
In this sub-section we study the approximation of the edge-vertex singularity u$” given by (2.7),

(2.9).

Theorem 5.2 Let u = u$’ be given by (2.7), (2.9). Then there ezists up, € Voh’p(F) with
p > — 1 such that for s € [0, min {1, + 1/2}),

lw = wppl| s ry < CHIT/275 p 2012790 (1 4 log (p/h)) P, (5.18)

1
927
If1<p<~-— %, then there exists upy € T/()h’p(F) satisfying for s € [0, 1]

where v =~ >0, 8 = s{ > 0 is integer, v = % ifp=~—35, and v = 0 otherwise.
|u — Unpl| s (ry < C hPHi=s, (5.19)
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Proof. For simplicity we consider one component of the function u§". Let

u(zy, v2) = 23| log 2| x1 (21, 22) X4 (2), (5.20)

where v = 7§ > 0, 3 > 0 is integer, x§ € C°(R™) is the same as in (2.4), x1 € H™(T') with m
as large as required. Recalling that the supports of the cut-off functions x* and x’ (see (2.9))
were adjusted so that suppus’ C S = {(r,0); 0 <r <27, 0<60 < 33,} with 7, < 1 dist {v, w}

and 3, < %90, we can assume that the function x; in (5.20) vanishes on the edges ly, l,, C A,

(I, and I,, have been defined at the beginning of this section). Suppose that h < 1. Letting

2
ho = (o102)~'h we decompose u as

u = ux3(z2/ho) + u(l — x3(z2/ho)) =t 1 + 2. (5.21)

The singular part ¢; of this decomposition has the form given by (4.24), and ¢; = 0 on 9A..
Therefore, applying Lemma 4.2 we find a function ¢, such that ¢; € P,(I';) for I'; C Ac, 11 =0
on 0A., and for 0 < s < min {1, + 1/2} there holds

k
ot — 1l € CROFD p=a0H1279 (1 L log(p/m))2P ST WD [y By (5.22)
t=0

for some integer k > 2 + 2.
Since meas (A¢) ~ h and x; € H™(I") for sufficiently large m, we estimate
k
SR xalfeany < Ch72 Ixallgna,) meas (Ae) < ChH Ixallwmy < ChH IxalFm ry-
t=0

Then we obtain by (5.22)
lor = ullss(a,y < CRITVET2 p=2OF279) (14 log(p/h)”, s € [0,min {1,y +1/2}). (5.23)

Let us extend 11 by zero onto I'\A,. Then ¢; € T/()h’p(F) and the norm |1 — 91| gsr) 18
obviously bounded as in (5.23) for s = 0. Due to Lemma 3.5, this conclusion is also true
for any s € (1/2,min {1, + 1/2}). Therefore, by using interpolation, we obtain for any s €
[0, min {1,v +1/2})

lor = Grllgsry < C R0 pm20F279 (1 4 log(p/h)°. (5.24)

To approximate the smooth part g2 € H™(I') N HE(T) of decomposition (5.21) we apply Propo-
sition 4.1. There exists 13 € V[)h’p (I") satisfying for s € [0, 1]

2 — ollarsry < CR**p~E=9 ooy, (5.25)

where k € (3/2,m] is integer, p = min {k,p + 1}, and § is defined by (4.6).
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Recalling the definition of the function x§ in (5.20) (see Theorem 2.1), we conclude that
supp 2 C fﬂRg, where RQ = {(x1,x2); hode < o < 20.}. Hence we find by simple calculations

20e

2 luey < Cllog(1/m)* [ @3 Mo,
hode

Then for any k satisfying k > % and v + % < k < m we obtain by (5.25)
2 — ol prs(ry < CRYTFFVZ =8y~ (=8 1668V (1 /p), s € [0,1], (5.26)

where p = min {k,p + 1}, § is defined by (4.6), v = % ifk=~+ %, and v=0if k >~ + %
Now we set upy := ¢ + 12 € Voh’p(l“). Then combining estimates (5.24), (5.26), making use
of decomposition (5.21) and the triangle inequality we obtain for any s € [0, min {1,y + 1/2})

i = wnpllrsry < CRYFY27 mma {p2041/279) puikp==9) (1 log(p/m)P+. (5.27)
Let p > 2v + % Since m is large enough, we can select an integer k satisfying
2v + % < k <min{m,p+ 1}.

Then p = min {k,p+ 1} = k, max {p*2(7“/2*8),p*(k*5)} = p~20r+1/2=5) for any s € [0, 1], and
(5.27) leads to (5.18).

If v — % <p<2y+ % (i.e., p is bounded), we select an integer k € (max{%,7 + %},p + 1},
and if p = v — %, then we choose k = v + % = p+ 1. In both these cases u = k, p~ (k=39 <
C(7y) p~20F1/2=9) for any s € [0,1], and (5.18) is again deduced from (5.27).

fl1<p<n~y- %, then u € H™(T') N H(T) with % <m<y+ % In this case we apply
Proposition 4.1 directly to the function w: there exists up, € T/()h’p(F) satisfying for s € [0, 1]

|lu — Uhp”Hs(F) < Ch“_5|]uHHm(F), = min{m,p+ 1}.
Hence, selecting m € [p+ 1,7 + 1) we prove (5.19). O
Remark 5.1 Observe that the proof of Theorem 5.2 also applies to the edge singularity terms
given by (2.4). In fact, adjusting the support of the cut-off function x§ in (2.4) it is easy to

obtain x§ = 0 on the edges l,, l, C 0A.. Therefore each component of u® can be written in the
more general form (5.20) and the statement of Theorem 5.2 remains valid for u = u®.

27



6 Approximation of vertex singularities
Let v be a vertex of I and let A, be the union of elements I'; such that v € I_’j.
Theorem 6.1 Let u = u" be given by (2.5). Then there exists upy, € Voh’p(I’) with p > X such
that for 0 < s <1,

[u = whpll ey < C A2 p 2O (1 log(p/h)) 7, (6.1)
where A = A} > 0, 8 =qj > 0 is integer, v = % if p= A, and v = 0 otherwise.

If 1 <p < A, then there exists upy, € Voh’p(F) satisfying for s € [0, 1]
= wnpl ey < C RIS, (6.2)

Proof. The idea and arguments in the proof below are the same as in the proofs of Lemma 4.2,
Theorem 5.1, and Theorem 5.2. That is why we outline the proof omitting inessential details.

Let
U= 7‘)‘|10g r]ﬁxv(r)w(e), (6.3)

where A = AV > 0, 3 > 0 is integer, x" is the same as in (2.5), w € H™(0,w,) N HE(0,w,),
w, denotes the interior angle on I' at v, and m is as large as required. Note that u € H}(T),
because A > 0.

We decompose v as u = 1 + @2, where

o1 :=ux"(r/ho), @2 :=u(l—x"(r/ho)), ho= (0102)""h. (6-4)

The singular function ¢; has small support, supp ¢ C A,. Let K" = I'y c A, and let K C R?
be a triangle or parallelogram such that K" = M(K) under the affine mapping M : x; =
hi;, i =1,2, x € K" &€ K. Then O = (0,0) is a vertex of K and for h < % we have

s
$1(2) = @1 (hi1, hig) = KD (@ |log || log 7P ~* X" (o109 w(B).
k=0

Let A = {l;} contain those sides [; ¢ K for which O € [;, and let B be the unionAof the

other sides of K. Then applying Proposition 4.2 to each functionj”‘] log #|*x? (o109 w(B), k =
0,...,0, we find a polynomial ¢ € P,(K) such that ¢(0,0) =0, ¢ =0 on B,

1¢1 = Bllasxy < CB) R p 2O (1 4+ log(p/h))?, s =0,1, (6.5)

|1 — (iHLQ(l) < Cp) A p72()‘+1/2) (1+ log(p/h))ﬁ for every [ € A. (6.6)

Let us define ¢; := ngbo M~1. Then ¢j € Pp(l'y), ¢; = 0 at the vertex v and on the sides
I € Bj = M(B). Furthermore, making use of Lemma 3.1, we obtain by (6.5), (6.6)

ler = ¢illmsr,y) < CRMITp 2079 (1 4 1og(p/h))?, s=0,1, (6.7)

lor = Gjllpyany < O p2OFV2 (14 log(p/h))? for every I € A; = M(A).  (6.8)
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Suppose that I';, I'; C A, are two elements having the common edge h = INLj. Let ¢ € Pp(Iy)
and ¢; € Pp(I'j) be the approximations of ¢; constructed above and satisfying estimates (6.7),
(6.8). Then the jump g = (¢; — &;)|;» vanishes at the end points of I" and

g/l yqny < CRATY2p=2OH2) (1 4 log(p/h))”.
Hence, due to Lemma 3.4, there exists z € P,(I";) such that z = g on I, z = 0 on OI';\I", and
2l ey < C R p72AH9 (1t log(p/h)? s = 0,1,

Setting ¢ = ¢; + z on I'; and ¢ = ¢j on I'; we find a continuous piecewise polynomial é such
that the norm ||¢; — @HHs(piUpj) is bounded as in (6.7) for s =0, 1.

Let ey, ea be the edges of I meeting at the vertex v. Since w(0) = w(w,) = 0, the function
1 vanishes on ey, es. Therefore, using the same arguments as above we can adjust ¢; on each
clement T'; € A, N (A, UA,,). Then we construct a polynomial ¢ € P,(I';) vanishing on o'; Néy,
with £ =1 or 2 as appropriate.

Note that the number v, of elements in A, is independent of h (v, < ‘g—g, where 6 is the
minimal angle of elements in the mesh). Therefore, repeating the above procedure we construct
a continuous function 11 such that 1); € P,(I';) for each I'; C A,, ¢1 = 0 on 0A,, and the norm
o1 — 1l gs(a,) for s = 0,1 is bounded as in (6.7). Extending v1 by zero onto I'\ A, we obtain

Y1 € T/()h’p(F) satisfying for s = 0,1
lor = rllzs(ry < C WA p2AH79) (14 log(p/h))”. (6.9)

By interpolation we prove that (6.9) holds for 0 < s < 1.
For the function ¢9 (see (6.4)) one has

2 = | log r|"x"(r)(1 = X"(r/ho))w () € H™(L) N Hy (L),
supp w2 C I' N R", where R" = {(z1,x2); Toho <1 < 274}
Hence, using (5.9) and (5.10) we find by simple calculations

2Ty
li2lry < Clog(1/m)* [ 20D rdr, 0 <k <m. (6.10)

Tvho
Further, due to Proposition 4.1, there exists 19 € Voh’p(I’) such that for s € [0, 1]
o2 — Y2l s (ry < Ch“*sp*(’“*g)llsoz\\m(r), (6.11)

where k € (2,m] is integer, 4 = min {k, p + 1}, and 3 is defined by (4.6).
If k satisfies k > 3 and A + 1 < k < m then (6.10) and (6.11) yield

2 — Vol e (ry < CRETAFF == 10601 (1/h), s € [0,1], (6.12)
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Whereyz%ifk:)\+1, andv=0if k> A+ 1.

If p > A, then similarly as in the proofs of Theorems 5.1 and 5.2 we select an integer k£ such
that = k in (6.12) and p~*=5) < C(\) p~2A*179) for any s € [0, 1]. Then combination of (6.9)
and (6.12) gives (6.1) with wup, := 1 + 1y € Vi"P(I).

The proof of estimate (6.2) is analogous to the proof of the corresponding results in Theo-
rems 5.1 and 5.2. O

7 General approximation result and proof of Theorem 2.2

By combination of the approximation results for singularities from Sections 5 and 6 we obtain
a general approximation result for the function u given by (2.3)—(2.7).

Theorem 7.1 Let the function u be given by (2.3)—(2.7) on I with v{ > 0 and A} > 0. Also, let
vg €V, e € E(vg) be such that min{\{® +1/2,71°} = min,cy ec pp) min {A} +1/2,7%}, with Ay
and v§ being as in (2.4)—(2.7). Then, for any h > 0 and every p > min {\]{°,~{° — 1/2}, there
exists a function up, € Voh’p such that for 0 < s < min {1, \]® + 1,7{° + 1/2}

Hu _ uthHS(F) < C max {hmin {k,p+1}—s p*(k—é'),

hmin {)\’1’0 +1,'yf0 +1/2}—s p—Z(min {)\11)0 +1,'yf0 +1/2}—s) (1 + log<p/h))ﬁ+y}

)

(7.1)

where B and v are defined by (2.11) and (2.12), respectively, § = s if the mesh Ay on T does not
contain triangles, and s is defined by (4.6) for meshes containing triangles.
If 1 < p < min{A°, " — 1/2}, then for any h > 0 there exists up, € Voh’p such that for
s €[0,1]
s — gl 7oy < € B Gt} (7.2

Proof. To approximate the smooth part umee € H¥(I') N HY(T') of decomposition (2.3) we
use Proposition 4.1, and applying Theorems 5.1, 5.2, and 6.1 we find piecewise polynomial
approximations for the singularities u¢’, u¥, and u¢ on I' (see also Remark 5.1). Then combining
the corresponding error estimates from these statements we obtain (7.1) and (7.2). O

Proof of Theorem 2.2. Due to the regularity result of Theorem 2.1 and the quasi-optimal
convergence of the BEM (see, e.g., [17]), one needs to find piecewise polynomial functions ap-
proximating the solution u in (2.3) and satisfying the upper bounds stated in (2.10), (2.13).

Let p > min {\}°,77° — 1/2}. Then applying Theorem 7.1 we find vy, € Voh’p(F) satisfying
the upper bound given by (7.1). Since (u — vp,) € Hg (T') for some s’ € (3,1), we obtain by
interpolation between HO(I') and Hg (T')

lw = vnpll g2y < C max {hmin {kip+1}=1/2 )= (k=1/2¢)

hmin{Alljo'Fl/Qv'YfO} p—2 min {)\11)04'1/27'7;0}(1 + log(p/h))ﬁ—i_y} s (73)
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where € > 0 and 3, v are the same as in (7.1).

e

Let us select k > 2min {A\}° + 3,7{°} + 3 > 2. Then for sufficiently small ¢ > 0

K

hmin{k,p+1}—1/2p—(k;—1/2—£) < hmin{)\;’0+1/2,/yf0}p—2min{A10+1/277f0}’

and the desired error bound (see (2.10)) follows from (7.3).

If1 < p < min{A]°,~{°—1/2}, then u € H™(T)NH(T') with 3 < m < min {A{°+1,77°+3}.

Selecting m € [p+ 1, min {A\}° + 1,7{° + 3}) and applying Proposition 4.1 we find v, € Voh’p(I’)

such that .
Hu _ Uthg1/2(p) < Chm1n{m7p+l}fl/2 ||u||Hm(I‘) < Chp+1/2,
which proves (2.13). O
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