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Abstract

In this paper we analyse the p-version of the boundary element method for the electric field
integral equation on a plane open surface with polygonal boundary. We prove convergence
of the p-version with Raviart-Thomas parallelogram elements and derive an a priori error
estimate which takes into account the strong singular behaviour of the solution at edges
and corners of the surface. Key ingredient of our analysis is the orthogonality of discrete
Helmholtz decompositions in a Sobolev space of order −1/2.
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1 Introduction and formulation of the problem

In this paper we analyse the p-version of the boundary element method (BEM) for the electric
field integral equation (EFIE) on an open surface Γ. The EFIE models the scattering of time-
harmonic electro-magnetic waves at a perfect conductor, and its solution is the induced electric
surface current on Γ, see, e.g., [35]. The basis of our BEM is a variational formulation of the
EFIE, called Rumsey’s formulation. For smooth surfaces, its boundary element discretisation
has been studied by Bendali [5, 6]. With the study of traces of spaces that govern Maxwell’s
equations in Lipschitz domains [16] there has been some recent progress in the numerical analysis
of the EFIE on Lipschitz surfaces. For polyhedral surfaces, Buffa et al. and Hiptmair and Schwab
[18, 29] studied BEM discretisations of the EFIE with Raviart-Thomas elements of fixed order
on refined meshes, i.e., in the framework of the h-version. In particular, the solvability and
quasi-optimal convergence of these discretisations have been proved. Moreover, considering
lowest order Raviart-Thomas elements and assuming standard Sobolev regularity, Hiptmair and
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Schwab [29] derived an a priori error estimate in terms of the mesh parameter h. The issues
of solvability and convergence of the h-BEM for the EFIE on open Lipschitz surfaces were
addressed by Buffa and Christiansen [12]. We note that in [29, 18, 12] the authors focused on
conforming discretisations of Rumsey’s formulation, called natural boundary element method
for the EFIE (the approach, we follow in this paper). There are, however, other formulations of
mixed type to utilise standard (continuous) basis functions, see [15].

In the engineering literature, the BEM (Galerkin and collocation variants) is called the
method of moments and is widely used for electro-magnetic scattering problems. High order
versions of the method of moments have been also studied recently (see, e.g., [25, 23]). They are
shown to be efficient when dealing with non-regular parts of the solution in combination with
methods from physical optics for high-frequency scattering at smooth parts of obstacles [24]. In
general, there are two main advantages of high order methods, namely their less vulnerability
to numerical dispersion errors and better approximation properties even in the presence of
singularities. The influence of the order of basis functions on numerical dispersion has been
analysed by Ainsworth [1], and the properties of polynomial approximations of singular functions
inherent to first kind integral equations have been studied in [8, 9].

In the p-version of the BEM the mesh is fixed and approximations are improved by increasing
polynomial degrees. To the best of our knowledge there are no proofs of convergence for the
p-version applied to the EFIE. The analysis of high order approximations for the EFIE on open
or closed polyhedral surfaces poses two particular challenges.

First, in order to prove convergence of the method, one usually relies on properties of the
continuous and discrete Helmholtz decompositions, and on the proximity in some sense of the
discrete decompositions to the continuous one, see [18, 12]. Known techniques are inherently
designed towards low order approximations, as it turns out when trying to generalise them
to high order methods. For instance, the equivalence of norms in finite-dimensional spaces is
usually used (see, e.g., the proof of Lemma 6.2 in [29]). This argument is not available for the
p-version. Also, related with appearing singularities (which is the second challenge described
below), the proofs of proximity of low-order discrete Helmholtz decompositions to the continuous
decomposition utilise an error estimate for the standard Raviart-Thomas interpolation operator
in H(div,Γ) (see, e.g., the proof of Theorem 4.2 in [18]). For the p-version, stability of this
operator is guaranteed when the interpolated function is in Hs(div,Γ) with s > 1/2 (see Section 3
for a definition of Hs(div,Γ)), whereas on polyhedral surfaces less regularity has to be accounted
for.

Second, the solution to the EFIE on polyhedral surfaces suffers from singular behaviour at
edges and corners. This can be deduced from the behaviour of solutions to the Maxwell problem
on polyhedral domains as studied by Costabel and Dauge in [21]. Open surfaces represent the
least regular case, and there have been no high order approximation results for them whatsoever.

In this paper we deal with both issues. In particular, to prove convergence of the p-version of
the BEM for the EFIE we follow the framework presented in [18, Section 4.1]. However, rather
than considering L2-orthogonal discrete Helmholtz decompositions, we consistently employ the
H̃−1/2-inner product and orthogonality (precise definitions will be given below). This turns out
to be crucial for the p-version. As for the approximation analysis of singularities, we partly rely
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on our previous results for the Laplacian, see [8, 9], by using continuity properties of the surface
curl operator. The exception is a particular kind of vertex singularity, which does not have a
vanishing tangential component on the boundary of Γ and which needs to be treated in a vector
fashion (i.e., component-wise approximations are not sufficient for it).

We restrict ourselves to plane open surfaces which can be discretised by parallelogram meshes.
A generalisation to smooth curved surfaces seems plausible but is not obvious since we made use
of the commutativity of the scalar surface curl and weakly singular operator on plane surfaces
(see the proof of Theorem 4.1). The case of triangular elements is not an easy generalisation
either as, for instance, standard p-version approximation results for Raviart-Thomas triangular
elements are unknown. The approach presented in this paper is, in principle, applicable to
polyhedral surfaces and we expect that all the results can be extended to that case. Again,
this extension is not straightforward as some technical details make use of the smoothness of
Γ, except for its boundary. More general p-methods with polynomial degrees varying from one
element to another and hp-methods, which increase polynomial degrees in combination with
mesh refinements, are desirable but are not covered in this paper.

Let us introduce Rumsey’s formulation of the electric field integral equation. For a given
wave number k > 0 and a scalar function (or tangential vector field) v we define the single layer
operator Ψk by

Ψkv(x) =
1

4π

∫

Γ
v(y)

eik|x−y|

|x − y|
dSy, x ∈ Γ.

Also, denoting by div and ∇ the two-dimensional divergence and gradient operators on Γ,
respectively (in the general case being the surface divergence and gradient acting on tangential
vector fields and scalar functions, respectively), we need the space

X = H̃
−1/2
0 (div,Γ) := {u ∈ H̃−1/2(Γ); divu ∈ H̃−1/2(Γ) and

〈u,∇v〉 + 〈divu, v〉 = 0 for all v ∈ C∞(Γ̄)}.

The dual space of X (with L2(Γ) as pivot space) is denoted by X′ and 〈·, ·〉 denotes the extension
of the L2(Γ)-inner product by duality between X and X′. Moreover, H̃−1/2(Γ) is the dual
space of H1/2(Γ). For a definition of H1/2(Γ) see Section 3.1. Throughout, we use boldface
symbols for vector fields. The spaces (or sets) of vector fields are also denoted in boldface (e.g.,
Hs(Γ) = (Hs(Γ))2), with norms and inner products being defined component-wise.

Now, for a given tangential vector field f ∈ X′ (f represents the excitation by an incident
wave), Rumsey’s formulation reads as: find a complex tangential field u ∈ X such that

a(u,v) := 〈Ψkdivu,div v〉 − k2〈Ψku,v〉 = 〈f ,v〉 ∀v ∈ X. (1.1)

An outline of this paper is as follows. In the next section we recall regularity results for the
EFIE, define the p-version of the BEM for its approximate solution, state the unique solvability
and quasi-optimal convergence of this approximation method (Theorem 2.1), and prove an a
priori error estimate in terms of the polynomial degree p (Theorem 2.2). In Section 3 we
define the needed Sobolev spaces and collect some technical lemmas. Section 4 is devoted to
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Helmholtz decompositions of X: we define the continuous decomposition, prove its H̃−1/2(Γ)-
orthogonality, and introduce the framework of discrete decompositions. Interpolation operators
and approximation results for Raviart-Thomas elements in different spaces are discussed in
Section 5. These results are then applied to prove the existence and uniqueness of discrete
solutions to an auxiliary problem. In Section 6 we prove the solvability and convergence of the
p-BEM (Theorem 2.1). Section 7 presents p-approximation error estimates for smooth vector
functions (Theorem 7.1) and for general singular vector fields (Theorem 7.2). In Appendix A
we first recall the structure of Maxwell singularities (by referring to Costabel and Dauge [21]).
Then, using a trace argument, we conclude on the behaviour of singularities inherent to the
solution of the EFIE. Finally, in Appendix B we study the approximation of a particular type of
vertex singularities. The obtained result is needed to prove our general approximation theorem
(Theorem 7.2).

Throughout the paper, C denotes a generic constant which is independent of polynomial
degrees p and involved functions, unless stated otherwise.

2 The p-version of the BEM and main results

First, let us determine the typical structure of the solution u to our model problem (1.1),
provided that the right-hand side function f is sufficiently smooth.

Let V and E denote the sets of vertices and edges of Γ, respectively. For v ∈ V , let E(v)
denote the set of edges with v as an end point. Then it follows from the results of [21] that the
solution u of (1.1) has the form

u = ureg +
∑

e∈E

ue +
∑

v∈V

uv +
∑

v∈V

∑

e∈E(v)

uev, (2.1)

where (see Section 3.1 for definitions of the Sobolev spaces involved)

ureg ∈ Hk
0(div,Γ) with k > 0

and ue, uv, and uev are the edge, vertex, and edge-vertex singularities, respectively. We deduce
the precise form of these singularities from Appendix A, where explicit formulas for singularities
inherent to the solution of the EFIE are obtained in the more general case of a piecewise plane
(open or closed) surface Γ.

We will use local polar and Cartesian coordinate systems (rv, θv) and (xe1, xe2), both with
origin v, such that e = {(xe1, xe2); xe2 = 0, xe1 > 0} and for sufficiently small neighbourhood
Bτ of v there holds Γ ∩ Bτ ⊂ {(rv, θv); 0 < θv < ωv}. Here, ωv denotes the interior angle
(on Γ) between the edges meeting at v. For simplicity of notation we write out here only
the leading singularities in ue, uv, and uev, thus omitting the corresponding terms of higher
regularity. Complete expansions can be written analogously to (A.18), (A.24), (A.26), and
(A.29) in Appendix A.
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From (A.18) we have

ue = curl
(
x

γe
1

e2 | log xe2|
se
1 be1(xe1)χ

e
1(xe1)χ

e
2(xe2)

)
+ x

γe
2

e2 | log xe2|
se
2 be

2(xe1)χ
e
1(xe1)χ

e
2(xe2),

(2.2)
where curl = (∂/∂xe2, −∂/∂xe1), γ

e
1, γ

e
2 ≥ 1

2 , and se
1, s

e
2 ≥ 0 are integers. Here, χe

1, χ
e
2 are

C∞ cut-off functions with χe
1 = 1 in a certain distance to the end points of e and χe

1 = 0 in a
neighbourhood of these vertices. Moreover, χe

2 = 1 for 0 ≤ xe2 ≤ δe and χe
2 = 0 for xe2 ≥ 2δe

with some δe ∈ (0, 1
2). The functions be1χ

e
1 ∈ Hm1(e) and be

2χ
e
1 ∈ Hm2(e) for m1 and m2 as large

as required.
Similarly, we deduce from (A.24) that

uv = curl
(
r
λv
1

v | log rv|
qv
1 χv(rv)χ

v
1(θv)

)
+ r

λv
2

v | log rv|
qv
2 χv(rv)χ

v
2(θv), (2.3)

where λv
1, λ

v
2 > −1

2 , and qv
1 , q

v
2 ≥ 0 are integers, χv is a C∞ cut-off function with χv = 1 for

0 ≤ rv ≤ τv and χv = 0 for rv ≥ 2τv with some τv ∈ (0, 1
2). The functions χv

1, χ
v
2 are such that

χv
1 ∈ Ht1(0, ωv) ∩H

1
0 (0, ωv), χ

v
2 ∈ Ht2(0, ωv) for t1, t2 as large as required, and χv

2 · n|∂Γ = 0.
For the combined edge-vertex singularity uev we use (A.26) and (A.29). One has

uev = uev
1 + uev

2 ,

where

uev
1 = curl

(
x

λv
1−γe

1
e1 x

γe
1

e2 | log xe1|
β1| log xe2|

β2 χv(rv)χ
ev(θv)

)

+x
λv
2−γe

2
e1 x

γe
2

e2 | log xe1|
β3 | log xe2|

β4 χv(rv)χ
ev(θv)

(
0
1

)
(2.4)

and

uev
2 = curl

(
x

γe
1

e2 | log xe2|
se
1 be3(xe1, xe2)χ

e
2(xe2)

)
+ x

γe
2

e2 | log xe2|
se
2 be

4(xe1, xe2)χ
e
2(xe2). (2.5)

Here, λv
i , γ

e
i , s

e
i (i = 1, 2), χv, and χe

2 are as above, βk ≥ 0 (k = 1 . . . , 4) are integers, β1 + β2 =
se
1 + qv

1 , β3 + β4 = se
2 + qv

2 with qv
1 , qv

2 being as in (2.3), χev is a C∞ cut-off function with
χev = 1 for 0 ≤ θv ≤ βv and χev = 0 for 3

2βv ≤ θv ≤ ωv for some βv ∈ (0,min{ωv/2, π/8}]. The
functions be3 and be

4, when extended by zero onto IR2+ := {(xe1, xe2); xe2 > 0}, lie in Hm1(IR2+)
and Hm2(IR2+), respectively, with m1, m2 as large as required. Note that the supports of uev

1

and uev
2 are subsets of the sector S̄ev = {(rv , θv); 0 ≤ rv ≤ 2τv, 0 ≤ θv ≤ 3

2βv}, cf. Remark A.1
below.

Remark 2.1 (i) The exponents γe
i (i = 1, 2) for edge and vertex-edge singularities in (2.2),

(2.4), (2.5) satisfy γe
i ≥ 1

2 . However, for our approximation analysis below it suffices to require
that γe

i > 0 (i = 1, 2). Note that γe
i > 0 and λv

i > −1
2 (i = 1, 2) are the minimum requirements

to guarantee u ∈ X.
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(ii) According to [21], decomposition (2.1) holds if enough regularity (in terms of Sobolev
spaces) is assumed for the right-hand side function f in (1.1) (this regularity depends, in partic-
ular, on the number of singularities in the decomposition and the wanted smoothness of ureg).
For the electromagnetic scattering with plane incident wave, f being its tangential trace, this
regularity assumption is satisfied.

For the approximate solution of (1.1) we apply the p-version of the BEM based on Galerkin
discretisations with Raviart-Thomas (RT) spaces. In what follows, p ≥ 1 will always specify a
polynomial degree.

We discretise Γ by a fixed mesh {Γj; j = 1, . . . , J} consisting of parallelograms. Let Q =
(−1, 1)2 be the reference square. Then for any element Γj of the mesh one has Γj = Tj(Q),
where Tj denotes an invertible affine mapping

x = Tj(ξ) = Bjξ + bj.

Here, Bj ∈ IR2×2, bj ∈ IR2, x = (x1, x2) ∈ Γj for a local system (x1, x2) of Cartesian coordinates
on Γ, and ξ = (ξ1, ξ2) ∈ Q.

The affine mapping Tj is used to associate the scalar function u defined on the element Γj

with the function û defined on the reference square Q:

u = û ◦ T−1
j and û = u ◦ Tj.

Any vector-valued function v̂ defined on Q is transformed to the function v on Γj by using the
standard Piola transformation:

v = Mj(v̂) = 1
Jj
Bjv̂ ◦ T−1

j , v̂ = M−1
j (v) = JjB

−1
j v ◦ Tj , (2.6)

where Jj = det(Bj).
Further, Pp(I) denotes the set of polynomials of degree ≤ p on an interval I ⊂ IR. By

Pp1,p2(Q) we denote the set of polynomials on Q of degree ≤ p1 in ξ1 and of degree ≤ p2 in ξ2.
For p1 = p2 = p we will use the notation Pp(Q) = Pp,p(Q). If K is an arbitrary parallelogram
in IR2, then we will denote by Pp(K) the set of polynomials v on K such that v ◦M ∈ Pp(Q),
where M : Q→ K is an invertible affine mapping.

Now we can define the RT-spaces on the reference element (see, e.g., [11, 36]):

VRT
p (Q) = Pp,p−1(Q) × Pp−1,p(Q). (2.7)

Then using transformations (2.6), we set

Xp(Γ) := {v ∈ X0; M−1
j (v|Γj ) ∈ VRT

p (Q), j = 1, . . . , J}, (2.8)

where the space X0 = H0(div,Γ) ⊂ X is defined in §3.1. Due to the inclusion Xp(Γ) ⊂ X0, the
normal components of v ∈ Xp(Γ) are continuous across internal edges of the mesh and vanish
on ∂Γ. Then the p-version of the Galerkin BEM for the EFIE is: Find up ∈ Xp(Γ) such that

a(up,v) = 〈f ,v〉 ∀v ∈ Xp(Γ). (2.9)
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Let us formulate the result which states the unique solvability of (2.9) and quasi-optimal
convergence of the p-version of the BEM for the EFIE.

Theorem 2.1 There exists p0 ≥ 1 such that for any f ∈ X′ and for arbitrary p ≥ p0 the
discrete problem (2.9) is uniquely solvable and the p-version of the Galerkin BEM generated by
RT-elements converges quasi-optimally, i.e.,

‖u − up‖X ≤ C inf{‖u − v‖X; v ∈ Xp(Γ)}. (2.10)

Here, u ∈ X is the solution of (1.1), up ∈ Xp(Γ) is the solution of (2.9), ‖ ·‖X denotes the norm
in X, and C > 0 is a constant independent of p.

The proof of Theorem 2.1 is given in Section 6 below.
The next statement specifies the convergence rate for the p-version of the BEM applied to

the EFIE on the plane screen Γ.

Theorem 2.2 Let u ∈ X be the solution of (1.1) with sufficiently smooth given function f ∈ X′

such that representation (2.1)–(2.5) holds. Let v0 ∈ V , e0 ∈ E(v0) be such that

min{λv0
1 + 1/2, λv0

2 + 1/2, γe0
1 , γ

e0
2 } = min

v∈V,e∈E(v)
min {λv

1 + 1/2, λv
2 + 1/2, γe

1 , γ
e
2}

with λv
i , γ

e
i (i = 1, 2) being as in (2.2)–(2.5). Then denote

β =





max {qv0
1 + se0

1 + 1
2 , q

v0
2 + se0

2 + 1
2} if λv0

i = γe0
i − 1

2 for i = 1, 2,

max {qv0
1 + se0

1 + 1
2 , q

v0
2 + se0

2 } if λv0
1 = γe0

1 − 1
2 , λv0

2 6= γe0
2 − 1

2 ,

max {qv0
1 + se0

1 , q
v0
2 + se0

2 + 1
2} if λv0

1 6= γe0
1 − 1

2 , λv0
2 = γe0

2 − 1
2 ,

max {qv0
1 + se0

1 , q
v0
2 + se0

2 } otherwise

(2.11)

with the numbers se0
i and qv0

i (i = 1, 2) given in (2.2) and (2.3), respectively. Then for every
p ≥ p0 (p0 is given by Theorem 2.1), the BE approximation up ∈ Xp(Γ) defined by (2.9) satisfies

‖u − up‖X ≤ Cp−2min {λ
v0
1 +1/2,λ

v0
2 +1/2,γ

e0
1 ,γ

e0
2 }(1 + log p)β,

where C > 0 is a constant independent of p.

Proof. Considering enough singularity terms in representation (2.1) we obtain a sufficiently
high regularity for the function ureg ∈ Hk

0(div,Γ). Then, due to the quasi-optimal convergence
(2.10) of the p-BEM, the assertion follows immediately from the general approximation result
given in Theorem 7.2 below. 2
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3 Preliminaries

3.1 Functional spaces, norms, and inner products

First of all, let us recall the Sobolev spaces and norms that will be used, see [31].
For a Lipschitz domain Ω ⊂ IRn and an integer s, let Hs(Ω) be the closure of C∞(Ω) with

respect to the norm
‖u‖2

Hs(Ω) = ‖u‖2
Hs−1(Ω) + |u|2Hs(Ω) (s ≥ 1),

where

|u|2Hs(Ω) =

∫

Ω
|Dsu(x)|2 dx, and H0(Ω) = L2(Ω).

Here, |Dsu(x)|2 =
∑

|α|=s |D
αu(x)|2 in the usual notation with multi-index α = (α1, . . . , αn) and

with respect to Cartesian coordinates x = (x1, . . . , xn). For a positive non-integer s = m + σ
with integer m ≥ 0 and 0 < σ < 1, the norm in Hs(Ω) is

‖u‖2
Hs(Ω) = ‖u‖2

Hm(Ω) + |u|2Hs(Ω)

with semi-norm

|u|2Hs(Ω) =
∑

|α|=m

∫

Ω

∫

Ω

|Dαu(x) −Dαu(y)|2

|x− y|n+2σ
dx dy.

The Sobolev spaces H̃s(Ω) for s ∈ (0, 1) and for a bounded Lipschitz domain Ω are defined by
interpolation. We use the real K-method of interpolation (see [31]) to define

H̃s(Ω) =
(
L2(Ω),Ht

0(Ω)
)

s
t
,2

(1/2 < t ≤ 1, 0 < s < t).

Here, Ht
0(Ω) (0 < t ≤ 1) is the completion of C∞

0 (Ω) in Ht(Ω) and we identify H1
0 (Ω) and

H̃1(Ω). Note that the Sobolev spaces Hs(Ω) also satisfy the interpolation property

Hs(Ω) =
(
L2(Ω),H1(Ω)

)
s,2

(0 < s < 1)

with equivalent norms. Furthermore, the semi-norm | · |H1(Ω) is a norm in H̃1(Ω) due to the
Poincaré inequality.

For s ∈ [−1, 0) the Sobolev spaces and their norms are defined by duality with L2(Ω) =
H0(Ω) = H̃0(Ω) as pivot space:

Hs(Ω) = (H̃−s(Ω))′, H̃s(Ω) = (H−s(Ω))′,

‖u‖Hs(Ω) = sup
06=v∈H̃−s(Ω)

|〈u, v〉|

‖v‖H̃−s(Ω)

, ‖u‖H̃s(Ω) = sup
06=v∈H−s(Ω)

|〈u, v〉|

‖v‖H−s(Ω)
,

where

〈u, v〉 = 〈u, v〉0,Ω :=

∫

Ω
u(x)v̄(x)dx
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denotes the extension of the L2(Ω)-inner product by duality (and v̄ is the complex conjugate of
v).

Now, let Γ be a plane open surface with polygonal boundary and let x = (x1, x2) ∈ Γ. For
the space H̃−1/2(Γ), besides the norm introduced above, we will also need an inner product. We
define it by

〈u, v〉− 1
2
,Γ := 〈Ψu, v〉0,Γ = 〈u,Ψv〉0,Γ ∀u, v ∈ H̃−1/2(Γ),

where

Ψu(x) := Ψ0u(x) =
1

4π

∫

Γ

u(y)

|x− y|
dSy, Ψ : H̃−1/2(Γ) → H1/2(Γ)

is the single layer potential operator of the Laplacian, cf. [20]. This inner product generates
the norm in H̃−1/2(Γ) which is equivalent to the dual norm introduced above. When acting on
tangential vector fields, we will denote the single layer potential operator by Ψ.

The spaces Hs(Γ) and H̃s(Γ) of vector fields defined on Γ can be introduced similarly as
above for any s ≥ −1. The norms and inner products in these spaces are defined component-
wise and the usual convention H0(Γ) = H̃0(Γ) = L2(Γ) holds. Besides that, we will use two
other families of spaces of vector fields on Γ. These are Hs

⊥,0(Γ) and H̃s
⊥(Γ) with 0 ≤ s ≤ 1.

The space Hs
⊥,0(Γ) is defined as the completion of the space C∞

⊥,0(Γ) := {v = (v1, v2); vi ∈
C∞(Γ), i = 1, 2, v · n|∂Γ = 0} in Hs(Γ). Here, n denotes the unit outer normal vector to ∂Γ.
Then, identifying H1

⊥,0(Γ) and H̃1
⊥(Γ), we define the space H̃s

⊥(Γ) by interpolation

H̃s
⊥(Γ) =

(
L2(Γ),Ht

⊥,0(Γ)
)

s
t
,2

(1/2 < t ≤ 1, 0 < s < t).

Analogously to the scalar case, there holds Hs(Γ) = H̃s(Γ) = H̃s
⊥(Γ) = Hs

⊥,0(Γ) if 0 < s < 1
2 ,

and H̃s
⊥(Γ) = Hs

⊥,0(Γ) if 1
2 < s < 1, with equivalent respective norms.

We will use standard differential operators acting on scalar functions

∇u = (∂u/∂x1, ∂u/∂x2), curl u = (∂u/∂x2, −∂u/∂x1)

and on 2D vector fields (here, v = (v1, v2))

divv = ∂v1/∂x1 + ∂v2/∂x2, curlv = ∂v2/∂x1 − ∂v1/∂x2.

Then we set:

H(curl,Γ) := {v ∈ L2(Γ); curlv ∈ L2(Γ)},

Hk(div,Γ) := {v ∈ Hk(Γ); divv ∈ Hk(Γ)}, k ≥ 0 is real,

H̃s(div,Γ) := {v ∈ H̃s(Γ); divv ∈ H̃s(Γ)}, s ∈ [−1/2, 0],

Hs
∗(Γ) := {v ∈ Hs(Γ); 〈v, 1〉 = 0}, s > −1/2, H0

∗ (Γ) = L2
∗(Γ),
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H(Γ) := {v ∈ H1
∗ (Γ); ∆ v ∈ H̃−1/2(Γ)}.

Here, ∆ denotes the standard Laplace operator, ∆ = div∇.
The spaces Hk(div,Γ) and H̃s(div,Γ) are equipped with their graph norms denoted by

‖ · ‖Hk(div,Γ) and ‖ · ‖
H̃s(div,Γ), respectively. For k = 0 we drop the superscript in the notation of

the space, H0(div,Γ) = H(div,Γ).
By Hk

0(div,Γ) with real k ≥ 0 (respectively, by Xs = H̃s
0(div,Γ) with s ∈ [−1/2, 0]) we

denote the subspace of elements u ∈ Hk(div,Γ) (respectively, u ∈ H̃s(div,Γ)) such that for all
v ∈ C∞(Γ̄) there holds

〈u,∇v〉 + 〈div u, v〉 = 0. (3.1)

We note that if u ∈ Xs with s ∈ [−1/2, 0] then identity (3.1) holds for any v ∈ H1−s(Γ)
by density. In particular, Xs is a closed subspace of H̃s(div,Γ). For s = −1

2 we drop the

superscript in the notation of this space, X−1/2 = X, and write the corresponding norm as
‖ · ‖X = ‖ · ‖

H̃−1/2(div,Γ).

3.2 Auxiliary lemmas

The following variational problem on Γ will be a useful tool in our analysis: Given ψ ∈ Hs(Γ),
s > −1

2 (or ψ ∈ H̃s(Γ), −1 ≤ s ≤ −1
2), find φ ∈ H1

∗ (Γ) such that

〈∇φ,∇ φ̃〉 = −〈ψ, φ̃〉 ∀φ̃ ∈ H1
∗ (Γ). (3.2)

We will need the following standard regularity result for this problem (see, e.g., [26, p. 82]).

Lemma 3.1 If ψ ∈ Hs(Γ), s > −1
2 (respectively, ψ ∈ H̃s(Γ), −1 ≤ s ≤ −1

2), then there exists
a unique solution φ to problem (3.2). Moreover, there holds φ ∈ H1+r(Γ) and

‖φ‖H1+r(Γ) ≤ C ‖ψ‖Hs(Γ) (respectively, ‖φ‖H1+r(Γ) ≤ C ‖ψ‖H̃s(Γ))

for any r < min {s∗, s + 1}, where s∗ = π
ω and ω denotes the maximal internal angle at the

vertices of Γ.

To state the second auxiliary result, we denote by Rp(Γ) the set of piecewise polynomials of
degree p defined on the partition of Γ, i.e.,

Rp(Γ) := {v ∈ L2(Γ); v|Γj ◦ Tj ∈ Pp(Q), j = 1, . . . , J}. (3.3)

The following lemma states the inverse inequality for such piecewise polynomials. We refer to
[27] for a proof.

Lemma 3.2 Let v ∈ Rp(Γ). If v ∈ Hr(Γ) (respectively, v ∈ H̃r(Γ) ) for a real number r ≤ 1,
then for s ≤ r there holds

‖v‖Hr(Γ) ≤ C p2(r−s) ‖v‖Hs(Γ) (respectively, ‖v‖H̃r(Γ) ≤ C p2(r−s) ‖v‖H̃s(Γ)).

Here, C is a positive constant independent of p.
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4 Decompositions

In this section we introduce direct orthogonal decompositions of the energy space X and of the
discrete space Xp(Γ).

4.1 Helmholtz decomposition

Following [14, 12] we decompose X using the mapping

Λ :

{
X → L2(Γ),
u 7→ ∇ f ,

(4.1)

where f solves the Neumann problem: Find f ∈ H1
∗ (Γ) such that

〈∇ f,∇ g〉 = −〈div u, g〉 ∀g ∈ H1
∗ (Γ). (4.2)

One has div Λu = divu. Moreover,

KerΛ = {u ∈ X; divu = 0} and Λ(Λu) = Λu.

Thus, Λ is a continuous projector, Λ : X → X. Denoting

V := ImΛ, W := KerΛ = {u ∈ X; div u = 0}, (4.3)

which are closed subspaces of X, one has the Helmholtz decomposition

X = V ⊕ W. (4.4)

Note that
V = ∇H(Γ), W = curl H̃1/2(Γ) (4.5)

so that (4.4) can be written as (cf., [14, Theorem 6.4])

X = ∇H(Γ) ⊕ curl H̃1/2(Γ).

Theorem 4.1 Decomposition (4.4) is orthogonal with respect to the H̃−1/2(Γ)-inner product
〈·, ·〉− 1

2
,Γ.

Proof. For any v ∈ V, w ∈ W one has by (4.5)

v = ∇f, w = curl g for some f ∈ H(Γ), g ∈ H̃1/2(Γ).

We consider (Fn)n ⊂ C∞
0 (Γ) with Fn → ∇f in L2(Γ) (n → ∞). Then, making use of the

continuities Ψ : L2(Γ) → H1(Γ), curl : H1(Γ) → L2(Γ), curl : L2(Γ) → H̃−1(Γ), Ψ : H̃−1(Γ) →
L2(Γ) (see [33, 16]), and noting the commutativity property curlΨFn = Ψ(curlFn) (see [32,
Lemma 2.3], cf. also [28, Lemma 4.2]), one proves the relation

curlΨ∇ f = Ψ(curl∇ f).
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By a similar density argument it follows that curl∇ f = 0 (see also [16, Theorem 5.1]). Hence,
integrating by parts and using the density C∞

0 (Γ) ⊂ H̃1/2(Γ), we obtain

〈v, curl g〉− 1
2
,Γ = 〈Ψ∇ f, curl g〉 = 〈curlΨ∇ f, g〉 = 〈Ψ(curl∇ f), g〉 = 0.

Therefore, 〈v,w〉− 1
2
,Γ = 0 and the proof is finished. 2

4.2 Discrete decomposition

The Helmholtz decomposition (4.4) was used in [12] to prove an inf-sup condition for the electric
field integral operator and to establish the unique solvability of the EFIE on Γ. The discretisation
of the EFIE by the Galerkin BEM is based on a sequence {Xn}n of finite dimensional subspaces
Xn ⊂ X. However, Helmholtz decompositions of functions in Xn may give functions which are
not discrete. That is why the discrete inf-sup condition (and thus, the unique solvability of (2.9)
and quasi-optimal convergence of the BEM) cannot be deduced by standard arguments, which
are usually applied to conforming Galerkin discretisations of coercive variational problems.

In [12], sufficient conditions were found to prove the well-posedness of the Galerkin BEM
applied to problem (1.1). The main idea there was to consider discrete decompositions Xn =
Vn ⊕ Wn, which are in some sense close to the Helmholtz decomposition of X when n → ∞.
The abstract formulation of this approach is given in [18]. In particular, the following theorem
holds (see Proposition 4.1, Corollary 4.2, and Theorem 4.5 in [12] and also [18, Theorem 4.1]).

Theorem 4.2 Let {Xn}n be a sequence of closed subspaces Xn ⊂ X with decompositions Xn =
Vn ⊕ Wn which are stable with respect to complex conjugation and which satisfy the following
assumptions:

(A1) the family {Xn}n is dense in the space X, namely

⋃

n

Xn = X;

(A2) the spaces Vn and Wn are such that Wn ⊂ W and

sup
vn∈Vn\{0}

inf
v∈V

‖vn − v‖X
‖vn‖X

→ 0 as n→ ∞. (4.6)

Then there exists n0 such that for all f ∈ X′ and n ≥ n0 the Galerkin system

a(un,v) = 〈f ,v〉 ∀v ∈ Xn

has a unique solution un ∈ Xn which converges quasi-optimally, i.e.,

‖u− un‖X ≤ C inf{‖u − v‖X; v ∈ Xn},

where u ∈ X is the solution of (1.1).
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In this paper we discretise the EFIE by the p-version of the Galerkin BEM based on the
sequence of the RT-subspaces Xp(Γ) ⊂ X (see (2.7)–(2.9)). To prove the well-posedness of (2.9)
(see Theorem 2.1) we will use the abstract convergence result of Theorem 4.2 above. To that
end one needs to consider discrete decompositions of Xp(Γ). We set

Xp(Γ) = Vp ⊕ Wp, (4.7)

where

Wp := {wp ∈ Xp(Γ); div wp = 0}, (4.8)

Vp := {vp ∈ Xp(Γ); 〈vp,wp〉− 1
2
,Γ = 0 ∀wp ∈ Wp}. (4.9)

Thus, Vp and Wp are orthogonal with respect to the H̃−1/2(Γ)-inner product by definition.
Decomposition (4.7) is stable with respect to complex conjugation.

Remark 4.1 (i) In [12, 18], L2(Γ)-orthogonal discrete decompositions were introduced for finite
dimensional subspaces based on RT and Brezzi-Douglas-Marini (BDM) boundary elements. It
has been proved that these decompositions satisfy assumptions (A1), (A2) of Theorem 4.2 with
respect to the mesh parameter h, i.e., in the framework of the h-version of the BEM for the
EFIE. It turns out that, for the p-version, the L2(Γ)-orthogonality of decomposition (4.7) is not
sufficient to prove (A2) with standard techniques. That is why we need H̃−1/2(Γ)-orthogonality
instead. We note that H−1/2-orthogonal decompositions of the energy space X for smooth closed
surfaces were used in [19].

(ii) Condition (4.6) relates to Kikuchi’s discrete compactness property (DCP) which, together
with an appropriate approximability condition, implies the convergence of discrete methods for
time-harmonic Maxwell equations (in particular, finite element methods employing edge ele-
ments), see [30]. Though the DCP has been widely studied in the framework of the h-version for
edge elements in two and three dimensions, there are only few results for p- and hp-methods. In
2D, the DCP for hp adaptive rectangular edge finite elements has been proved in [10].

5 Interpolation operators

In this section we will introduce the interpolation operators acting on vector fields and recall
some of their properties.

First let us consider the standard (element-wise) L2-projection onto the set of piecewise
polynomials. We denote this L2-projection by Π0

p : L2(Γ) → Rp(Γ), where Rp(Γ) is defined in
(3.3). There holds the following approximation result.

Lemma 5.1 For any r ≥ 0 there holds

‖v − Π0
pv‖L2(Γ) ≤ C p−r ‖v‖Hr(Γ) ∀v ∈ Hr(Γ)

where C > 0 is independent of p and v.
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This assertion follows from the local approximation result of [3, Lemma 4.5] (see [39] for the
proof).

Now let us introduce the interpolation operators acting on vector fields v ∈ H(div,Γ). By
ΠRT

p we denote the standard RT-interpolation operator ΠRT
p : H(div,Γ) → Xp(Γ) (see, e.g.,

[36, Chapter 2, Section 7] for the definition). This operator satisfies, in particular, the following
relation (here we use the same notation as in (2.6))

〈Π̂RT
p v − v̂, ŵ〉0,Q = 0 ∀ŵ ∈ Pp−2,p−1(Q) × Pp−1,p−2(Q). (5.1)

Hence
〈ΠRT

p v − v, w〉0,Γ = 0 ∀w ∈ Xcurl
p−1(Γ),

where Xcurl
p (Γ) denotes a discrete subspace of H(curl,Γ) based on the Nédélec elements of the

first type, namely,

Xcurl
p (Γ) := {v ∈ H(curl,Γ); M−1

j (v|Γj ) ∈ Pp−1,p(Q) × Pp,p−1(Q), j = 1, . . . , J}.

For the L2-estimate of the error of the RT-interpolation (in terms of polynomial degrees p),
we cite the following result from [38] (see Lemma 4.1 therein).

Lemma 5.2 If u ∈ Hr(Γ) with r > 1
2 , then for any ε > 0 there exists a positive constant

C = C(ε) such that
‖u − ΠRT

p u‖L2(Γ) ≤ C p−(r−1/2−ε) ‖u‖Hr(Γ).

On the other hand, in [22] the H(curl)-conforming projection-based interpolation operator
Πcurl

p : Hr(Γ) ∩ H(curl,Γ) → Xcurl
p (Γ), r > 0 has been introduced and analysed. Using the

isomorphism of the curl and the div operator in 2D (and, as a consequence, the isomorphism of
the Nédélec and RT elements), we reformulate the main results of [22] in the H(div)-settings.
We will denote by Πdiv

p the corresponding H(div)-conforming projection-based interpolation
operator.

Lemma 5.3 [22, Proposition 2] For r > 0 the operator Πdiv
p : Hr(Γ) ∩ H(div,Γ) → H(div,Γ)

is bounded, with norm independent of the polynomial degree p.

This result implies the L2-stability of Πdiv
p : there exists a positive constant C > 0 indepen-

dent of p such that for any u ∈ Hr(Γ) ∩ H(div,Γ), r > 0, there holds

‖Πdiv
p u‖L2(Γ) ≤ C

(
‖u‖Hr(Γ) + ‖div u‖L2(Γ)

)
. (5.2)

The following approximation result is Theorem 3 in [22].

Lemma 5.4 Let u ∈ Hr(div,Γ) with 0 < r < 1, and let 0 < ε < r. Then there exists C > 0,
depending on ε but independent of p such that

‖u− Πdiv
p u‖H(div,Γ) ≤ C p−(r−ε) ‖u‖Hr(div,Γ).
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It is essential that both interpolation operators, ΠRT
p and Πdiv

p , satisfy the commuting dia-
gram property:

div (ΠRT
p u) = Π0

p−1(divu) ∀u ∈ Hr(Γ) ∩ H(div,Γ), r > 1/2, (5.3)

div (Πdiv
p u) = Π0

p−1(divu) ∀u ∈ Hr(Γ) ∩ H(div,Γ), 0 < r < 1; (5.4)

here we refer to [11, Proposition 3.7] and [22, Proposition 3], respectively. We note that commu-
tativity (5.3) does not hold if polynomial degrees vary from one element to another. Thus, our
results below employing the (global) RT-interpolation operator do not generalise immediately
to this case.

The interpolation operators introduced above become a useful tool in the analysis of Galerkin
discretisations of mixed variational formulations for elliptic boundary value problems. Let us
demonstrate this for a certain auxiliary problem, which will be used further in Section 7.1.
Given u ∈ Hr

0(div,Γ), r > 0, we consider the following mixed variational problem: Find (z, f) ∈
(H0(div,Γ), L2

∗(Γ)) such that

〈z,v〉 + 〈div v, f〉 = 〈u,v〉 ∀v ∈ H0(div,Γ),

〈div z, g〉 = 〈div u, g〉 ∀g ∈ L2
∗(Γ).

(5.5)

The unique solvability of (5.5) is proved by usual techniques (see [11]). In our case it is clear
that the pair (u, 0) solves (5.5).

A conforming Galerkin approximation of problem (5.5) based on RT-elements reads as: Find
(zp, fp) ∈ (Xp(Γ), R∗

p−1(Γ)) for p ≥ 1 such that

〈zp,v〉 + 〈divv, fp〉 = 〈u,v〉 ∀v ∈ Xp(Γ),

〈div zp, g〉 = 〈div u, g〉 ∀g ∈ R∗
p−1(Γ).

(5.6)

Here, R∗
p(Γ) := {g ∈ Rp(Γ); 〈g, 1〉 = 0} and Rp(Γ) is defined by (3.3).

We now prove the unique solvability of (5.6). Observe that for any given gp ∈ R∗
p−1(Γ) we can

solve the Neumann problem analogous to (3.2) to find a function φ ∈ H1
∗ (Γ) such that ∆φ = gp

on Γ. Then applying the regularity result of Lemma 3.1 we have φ ∈ H1+r(Γ), 0 < r ≤ r0,
r0 >

1
2 and

‖∇φ‖Hr(Γ) ≤ C‖φ‖H1+r(Γ) ≤ C‖gp‖L2(Γ). (5.7)

Therefore, ∇φ ∈ Hr(Γ)∩H(div,Γ) and the interpolant Πdiv
p ∇φ ∈ Xp(Γ) is well defined, due to

Lemma 5.3. Moreover, (5.4) yields

div (Πdiv
p ∇φ) = gp.

Hence, using (5.2) and (5.7) we prove the discrete Ladyzhenskaya-Babuška-Brezzi condition:

sup
vp∈Xp(Γ)\{0}

〈divvp, gp〉

‖vp‖H(div,Γ)
≥

〈div (Πdiv
p ∇φ), gp〉

‖Πdiv
p ∇φ‖H(div,Γ)
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≥
‖gp‖

2
L2(Γ)

C
(
‖∇φ‖Hr(Γ) + ‖div∇φ‖L2(Γ)

)
+ ‖div (Πdiv

p ∇φ)‖L2(Γ)

≥ C̃ ‖gp‖L2(Γ) ∀gp ∈ R∗
p−1(Γ).

This condition along with the property div Xp(Γ) = R∗
p−1(Γ) ensures existence, uniqueness, and

quasi-optimality of the solution (zp, fp) to (5.6) (see [11]). Then we rewrite (5.6) as

〈u − zp,v〉 = 〈div v, fp〉 ∀v ∈ Xp(Γ), (5.8)

〈div (u − zp), g〉 = 0 ∀g ∈ Rp−1(Γ) (5.9)

(note that (5.9) holds for any g ∈ Rp−1(Γ), because 〈div (u − zp), c〉 = 0 for any constant c).
Furthermore, recalling that z = u and f = 0, we have

‖zp‖H(div,Γ) ≤ ‖zp‖H(div,Γ) + ‖fp‖L2(Γ) ≤ C
(
‖z‖H(div,Γ) + ‖f‖L2(Γ)

)
= C‖u‖H(div,Γ) (5.10)

and

‖u − zp‖H(div,Γ) ≤ ‖u − zp‖H(div,Γ) + ‖f − fp‖L2(Γ)

≤ C

(
inf

vp∈Xp(Γ)
‖u − vp‖H(div,Γ) + inf

gp∈R∗
p−1(Γ)

‖f − gp‖L2(Γ)

)

= C inf
vp∈Xp(Γ)

‖u − vp‖H(div,Γ). (5.11)

We find by (5.10)
‖u − zp‖H(div,Γ) ≤ C‖u‖H(div,Γ). (5.12)

From (5.11) using the commuting diagram property (5.3), Lemma 5.1, and Lemma 5.2 we have
for any r > 1

2

‖u− zp‖H(div,Γ) ≤ C
(
‖u − ΠRT

p u‖L2(Γ) + ‖div (u− ΠRT
p u)‖L2(Γ)

)

= C
(
‖u − ΠRT

p u‖L2(Γ) + ‖div u− Π0
p−1divu)‖L2(Γ)

)

≤ Cp−(r−1/2−ε̃)‖u‖Hr(div,Γ), ε̃ > 0. (5.13)

The estimate in (5.13) can be improved to give a sub-optimal p-approximation result (see esti-
mate (5.14) below). The argument is based on interpolation between (5.12) and (5.13). It was
first used in [4] for the scalar case, and we refer to Lemma 4.1 and Theorem 4.2 in [39] for the
case of vector fields. Thus we have proved the following auxiliary result.

Lemma 5.5 Given any k > 0, ε > 0 and u ∈ Hk
0(div,Γ), there exists a pair (zp, fp) ∈

(Xp(Γ), R∗
p−1(Γ)) solving (5.6) and satisfying (5.8), (5.9). Moreover, there exists a constant

C > 0 independent of p and u but depending on ε and k such that

‖u − zp‖H(div,Γ) ≤ Cp−(k−ε)‖u‖Hk(div,Γ). (5.14)

16



6 Proof of Theorem 2.1

In this section we prove Theorem 2.1 relying on the abstract convergence result of Theorem 4.2.
One needs to check that assumptions (A1) and (A2) are satisfied. First, we note that the family
{Xp(Γ)}p of RT-spaces is dense in X0. Since the injection X0 ⊂ X is dense as well (see, e.g., [17,
Lemma 2.4]), we conclude that the family {Xp(Γ)}p satisfies assumption (A1) of Theorem 4.2.

Further, from the definitions of W and Wp (compare (4.3) and (4.8)) it is clear that Wp⊂W.
Thus, it remains to prove that the subspace Vp defined by (4.9) satisfies assumption (4.6). In
particular, we will show below that there exists a sequence {δp}p, δp → 0 as p → ∞, such that
for any given vp ∈ Vp there exists v ∈ V satisfying

‖vp − v‖X ≤ δp‖vp‖X. (6.1)

The proof of this statement consists of four steps.
Step 1: Construction of the function v for given vp. Given vp ∈ Vp, we solve the

Neumann problem to find f ∈ H1
∗ (Γ) such that

〈∇ f,∇ g〉 = −〈divvp, g〉 ∀g ∈ H1
∗ (Γ). (6.2)

We set v := ∇ f . By definition of V there holds v ∈ V, see (4.1)–(4.3). Moreover,

divv = divvp. (6.3)

Note that divvp ∈ H−1/2+ε(Γ) for any ε ∈ (0, 1). Therefore, the regularity result for problem
(6.2) reads as (see Lemma 3.1): there exists sufficiently small ε ∈ (0, 1) such that f ∈ H3/2+ε(Γ).
Moreover, using the continuity of the gradient as a mapping H1+r(Γ) → Hr(Γ), we have

‖v‖
H1/2+ε(Γ) ≤ C ‖f‖H3/2+ε(Γ) ≤ C ‖div vp‖H−1/2+ε(Γ), ε ∈ (0, 1). (6.4)

In view of (6.3) the desired estimate in (6.1) reduces to the inequality

‖vp − v‖
H̃−1/2(Γ) ≤ δp‖vp‖X. (6.5)

Step 2: Reducing ‖vp − v‖
H̃−1/2(Γ) to the H̃−1/2(Γ)-error of the RT-interpolation.

Since v ∈ Hr(Γ) ∩ H(div,Γ), r > 1
2 , we can apply the RT-interpolation operator ΠRT

p (see

Section 5) to define vRT
p := ΠRT

p v ∈ Xp(Γ). Now recalling (5.3) and using (6.3) we find

divvRT
p = divvp = divv.

Hence, (vp − vRT
p ) ∈ Wp ⊂ W. This fact together with the orthogonalities V ⊥ W and

Vp ⊥ Wp with respect to the H̃−1/2(Γ)-inner product implies the equalities:

〈v,vp − vRT
p 〉− 1

2
,Γ = 〈vp,vp − vRT

p 〉− 1
2
,Γ = 0.
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Therefore,

‖v − vp‖
2
H̃−1/2(Γ)

≤ C 〈v − vp,v − vp〉− 1
2
,Γ = C 〈v − vp,v − vRT

p 〉− 1
2
,Γ,

which gives
‖v − vp‖H̃−1/2(Γ) ≤ C ‖v − ΠRT

p v‖
H̃−1/2(Γ). (6.6)

Step 3: Reducing ‖v − ΠRT
p v‖

H̃−1/2(Γ) to ‖v − ΠRT
p v‖L2(Γ). We start with the definition

of the norm in H̃−1/2 on an arbitrary element Γj :

‖v − ΠRT
p v‖

H̃−1/2(Γj)
= sup

w∈H1/2(Γj)\{0}

〈v − ΠRT
p v,w〉0,Γj

‖w‖
H1/2(Γj)

.

For any w ∈ H1/2(Γj), let us denote by wp the local (component-wise) L2-projection of w onto
the set of polynomials of degree (p − 2) on Γj. Then, recalling (5.1), we have for p > 2

‖v − ΠRT
p v‖

H̃−1/2(Γj)
= sup

w∈H1/2(Γj)\{0}

〈v − ΠRT
p v,w − wp〉0,Γj

‖w‖
H1/2(Γj)

≤ ‖v − ΠRT
p v‖L2(Γj) sup

w∈H1/2(Γj)\{0}

‖w − wp‖L2(Γj)

‖w‖
H1/2(Γj)

≤ C p−1/2 ‖v − ΠRT
p v‖L2(Γj). (6.7)

Here we also applied Lemma 5.1 restricted to the element Γj . Since the following inequality
holds (see, e.g., [2, Theorem 4.1])

‖u‖2
H̃−1/2(Γ)

≤
∑

j

‖u|Γj‖
2
H̃−1/2(Γj)

,

we obtain by squaring (6.7) and summing up the results over all elements

‖v − ΠRT
p v‖

H̃−1/2(Γ) ≤ C p−1/2 ‖v − ΠRT
p v‖L2(Γ). (6.8)

Step 4: Estimating ‖v − ΠRT
p v‖L2(Γ) and conclusion. Since v ∈ H1/2+ε(Γ) for some

ε ∈ (0, 1), we apply Lemma 5.2 and then inequality (6.4) to obtain

‖v − ΠRT
p v‖L2(Γ) ≤ Cp−(1/2+ε−1/2−ε̃)‖v‖

H1/2+ε(Γ) ≤ Cp−(ε−ε̃)‖div vp‖H−1/2+ε(Γ) (6.9)

for any ε̃ ∈ (0, ε). Then making use of the inverse inequality (see Lemma 3.2) we estimate

‖divvp‖H−1/2+ε(Γ) ≤ Cp2ε‖divvp‖H−1/2(Γ) ≤ Cp2ε‖div vp‖H̃−1/2(Γ) ≤ Cp2ε‖vp‖X. (6.10)

Now we put together (6.6) and (6.8)–(6.10):

‖v − vp‖H̃−1/2(Γ) ≤ Cp−1/2+ε+ε̃‖vp‖X, ε ∈ (0, 1), ε̃ ∈ (0, ε).

Hence, selecting ε small enough we prove (6.5), which implies (6.1). Therefore, the subspace Vp

satisfies (4.6). Thus we have shown that the discrete H̃−1/2(Γ)-orthogonal decomposition (4.7)
verifies assumption (A2) of Theorem 4.2, and the proof is finished.
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7 Approximation results

7.1 Approximation of smooth vector functions

In this sub-section we prove the following p-approximation result for vector fields u ∈ Hk
0(div,Γ).

Theorem 7.1 Given any real k > 0, ε > 0 and any u ∈ Hk
0(div,Γ), there exists zp ∈ Xp(Γ)

such that for 0 ≤ s ≤ 1
2

‖u − zp‖H̃−s(div,Γ) ≤ Cp−(k+s−ε)‖u‖Hk(div,Γ). (7.1)

Here, C > 0 is a constant independent of p, s and u but depending on ε and k.

Proof. Let u ∈ Hk
0(div,Γ) and k > 0. Then applying Lemma 5.5 we find a function zp ∈ Xp(Γ)

satisfying equalities (5.8), (5.9) and such that estimate (7.1) holds with s = 0. We now prove
(7.1) for s ∈ (0, 1

2 ). First, we write the negative-order norm of (u − zp):

‖u − zp‖H̃−s(Γ) = sup
w∈Hs(Γ)\{0}

〈u − zp,w〉

‖w‖Hs(Γ)
. (7.2)

Let w ∈ Hs(Γ), s ∈ (0, 1
2). Then div w ∈ Hs−1(Γ) and its extension to divw ∈ H̃s−1(Γ)

exists but is not unique (see [34] for details). In particular, we can set the trace of the normal
component of w on ∂Γ to be zero. Given w ∈ Hs(Γ), we consider the Neumann problem (cf.
(3.2)): Find ϕ ∈ H1

∗ (Γ) such that

〈∇ϕ,∇φ〉 = 〈divw, φ〉 ∀φ ∈ H1
∗ (Γ). (7.3)

Since div w ∈ H̃s−1(Γ) and s ∈ (0, 1
2), the regularity result for ϕ reads as (see Lemma 3.1):

ϕ ∈ H1+r(Γ) for any 0 < r ≤ s < 1
2 . (7.4)

Moreover, there holds

‖ϕ‖H1+r(Γ) ≤ C ‖divw‖H̃s−1(Γ) ≤ C ‖w‖Hs(Γ). (7.5)

Then we set
q := w + ∇ϕ ∈ Hr(Γ). (7.6)

It follows from (7.3) that div∇ϕ = −divw. Hence

divq = divw + div∇ϕ = 0.

Furthermore, we have by (7.4)–(7.6)

‖q‖Hr(Γ) ≤ ‖w‖Hr(Γ) + C‖ϕ‖H1+r(Γ) ≤ ‖w‖Hr(Γ) + C‖w‖Hs(Γ) ≤ C‖w‖Hs(Γ). (7.7)
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Now, we use (7.6) to represent the numerator in (7.2) as

〈u− zp,w〉 = 〈u − zp,q −∇ϕ〉 = 〈u− zp,q〉 + 〈div (u− zp), ϕ〉 (7.8)

(here we also used equality (3.1) and the fact that (u − zp) ∈ X0).
Since q ∈ Hr(Γ) ∩H0(div,Γ) for an r ∈ (0, 1

2) we can apply the interpolation operator Πdiv
p

to q. Recalling that zp satisfies (5.8) and q is divergence-free, we use commutativity property
(5.4) and the approximation result of Lemma 5.4 to obtain for the first term on the right-hand
side of (7.8):

〈u− zp,q〉 = 〈u − zp,Π
div
p q〉 + 〈u − zp,q − Πdiv

p q〉

= 〈div Πdiv
p q, fp〉 + 〈u − zp,q − Πdiv

p q〉 = 〈u− zp,q − Πdiv
p q〉

≤ ‖u − zp‖L2(Γ) ‖q − Πdiv
p q‖L2(Γ) = ‖u − zp‖L2(Γ) ‖q − Πdiv

p q‖H(div,Γ)

≤ Cp−(r−ε1)
(
‖q‖Hr(Γ) + ‖div q‖Hr(Γ)

)
‖u − zp‖L2(Γ)

= Cp−(r−ε1)‖q‖Hr(Γ) ‖u − zp‖L2(Γ)

≤ Cp−(r−ε1)‖w‖Hs(Γ) ‖u − zp‖L2(Γ), 0 < ε1 < r; (7.9)

for the last step we used (7.7).
To estimate the second term on the right-hand side of (7.8) we use (5.9), (7.5) and apply

Lemma 5.1:

〈div (u − zp), ϕ〉 = 〈div (u− zp), ϕ − Π0
p−1ϕ〉 ≤ ‖div (u − zp)‖L2(Γ) ‖ϕ− Π0

p−1ϕ‖L2(Γ)

≤ Cp−(r+1)‖div (u− zp)‖L2(Γ) ‖ϕ‖Hr+1(Γ)

≤ Cp−(r+1)‖div (u− zp)‖L2(Γ) ‖w‖Hs(Γ). (7.10)

Combining (7.9), (7.10) and making use of representation (7.8), we obtain by (7.2)

‖u − zp‖H̃−s(Γ) ≤ Cp−(r−ε1)‖u− zp‖H(div,Γ). (7.11)

By the same argument as in (7.10) we also prove

‖div (u − zp)‖H̃−s(Γ) = sup
v∈Hs(Γ)\{0}

〈div (u − zp), v〉

‖v‖Hs(Γ)
≤ Cp−s‖div (u − zp)‖L2(Γ). (7.12)

Setting r := s and combining (7.11), (7.12) we derive

‖u− zp‖H̃−s(div,Γ) ≤ Cp−(s−ε1)‖u − zp‖H(div,Γ).

Hence, using (7.1) with s = 0 to estimate the norm ‖u − zp‖H(div,Γ), we prove the assertion

of the theorem for any s ∈ (0, 1
2 ). For s = 1

2 the assertion then immediately follows, because
‖ · ‖

H̃−1/2(div,Γ) ≤ ‖ · ‖
H̃−1/2+ε(div,Γ) for any small ε > 0. 2
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7.2 General approximation result

By (2.2)–(2.5) we conclude that any singular function us in (2.1) (s = e, v, or ev) can be written
as

us = curlws + vs = curlws + (vs
1, v

s
2), (7.13)

where ws ∈ H̃1/2(Γ) for s = e, v, ev, vs ∈ H̃1/2(Γ) for s = e, ev, and vs ∈ H̃
1/2
⊥ (Γ) for s = v. It

is important to note that the functions ws, vs
1, v

s
2 (s = e, v, ev) are scalar singularities inherent

to the solution of the boundary integral equation with hypersingular integral operator for the
Laplacian on Γ (or on a closed piecewise plane surface Γ̃ ⊃ Γ) and with possibly singular right-
hand side. Polynomial approximations of these scalar singularities in fractional order Sobolev
spaces were analysed in [8, 7].

In the following theorem we prove a general approximation result for the vector function u

given by (2.1)–(2.5).

Theorem 7.2 Let the function u be given by (2.1)–(2.5) on Γ with γe
1, γ

e
2 > 0 and λv

1, λ
v
2 > −1

2 .
Also, let v0 ∈ V , e0 ∈ E(v0) be such that

min{λv0
1 + 1/2, λv0

2 + 1/2, γe0
1 , γ

e0
2 } = min

v∈V,e∈E(v)
min {λv

1 + 1/2, λv
2 + 1/2, γe

1 , γ
e
2}.

Then for any small ε > 0 and for every p ≥ 1 there exists up ∈ Xp(Γ) such that

‖u− up‖X ≤ C max
{
p−(k+1/2−ε),

p−2min {λ
v0
1 +1/2,λ

v0
2 +1/2,γ

e0
1 ,γ

e0
2 }(1 + log p)β

}
, (7.14)

where β is defined by (2.11) and the constant C > 0 is independent of p.

Proof. If p = 1, then we set up ≡ 0 on Γ, and (7.14) is valid. Let p ≥ 2. For the partition
{Γj ; j = 1, . . . , J} of Γ we define

Sp(Γ) := {v ∈ C0(Γ); v|Γj ◦ Tj ∈ Pp(Q), j = 1, . . . , J} and S0
p(Γ) := Sp(Γ) ∩H1

0 (Γ).

Let us also define the following functions of p:

f e
j (p) := p−2γe

j (1 + log p)s
e
j , f v

j (p) := p−2(λv
j +1/2)(1 + log p)q

v
j ,

f ev
j (p) := p−2min {λv

j +1/2,γe
j }(1 + log p)β̃j , β̃j :=

{
qv
j + se

j + 1
2 if λv

j = γe
j − 1

2 ,

qv
j + se

j otherwise.

(7.15)

Here, j = 1, 2 and γe
j , λ

v
j , s

e
j, q

v
j are the same numbers as in (2.2)–(2.5).

Any singular vector field us (s = e, v, or ev) in (2.1) can be decomposed as in (7.13). We
first use the results of [8, 7] to find piecewise polynomial approximations to the scalar functions
ws (s = e, v, ev) and vs

i (i = 1, 2, s = e, ev) (see Theorems 3.3, 3.5 in [8] and Theorem 4.1,
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Remark 4.1 in [7]): there exist ws
p ∈ S0

p(Γ) (s = e, v, ev) and vs
i,p ∈ S0

p−1(Γ) (i = 1, 2, s = e, ev)
such that

‖ws − ws
p‖H̃1/2(Γ) ≤ C f s

1 (p), s = e, v, ev, (7.16)

‖vs
i − vs

i,p‖H̃1/2(Γ) ≤ C f s
2 (p − 1) ≤ C f s

2 (p), s = e, ev, i = 1, 2, (7.17)

where C > 0 is a positive constant independent of p.
Let vs

p = (vs
1,p, v

s
2,p) for s = e, ev. We observe that vs

p ∈ H(div,Γ), vs
p · n|∂Γ = 0, and for

any element Γj there holds

M−1
j (vs

p|Γj ) = det(Bj)B
−1
j (vs

p|Γj ) ◦ Tj ∈ Pp−1(Q) ×Pp−1(Q) ⊂ VRT
p (Q).

Therefore vs
p ∈ Xp(Γ) for s = e, ev. Moreover, since vs ∈ H̃1/2(Γ) and vs

i,p ∈ S0
p−1(Γ) for

s = e, ev and i = 1, 2, we estimate by (7.17)

‖vs−vs
p‖H̃1/2

⊥
(Γ)

≤ C‖vs−vs
p‖H̃1/2(Γ) ≤ C

2∑

i=1

‖vs
i −v

s
i,p‖H̃1/2(Γ) ≤ C f s

2 (p), s = e, ev. (7.18)

The vector field vv ∈ H̃
1/2
⊥ (Γ) is approximated directly by applying Theorem B.1 (see Ap-

pendix B): there exists vv
p ∈ Xp(Γ) such that

‖vv − vv
p‖H̃1/2

⊥
(Γ)

≤ C f v
2 (p). (7.19)

On the other hand, it is easy to check that for s = e, v, ev

M−1
j (curlws

p|Γj ) = det(Bj)B
−1
j (curlws

p|Γj ) ◦ Tj

= det(Bj)B
−1
j

(
∂ws

p

∂xe2
|Γj , −

∂ws
p

∂xe1
|Γj

)T
◦ Tj

= det(Bj)B
−1
j

(
∇ŵs

p,j · bj,2, −∇ŵs
p,j · bj,1

)T
,

where ŵs
p,j = ws

p|Γj ◦ Tj and bj,k is the k-th column of the matrix B−1
j . Hence

M−1
j (curlws

p|Γj ) = det(Bj)
(
∇ŵs

p,j · (0, det(B−1
j )), −∇ŵs

p,j · (det(B−1
j ), 0)

)

=
(

∂ŵs
p,j

∂ξ2
, −

∂ŵs
p,j

∂ξ1

)
.

Since ŵs
p,j ∈ Pp,p(Q), we have M−1

j (curlws
p|Γj ) ∈ Pp,p−1(Q)×Pp−1,p(Q) = VRT

p (Q). Moreover,
curlws

p ·n|∂Γ = 0, because ws
p vanishes on ∂Γ and curlws

p ∈ H(div,Γ), because div(curlws
p) ≡ 0

on Γ. Therefore curlws
p ∈ Xp(Γ) for s = e, v, ev.

Thus, we have proved that us
p := curlws

p + vs
p ∈ Xp(Γ) for s = e, v, ev. To derive the error

estimate for this approximation we recall that the operators curl : H̃1/2(Γ) → H̃−1/2(Γ) and

div : H̃
1/2
⊥ (Γ) → H̃−1/2(Γ) are continuous (see [14]). Therefore, one has

‖us − us
p‖X ≤ ‖curl (ws − ws

p)‖X + ‖vs − vs
p‖X
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= ‖curl (ws−ws
p)‖H̃−1/2(Γ) + ‖vs−vs

p‖H̃−1/2(Γ) + ‖div(vs−vs
p)‖H̃−1/2(Γ)

≤ C

(
‖ws − ws

p‖H̃1/2(Γ) + ‖vs − vs
p‖L2(Γ) + ‖vs − vs

p‖H̃1/2
⊥

(Γ)

)
.

Hence we obtain by (7.16), (7.18), and (7.19)

‖us − us
p‖X ≤ C max

{
f s
1 (p), f s

2 (p)
}
, s = e, v, ev. (7.20)

For the regular part ureg of u in (2.1), we use the approximation result of Theorem 7.1 giving a
discrete vector function ureg,p ∈ Xp(Γ) which satisfies

‖ureg − ureg,p‖X ≤ C p−(k+1/2−ε) ‖ureg‖Hk(div,Γ), ε > 0. (7.21)

Setting
up := ureg,p +

∑

e∈E

ue
p +

∑

v∈V

uv
p +

∑

v∈V

∑

e∈E(v)

uev
p ∈ Xp(Γ),

combining estimates (7.20), (7.21), using expressions (7.15) for the functions f s
j (p) in (7.20),

and applying the triangle inequality, we prove (7.14). 2

A Singularities of electromagnetic fields on surfaces

Throughout this section we denote by Γ a piecewise smooth (open or closed) Lipschitz surface in
IR3. Assuming that Γ has plane faces Γ(i) and straight edges ej , we derive expressions for typical
edge and vertex singularities inherent to the solution of the electric field integral equation on Γ.

If Γ is a closed surface, we will denote by Ω the Lipschitz polyhedron bounded by Γ, i.e.,
Γ = ∂Ω. In the case of an open surface Γ, we first introduce a piecewise plane closed Lipschitz
surface Γ̃ which contains Γ, and then denote by Ω the Lipschitz polyhedron bounded by Γ̃, i.e.,
Γ̃ = ∂Ω. For each face Γ(i) ⊂ Γ there exists a constant unit normal vector νi, which is an outer
normal vector to Ω. These vectors are then blended into a unit normal vector ν defined almost
everywhere on Γ.

In addition to Sobolev spaces introduced in Section 3.1 we define

L2
t (Γ) := {u ∈ L2(Γ); u · ν = 0 on Γ}.

To apply trace arguments we will need the “tangential components trace” mapping πτ : C∞(Ω̄)
→ L2

t (Γ) and the “tangential trace” mapping γτ : C∞(Ω̄) → L2
t (Γ), which are defined as

u 7→ ν × (u × ν)|Γ and u|Γ × ν, respectively (here, (·)|Γ denotes the standard trace operator
acting on vector fields, (·)|Γ : Hs(Ω) → Hs−1/2(Γ) for s ∈ (1

2 ,
3
2 )). The adjoint operator for the

mapping πτ is denoted by iπ; this operator identifies two-dimensional tangential vector fields
(sections of the tangent bundle of Γ) with three-dimensional vector fields on Γ (having zero
normal component).
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In this section, among the tangential differential operators defined on Γ we will need the
vector surface curl,

curlΓ : H1(Γ) → L2
t (Γ),

which is defined by localisation to each face Γ(i) (see [13, 14] for the definition and properties of
this operator for both closed and open surfaces).

Now let us consider the vector field U = (U1, U2, U3) and let U be the magnetic part of
the electromagnetic field solving the boundary value problem for the time-harmonic Maxwell
equations in the interior and/or exterior of Ω (if Γ is closed) or in IR3\Γ (if Γ is open). It is
known that the jump of the magnetic field U across Γ solves the EFIE on Γ. We will denote
the solution of this boundary integral equation (in its variational formulation) by u.

The function U has a singular behaviour near corners and edges of Γ. Let us recall the explicit
formulas for these singularities which are given in [21]. To that end we fix a vertex v and an
edge ē ∋ v of Γ. In a neighbourhood of v, the polyhedron Ω coincides locally with a polyhedral
cone Γv, and in a neighbourhood of e, Ω coincides locally with a wedge We = Γe × IR, where
Γe is a plane sector of opening ωe 6= π. We will use three local coordinate systems with origin
v: Cartesian coordinates (x, y, z) such that Oz ⊃ e with O = (0, 0, 0), spherical coordinates
(ρv, θv, ϕv) corresponding to Γv, and cylindrical coordinates (re, θe, ze) corresponding to We.

According to [21, Definition 4.5], the edge singularities of the magnetic field U can be written
as

χe(re, ze)U
γ,k
e , k = 1, 2, 3, (A.1)

where χe(re, ze) is a C∞ cut-off function with support away from vertices and other edges of
∂Ω, χe(re, ze) = 1 in a neighbourhood of a point on e, and Uγ,k

e are generating functions of the
following types (cf. [21, Lemma 4.4]):

Type 1: Uγ,1
e = (Uγ,+

T , 0) = (∇Ψγ+1
Neu , 0), γ + 1 ∈ ΛNeu(Γe), γ > −1; (A.2)

Type 2: Uγ,2
e = (0,Ψγ

Neu), γ ∈ ΛNeu(Γe), γ > 0; (A.3)

Type 3: Uγ,3
e = (Uγ,−

T , 0), γ − 1 ∈ ΛNeu(Γe), γ > 1; (A.4)

here Ψγ
Neu are the Neumann Laplace plane singularities in Γe, ΛNeu(Γe) is the corresponding set of

singular exponents, and U
γ,±
T are the magnetic Maxwell plane singularities in Γe. Below we will

also need the Dirichlet Laplace plane singularities in Γe denoted by Ψγ
Dir and the corresponding

set ΛDir(Γe) of singular exponents. One has (see [21, Lemmas 2.1 and 2.2])

ΛDir(Γe) = ΛNeu(Γe) =

{
{kπ

ωe
, k ∈ Z, k 6= 0} if ωe 6= 2π,

{k
2 , k < 0 or k odd} if ωe = 2π.

(A.5)

Then for any γ̄ ∈ ΛDir(Γe) and γ ∈ ΛNeu(Γe) there holds

Ψγ̄
Dir(re, θe) =




rγ̄
e sin γ̄θe if γ̄ /∈ N ,

rγ̄
e (log re sin γ̄θe + θe cos γ̄θe) −

1
ωe

(
− y

sinωe

)γ̄
if γ̄ ∈ N

(A.6)
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and

Ψγ
Neu(re, θe) =

{
rγ
e cos γθe if γ /∈ N ,

rγ
e (log re cos γθe − θe sin γθe) + 1

ωe

(
− y

sin ωe

)γ
if γ ∈ N .

(A.7)

If γ + 1 ∈ ΛNeu(Γe) then (cf. [21, Lemma 3.1])

U
γ,+
T =

{
(rγ

e cos γθe, −r
γ
e sin γθe) if γ /∈ N ,(

rγ
e (log re cos γθe − θe sin γθe), −r

γ
e (log re sin γθe + θe cos γθe)

)
if γ ∈ N ;

(A.8)

if γ − 1 ∈ ΛNeu(Γe) then

U
γ,−
T =

{
(rγ

e cos γθe, r
γ
e sin γθe) if γ /∈ N ,(

rγ
e (log re cos γθe − θe sin γθe), r

γ
e (log re sin γθe + θe cos γθe)

)
if γ ∈ N .

(A.9)

The vertex singularities corresponding to non-integer magnetic Maxwell singular exponents have
the form (cf. [21, Lemma 4.1])

χv(ρv)U
λ,k
v , k = 1, 2, 3, (A.10)

where χv(ρv) is a C∞ cut-off function such that χv(ρv) = 1 in a neighbourhood of the vertex v,
and Uλ,k

v are generating functions of the following three types:

Type 1: Uλ,1
v = ∇Φλ+1

Neu , λ+ 1 ∈ ΛNeu(Γv), λ > −3/2; (A.11)

Type 2: Uλ,2
v = ∇Φλ

Dir × x, λ ∈ ΛDir(Γv), λ > −1/2; (A.12)

Type 3: Uλ,3
v = (2λ− 1)Φλ−1

Neu x− ρ2
v ∇Φλ−1

Neu , λ− 1 ∈ ΛNeu(Γv), λ > 1/2; (A.13)

here x = (x, y, z), Φλ
Dir = ρλ

vφDir(θv, ϕv) are the Dirichlet Laplace vertex singularities in Γv with

λ ∈ ΛDir(Γv) =
{
− 1

2 ±
√
µ+ 1

4 ; µ ∈ σ(∆Dir
Gv

)
}
, σ(∆Dir

Gv
) is the spectrum of the Laplace-Beltrami

operator with Dirichlet conditions on a spherical polygonal domain Gv := Γv ∩S2, S2 is the unit
sphere centred in v, φDir(θv, ϕv) spans the eigenspace of ∆Dir

Gv
corresponding to the eigenvalue

µ = λ(λ+ 1), and Φλ±1
Neu , ΛNeu(Γv), φNeu(θv, ϕv) are the corresponding Neumann analogues.

Note that the eigenfunctions of the Laplace-Beltrami operator on Gv (subject to Dirichlet
or Neumann boundary conditions on ∂Gv) can be decomposed into singular functions (corner
singularities on Gv) and a smooth remainder (see (3.24) in [41]). We will specify this decom-
position locally in the neighbourhood of our fixed edge-vertex pair (e, v). This can be done by
using a C∞ cut-off function χev(θv) such that χev(θv) = 1 in a neighbourhood of θv = 0. One
has

φb.c.(θv, ϕv) = w(θv, ϕv) + χev(θv)
∑

γ+2q<s0

cγ,q θ
2q
v Ψγ

b.c.(θv, ϕv). (A.14)

Here, w ∈ H1+d(Γv) with d = min {γ + 2q; γ ∈ Λb.c.(Γe) ∩ (0,+∞), q ≥ 0 integer, γ + 2q ≥ s0}
for some given s0 > 0, cγ,q ∈ IR, the subscript “b.c.” refers to the type of the boundary
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condition applied (b.c.= Dir or b.c.= Neu), so that the sets Λb.c.(Γe) are defined by (A.5), and
the functions Ψγ

b.c. are defined by (A.6) or (A.7).
Since sin θv ≃ θv for small values of θv we have the following decomposition of φb.c.(θv, ϕv)

which is equivalent to (A.14):

φb.c.(θv, ϕv) = w(θv , ϕv) + χev(θv)
∑

γ+2q<s0

cγ,q sin2q θv Ψγ
b.c.(sin θv, ϕv). (A.15)

For positive integer exponents λ, the generating functions Uλ,k
v in (A.11)–(A.13) will include

additional singular terms of the type ρλ
v log ρv. These terms appear due to corresponding loga-

rithmic singularities for the Laplacian (cf. (3.5) in [41]).
Now we use the above formulas to find the expressions for corresponding singularities in the

solution u of the EFIE on Γ. Let us fix a face Γ(1) ⊂ Γ such that e ⊂ ∂Γ(1). Thus, Γ(1) is a
plane open surface with polygonal boundary. We assume that Γ(1) ⊂ Oyz. Then ν1 = (1, 0, 0)
and using trace arguments (see [13, 14]) one has on Γ(1):

u = i−1
π (γτ (U)) = i−1

π (U|Γ(1) × ν1) =
(
U3|Γ(1) , −U2|Γ(1)

)
. (A.16)

Using (A.16) with (A.2)–(A.4), (A.7)–(A.9) and recalling that on the face Γ(1) ⊂ Oyz there
holds re = y, θe = π

2 , ze = z, we obtain the generating functions for the corresponding edge

singularities on Γ(1):

uγ,1
e = (0, yγ sin πγ

2 ), γ + 1 ∈ ΛNeu(Γe)\N, γ > −1;

uγ,2
e = (yγ cos πγ

2 , 0), γ ∈ ΛNeu(Γe)\N, γ > 0;

uγ,3
e = (0,−yγ sin πγ

2 ), γ − 1 ∈ ΛNeu(Γe)\N, γ > 1.

For integral singular exponents, the expressions for uγ,k
e (k = 1, 2, 3) will also include log y-

factors, cf. (A.7)–(A.9). Summarising the above and using (A.1), we now write the expression
for the edge singularity ue on Γ(1) in a more general form:

ue =

me,1∑

j=1

se,1
j∑

s=0

(
b̃ej,s,1(z)y

γe,1
j , b̃ej,s,2(z)y

γe,1
j −1

)
| log y|s χe

1(z)χ
e
2(y)

+

me,2∑

j=1

se,2
j∑

s=0

(
0, b̃ej,s(z)y

γe,2
j | log y|s χe

1(z)χ
e
2(y)

)
, (A.17)

where the singularity exponents satisfy γe,1
j+1 ≥ γe,1

j ≥ 1
2 , γe,2

j+1 ≥ γe,2
j ≥ 3

2 , and me,1, me,2, s
e,1
j ≥

0, se,2
j ≥ 0 are integers. Here, χe

1, χ
e
2 are C∞ cut-off functions with χe

1 = 1 in a certain distance
to the end points of e and χe

1 = 0 in a neighbourhood of these vertices. Moreover, χe
2 = 1 for

0 ≤ y ≤ δe and χe
2 = 0 for y ≥ 2δe with some δe ∈ (0, 1

2). The functions b̃ej,sχ
e
1, b̃

e
j,s,1χ

e
1, b̃

e
j,s,2χ

e
1 ∈

Hm̃(e) for m̃ as large as required.
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Note that for any given smooth functions b̃1(z) and b̃2(z) there exist sufficiently smooth
scalar functions b1(z), b2(z) and a smooth vector function freg(y, z) such that for any γ 6= 0
there holds

(
b̃1(z)y

γ , b̃2(z)y
γ−1

)
χe

2(y) = curlΓ(1)

(
yγ b1(z)χ

e
2(y)

)
+
(
yγ b2(z)χ

e
2(y), 0

)
+ freg(y, z),

where curlΓ(1) = (∂/∂z, −∂/∂y) and freg(y, z) is a smooth function with both components
vanishing in a δe-neighbourhood of the edge e. Using the analogous formula with incorporated
logarithmic terms we can write the pure edge singularity ue in (A.17) as

ue =

me,1∑

j=1

se,1
j∑

s=0

curlΓ(1)

(
yγe,1

j | log y|s bej,s,1(z)χ
e
1(z)χ

e
2(y)

)

+

me,2∑

j=1

se,2
j∑

s=0

yγe,2
j | log y|s be

j,s,2(z)χ
e
1(z)χ

e
2(y), (A.18)

where me,1, me,2, s
e,1
j , se,2

j , χe
1, χ

e
2 are as in (A.17), γe,1

j+1 ≥ γe,1
j ≥ 1

2 , γe,2
j+1 ≥ γe,2

j ≥ 1
2 , bej,s,1χ

e
1 ∈

Hm1(e) and be
j,s,2χ

e
1 ∈ Hm2(e) for m1 and m2 as large as required.

Now we proceed to the vertex singularities of u. Let us focus on the case where λ is not a
positive integer (according to [21, Lemma 4.1], λ = 0 and λ = −1 do not belong to the set of
singular exponents).

Let λ > −3/2 and λ + 1 ∈ ΛNeu(Γv). Then, using (A.16) with (A.10), (A.11), one has for
vertex singularities of the first type:

uλ,1
v = χv(ρv)

(
∂Φλ+1

Neu

∂z

∣∣∣∣
ϕv= π

2

, −
∂Φλ+1

Neu

∂y

∣∣∣∣
ϕv= π

2

)
= χv(ρv) curlΓ(1)

(
ρλ+1

v φNeu(θv,
π
2 )
)
. (A.19)

Observe that

χv(ρv) curlΓ(1)f(ρv, θv) =
∂χv

∂ρv
f(ρv, θv)

(
− cos θv

sin θv

)
+ curlΓ(1)

(
χv(ρv)f(ρv, θv)

)
.

Hence, using decomposition (A.15) of φNeu(θv, φv) with non-integers γ ∈ ΛNeu(Γe) ∩ (0,+∞) we
write (A.19) as

uλ,1
v = ρλ+1

v

∂χv

∂ρv

(
w(θv,

π
2 ) +

∑

γ+2q<s0

cγ,q sin2q θvΨ
γ
Neu(sin θv,

π
2 )χev(θv)

)(
− cos θv

sin θv

)

+
∑

γ+2q<s0

curlΓ(1)

(
cγ,qρ

λ+1
v sin2q θvΨ

γ
Neu(sin θv,

π
2 )χv(ρv)χ

ev(θv)
)

+ curlΓ(1)

(
ρλ+1

v χv(ρv)w(θv ,
π
2 )
)
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= u0 +
∑

γ+2q<s0

aγ,q(y, z) +
∑

γ+2q<s0

curlΓ(1)

(
c̃(1)γ,qρ

λ+1
v sinγ+2q θvχ

v(ρv)χ
ev(θv)

)

+ curlΓ(1)

(
ρλ+1

v χv(ρv)w̃1(θv)
)
. (A.20)

Let us discuss the terms on the right-hand side of (A.20). We assume that s0 is large enough,
so that all smooth functions described below are as regular as required.

1. The function u0 is smooth, because ∂χv/∂ρv = 0 near the vertex.

2. For the same reason as in the previous step and due to the fact that ρv sin θv|Γ(1) = y, one
can write aγ,q as edge singularities

aγ,q(y, z) = kγ,q(y, z)y
γ+2qχe

1(z)χ
e
2(y),

where kγ,q is smooth and χe
1, χ

e
2 are the same as in (A.17).

3. One has c̃
(1)
γ,q ∈ IR. Then, using an idea from von Petersdorff, cf. [40, (2.22)–(2.24)], we

rewrite the terms ρλ+1
v sinγ+2q θv as

ρλ+1
v sinγ+2q θv =

L∑

l=0

blz
λ+1−γ−2q−2lyγ+2q+2l + ρλ+1

v w1(θv), (A.21)

where w1 is a sufficiently smooth function, bl are real numbers, and L ≥ 0 is an integer that
depends on the needed regularity of w1; moreover, w1 vanishes along with its derivatives
up to a certain order (depending on L) at θv = 0 .

4. The function w̃1 (see the last term in (A.20)) is smooth.

For vertex singularities of the second type, we use (A.16) with (A.10), (A.12) and then apply
(A.15) to decompose φDir(θv, ϕv). As a result, we have for λ ∈ ΛDir(Γv), λ > −1/2 and for
non-integers γ ∈ ΛDir(Γe) ∩ (0,+∞):

uλ,2
v = ρλ

v χ
v(ρv)




−∂φDir
∂ϕv

|ϕv= π
2

−

(
∂φDir
∂ϕv

sinϕv cos θv

sin θv
− ∂φDir

∂θv
cosϕv

)∣∣∣∣∣
ϕv= π

2




= ρλ
v χ

v(ρv)w2(θv) + χv(ρv)χ
ev(θv)

∑

γ+2q<s0

c̃(2)γ,q ρ
λ
v

(
sinγ+2q θv

sinγ+2q−1 θv cos θv

)
(A.22)

where w2(θv) = (w2,1(θv), w2,2(θv)) with w2,1 and w2,2 sufficiently smooth due to Dirichlet

boundary conditions for φDir(θv, ϕv) at θv = 0 and at ϕv = π
2 , c̃

(2)
γ,q ∈ IR, and the terms

ρλ
v sinγ+2q θv, ρ

λ
v sinγ+2q−1 θv can be treated similarly to (A.21).
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Analogously, for vertex singularities of the third type, we obtain by (A.16), (A.10), (A.13),
and (A.15) for λ > 1/2 such that (λ−1) ∈ ΛNeu(Γv) and for non-integers γ ∈ ΛNeu(Γe)∩(0,+∞):

uλ,3
v = ρλ

v χ
v(ρv)




(
λφNeu cos θv + ∂φNeu

∂θv
sin θv

)∣∣∣∣∣
ϕv= π

2

−

(
λφNeu sin θv sinϕv −

∂φNeu
∂ϕv

cos ϕv

sin θv
− ∂φNeu

∂θv
cos θv sinϕv

)∣∣∣∣∣
ϕv= π

2




= ρλ
v χ

v(ρv)w3(θv) + χv(ρv)χ
ev(θv)

∑

γ+2q<s0

c̃(3)γ,q ρ
λ
v

(
sinγ+2q θv f1(θv)

sinγ+2q−1 θv f2(θv)

)
(A.23)

where w3(θv) is as smooth as necessary, c̃
(3)
γ,q ∈ IR, f1 and f2 are smooth (trigonometric) functions

of θv. As before, the terms ρλ
v sinγ+2q θv and ρλ

v sinγ+2q−1 θv can be dealt with as in (A.21).
For integer values of γ ∈ ΛDir(Γe) = ΛNeu(Γe) the expressions for φDir(θv, ϕv) and φNeu(θv, ϕv)

include additional terms with log(sin θv)-factors, appearing due to corresponding terms in (A.6)
and (A.7). This results in additional terms with log y-factors in the first expression in (A.21)
and an additional term with log(sin θv)-factor in the last term in (A.21). The latter produces
the function w1(θv) log(sin θv), which is as smooth as necessary due to the high order root of
w1 at θv = 0.

If λ is a positive integer, then similarly as above the expression for uλ,k
v will include additional

ρλ
v log ρv-singularities.

Thus, summarising the above, we conclude that the singular fields uλ,k
v (k = 1, 2, 3) on Γ(1)

comprise two main contributions (we omit the smooth remainder u0 and the edge singularities
aγ,q appearing in (A.20)): these are purely radial singularities of the type ρλ

v logs ρv (for each
component of the singular field) in a neighbourhood of the vertex and the combined edge-vertex
singularities of the type zλ−γyγ log y in a neighbourhood of the edge-vertex. The purely radial
singularity uv on Γ(1) can be written in the following general form

uv =

nv,1∑

i=1

qv,1
i∑

t=0

Bv,1
it curlΓ(1)

(
ρ

λv,1
i +1

v | log ρv|
t χv(ρv)χ

v
1,i,t(θv)

)

+

nv,2∑

i=1

qv,2
i∑

t=0

Bv,2
it ρ

λv,2
i

v | log ρv|
t χv(ρv)χ

v
2,i,t(θv), (A.24)

where λv,1
i+1 ≥ λv,1

i > −3
2 , λv,2

i+1 ≥ λv,2
i > −1

2 , and nv,1, nv,2, q
v,1
i ≥ 0, qv,2

i ≥ 0 are integers,

Bv,1
it , Bv,2

it are real numbers, and χv(ρv) is the same cut-off function as in (A.10). The functions
χv

1,i,t ∈ Ht1(0, ωv) and χv
2,i,t ∈ Ht2(0, ωv) for t1 and t2 as large as required. Here, ωv denotes the

interior angle (on Γ(1)) between the edges meeting at v.
To specify the combined edge-vertex singularities of the form zλ−γyγ log y mentioned above

let us define the cut-off functions χv and χev such that χv = 1 for 0 ≤ ρv ≤ τv and χv = 0 for
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ρv ≥ 2τv with some τv ∈ (0, 1
2 ); χev = 1 for 0 ≤ θv ≤ βv and χev = 0 for 3

2βv ≤ θv ≤ ωv with
some βv ∈ (0,min{ωv/2, π/8}]. First, without loss of generality we omit logarithmic factors and
consider the edge-vertex singularities in the sector S0

ev = {(ρv, θv,
π
2 ); 0 < ρv < τv, 0 < θv < βv}

(note that χv = χev = 1 in S0
ev). It follows from the above presentation that these singularities

are either vector curls of zλ1+1−γ1yγ1 with γ1 ≥ 1
2 , λ1 > −3

2 (cf. (A.20), (A.21)) or vector
functions u = (C1z

λ2−γ2yγ2 , C2z
λ2−γ2+1yγ2−1) with γ2 ≥ 1

2 , λ2 > −1
2 , and C1, C2 ∈ IR (cf.

(A.22), (A.23)). In the latter case there holds

u = C1 (zλ2−γ2yγ2 , 0) + C2 (0, zλ2−γ2+1yγ2−1)

= C3 curlΓ(1)(zλ2+1−γ2yγ2) + C4 (zλ2−γ2yγ2 , 0) (A.25)

for some real numbers C3, C4. Note that cut-off functions can be easily incorporated in (A.25):
we then obtain additional terms on the right-hand side. These terms correspond to pure edge
singularities (yγ2 , yγ2) and purely radial singularities (ρλ2

v , ρλ2
v ).

Thus, we conclude that any edge-vertex singularity in tensor product form can be represented
as a linear combination of the vector curl of zλ+1−γyγ with γ ≥ 1

2 , λ > −3
2 and vector functions

(zλ′−γ′
yγ′
, 0) with γ′ ≥ 1

2 , λ′ > −1
2 . We write these singularities in the following general form:

uev
1 =

me,1∑

j=1

nv,1∑

i=1

se,1
j∑

s=0

qv,1
i∑

t=0

s∑

l=0

Bev,1
ijlts curlΓ(1)

(
zλv,1

i +1−γe,1
j yγe,1

j | log z|s+t−l | log y|l χv(ρv)χ
ev(θv)

)

+

me,2∑

j=1

nv,2∑

i=1

se,2
j∑

s=0

qv,2
i∑

t=0

s∑

l=0

Bev,2
ijlts z

λv,2
i −γe,2

j yγe,2
j | log z|s+t−l | log y|l χv(ρv)χ

ev(θv)

(
1

0

)
, (A.26)

where s is an integer, Bev,1
ijlts, B

ev,2
ijlts are real numbers, and all remaining parameters as well as the

cut-off functions χv, χev are as before.
It follows from the main regularity result of [21] (see Theorem 4.7 therein) that, besides

edge singularities (A.1) and vertex singularities (A.10), the decomposition of the vector field U

also includes edge-vertex singularities. These singularities can be written using a convolution
operator analogously to the Laplace problem (cf. Theorem 2.6 and Theorem 4.7 in [21]). In [41,
Theorem 6] it has been shown that these combined singularities (for the Laplace problem) can
be written as a combination of singularities of the following two types (for simplicity, we omit
logarithmic factors):

C ρλv−γe

v yγe
χv(ρv)χ

ev(θv) (A.27)

and
α(ρv) y

γe
χv(ρv)χ

ev(θv), (A.28)

where γe and λv are the exponents for corresponding pure edge and pure radial singularities,
respectively, χv and χev are the same cut-off functions as above, C ∈ IR, and α ∈ Hs−γe

−γe (0,+∞).

Here, Hs−γe

−γe (0,+∞) ⊂ Hs−γe

loc (0,+∞) is a weighted Sobolev space and s is as large as needed.
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Analogously, we conclude that both components of the combined edge-vertex singularities
of the vector field U can be written as combinations of (A.27) and (A.28). Taking traces (see
(A.16)) and treating the terms ρλv−γe

v yγe
= ρλv

v sinγe
θv as in (A.21), it is easy to see that the

singularities of u generated by (A.27) are covered by (A.26). To deal with the singularities
generated by (A.28) we note that α ∈ Hs−γe

−γe (0,+∞) has a sufficiently high order root at 0 for s
large enough, see [37, page 731]. Then, for a properly selected cut-off function χe

2(y) in (A.18),
one has (cf. [37, page 734])

α(ρv)χ
v(ρv)χ

ev(θv) = χ(y, z)χe
2(y).

Here, χ is a function that can be smoothly extended by zero onto Γ̃(1) := {(0, y, z); y > 0} to lie
in Hs(Γ̃(1)). Thus, the edge-vertex singularities generated by (A.28) extend the corresponding
edge singularities (A.18) till the vertex v. They can be written in the general form

uev
2 =

me,1∑

j=1

se,1
j∑

s=0

curlΓ(1)

(
yγe,1

j | log y|s χe
j,s,1(y, z)χ

e
2(y)

)

+

me,2∑

j=1

se,2
j∑

s=0

yγe,2
j | log y|sχe

j,s,2(y, z)χ
e
2(y). (A.29)

Here, me,1, me,2, γ
e,1
j , γe,2

j , se,1
j , se,2

j , and χe
2 are as in (A.18). The functions χe

j,s,1 and χe
j,s,2,

when extended by zero onto Γ̃(1), lie in Hm1(Γ̃(1)) and Hm2(Γ̃(1)), respectively, with m1, m2 as
large as required.

Remark A.1 We note that the supports of uev
1 and uev

2 are subsets of the plane sector S̄ev =
{(ρv , θv,

π
2 ); 0 ≤ ρv ≤ 2τv, 0 ≤ θv ≤ 3

2βv}.

Remark A.2 If Γ is an open surface and the face Γ(1) is such that ∂Γ ∩ ∂Γ(1) contains at
least one edge then an additional assumption must be imposed on the smooth functions χv

1,i,t and

χv
2,i,t in (A.24) to guarantee that the normal component of uv vanishes on ∂Γ ∩ ∂Γ(1). Note

that one can always obtain the normal components of the edge singularity and of the combined
edge-vertex singularities to be vanishing on ∂Γ ∩ ∂Γ(1) by a proper choice of the corresponding
cut-off functions.

B Approximation of vertex singularities

In this appendix we analyse the polynomial approximation of the radially singular vector field v ∈

H̃
1/2
⊥ (Γ). The results below are needed for the approximation analysis of the vertex singularities

given by (2.3).
Let us fix a vertex v of Γ. Denoting by (r, θ) local polar coordinates (with origin at v), we

consider the singular vector field

u = (u1, u2) = rλ| log r|βχ(r)w(θ), (B.1)
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where λ > −1/2, β ≥ 0 is an integer, χ is a C∞ cut-off function such that χ = 1 for 0 ≤ r ≤ τ
and χ = 0 for r ≥ 2τ with some τ ∈ (0, 1

2), w = (w1, w2) ∈ Hm(0, ωv) for m as large as
required, and w ·n|∂Γ = 0. If λ = 0, we assume that β is a positive integer, so that u has only a
logarithmic singularity in this case. Note that the function u in (B.1) corresponds to the second
term in (2.3).

Let Āv := ∪{Γ̄j ; v ∈ Γ̄j}. Assuming that the cut-off function χ in (B.1) is such that
suppu ⊂ Āv, we study approximations of u by H0(div,Γ)-conforming vector fields with piecewise
polynomial components. Our analysis relies on the p-approximation result for scalar vertex
singularities

u = rλ| log r|βχ(r)w(θ), (B.2)

where λ, β, χ are as in (B.1) and w ∈ Hm(0, ωv) with m as large as required. This result is
formulated in the following lemma (see [7, Theorem 3.2]).

Lemma B.1 Let Γj ⊂ Av and let u be given by (B.2) on Γj. Then there exists a sequence
up ∈ Pp(Γj), p = 1, 2, . . ., such that for 0 ≤ s < min {1, λ + 1}

‖u− up‖Hs(Γj) ≤ C p−2(λ+1−s) (1 + log p)β.

Moreover, up(0, 0) = 0, up = 0 on the sides li ⊂ ∂Γj , l̄i 6∋ v, and

‖u− up‖L2(lk) ≤ C p−2(λ+1/2) (1 + log p)β for each side lk ⊂ ∂Γj , v ∈ l̄k.

We will also need the following lemma, which is proved in [37, Lemma 9.2].

Lemma B.2 Let K be a parallelogram, and let l be a side of K with vertices A, B. Let
wp ∈ Pp(l) be such that wp(A) = wp(B) = 0 and ‖wp‖L2(l) ≤ f(p). Then there exists up ∈ Pp(K)
such that up = wp on l, up = 0 on ∂K\l, and for 0 ≤ s ≤ 1

‖up‖Hs(K) ≤ C p−1+2s f(p).

Now we are ready to state and prove the needed approximation result for the singular vector
field u in (B.1).

Theorem B.1 Let u be given by (B.1) with λ > −1
2 and an integer β ≥ 0. Then there exists a

sequence φ ∈ Xp(Γ), p = 1, 2, . . ., such that

‖u− φ‖
H̃

1/2
⊥

(Γ)
≤ C p−2(λ+1/2) (1 + log p)β. (B.3)

Proof. If p = 1, then we set φ ≡ 0 on Γ, and (B.3) holds. Let p ≥ 2. First, we approximate u

component-wise on a separate element K ⊂ Av. Let A(K) = {li} contain those sides li ⊂ ∂K
for which v ∈ l̄i, and let B(K) be the union of the other sides of K. Then, applying Lemma B.1
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to each component uk (k = 1, 2) of the vector field u on K, we find polynomials ϕk ∈ Pp−1(K)
such that ϕk = 0 at the vertex v and on the sides li ∈ B(K). Moreover, for k = 1, 2

‖uk − ϕk‖Hs(K) ≤ C p−2(λ+1−s) (1 + log p)β, 0 ≤ s < min {1, λ + 1}, (B.4)

‖uk − ϕk‖L2(l) ≤ C p−2(λ+1/2) (1 + log p)β for every l ∈ A(K). (B.5)

Suppose now that Γ1, Γ2 ⊂ Av are two elements having the common edge l̃ = Γ̄1 ∩ Γ̄2 ∈
A(Γ1) ∩ A(Γ2) and assume that A(Γ1) = {l, l̃} with l ⊂ e. Here, e is an edge of Γ such that
v ∈ ē. (The case of a convex corner with only one element can be dealt with analogously.) Let us
denote by ϕ = (ϕ1, ϕ2) (respectively, by ψ = (ψ1, ψ2)) the above component-wise approximation
of u on Γ1 (respectively, on Γ2). We will adjust the function ϕ on Γ1 to find an H(div,Γ1 ∪Γ2)-
conforming vector field having zero normal component on l ⊂ e.

We denote by n = (n1, n2) and ñ = (ñ1, ñ2) the unit outer normal vectors to Γ1 for edges l
and l̃, respectively. It is clear that |n1ñ2| + |ñ1n2| > 0. Therefore, without loss of generality we
can assume that ñ1 6= 0 and n2 6= 0.

Recalling that u · n|l = (u1n1 + u2n2)|l = 0, we consider the normal trace

g1 = ϕ · n|l = (ϕ1n1 + ϕ2n2)|l

vanishing at the end-points of l. One has by (B.5)

‖g1‖L2(l) = ‖(u1 − ϕ1)n1 + (u2 − ϕ2)n2‖L2(l) ≤ C p−2(λ+1/2) (1 + log p)β .

Then we use Lemma B.2 to find a polynomial z1 ∈ Pp−1(Γ1) such that

z1 = g1 on l, z1 = 0 on ∂Γ1\l,

and for 0 ≤ s ≤ 1
‖z1‖Hs(Γ1) ≤ C p−2(λ+1−s) (1 + log p)β. (B.6)

We set
ϕ̃2 = ϕ2 −

1
n2
z1 on Γ1. (B.7)

Then ϕ̃2 ∈ Pp−1(Γ1),

(ϕ1n1 + ϕ̃2n2)|l = (ϕ1n1 + ϕ2n2)|l − z1|l = 0,

ϕ̃2 = ϕ2 on ∂Γ1\l, and the norms ‖u2− ϕ̃2‖Hs(Γ1), ‖u2− ϕ̃2‖L2(l̃) are bounded as in (B.4), (B.5),
respectively.

Now we consider the jump of the normal component along the common side l̃ of Γ1 and Γ2

g2 = [ψ − (ϕ1, ϕ̃2)] · ñ|l̃ = [(ψ1 − ϕ1)ñ1 + (ψ2 − ϕ2)ñ2]|l̃,

which vanishes at the end points of l̃. Using again Lemma B.2 we find a polynomial z2 ∈ Pp−1(Γ1)
such that

z2 = g2 on l̃, z2 = 0 on ∂Γ1\l̃,
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and the norm ‖z2‖Hs(Γ1) for 0 ≤ s ≤ 1 is bounded as in (B.6).
Then we define the vector function φ = (φ1, φ2) on Γ1 ∪ Γ2 as follows

φ = ψ on Γ2, φ =
(
ϕ1 + 1

ñ1
z2, ϕ̃2

)
on Γ1

with ϕ̃2 defined by (B.7). It is easy to see that φ1 = φ2 = 0 on B(Γ1)∪B(Γ2), φ · ñ is continuous
along l̃ (thus, φ ∈ H(div,Γ1 ∪ Γ2)), φ · n|l = 0, and for j = 1, 2 there holds

M−1
j (φ|Γj ) = det(Bj)B

−1
j (φ|Γj ) ◦ Tj ∈ Pp−1(Q) × Pp−1(Q) ⊂ VRT

p (Q).

Moreover, the norms ‖uk − φk‖Hs(Γ1) and ‖uk − φk‖Hs(Γ2) are bounded as in (B.4) for k = 1, 2
and for any 0 ≤ s < min {1, λ+ 1}. Repeating the above procedure for all elements Γj ⊂ Av we
construct a vector function φ = (φ1, φ2) ∈ Xp(Av) such that φ1 = φ2 = 0 on ∂Av\∂Γ and for
k = 1, 2

‖uk − φk‖Hs(Γj) ≤ C p−2(λ+1−s) (1 + log p)β, 0 ≤ s < min {1, λ+ 1}. (B.8)

Now we extend both components of φ by zero onto Γ\Av (keeping the notation φ for the
extension). Then φ ∈ Xp(Γ) and for 0 ≤ s < min {1, λ+ 1} there holds

‖u− φ‖
H̃s

⊥
(Γ) ≤ C p−2(λ+1−s) (1 + log p)β. (B.9)

In fact, for s = 0 estimate (B.9) on Γ immediately follows from inequalities (B.8) on individual
elements. If 1/2 < s < min {1, λ+ 1}, we use the fact that Hs

⊥,0(Γ) = H̃s
⊥(Γ) for these values of

s and then apply Lemma 3.1 of [8] to each component of (u − φ):

‖u − φ‖2
H̃s

⊥
(Γ)

≤ C‖u− φ‖2
Hs(Γ) ≤ C

2∑

k=1

∑

j:Γj⊂Av

‖uk − φk‖
2
Hs(Γj)

.

Then (B.9) follows again from (B.8).
Finally, for 0 < s ≤ 1/2 estimate (B.9) is obtained via interpolation between H0(Γ) = H̃0

⊥(Γ)
and H̃s′

⊥(Γ) with some s′ ∈ (1
2 ,min {1, λ + 1}). Taking s = 1

2 in (B.9) we prove (B.3). 2
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