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Abstract

In this paper we analyse the p-version of the boundary element method for the electric field
integral equation on a plane open surface with polygonal boundary. We prove convergence
of the p-version with Raviart-Thomas parallelogram elements and derive an a priori error
estimate which takes into account the strong singular behaviour of the solution at edges
and corners of the surface. Key ingredient of our analysis is the orthogonality of discrete
Helmholtz decompositions in a Sobolev space of order —1/2.
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1 Introduction and formulation of the problem

In this paper we analyse the p-version of the boundary element method (BEM) for the electric
field integral equation (EFIE) on an open surface I'. The EFIE models the scattering of time-
harmonic electro-magnetic waves at a perfect conductor, and its solution is the induced electric
surface current on I, see, e.g., [35]. The basis of our BEM is a variational formulation of the
EFIE, called Rumsey’s formulation. For smooth surfaces, its boundary element discretisation
has been studied by Bendali [5, 6]. With the study of traces of spaces that govern Maxwell’s
equations in Lipschitz domains [16] there has been some recent progress in the numerical analysis
of the EFIE on Lipschitz surfaces. For polyhedral surfaces, Buffa et al. and Hiptmair and Schwab
[18, 29| studied BEM discretisations of the EFIE with Raviart-Thomas elements of fixed order
on refined meshes, i.e., in the framework of the h-version. In particular, the solvability and
quasi-optimal convergence of these discretisations have been proved. Moreover, considering
lowest order Raviart-Thomas elements and assuming standard Sobolev regularity, Hiptmair and
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Schwab [29] derived an a priori error estimate in terms of the mesh parameter h. The issues
of solvability and convergence of the h-BEM for the EFIE on open Lipschitz surfaces were
addressed by Buffa and Christiansen [12]. We note that in [29, 18, 12] the authors focused on
conforming discretisations of Rumsey’s formulation, called natural boundary element method
for the EFIE (the approach, we follow in this paper). There are, however, other formulations of
mixed type to utilise standard (continuous) basis functions, see [15].

In the engineering literature, the BEM (Galerkin and collocation variants) is called the
method of moments and is widely used for electro-magnetic scattering problems. High order
versions of the method of moments have been also studied recently (see, e.g., [25, 23]). They are
shown to be efficient when dealing with non-regular parts of the solution in combination with
methods from physical optics for high-frequency scattering at smooth parts of obstacles [24]. In
general, there are two main advantages of high order methods, namely their less vulnerability
to numerical dispersion errors and better approximation properties even in the presence of
singularities. The influence of the order of basis functions on numerical dispersion has been
analysed by Ainsworth [1], and the properties of polynomial approximations of singular functions
inherent to first kind integral equations have been studied in [8, 9].

In the p-version of the BEM the mesh is fixed and approximations are improved by increasing
polynomial degrees. To the best of our knowledge there are no proofs of convergence for the
p-version applied to the EFIE. The analysis of high order approximations for the EFIE on open
or closed polyhedral surfaces poses two particular challenges.

First, in order to prove convergence of the method, one usually relies on properties of the
continuous and discrete Helmholtz decompositions, and on the proximity in some sense of the
discrete decompositions to the continuous one, see [18, 12]. Known techniques are inherently
designed towards low order approximations, as it turns out when trying to generalise them
to high order methods. For instance, the equivalence of norms in finite-dimensional spaces is
usually used (see, e.g., the proof of Lemma 6.2 in [29]). This argument is not available for the
p-version. Also, related with appearing singularities (which is the second challenge described
below), the proofs of proximity of low-order discrete Helmholtz decompositions to the continuous
decomposition utilise an error estimate for the standard Raviart-Thomas interpolation operator
in H(div,T") (see, e.g., the proof of Theorem 4.2 in [18]). For the p-version, stability of this
operator is guaranteed when the interpolated function is in H*(div, I') with s > 1/2 (see Section 3
for a definition of H*(div,I")), whereas on polyhedral surfaces less regularity has to be accounted
for.

Second, the solution to the EFIE on polyhedral surfaces suffers from singular behaviour at
edges and corners. This can be deduced from the behaviour of solutions to the Maxwell problem
on polyhedral domains as studied by Costabel and Dauge in [21]. Open surfaces represent the
least regular case, and there have been no high order approximation results for them whatsoever.

In this paper we deal with both issues. In particular, to prove convergence of the p-version of
the BEM for the EFIE we follow the framework presented in [18, Section 4.1]. However, rather
than considering L2-orthogonal discrete Helmholtz decompositions, we consistently employ the
H~/2.inner product and orthogonality (precise definitions will be given below). This turns out
to be crucial for the p-version. As for the approximation analysis of singularities, we partly rely



on our previous results for the Laplacian, see [8, 9], by using continuity properties of the surface
curl operator. The exception is a particular kind of vertex singularity, which does not have a
vanishing tangential component on the boundary of I' and which needs to be treated in a vector
fashion (i.e., component-wise approximations are not sufficient for it).

We restrict ourselves to plane open surfaces which can be discretised by parallelogram meshes.
A generalisation to smooth curved surfaces seems plausible but is not obvious since we made use
of the commutativity of the scalar surface curl and weakly singular operator on plane surfaces
(see the proof of Theorem 4.1). The case of triangular elements is not an easy generalisation
either as, for instance, standard p-version approximation results for Raviart-Thomas triangular
elements are unknown. The approach presented in this paper is, in principle, applicable to
polyhedral surfaces and we expect that all the results can be extended to that case. Again,
this extension is not straightforward as some technical details make use of the smoothness of
I", except for its boundary. More general p-methods with polynomial degrees varying from one
element to another and hp-methods, which increase polynomial degrees in combination with
mesh refinements, are desirable but are not covered in this paper.

Let us introduce Rumsey’s formulation of the electric field integral equation. For a given
wave number k > 0 and a scalar function (or tangential vector field) v we define the single layer
operator ¥y by

etklz—y|
Vo(x / v(y) das,, zel.
T dr Jz —yl
Also, denoting by div and V the two-dimensional divergence and gradient operators on T,
respectively (in the general case being the surface divergence and gradient acting on tangential
vector fields and scalar functions, respectively), we need the space

X = H,*(div,I) = {ueH Y2(I); divue HV2I) and
(u, Vo) + (divu,v) =0 for all v € C®(I')}.

The dual space of X (with L2(I") as pivot space) is denoted by X’ and (-, -) denotes the extension
of the L?(T')-inner product by duality between X and X’. Moreover, H~'/2(T) is the dual
space of HY/2(I'). For a definition of H'?(I") see Section 3.1. Throughout, we use boldface
symbols for vector fields. The spaces (or sets) of vector fields are also denoted in boldface (e.g.,
H*(T) = (H*(I"))?), with norms and inner products being defined component-wise.

Now, for a given tangential vector field f € X’ (f represents the excitation by an incident
wave), Rumsey’s formulation reads as: find a complex tangential field u € X such that

a(u,v) = (Tdivu, divv) — E*(Upu,v) = (f,v) Vv € X, (1.1)

An outline of this paper is as follows. In the next section we recall regularity results for the
EFIE, define the p-version of the BEM for its approximate solution, state the unique solvability
and quasi-optimal convergence of this approximation method (Theorem 2.1), and prove an a
priori error estimate in terms of the polynomial degree p (Theorem 2.2). In Section 3 we
define the needed Sobolev spaces and collect some technical lemmas. Section 4 is devoted to



Helmholtz decompositions of X: we define the continuous decomposition, prove its H~/ 2(T)-
orthogonality, and introduce the framework of discrete decompositions. Interpolation operators
and approximation results for Raviart-Thomas elements in different spaces are discussed in
Section 5. These results are then applied to prove the existence and uniqueness of discrete
solutions to an auxiliary problem. In Section 6 we prove the solvability and convergence of the
p-BEM (Theorem 2.1). Section 7 presents p-approximation error estimates for smooth vector
functions (Theorem 7.1) and for general singular vector fields (Theorem 7.2). In Appendix A
we first recall the structure of Maxwell singularities (by referring to Costabel and Dauge [21]).
Then, using a trace argument, we conclude on the behaviour of singularities inherent to the
solution of the EFIE. Finally, in Appendix B we study the approximation of a particular type of
vertex singularities. The obtained result is needed to prove our general approximation theorem
(Theorem 7.2).

Throughout the paper, C' denotes a generic constant which is independent of polynomial
degrees p and involved functions, unless stated otherwise.

2 The p-version of the BEM and main results

First, let us determine the typical structure of the solution u to our model problem (1.1),
provided that the right-hand side function f is sufficiently smooth.

Let V and E denote the sets of vertices and edges of I', respectively. For v € V| let E(v)
denote the set of edges with v as an end point. Then it follows from the results of [21] that the
solution u of (1.1) has the form

u:umg—l—Zue—l—ZuU—l—Z Z u®, (2.1)

ecFE veV veV e€E(v)
where (see Section 3.1 for definitions of the Sobolev spaces involved)
Upeg € HY(div,T) with k>0

and u®, u’, and u®’ are the edge, vertex, and edge-vertex singularities, respectively. We deduce
the precise form of these singularities from Appendix A, where explicit formulas for singularities
inherent to the solution of the EFIE are obtained in the more general case of a piecewise plane
(open or closed) surface T.

We will use local polar and Cartesian coordinate systems (ry,6,) and (x.1, Ze2), both with
origin v, such that e = {(x¢1,2e2); Tea = 0, 21 > 0} and for sufficiently small neighbourhood
B; of v there holds I' N B, C {(ry,0,); 0 < 0, < wy,}. Here, w, denotes the interior angle
(on T') between the edges meeting at v. For simplicity of notation we write out here only
the leading singularities in u®, u?, and u®’, thus omitting the corresponding terms of higher
regularity. Complete expansions can be written analogously to (A.18), (A.24), (A.26), and
(A.29) in Appendix A.



From (A.18) we have

u® = curl (x;g |log 2| *L b5 (1) X§ (e1) XS(SU@Q)) + xz% |Tog Tea|*2 b (2e1) X (we1) X5 (e2),
(2.2)
where curl = (9/0zc2, —0/0ze1), V5, ¥§ > 3, and s§, s§ > 0 are integers. Here, x§, x§ are

C* cut-off functions with x{ = 1 in a certain distance to the end points of e and x§ = 0 in a
neighbourhood of these vertices. Moreover, x§ = 1 for 0 < z.9 < . and x§ = 0 for z.o > 26,
with some &, € (0, ). The functions b$x§ € H™ (e) and bsx§ € H™2(e) for m; and my as large
as required.

Similarly, we deduce from (A.24) that

Y v Y v
u’ = curl (13" [log | X"(r) X3 (6,)) + 0% [log | X"(r,) X5 (00), (2:3)
where AY, A§ > —%, and ¢7, g5 > 0 are integers, x" is a C* cut-off function with x* = 1 for
0<r, <7 and x* =0 for r, > 27, with some 7, € (0, %) The functions xY, x4 are such that
x§ € H'1(0,w,) N HYH0,wy), x5 € H?2(0,w,) for t1, ty as large as required, and X3 - n|gp = 0.
For the combined edge-vertex singularity u® we use (A.26) and (A.29). One has

ev ev ev
u’ =u; +uy,

where
uf = curl(z)] i log x| [log weal™ X" (r)x (60))
tan Pl log wer|* log el X" (ro )X (60) ( ; ) (2.4)
and
ug” = curl (2]} | 10g oo b (we1, 7e2) X5 (we2) ) + .3 |1og 2ol (o1, 22) x5(wea).  (25)

e

Here, AV, 7§, s§ (1 = 1,2), x", and x§ are as above, 8 > 0 (k =1...,4) are integers, 31 + 2 =
s§+qf, P+ By = s§+ ¢5 with ¢}, ¢y being as in (2.3), x¢ is a C* cut-off function with
X =1for0<6, <, and x* = 0 for %ﬁv < 0, < w, for some G, € (0, min{w,/2,7/8}]. The
functions b and b§, when extended by zero onto R*" := {(z.1,Ze2); Te2 > 0}, lie in H™ (R*T)
and H™2 (R2+), respectively, with my, mg as large as required. Note that the supports of uf’
and u§’ are subsets of the sector Se, = {(ry,0,); 0 <1, < 27,0 <6, < %ﬁv}, cf. Remark A.1
below.

Remark 2.1 (i) The exponents ¢ (i = 1,2) for edge and vertex-edge singularities in (2.2),
(2.4), (2.5) satisfy v¢ > % Howewver, for our approximation analysis below it suffices to require
that v¢ >0 (i = 1,2). Note that v¢ >0 and XY > —3 (i = 1,2) are the minimum requirements
to guarantee u € X.



(ii) According to [21], decomposition (2.1) holds if enough regularity (in terms of Sobolev
spaces) is assumed for the right-hand side function £ in (1.1) (this reqularity depends, in partic-
ular, on the number of singularities in the decomposition and the wanted smoothness of Ureg).
For the electromagnetic scattering with plane incident wave, f being its tangential trace, this
reqularity assumption is satisfied.

For the approximate solution of (1.1) we apply the p-version of the BEM based on Galerkin
discretisations with Raviart-Thomas (RT) spaces. In what follows, p > 1 will always specify a
polynomial degree.

We discretise I' by a fixed mesh {I';; j = 1,...,J} consisting of parallelograms. Let Q =
(—1,1)% be the reference square. Then for any element I'; of the mesh one has I'; = Tj(Q),
where T); denotes an invertible affine mapping

r=Tj(€) = Bit +b;.

Here, B; € R2*?, b; € R2, z = (x1,29) € I'; for a local system (z1,z2) of Cartesian coordinates

onI'; and & = (£§,&) € Q.
The affine mapping 7} is used to associate the scalar function u defined on the element I';
with the function @ defined on the reference square Q:

u:ﬁoTj_1 and 4 =uoTj.

Any vector-valued function v defined on @ is transformed to the function v on I'; by using the
standard Piola transformation:

v=M;{¥)=3B;vo T, v=M;'(v)=JB;'voTj, (2.6)

where J; = det(B;).

Further, P,(I) denotes the set of polynomials of degree < p on an interval I C R. By
Ppi.ps(Q) we denote the set of polynomials on @) of degree < p; in &; and of degree < pp in &s.
For p; = p = p we will use the notation P,(Q) = P, ,(Q). If K is an arbitrary parallelogram
in R?, then we will denote by P,(K) the set of polynomials v on K such that v o M € P,(Q),
where M : (Q — K is an invertible affine mapping.

Now we can define the RT-spaces on the reference element (see, e.g., [11, 36]):

VII}T(Q) = Ppp-1(Q) X Pp-1,(Q)- (2.7)
Then using transformations (2.6), we set
XP(P) = {V S XO; M_j_l(vh‘j) S VgT(Q)a ,7 = 17 ceey J}7 (28)

where the space X° = Hy(div,I") C X is defined in §3.1. Due to the inclusion X,(T") C X°, the
normal components of v € X,(I') are continuous across internal edges of the mesh and vanish
on OI'. Then the p-version of the Galerkin BEM for the EFIE is: Find u, € X,(I") such that

a(uy,v) = (f,v) VveX,[I). (2.9)



Let us formulate the result which states the unique solvability of (2.9) and quasi-optimal
convergence of the p-version of the BEM for the EFIE.

Theorem 2.1 There exists pg > 1 such that for any £ € X' and for arbitrary p > po the
discrete problem (2.9) is uniquely solvable and the p-version of the Galerkin BEM generated by
RT-elements converges quasi-optimally, i.e.,

Ju—wllx < Cinf{u—vllx; v € X,(D)} (2.10)

Here, u € X is the solution of (1.1), u, € X,(I") is the solution of (2.9), ||-||x denotes the norm
in X, and C > 0 is a constant independent of p.

The proof of Theorem 2.1 is given in Section 6 below.
The next statement specifies the convergence rate for the p-version of the BEM applied to
the EFIE on the plane screen I

Theorem 2.2 Let u € X be the solution of (1.1) with sufficiently smooth given function f € X'
such that representation (2.1)—(2.5) holds. Let vy € V', ey € E(vg) be such that

min{A® +1/2 080 £ 1/29 05 = min min (0] +1/2, + 12,9195

with A}, v¢ (i = 1,2) being as in (2.2)—(2.5). Then denote

max {¢}° + 57 + 3, ¢3° + 5+ 3} if AP =70 —1 fori=1,2,

8= maX{qf”Se”QOz +82} A= =g WER o)
max {q° —I—Sl,q2 5} if AV £ 60_% AL = 420 _l’
max {¢,° + 57", ¢5° + 55 } otherwise

with the numbers s;° and ¢;° (i = 1,2) given in (2.2) and (2.3), respectively. Then for every
P > po (po is given by Theorem 2.1), the BE approzimation u, € X,(I') defined by (2.9) satisfies

[u—uyllx < Cp—2mn (A0 +1/22050+1/27° ,’Y;O}(l +logp)?,
where C' > 0 is a constant independent of p.

Proof. Considering enough singularity terms in representation (2.1) we obtain a sufficiently
high regularity for the function u,es € ng (div,T"). Then, due to the quasi-optimal convergence
(2.10) of the p-BEM, the assertion follows immediately from the general approximation result
given in Theorem 7.2 below. O



3 Preliminaries

3.1 Functional spaces, norms, and inner products

First of all, let us recall the Sobolev spaces and norms that will be used, see [31].
For a Lipschitz domain Q C R"™ and an integer s, let H*(Q2) be the closure of C*°(£2) with
respect to the norm

[ullFrs () = llullFrs-1qy + lulfre@) (s> 1),
where
\u!%{s / |Déu(x)|*dz, and HO(Q) = L*(Q).
Here, |DSu(z)|? = Plal=s | D%u(x)|? in the usual notation with multi-index o = (aq, ..., ;) and
with respect to Cartesian coordinates = = (z1,...,2,). For a positive non-integer s = m + o

with integer m > 0 and 0 < o < 1, the norm in H*(Q) is

[ullFrs gy = l1ullFrm () + [ulirs@

2 | Du( “u(y)l?
ulfs Z // ‘x_y’n+2a dx dy.

The Sobolev spaces H*(f) for s € (O, 1) and for a bounded Lipschitz domain 2 are defined by
interpolation. We use the real K-method of interpolation (see [31]) to define

with semi-norm

H(Q) = (L2(Q), Hy(9)) , , (1/2<t<1,0<s<0).

I

Here, H(Q) (0 < t < 1) is the completion of C§°(Q) in H!(Q) and we identify H}(2) and
H 1(Q) Note that the Sobolev spaces H*(2) also satisfy the interpolation property

H(Q) = (L2(Q),H1(Q)) , (0<s<1)

S,

with equivalent norms. Furthermore, the semi-norm | - |g1(q) is a norm in HY(Q) due to the
Poincaré inequality.

For s € [~1,0) the Sobolev spaces and their norms are defined by duality with L?(Q) =
HO(Q) = H(Q) as pivot space:

H*(Q) = (H(Q)),  HY(Q) = (H(Q)),

_ w )| o |(u, v)]
ozverr—=(@) IVl A=) ozver—=@) 1Vl H-:(0)

where

(u,v) = (u, V) = /Qu(:n)@(:n)dzv

8



denotes the extension of the L?(2)-inner product by duality (and v is the complex conjugate of
v).

Now, let I' be a plane open surface with polygonal boundary and let = (x1,22) € I'. For
the space H~/2(I"), besides the norm introduced above, we will also need an inner product. We
define it by

<u,v>_%7r = (Yu,v)or = (v, Yv)or VYu,v e ]51_1/2(F),

where ) )
— _ uly . -1/2 1/2
U =V = v: H I —H I
u(z) ou(x) 47T/1“ P— dsSy, () ()

is the single layer potential operator of the Laplacian, cf. [20]. This inner product generates
the norm in H~'/2(T") which is equivalent to the dual norm introduced above. When acting on
tangential vector fields, we will denote the single layer potential operator by W.

The spaces H*(I") and H*(T') of vector fields defined on I' can be introduced similarly as
above for any s > —1. The norms and inner products in these spaces are defined component-
wise and the usual convention HY(I') = H(I") = L23(I') holds. Besides that, we will use two
other families of spaces of vector fields on I'. These are HY (I') and H3 (T) with 0 < s < 1.
The space H7 (T') is defined as the completion of the space C%(I') := {v = (vi,v2); v; €
C>*(T), i =1,2, v-n|sgr = 0} in H*(T"). Here, n denotes the unit outer normal vector to oI
Then, identifying HiO(F ) and HY (T'), we define the space H? (') by interpolation

HY () = (LA(D), HY4(T)), , (1/2<t<10<s<).

I

Analogously to the scalar case, there holds H*(T') = H*(T') = H5 (') = Hf (D) if0<s < z,
and HY (T) = HY () if 3 < s < 1, with equivalent respective norms.
We will use standard differential operators acting on scalar functions

Vu = (0u/0x1, Ou/dzs), curlu = (Ou/0xy, —0u/0x;)
and on 2D vector fields (here, v = (v1,v3))
divv = 0vy /01 + Ovy/0xo, curlv = Quy/dx1 — vy /0x4.
Then we set:
H(curl,T) := {v € L*(T"); curlv € L*(T")},
H*(div,T") := {v € H*(I'); divv € H¥(')}, k>0 is real,
H*(div,T) := {v € B¥(I'); divv € H*(I)}, s¢&[-1/2,0],

H;(T):={ve H'); (v,1) =0}, s>-1/2,  H)T)=Ly(T),



H(T) == {ve H(T); Ave H Y3()}.

Here, A denotes the standard Laplace operator, A = div V.

The spaces H¥(div,T') and H*(div,I") are equipped with their graph norms denoted by
| Il ek (i, ry and || - HI:IS(div,F)’ respectively. For k = 0 we drop the superscript in the notation of
the space, H(div,I') = H(div,T).

By H(div,T") with real & > 0 (respectively, by X* = H(div,T") with s € [~1/2,0]) we
denote the subspace of elements u € H¥(div,T") (respectively, u € H*(div,T")) such that for all

v € C*°(I") there holds

(u, Vov) + (divu,v) = 0. (3.1)
We note that if u € X* with s € [~1/2,0] then identity (3.1) holds for any v € H'~5(I)
by density. In particular, X* is a closed subspace of H*(div,T'). For s = —% we drop the

1/2

superscript in the notation of this space, X~ /¢ = X, and write the corresponding norm as

I llx = [ 12 aiv.ry-
3.2 Auxiliary lemmas

The following variational problem on I' will be a useful tool in our analysis: Given ¢ € H*(T),
5> —% (or € HS(T'), -1 < s < —% , find ¢ € HN(I') such that

(V. V) =—(,0) Voe HI). (3.2)
We will need the following standard regularity result for this problem (see, e.g., [26, p. 82]).

Lemma 3.1 If ) € H*(T'), s > —% (respectively, ¢ € H*(T), -1 <s< —1), then there egists
a unique solution ¢ to problem (3.2). Moreover, there holds ¢ € H'*"(T) and

10l ey < C sy (respectively, ||¢]lgrer @y < C 1Yl gs(r))

for any r < min {s*,s + 1}, where s* = T and w denotes the maximal internal angle at the

vertices of I

To state the second auxiliary result, we denote by R, (I") the set of piecewise polynomials of
degree p defined on the partition of I, i.e.,

Ry(T) == {v e L*(T); v[r, o Tj € Pp(Q), j=1,...,J}. (3.3)

The following lemma states the inverse inequality for such piecewise polynomials. We refer to
[27] for a proof.

Lemma 3.2 Let v € Ry(T). Ifv € H' (') (respectively, v € H™(T) ) for a real number r < 1,
then for s < r there holds

ol sy < CP* ol gy (respectively, |[vl gy < CP*™ 0]l gory)-

Here, C is a positive constant independent of p.

10



4 Decompositions

In this section we introduce direct orthogonal decompositions of the energy space X and of the

discrete space X, (I").

4.1 Helmholtz decomposition

Following [14, 12] we decompose X using the mapping

X = LD,
A'{u —  Vf,

where f solves the Neumann problem: Find f € HX(T') such that
(Vf,Vg)=—(divu,g) Vge H(T).
One has div Au = divu. Moreover,
KerA={ueX; divu=0} and A(Au)= Au.
Thus, A is a continuous projector, A : X — X. Denoting
V :=1ImA, W = Ker A = {u € X; divu = 0},
which are closed subspaces of X, one has the Helmholtz decomposition
X=VaoW.

Note that 3
V=VH(I), W =curl/3(I)

so that (4.4) can be written as (cf., [14, Theorem 6.4])

X = VH(T) @ curl HY2(I).

(4.1)

(4.2)

Theorem 4.1 Decomposition (4.4) is orthogonal with respect to the H=Y/2(T)-inner product

<'7 '>—%,F'

Proof. For any v € V, w € W one has by (4.5)

v=V/f, w=curlg for some f € H('), g € H/*(T).

We consider (F,), € C5*(I') with F, — Vf in L*(T') (n — oc). Then, making use of the
continuities ¥ : L2(I') — HY(T), curl : HY(T") — L*("), curl : L*(I") — H—Y(I'), ¥ : H~YT') —
L?(T) (see [33, 16]), and noting the commutativity property curl ¥F,, = ¥(curl F,,) (see [32,

Lemma 2.3], cf. also [28, Lemma 4.2]), one proves the relation

curl WV f = ¥(curlV f).

11



By a similar density argument it follows that curl V f = 0 (see also [16, Theorem 5.1]). Hence,
integrating by parts and using the density C§°(T') ¢ HY?(I"), we obtain

(v,curl g>_%7F = (PV f,curlg) = (curl ¥V f, g) = (¥(curl V f), g) = 0.

Therefore, (v, w)_%’F = 0 and the proof is finished. O

4.2 Discrete decomposition

The Helmholtz decomposition (4.4) was used in [12] to prove an inf-sup condition for the electric
field integral operator and to establish the unique solvability of the EFIE on I'. The discretisation
of the EFIE by the Galerkin BEM is based on a sequence {X,,}, of finite dimensional subspaces
X, C X. However, Helmholtz decompositions of functions in X,, may give functions which are
not discrete. That is why the discrete inf-sup condition (and thus, the unique solvability of (2.9)
and quasi-optimal convergence of the BEM) cannot be deduced by standard arguments, which
are usually applied to conforming Galerkin discretisations of coercive variational problems.

In [12], sufficient conditions were found to prove the well-posedness of the Galerkin BEM
applied to problem (1.1). The main idea there was to consider discrete decompositions X,, =
V,, & W,,, which are in some sense close to the Helmholtz decomposition of X when n — oo.
The abstract formulation of this approach is given in [18]. In particular, the following theorem
holds (see Proposition 4.1, Corollary 4.2, and Theorem 4.5 in [12] and also [18, Theorem 4.1]).

Theorem 4.2 Let {X, },, be a sequence of closed subspaces X,, C X with decompositions X,, =
V.. ® W,, which are stable with respect to complex conjugation and which satisfy the following
assumptions:

(A1) the family {X,}, is dense in the space X, namely

UXn =X;
n

(A2) the spaces V,, and W, are such that W,, C W and

sup inf 7”‘% —vix

— 0 as n — oo. (4.6)
vaev\{0} vEV  [[Va|lx

Then there exists ng such that for all f € X' and n > ng the Galerkin system
a(u,,v) =(f,v) VveX,
has a unique solution u, € X,, which converges quasi-optimally, i.e.,
lu—u,|x < Cinf{|ju—v|x; veX,},

where u € X is the solution of (1.1).
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In this paper we discretise the EFIE by the p-version of the Galerkin BEM based on the
sequence of the RT-subspaces X, (I') C X (see (2.7)—(2.9)). To prove the well-posedness of (2.9)
(see Theorem 2.1) we will use the abstract convergence result of Theorem 4.2 above. To that
end one needs to consider discrete decompositions of X, (I"). We set

Xp(I') =V, & W, (4.7)

where
W, = {w, e X,(I); divw, = 0}, (4.8)
Vp = {vp e X,(T); <VP7WLD>—%,1" =0 Vw, € Wy} (4.9)

Thus, V,, and W, are orthogonal with respect to the H Y 2(I')-inner product by definition.
Decomposition (4.7) is stable with respect to complex conjugation.

Remark 4.1 (i) In [12, 18], L?(T')-orthogonal discrete decompositions were introduced for finite
dimensional subspaces based on RT and Brezzi-Douglas-Marini (BDM) boundary elements. It
has been proved that these decompositions satisfy assumptions (A1), (A2) of Theorem 4.2 with
respect to the mesh parameter h, i.e., in the framework of the h-version of the BEM for the
EFIE. It turns out that, for the p-version, the L2(T)-orthogonality of decomposition (4.7) is not
sufficient to prove (A2) with standard techniques. That is why we need H/2(T)-orthogonality
instead. We note that H=Y2-orthogonal decompositions of the energy space X for smooth closed
surfaces were used in [19].

(ii) Condition (4.6) relates to Kikuchi’s discrete compactness property (DCP) which, together
with an appropriate approximability condition, implies the convergence of discrete methods for
time-harmonic Mazwell equations (in particular, finite element methods employing edge ele-
ments), see [30]. Though the DCP has been widely studied in the framework of the h-version for
edge elements in two and three dimensions, there are only few results for p- and hp-methods. In
2D, the DCP for hp adaptive rectangular edge finite elements has been proved in [10].

5 Interpolation operators

In this section we will introduce the interpolation operators acting on vector fields and recall
some of their properties.

First let us consider the standard (element-wise) L2-projection onto the set of piecewise
polynomials. We denote this L2-projection by Hg : L*(T') — R,(T), where R,(T) is defined in
(3.3). There holds the following approximation result.

Lemma 5.1 For any r > 0 there holds
lv = Tvll2qry < Cp~" |[ollry Yo € H'(T)

where C' > 0 is independent of p and v.
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This assertion follows from the local approximation result of [3, Lemma 4.5] (see [39] for the
proof).

Now let us introduce the interpolation operators acting on vector fields v € H(div,T"). By
H;{T we denote the standard RT-interpolation operator H;{T : H(div,I') — X,(I") (see, e.g.,
[36, Chapter 2, Section 7] for the definition). This operator satisfies, in particular, the following
relation (here we use the same notation as in (2.6))

(METY — ¥, W) =0 YW € Ppoy 1(Q) X Ppip2(Q). (5.1)

Hence
(HZI,D‘TV —v,w)or=0 Vwe X;‘f{ (1),

where XS"!(I") denotes a discrete subspace of H(curl,I') based on the Nédélec elements of the
first type, namely,

Xgurl(l“) :={v € H(curl,I'); /\/lj_l(vh“j) € Pp-1p(Q) X Ppp-1(Q), j=1,...,J}.

For the L2-estimate of the error of the RT-interpolation (in terms of polynomial degrees p),
we cite the following result from [38] (see Lemma 4.1 therein).

Lemma 5.2 If u € H"(I') with r > %, then for any € > 0 there exists a positive constant
C = C(e) such that
lu =T a2y < Cp~ 27 g ).

On the other hand, in [22] the H(curl)-conforming projection-based interpolation operator
ngrl : H'(T') N H(curl,I') — Xg“rl(I‘), r > 0 has been introduced and analysed. Using the
isomorphism of the curl and the div operator in 2D (and, as a consequence, the isomorphism of
the Nédélec and RT elements), we reformulate the main results of [22] in the H(div)-settings.
We will denote by Hgi" the corresponding H(div)-conforming projection-based interpolation
operator.

Lemma 5.3 [22, Proposition 2] For r > 0 the operator I3 : H"(I') N H(div,T') — H(div,T)
18 bounded, with norm independent of the polynomial degree p.

This result implies the L2-stability of Hgivz there exists a positive constant C' > 0 indepen-
dent of p such that for any u € H"(I') N H(div,T"), > 0, there holds

1T g (ry < € (Jfullg ) + [[divul| g2y ) - (5:2)
The following approximation result is Theorem 3 in [22].

Lemma 5.4 Let u € H"(div,I") with 0 < r < 1, and let 0 < ¢ < r. Then there exists C > 0,
depending on € but independent of p such that

Ju - HSiVuHH(divI) < Cp_(r_a) HuHHr(div,r)-
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It is essential that both interpolation operators, HII}T and Hgi", satisfy the commuting dia-
gram property:

div (H?Tu) = Hg_l(div u) Vu e H'(I') n H(div,I'), r>1/2, (5.3)
div (TYVu) = I1Y_, (div u) vu e H(T') NH(div,T), 0<7 < 1; (5.4)

here we refer to [11, Proposition 3.7] and [22, Proposition 3], respectively. We note that commu-
tativity (5.3) does not hold if polynomial degrees vary from one element to another. Thus, our
results below employing the (global) RT-interpolation operator do not generalise immediately
to this case.

The interpolation operators introduced above become a useful tool in the analysis of Galerkin
discretisations of mixed variational formulations for elliptic boundary value problems. Let us
demonstrate this for a certain auxiliary problem, which will be used further in Section 7.1.
Given u € Hj(div,T"), » > 0, we consider the following mixed variational problem: Find (z, f) €
(Ho(div,T), L2(T")) such that

(z,v) + (divv, f) = (u,v) Vv € Hy(div,T),
(5.5)
(divz,g) = (divu,g) Vg€ L3(I).

The unique solvability of (5.5) is proved by usual techniques (see [11]). In our case it is clear
that the pair (u,0) solves (5.5).

A conforming Galerkin approximation of problem (5.5) based on RT-elements reads as: Find
(zp, fp) € (Xp(T), Ry_1(T')) for p > 1 such that

(Zp,v) + (divv, fp) = (u,v) Vv e X,(I),
(5.6)
(divzy,g) = (divu,g) Vg € Ry_ ().

Here, R;(T') := {g € Rp(I'); (g9,1) = 0} and R,(I') is defined by (3.3).

We now prove the unique solvability of (5.6). Observe that for any given g, € R;_;(I") we can
solve the Neumann problem analogous to (3.2) to find a function ¢ € H}(I") such that A ¢ = g,
on I'. Then applying the regularity result of Lemma 3.1 we have ¢ € H'*"(T), 0 < r < o,
rg > % and

IV ollar @) < Clillmarry < Cllgpllnz - (5.7)
Therefore, V ¢ € H"(I') N H(div,T") and the interpolant HgiVV ¢ € X,(I") is well defined, due to
Lemma 5.3. Moreover, (5.4) yields

div (IVV ¢) = g,.
Hence, using (5.2) and (5.7) we prove the discrete Ladyzhenskaya-Babuska-Brezzi condition:

sup <div Vp, gp> > <di\(’ﬁ(HgiVV QS), gp>
vpeX, N0} [IVpllE@iv,r) TSV Bl g1 (aiv,r)
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ng“%z(r)
C (IV @l r) + 1div V 8]l z2(ry ) + [ldiv (Y @) 2 r)
C lgpll 2 Vg, € R,_1(T).

This condition along with the property div X,(I') = R;_; (') ensures existence, uniqueness, and

v

v

quasi-optimality of the solution (zp, f,) to (5.6) (see [11]). Then we rewrite (5.6) as
(u—1zp,v)=(divv, fp) Vv e X,(I), (5.8)
(div(u—2,),) =0 Vg e Ry () (5.9)

(note that (5.9) holds for any g € R,—1(I"), because (div(u — z,),c) = 0 for any constant c).
Furthermore, recalling that z = u and f = 0, we have

2oy < 1Zpllmary + Ifoll2y < € (Il + 1F2m)) = Clul@er  (5.10)
and

[u—zplla@vey < llu—2zplla@v,e) + 1f = follzm

< C inf u—vVv iv + inf _
(VPEXP(F) H pHH(d D) ngR;‘)il(F) Hf ngLZ(D)
= o, - iv,D)- 5.11
vpg;}p(r) [u = vpllH(div,r) (5.11)
We find by (5.10)
lu = 2z [[a(aiv,r) < Cllulla@iv,r)- (5.12)

From (5.11) using the commuting diagram property (5.3), Lemma 5.1, and Lemma 5.2 we have
for any r > %

=zl ry < C (a5 ullgr) + ldiv (@ =TT w) | )
= C(lu =T gy + |diva — T05_ div )| o))

< Cp "V u|lgr @iy, E>0. (5.13)

The estimate in (5.13) can be improved to give a sub-optimal p-approximation result (see esti-
mate (5.14) below). The argument is based on interpolation between (5.12) and (5.13). It was
first used in [4] for the scalar case, and we refer to Lemma 4.1 and Theorem 4.2 in [39] for the
case of vector fields. Thus we have proved the following auxiliary result.

Lemma 5.5 Given any k > 0, ¢ > 0 and u € H§(div,T'), there evists a pair (zp, f,) €
(Xp(T), By _1(I')) solving (5.6) and satisfying (5.8), (5.9). Moreover, there exists a constant
C > 0 independent of p and u but depending on € and k such that

—(k—e¢

u — zp | ex(giv,r) < Cp ) |[ull gz aiv.1)- (5.14)
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6 Proof of Theorem 2.1

In this section we prove Theorem 2.1 relying on the abstract convergence result of Theorem 4.2.
One needs to check that assumptions (A1) and (A2) are satisfied. First, we note that the family
{X,(T")}, of RT-spaces is dense in X°. Since the injection X? C X is dense as well (see, e.g., [17,
Lemma 2.4]), we conclude that the family {X,(I")}, satisfies assumption (A1) of Theorem 4.2.

Further, from the definitions of W and W, (compare (4.3) and (4.8)) it is clear that W,CW.
Thus, it remains to prove that the subspace V), defined by (4.9) satisfies assumption (4.6). In
particular, we will show below that there exists a sequence {0,},, 0, — 0 as p — oo, such that
for any given v, € V,, there exists v € V satisfying

vy = viix < dpllvyllx- (6.1)

The proof of this statement consists of four steps.
Step 1: Construction of the function v for given v,. Given v, € V,,, we solve the
Neumann problem to find f € H}(I') such that

(Vf,Vg)=—(divv,,g) Vgec HLT). (6.2)
We set v := V f. By definition of V there holds v € V, see (4.1)—(4.3). Moreover,
divv = divv,,. (6.3)

Note that divv, € H~1/275(T) for any ¢ € (0,1). Therefore, the regularity result for problem
(6.2) reads as (see Lemma 3.1): there exists sufficiently small € € (0, 1) such that f € H3/2+=(T).
Moreover, using the continuity of the gradient as a mapping H!'™"(T') — H"(T), we have

HV”Hl/HS(F) <C HfHHS/QJrs(F) < C'||div Vp”H*1/2+6(1“)7 e €(0,1). (6.4)
In view of (6.3) the desired estimate in (6.1) reduces to the inequality
vy = Vllg 1o < Spllvlix. (6.5)

Step 2: Reducing ||v, — VHﬂ,l/Q(F) to the H-'/2(I")-error of the RT-interpolation.
Since v € H"(I') N H(div,T'), r» > %, we can apply the RT-interpolation operator HIP}T (see
Section 5) to define VI};{T = HIP}T v € X,(I'). Now recalling (5.3) and using (6.3) we find

RT

div v, = divv, = divv.

Hence, (v, — V};T) € W, C W. This fact together with the orthogonalities V. 1. W and

V, L W, with respect to the H Y 2(T')-inner product implies the equalities:

RT RT
(V,vp =V, >_%7p = (vp,Vvp — Vv, >—%7F =0.
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Therefore,
|lv — VpH%,l/Q(F) <C(V—vp,Vv— Vp>—%7r =C(Vv—vp,Vv—vV

which gives
v — VpHﬁ71/2(r) <Cl|v- HZI?LTVHﬁfl/z(F)- (6.6)

Step 3: Reducing |v — H;{TvHﬂ,l/Q(F) to ||v — HE‘TVHLQ(F). We start with the definition

1/2

of the norm in H~'/2 on an arbitrary element IR

(v — IV, w)or,

v =T Vlgaeey = sup
PO wemamney W)

For any w € H/2 (T';), let us denote by w, the local (component-wise) L2-projection of w onto
the set of polynomials of degree (p —2) on I';. Then, recalling (5.1), we have for p > 2

(v — HZI,D‘TV, w — Wp>()7rj

”V—HRTV”"fl/z ) = Sllp
P H1/2(Iy) weH/2(T';)\{0} HWHHl/Q(Fj)
W — wpllL2(r,
< HV _ HII}TVHLQ(F]‘) sup p (')
went2oy Wiy
< Op V= I Ve o0

Here we also applied Lemma 5.1 restricted to the element I';. Since the following inequality
holds (see, e.g., [2, Theorem 4.1])

Hu”%—l/z(p) < Z ”u’Fj ”%1—1/2(1-\],)7
J

we obtain by squaring (6.7) and summing up the results over all elements
IV =TVl g1y < Cp 2V =TV L2 .- (6.8)

Step 4: Estimating ||v — H;{TVHLQ(F) and conclusion. Since v € H'/?*¢(I") for some
e € (0,1), we apply Lemma 5.2 and then inequality (6.4) to obtain

IV =TTV L2y < Cp~PH1 279 vl gy < Cp™ 79[| div Vil -1/ (6.9)
for any € € (0,¢). Then making use of the inverse inequality (see Lemma 3.2) we estimate
v Vpllr-1/ztery < O div vl g2y < CPEIAY Vil gy < CoZINplx. (6:10)
Now we put together (6.6) and (6.8)—(6.10):
||V - VPHI:I*1/2(1") < Cp_1/2+€+é||vp||x, €€ (07 1)7 €€ (075)'

Hence, selecting € small enough we prove (6.5), which implies (6.1). Therefore, the subspace V,
satisfies (4.6). Thus we have shown that the discrete H~!/2(T")-orthogonal decomposition (4.7)
verifies assumption (A2) of Theorem 4.2, and the proof is finished.
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7 Approximation results

7.1 Approximation of smooth vector functions

In this sub-section we prove the following p-approximation result for vector fields u € ng(div, r).

Theorem 7.1 Given any real k > 0, € > 0 and any u € HE(div,T"), there ezists z, € X,(T)
such that for 0 < s < %

(k+s—e

u = 2|l s giv,ry < CP™ |l g,y (7.1)

Here, C > 0 is a constant independent of p, s and u but depending on € and k.

Proof. Letu € Hf(div,T) and k& > 0. Then applying Lemma 5.5 we find a function z, € X,(T')
satisfying equalities (5.8), (5.9) and such that estimate (7.1) holds with s = 0. We now prove
(7.1) for s € (0,3). First, we write the negative-order norm of (u — z,):

(u—zp,w)

lu=zllgeey = sup (7.2)

wers(O\fo} [Wllesm)

Let w € H*(T'), s € (0,3). Then divw € H* (') and its extension to divw € H*~1(T")
exists but is not unique (see [34] for details). In particular, we can set the trace of the normal
component of w on OI' to be zero. Given w € H*(T"), we consider the Neumann problem (cf.

(3.2)): Find ¢ € HX(T) such that
(V, Vo) = (divw,¢) Vo e HIT). (7.3)

Since divw € H*Y(T') and s € (0, 1), the regularity result for ¢ reads as (see Lemma 3.1):

@ € H(T) for any 0 <7 < s < 5. (7.4)
Moreover, there holds
lellivr @y < Clldivwll gy < Cllwllgs(r)- (7.5)
Then we set
q:=w+VepeHI). (7.6)

It follows from (7.3) that divV ¢ = —divw. Hence
divg =divw +divVp =0.
Furthermore, we have by (7.4)—(7.6)

laller @) < Iwller@) + Cllelmray < Iwllar@ + Cliwllas @) < Cllwlias o). (7.7)
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Now, we use (7.6) to represent the numerator in (7.2) as

(u—zp,w) =(u—2y,9- V) =(u—2zp,q) + (div(u—z),¢) (7.8)

(here we also used equality (3.1) and the fact that (u — z,) € X°).
Since q € H"(I") N Hy(div,T") for an r € (0, %) we can apply the interpolation operator Hgi"
to q. Recalling that z, satisfies (5.8) and q is divergence-free, we use commutativity property

(5.4) and the approximation result of Lemma 5.4 to obtain for the first term on the right-hand
side of (7.8):

(u—z,q) = (u—2,T0"q) + (u—2z,q—I"q)

= (div Hgivq, fp) +(u—2zp,q— Hgi"q> =(u—2zy,q— Hgivq>

< =zl la — IV allrer) = lu = zplleer lla — 9V alls@in

< Cp " (Jlallar ) + ldivall ) ) Iha = zpleery

= Cp_(r_sl)HQHHT(F) [u—2zplL2m)

< Cp " Wl (ry 0 — Zplnzr), 0<er<my (7.9)

for the last step we used (7.7).
To estimate the second term on the right-hand side of (7.8) we use (5.9), (7.5) and apply
Lemma 5.1:

(div(u—1zp),0) = (div(u—1z,),0 -1 _19) <|[|div(u—zp)||z2r) [l — )@l r2r)

< Cp U |div (u = 2zp) |l 2y ol ey

IN

Cp~ Y| div (u - zp)| 20y W15 (1) (7.10)
Combining (7.9), (7.10) and making use of representation (7.8), we obtain by (7.2)
= 2l sqry < Cp~ ) 1 = 2 sz (7.11)

By the same argument as in (7.10) we also prove

. div(u —1z,),v sl s
ldiv(—zp)lgog = sup LB ZE)0) ooy (g (712)
versmn{o}  |[Vllasm

Setting 7 := s and combining (7.11), (7.12) we derive

(8—51

0 = 2yl e (aiv.ry < CP~C 7V = 2 | maie -

Hence, using (7.1) with s = 0 to estimate the norm [[u — zp|[g(qiv,r), We prove the assertion
of the theorem for any s € (0, %) For s = % the assertion then immediately follows, because
I 172w,y < I =172+ @i,y for any small € > 0. ]

20



7.2 General approximation result

By (2.2)—(2.5) we conclude that any singular function u® in (2.1) (s = e, v, or ev) can be written
as
u’ = curlw® 4+ v* = curlw® + (v, v3), (7.13)

where w® € HY/2(T') for s = e, v, ev, v¥ € HY/2(T') for s = e, ev, and v*® € I;Iim(F) for s=wv. It
is important to note that the functions w®, v{, v3 (s = e, v, ev) are scalar singularities inherent
to the solution of the boundary integral equation with hypersingular integral operator for the
Laplacian on I" (or on a closed piecewise plane surface > I') and with possibly singular right-
hand side. Polynomial approximations of these scalar singularities in fractional order Sobolev
spaces were analysed in [8, 7].

In the following theorem we prove a general approximation result for the vector function u
given by (2.1)—(2.5).

Theorem 7.2 Let the function u be given by (2.1)—(2.5) on T' with ~§, v§ > 0 and XY, Xy > —%.
Also, let vg € V', ey € E(vy) be such that

min{X® +1/2 000 +1/2.91% 95 = min - min (M +1/2,05 +1/2.9%.95).

Then for any small e > 0 and for every p > 1 there exists u, € X,(I") such that

[u—wlx < C’max{p—(kﬂ/z_g)’

p2min A H1/205041/2970050 (1 . 1ng)6} : (7.14)
where [ is defined by (2.11) and the constant C' > 0 is independent of p.

Proof. If p = 1, then we set u, = 0 on I', and (7.14) is valid. Let p > 2. For the partition
{Tj; j=1,...,J} of I we define

Sp(T) :={v € CO(D); vlr, o Tj € Pp(Q), j=1,...,J} and S)(I') := S,(I') N Hy(T).
Let us also define the following functions of p:

fEp) =p 2 (L +1ogp)™,  f(p) = p "NV (1 +1ogp) T,

@i+t if w=ne—1  (T15)

ev — —2min{AY+1/275} 1+1o B; 3. .—
fj (p) b ( gp) ) ﬁj q;z_|_3§ otherwise.

Here, j = 1,2 and 7§, A}, s§, ¢} are the same numbers as in (2.2)—(2.5).

Any singular vector field u® (s = e, v, or ev) in (2.1) can be decomposed as in (7.13). We
first use the results of [8, 7] to find piecewise polynomial approximations to the scalar functions
w® (s = e, v, ev) and v{ (i = 1,2, s = e, ev) (see Theorems 3.3, 3.5 in [8] and Theorem 4.1,
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Remark 4.1 in [7]): there exist wj € Sp(I') (s = e, v, ev) and v, € Sy (') (i = 1,2, s = e, ev)
such that
[ — w3l sy S CH@), s =e, v, e, (7.16)

H,Uf - U;p”ffl/?(l") é Cf2s(p - 1) é Cf;(p)v s=e€, e, 1= 1727 (717)

where C' > 0 is a positive constant independent of p.
Let v, = (vi,, v5,) for s = e, ev. We observe that v; € H(div,I'), v, - n|gr = 0, and for
any element I'; there holds

M; (vilr,) = det(B)) By (vl ) o Tj € Pyt (Q) % Pt (Q) € VET(Q).

Therefore v, € X,(I') for s = e, ev. Moreover, since v* € H'/2(T") and v;

s=e, ev and i = 1,2, we estimate by (7.17)

» € Sp_y(T) for

2
v =3llgrz oy < CIV =Vl < € N = ylliay S C @), s =e e (118)
=1

The vector field vV € Hi/ 2(F ) is approximated directly by applying Theorem B.1 (see Ap-
pendix B): there exists v, € X,(I') such that

IV = Vil gy < CH0). (719)
On the other hand, it is easy to check that for s = e, v, ev
M;l(curlwmpj) = det(Bj)BJ»_l(curle|pj) o T}

S S
Owy Owy

-1 T
= det(B])BJ (mh—‘j) _mh—‘j) OTJ

—1 A S S T
= det(B;)B; (pr,j'bjzv —pr,j‘ijl) :

where W, ; = wj|r; o Tj and by is the k-th column of the matrix Bj_l. Hence

M (eurlwylr,) = det(B) (Vi - (0, det(B; ), Vi - (det(B} ), 0))

_ (‘%Z,j _M;,j)
062 061 )

Since wy, ; € Pp(Q), we have ./\/lj_l(curl wilr;) € Ppp-1(Q) X Pp_1,(Q) = VET(Q). Moreover,

curlwy-n[sr = 0, because wj, vanishes on JI' and curlw, € H(div,I'), because div(curlw;) =0

on I'. Therefore curlwy € X,(I') for s = e, v, ev.
Thus, we have proved that uj := curlw, + v € X,(I') for s = e, v, ev. To derive the error

estimate for this approximation we recall that the operators curl : H/2(I') — H~'/2(T") and
div : 1311/2(1“) — H~Y2(I') are continuous (see [14]). Therefore, one has

v® —wllx < fleurl (w” —wp)fx + |v* = vpllx
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= Jleurl (@ —wd) g2y + IV Vil + 1V =V L -ve

< 0w = wpllgnsaqey + IV = vpllamy + IV = V3l ).
Hence we obtain by (7.16), (7.18), and (7.19)

[u® —upl[x < C max {ff(p), fzs(p)}, s=e, v, ev. (7.20)

For the regular part ueg of u in (2.1), we use the approximation result of Theorem 7.1 giving a
discrete vector function uyeg ), € X,(I") which satisfies

[Wreg = Uregpllx < Cp~(hH1/2=e) ”uregHHk(diV,F)7 e>0. (7.21)

Setting
Up 1= Upegp + Z u, + Z u, + Z Z uw’ € X,(T),
ecE veV veV e€E(v)
combining estimates (7.20), (7.21), using expressions (7.15) for the functions f7(p) in (7.20),
and applying the triangle inequality, we prove (7.14). O

A Singularities of electromagnetic fields on surfaces

Throughout this section we denote by I" a piecewise smooth (open or closed) Lipschitz surface in
R3. Assuming that I has plane faces T'¥) and straight edges ej, we derive expressions for typical
edge and vertex singularities inherent to the solution of the electric field integral equation on I'.

If I is a closed surface, we will denote by €2 the Lipschitz polyhedron bounded by T, i.e.,
I' = 09). In the case of an open surface I', we first introduce a piecewise plane closed Lipschitz
surface I which contains T, and then denote by € the Lipschitz polyhedron bounded by L, ie.,
[ = 99. For each face I'® T there exists a constant unit normal vector v;, which is an outer
normal vector to 2. These vectors are then blended into a unit normal vector v defined almost
everywhere on I'.

In addition to Sobolev spaces introduced in Section 3.1 we define

L) :={ueL?T); u-v=0o0onT}.

To apply trace arguments we will need the “tangential components trace” mapping 7, : C*(Q2)
— L2(I') and the “tangential trace” mapping 7, : C*(Q) — LZ(I'), which are defined as
u— v x (uxv)|r and u|r x v, respectively (here, (-)|r denotes the standard trace operator
acting on vector fields, (-)|r : H*(Q) — H*~/2(T") for s € (3,2)). The adjoint operator for the
mapping 7, is denoted by i,; this operator identifies two-dimensional tangential vector fields
(sections of the tangent bundle of T') with three-dimensional vector fields on I' (having zero
normal component).
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In this section, among the tangential differential operators defined on I' we will need the

vector surface curl,
curlp : HY(I') — LX),

which is defined by localisation to each face I'") (see [13, 14] for the definition and properties of
this operator for both closed and open surfaces).

Now let us consider the vector field U = (U;,Us,Us) and let U be the magnetic part of
the electromagnetic field solving the boundary value problem for the time-harmonic Maxwell
equations in the interior and/or exterior of Q (if T' is closed) or in R3\T' (if T" is open). Tt is
known that the jump of the magnetic field U across I' solves the EFIE on I'. We will denote
the solution of this boundary integral equation (in its variational formulation) by u.

The function U has a singular behaviour near corners and edges of I'. Let us recall the explicit
formulas for these singularities which are given in [21]. To that end we fix a vertex v and an
edge € D v of I'. In a neighbourhood of v, the polyhedron €2 coincides locally with a polyhedral
cone [',, and in a neighbourhood of e, €} coincides locally with a wedge W, = I'. x R, where
T'. is a plane sector of opening w, # 7. We will use three local coordinate systems with origin
v: Cartesian coordinates (x,y, z) such that Oz D e with O = (0,0,0), spherical coordinates
(pu, Oy, o) corresponding to I'y, and cylindrical coordinates (rc, 6., z¢) corresponding to W,.

According to [21, Definition 4.5], the edge singularities of the magnetic field U can be written
as

X (re, 2)UTE . k=1, 2, 3, (A1)

e
where x¢(re, ze) is a C*° cut-off function with support away from vertices and other edges of

09, X¢(re, z.) = 1 in a neighbourhood of a point on e, and UY* are generating functions of the
following types (cf. [21, Lemma 4.4]):

Type 1: UM = (UF",0) = (VILL0),  v+1€Aw(le), 7> -1 (A2)
Type 2: UP? = (0,9%..), 7€ Aval(Te), 7> 0; (A.3)
Type 3: UY? = (U%™,0), v —1€ Ayeu(Te), v > 1; (A.4)

here WY, are the Neumann Laplace plane singularities in T'e, Aye,(Te) is the corresponding set of
singular exponents, and U%’i are the magnetic Maxwell plane singularities in I'.. Below we will
also need the Dirichlet Laplace plane singularities in I', denoted by W7, and the corresponding
set Ap;,(I'e) of singular exponents. One has (see [21, Lemmas 2.1 and 2.2])

kr ke Z k#0} ifw # 2m,
ADir(Pe) = ANeu(Pe) - ke . (A5)
{3, k<Oorkodd} ifw,=2m7.
Then for any 4 € Ap;,(Te) and 7 € Axeo(Te) there holds
. ) sin ¥0, if y¢ N,
Vo (Te, 0c) = - g A6
pie(Tes fe) r)(logre sin 0, + 6, cosy0,) — w%( - ﬁ)y ifye N (A.6)
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and

, rY cos v, if v¢ N,
v 6796 = . . A.7T
seu (T ) { rY(log r. cosy8, — 0. sin~6,) + w%( - Smywe)ﬁ/ if y € N. (A7)
If v+ 1€ Ayeu(Te) then (cf. [21, Lemma 3.1])
(r) cos 0, —1 sinvb,) ify¢ N,
ULt = , , , (A.8)
(Tg(log re oS Y0 — O sinyb.), —rY(logre sinyfe + 0 cos ’y@e)) if vy € N;
if vy — 1€ Ayeu(Te) then
(rY cos ¥, 1) sin~b,) ifv¢ N,
un = . . . (A.9)
(T;Y(log re c08 Y0 — O sinvl,), r2(logre sinyb, + 6, cos ’y@e)) if vy e N.

The vertex singularities corresponding to non-integer magnetic Maxwell singular exponents have
the form (cf. [21, Lemma 4.1])

X"(po)Up*, k=1,23, (A.10)

where xY(py,) is a C* cut-off function such that x(p,) = 1 in a neighbourhood of the vertex v,
and UM are generating functions of the following three types:

Type 1: UM =Vl A41€Avaa(Ty), A > —3/2; (A.11)
Type 2. UM =VdA xx, A€ Api(Ty), A > —1/2; (A.12)
Type 3: UM = (2A - 1P x - p2 VO A —16€ Ayu(TW), A>1/2; (A.13)

here x = (z,y,2), ® D1r = p; ¢D1r( v, pu) are the Dirichlet Laplace vertex singularities in '), with
A€ Api(Ty) = { —it\u+tiue U(Aa‘)}, o(Ag?) is the spectrum of the Laplace-Beltrami
operator with Dirichlet conditions on a spherical polygonal domain G, := I',NS?, S? is the unit
sphere centred in v, ¢p;(6y,y) spans the eigenspace of AZ" corresponding to the eigenvalue
uw=AA+1), and @Qfﬂl, Axeu(T'y), Oneu(Bw, y) are the corresponding Neumann analogues.

Note that the eigenfunctions of the Laplace-Beltrami operator on G, (subject to Dirichlet
or Neumann boundary conditions on 0G,) can be decomposed into singular functions (corner
singularities on G,) and a smooth remainder (see (3.24) in [41]). We will specify this decom-
position locally in the neighbourhood of our fixed edge-vertex pair (e,v). This can be done by
using a C*° cut-off function x’(6,) such that x°’(6,) = 1 in a neighbourhood of 6, = 0. One
has

Boc.(Ous P0) = W0, 00) + XV(05) D Cyq 02907 (60, p0). (A.14)
Y+2g9<sg

Here, w € H™4(T,) with d = min {y + 2¢; v € Ay...(Te) N (0, +00), g > 0 integer, v+ 2¢ > so}
for some given sy > 0, ¢y, € R, the subscript “b.c.” refers to the type of the boundary
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condition applied (b.c. =Dir or b.c. =Neu), so that the sets A, . (T¢) are defined by (A.5), and
the functions W} are defined by (A.6) or (A.7).

Since sin 0, ~ 6, for small values of 6, we have the following decomposition of ¢y, . (0,,ps)
which is equivalent to (A.14):

Op.e. (O, 00) = w(0y, u) + X (0y) Z Cyq sin%¢ 9, U (sin by, @y)- (A.15)
Y+29<so

For positive integer exponents A, the generating functions UM in (A.11)-(A.13) will include
additional singular terms of the type p log p,. These terms appear due to corresponding loga-
rithmic singularities for the Laplacian (cf. (3.5) in [41]).

Now we use the above formulas to find the expressions for corresponding singularities in the
solution u of the EFIE on I'. Let us fix a face T ¢ T such that e ¢ T'M. Thus, I'M is a
plane open surface with polygonal boundary. We assume that ') ¢ Oyz. Then vy = (1,0,0)
and using trace arguments (see [13, 14]) one has on INOF

u=i'((U) =i (Ulpa) xv1) = (U3|1"(1)7 _U2|1"(1))- (A.16)

Using (A.16) with (A.2)-(A.4), (A.7)(A.9) and recalling that on the face 'Y C Oyz there
holds re = y, 6. = 5, ze = 2, we obtain the generating functions for the corresponding edge
singularities on T!):

ul! = (0,47 sin =, v+ 1€ Av(T)\N, v > —1;

u)? = (y7 cos 5, 0), v € Aneu(Te)\N, v > 0;

ul? = (0,—y’sin ), 7—1€ Axu(Te)\N, 7> 1.

For integral singular exponents, the expressions for uz’k (k = 1,2,3) will also include logy-
factors, cf. (A.7)—(A.9). Summarising the above and using (A.1), we now write the expression
for the edge singularity u® on T'™ in a more general form:

el
Me,1 S ki

w o= S (B B a2y ) [ogyl® X§(2) x5 ()
j= 182062
Me,2 5j .
+ 303 (0, B gyl X (2) x5(w) ). (A17)
j=1s=0

1 .e2 €2 3 el
where the singularity exponents satisfy nyH > 'y] 1> 2 Vit =7 2 5, and me 1, Me, 8777 >

0, sj 2> 0 are integers. Here, x§, x5 are C™ cut-off functions with x{ = 1 in a certain distance
to the end points of e and x{ = 0 in a nelghbourhood of these vertices. Moreover, x§ = 1 for
0 <y < dcand x§ = 0 for y > 26, with some &, € (0, 3). The functions be XTI b]7s,1X17 bS 5.0X5 €

H™(e) for 1 as large as required.

26



Note that for any given smooth functions b (z) and Bg(z) there exist sufficiently smooth
scalar functions bi(2), b2(2) and a smooth vector function fies(y, z) such that for any v # 0
there holds

(Ba(2)97, Ba(2)y" " )x5(w) = curlpy (37 51(2) X5(0)) + (17 b2(2) X5(1); 0) + Freg (v, 2),

where curl,q) = (0/0z, —0/0y) and fiee(y, 2) is a smooth function with both components
vanishing in a Jd.-neighbourhood of the edge e. Using the analogous formula with incorporated
logarithmic terms we can write the pure edge singularity u® in (A.17) as

el
Me,1 S ki

e,l
SO curlpy (375 [logyl b5,4.1(2) x5 () X5(v))
j=1s=0
me2

+ > Z@/” [log y|” b5 5 2(2) X1 (2) X5(¥), (A.18)

j=1s=0

e,1l e2 1 e,2 1
where me,1, me,, s57, 897 x§, X§ are as in (A7), /5 250 > L5k >0t > L be v e

H™ (e) and bf ; ox§ € H™?(e) for m; and my as large as required.

Now we proceed to the vertex singularities of u. Let us focus on the case where )\ is not a
positive integer (according to [21, Lemma 4.1], A = 0 and A = —1 do not belong to the set of
singular exponents).

Let A > —3/2 and A+ 1 € Ax..(T'y). Then, using (A.16) with (A.10), (A.11), one has for
vertex singularities of the first type:

A+1 A+1
u’i\,l — XU(pU) (8¢Ncu , 8¢Ncu
0z |p,=z oy

) = X(po) curlpey (P dnn(00,3)) . (A1)
Pv=7q

Observe that

8)( cos 6

X" (pv) curlpa) f(py, 0,) = Ppu f(pw,6y) < _Sinev” ) + curlpg) (x”(pu)f(pv,t%))-

Hence, using decomposition (A.15) of ¢yeu(0y, ¢y) With non-integers v € Ayeu(Te) N (0, +00) we
write (A.19) as

MY . — 0
uﬁ’l - p3+1i <w(9v7% + Z Cy.q sin?4 0, W7, (sin 0., %)xe”(ﬁv)) .COSH v
Opy Y+2q<s0 S

+ Y curlp (Cv oo sin4 0,07, (sin b, %)X”(pv)xe”(@,))
Y+29<so

+ curlp(l) (pi“xv(/)v)w(@m %))
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= w+ Y aylya)+ Y eurlya (&) s 0, ()X (6,))
Y+29<so Y+29<so

+ curlp@) (pi\-’_lxv(pv)@l(@v)). (A.20)

Let us discuss the terms on the right-hand side of (A.20). We assume that sq is large enough,
so that all smooth functions described below are as regular as required.

1. The function ug is smooth, because 9x"/dp, = 0 near the vertex.

2. For the same reason as in the previous step and due to the fact that p, sin,|pq) =y, one
can write a 4 as edge singularities

ay (Y, 2) = ky o (1, 2)y7 25 (2) X5 (y),

where k, , is smooth and x§, x5 are the same as in (A.17).

3. One has 597()1 € R. Then, using an idea from von Petersdorff, cf. [40, (2.22)—(2.24)], we

rewrite the terms p)t!sin?+246, as

L
Pi\H Sin“{+2q 0, = Z blz)\+1—'y—2q—2ly~/+2q+2l + p1>;\+1w1(9v)7 (A21)
=0

where w is a sufficiently smooth function, b; are real numbers, and L > 0 is an integer that
depends on the needed regularity of wy; moreover, w; vanishes along with its derivatives
up to a certain order (depending on L) at 6, =0 .

4. The function w; (see the last term in (A.20)) is smooth.

For vertex singularities of the second type, we use (A.16) with (A.10), (A.12) and then apply
(A.15) to decompose ¢pi (0, ©y). As a result, we have for A € Ap, (), A > —1/2 and for
non-integers v € Ap;.(I'e) N (0, +00):

_6¢Dir‘ ”
Opy 1Pv=75
A2 AL v
u,’ = g .
v Py X (pv) o <63¢¢D;r sin fi;;js Oy 8523”“ cos @v)
@v:%
sin"+24 9,
= oo X (o) Wa() + X" (o) X (00) Y Ehpa | (A.22)
sin?t24-1 9, cos @
Y+29<so v v
where wa(6,) = (w2,1(0y), w22(8,)) with we; and wg o sufficiently smooth due to Dirichlet

boundary conditions for ¢p;(6,,9,) at 0, = 0 and at ¢, = 7, a(f?] € R, and the terms

posin?t24 0, p)sin’+2471 9, can be treated similarly to (A.21).
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Analogously, for vertex singularities of the third type, we obtain by (A.16), (A.10), (A.13),
and (A.15) for A > 1/2 such that (A—1) € Ay..(I'y) and for non-integers v € Ayeu(I'e) N (0, +00):

<)\<;5Neu cos B, + &3—3@“ sin 9v>

@v:%

u) P X" (po)

— <)\¢Neu sin @, sin ¢, — ag’gj“ Z?igj — 8§g:u cos 6, sin cpv>

‘Pv:%

S

= )X (po) W3(0u) + X" (o) X (00) Y. &¥)p
Y+2g<so

sin?24 9, f1(6,)
sin’ 24719, £5(6,)

) (A23)

(3)

where w3(0,) is as smooth as necessary, ¢y, € R, f1 and fy are smooth (trigonometric) functions
of 0,. As before, the terms p) sin?*24 6, and p) sin?*2¢=1 6, can be dealt with as in (A.21).

For integer values of v € Ap;(T'e) = Aneu(Te) the expressions for ¢pi,(0y, y) and de 0y, ©o)
include additional terms with log(sin 6, )-factors, appearing due to corresponding terms in (A.6)
and (A.7). This results in additional terms with logy-factors in the first expression in (A.21)
and an additional term with log(sin 6, )-factor in the last term in (A.21). The latter produces
the function wq(6,) log(sin6,), which is as smooth as necessary due to the high order root of
wy at 6, = 0.

If \ is a positive integer, then similarly as above the expression for u)** will include additional
oo log p,-singularities.

Thus, summarising the above, we conclude that the singular fields u)* (k = 1,2,3) on T'})
comprise two main contributions (we omit the smooth remainder uy and the edge singularities
a, 4 appearing in (A.20)): these are purely radial singularities of the type plog® p, (for each
component of the singular field) in a neighbourhood of the vertex and the combined edge-vertex
singularities of the type =7y logy in a neighbourhood of the edge-vertex. The purely radial
singularity u¥ on ') can be written in the following general form

v,1
Ny,1 94;
y i 1 )\;1,1_"_1
u’ = ZZBZ& curlpq) (pv |lOgPU|tXU(Pv)X11),i,t(9v))
i=1 t=0
v,2
Ny,2 q; 9 )\1.}'2
+ Y By ot [logpul' X (po) X5,i.4(80), (A.24)
i=1 t=0
where )\g-’i-ll Z )‘;)71 > -3, )‘;')fl > )‘372 > —1, and ny1, g2, q;)’l > 0, qf’Q > 0 are integers,

B;’l, B;;’z are real numbers, and x"(py) is the same cut-off function as in (A.10). The functions
X1t € H"(0,w,) and X5t € H*2(0,w,) for t; and t5 as large as required. Here, w, denotes the
interior angle (on I'") between the edges meeting at v.

To specify the combined edge-vertex singularities of the form 27y log y mentioned above
let us define the cut-off functions x¥ and x®” such that x¥ =1 for 0 < p, < 7, and x* = 0 for

29



Py > 27, with some 7, € (0, %), x¢ =1for 0 <6, <f, and x¢¥ = 0 for %ﬁv <0, < w, with
some 3, € (0, min{w,/2,7/8}]. First, without loss of generality we omit logarithmic factors and
consider the edge-vertex singularities in the sector S%, = {(py, 0, 5); 0< py <7y, 0< 0, < By}
(note that x? = x® = 1 in S9)). It follows from the above presentatlon that these singularities
are either vector curls of zM+1=7y" with vy > 1 A\ > —5 (cf. (A 20), (A.21)) or vector
functions u = (Cy22772y72 Cyzr2772F 17271 w1th Yo > % Ay > 2, and C1, Cy € R (cf.
(A.22), (A.23)). In the latter case there holds

u = ¢ (Z)\z—'yzy'yg’ O) + Oy (O, Zkz—'yz-i-ly'yz—l)
= Czcurlp) (222 T1792972) + Oy (222772972, 0) (A.25)

for some real numbers C3, Cy. Note that cut-off functions can be easily incorporated in (A.25):
we then obtain additional terms on the right-hand side. These terms correspond to pure edge
singularities (y72, y?) and purely radial singularities (p)2, p)2).

Thus, we conclude that any edge-vertex singularity in tensor product form can be represented
as a linear combination of the vector curl of zAM1 =7y with v > %, A> —% and vector functions
(N7 0) with v/ > %, N> —%. We write these singularities in the following general form:

1 7J1
melnvl

Z Z ZZZB%; curly() (zAl +1=7p! V;’1|log 2T log y|lxv(pv)xev(9v))

7=1 i=1s=0t=0[=0

s€ 112
m6277/'u2

+ 2 ZZZZB%@ N 5 og 2 [ Tog yl! X (pu) XV (00) ( (1) ) (A.26)

7j=1 i=1 s=0t=01=0

1 2 ..
where s is an integer, Bfﬁts, B:ﬁts are real numbers, and all remaining parameters as well as the

cut-off functions x¥, x¢¥ are as before.

It follows from the main regularity result of [21] (see Theorem 4.7 therein) that, besides
edge singularities (A.1) and vertex singularities (A.10), the decomposition of the vector field U
also includes edge-vertex singularities. These singularities can be written using a convolution
operator analogously to the Laplace problem (cf. Theorem 2.6 and Theorem 4.7 in [21]). In [41,
Theorem 6] it has been shown that these combined singularities (for the Laplace problem) can
be written as a combination of singularities of the following two types (for simplicity, we omit
logarithmic factors):

Cpy " v X" (po) X (6) (A.27)
and

a(po) 7" X" (po) X (60), (A.28)

where v¢ and AV are the exponents for corresponding pure edge and pure radial singularities,
respectively, x¥ and x¢’ are the same cut-off functions as above, C € R, and o € H i;Z (0, +00).

loc

Here, HifYZE(O, +00) C H; 7 (0, 4+00) is a weighted Sobolev space and s is as large as needed.

30



Analogously, we conclude that both components of the combined edge-vertex singularities
of the vector field U can be written as combinations of (A.27) and (A.28). Taking traces (see
(A.16)) and treating the terms p} ~7 97" = p)" sin”" @, as in (A.21), it is easy to see that the
singularities of u generated by (A.27) are covered by (A.26). To deal with the singularities
generated by (A.28) we note that o € H f;ZG(O, +00) has a sufficiently high order root at 0 for s
large enough, see [37, page 731]. Then, for a properly selected cut-off function x§(y) in (A.18),
one has (cf. [37, page 734])

a(py) X" (Pv) X7 (0n) = x(y; 2) X5(y)-

Here, x is a function that can be smoothly extended by zero onto M= {(0,y,2); y > 0} to lie
in H* (I‘(l)). Thus, the edge-vertex singularities generated by (A.28) extend the corresponding
edge singularities (A.18) till the vertex v. They can be written in the general form

me,1 S

= ¥ Zcurlpu)( % | log YI* X551 (Y, 2) xS(y))

7j=1 s=0

Me 2 S g

+ DD yb " log yl* Xj,s,2(Y: 2) X5(y)- (A.29)

7j=1s=0

H e,2 el e,2
€re, Me 1, Me,2, ’Y] 77] ) ] 73]' )

when extended by zero onto TW| lie in H™ (f(l)) and H™2 (f(l)), respectively, with mq, my as
large as required.

and x§ are as in (A.18). The functions Xjs1 and X5 ;9

Remark A.1 We note that the supports of u$® and u§’ are subsets of the plane sector Se, =
{(Pv,ev, 2) 0<py,<27,,0<0, < Qﬁv}

Remark A.2 If ' is an open surface and the face TW is such that O N OTM) contains at
least one edge then an additional assumption must be imposed on the smooth functions X3 ; , and

X5+ in (A.24) to guarantee that the mormal component of u’ vanishes on OT' N ar. Note
that one can always obtain the normal components of the edge singularity and of the combined
edge-vertex singularities to be vanishing on O N OT(Y) by a proper choice of the corresponding
cut-off functions.

B Approximation of vertex singularities

In this appendix we analyse the polynomial approximation of the radially singular vector field v €
fIll/ 2 (T"). The results below are needed for the approximation analysis of the vertex singularities
given by (2.3).

Let us fix a vertex v of I'. Denoting by (r,8) local polar coordinates (with origin at v), we
consider the singular vector field

u = (ug,ug) = r|log r|Px(r)w(h), (B.1)
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where A > —1/2, 5 > 0 is an integer, x is a C* cut-off function such that y =1 for 0 <r <7
and x = 0 for r > 27 with some 7 € (0,1), w = (w1,w2) € H™(0,w,) for m as large as
required, and w-n|gr = 0. If A = 0, we assume that J is a positive integer, so that u has only a
logarithmic singularity in this case. Note that the function u in (B.1) corresponds to the second
term in (2.3).

Let A, := U{l';; v € [';}. Assuming that the cut-off function x in (B.1) is such that
suppu C A,, we study approximations of u by Hg(div, I')-conforming vector fields with piecewise
polynomial components. Our analysis relies on the p-approximation result for scalar vertex
singularities

u = 1M log 7P x (r)w(h), (B.2)

where A\, 3, x are as in (B.1) and w € H™(0,w,) with m as large as required. This result is
formulated in the following lemma (see [7, Theorem 3.2]).

Lemma B.1 Let I'; C A, and let u be given by (B.2) on I';. Then there exists a sequence
up € Pp(I'y), p=1,2,..., such that for 0 < s < min {1, A + 1}

lw = upllgsr,) < Cp 2179 (1 4 log p)”.
Moreover, u,(0,0) =0, u, =0 on the sides l; C 9L, l; F v, and
u —upllr2,) < Cp 22 (1 4 logp)?  for each side I, € 9T, v € .
We will also need the following lemma, which is proved in [37, Lemma 9.2].
Lemma B.2 Let K be a parallelogram, and let | be a side of K with vertices A, B. Let
wy € Py(l) be such that wy(A) = wp(B) =0 and ||wy||r2qy < f(p). Then there exists u, € Pp(K)
such that u, = wy, onl, up =0 on OK\l, and for 0 < s <1

upl sy < Cp~ 2 f(p).

Now we are ready to state and prove the needed approximation result for the singular vector
field u in (B.1).

Theorem B.1 Let u be given by (B.1) with A > —% and an integer 3 > 0. Then there exists a
sequence ¢ € X,(I'), p=1,2,..., such that

lu— @l qi2,py < Cp 202 (1 +1ogp)”. (B.3)
H ~(T)
Proof. If p =1, then we set ¢ =0 on I', and (B.3) holds. Let p > 2. First, we approximate u

component-wise on a separate element K C A,. Let A(K) = {l;} contain those sides [; C 0K
for which v € [;, and let B(K') be the union of the other sides of K. Then, applying Lemma B.1
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to each component u, (k = 1,2) of the vector field u on K, we find polynomials ¢, € Pp_1(K)
such that ¢ = 0 at the vertex v and on the sides ; € B(K). Moreover, for k = 1,2

||uk - (pkHHS(K) < Cp_2()\+1_8) (1 + lng)ﬁv 0<s< min{lv A+ 1}7 (B4)

A

lur — prll2q) < Cp 2O +12) (1 4 logp)?  for every | € A(K). (B.5)

Suppose now that I'y, I'y C A, are two elements having the common edge | = hnly €
A(l'1) N A(T'5) and assume that A(T;) = {I,1} with [ C e. Here, e is an edge of I' such that
v € €. (The case of a convex corner with only one element can be dealt with analogously.) Let us
denote by ¢ = (p1, p2) (respectively, by ¥ = (11, 12)) the above component-wise approximation
of uon I'y (respectively, on I'y). We will adjust the function ¢ on I' to find an H(div,T'; UTs)-
conforming vector field having zero normal component on [ C e.

We denote by n = (n1,n9) and n = (71, 72) the unit outer normal vectors to I'; for edges [
and [, respectively. It is clear that |nifa| 4 |fi1ng| > 0. Therefore, without loss of generality we
can assume that 11 # 0 and ng # 0.

Recalling that u - n|; = (u1n1 + ugng)|; = 0, we consider the normal trace

g1 =@ n[ = (p1n1 + p2n2)|i
vanishing at the end-points of [. One has by (B.5)
gl z2y = (w1 — 1)y + (uz — 2)nalr20) < Cp~ 22 (1 +log p)~.
Then we use Lemma B.2 to find a polynomial z; € Pp—1(I'1) such that
z1 =g onl, z1 =0 on dI'1\l,

and for 0 < s <1
|21l s (ry) < Cp 179 (1 4 log p)”. (B.6)
We set
(,52 = Y2 — T% Z1 on Pl. (B?)
Then (,52 c Pp_l(Fl),

(p1n1 + @2an2)|; = (p1n1 + pang)|; — 211 =0,

P2 = @ on A'1\[, and the norms ||uz — @al| s (ry), [Juz — (ﬁQHLz(f) are bounded as in (B.4), (B.5),
respectively. B
Now we consider the jump of the normal component along the common side [ of I'y and I'y

92 = [ — (p1,@2)] - Ay = [(¥1 — o) + (Y2 — p2)n2]lf,

which vanishes at the end points of [. Using again Lemma B.2 we find a polynomial z, € Pp-1(I'1)
such that . .
Z9 = g9 onl, 29 =0 on dI'1\l,
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and the norm |[|za| gs(r,) for 0 < s <1 is bounded as in (B.6).
Then we define the vector function ¢ = (¢1, ¢2) on I'y U Ty as follows

¢ =1 only, ¢=(901+ﬁ%22,¢2) on I'y

with P2 defined by (B.7). It is easy to see that ¢1 = ¢2 = 0 on B(I'1) UB(T'2), ¢ -1 is continuous
along [ (thus, ¢ € H(div,I'1 UT2)), ¢ -n|; = 0, and for j = 1,2 there holds

MG H(@lr;) = det(B;j) By (Ir,) 0 Tj € Pp1(Q) x Pp-1(Q) € V5T (Q).

Moreover, the norms |[ug — @& ||gsr,) and |lug — ¢l gs(r,) are bounded as in (B.4) for k = 1,2
and for any 0 < s < min {1, A+ 1}. Repeating the above procedure for all elements I'; C A” we
construct a vector function ¢ = (¢1,¢2) € X,(Ay) such that ¢; = ¢ = 0 on 90A4,\0I' and for
k=1,2

luk = rllms ;) < Cp 213 (1 +1ogp)?®, 0<s<min{l,\A+1}. (B.8)

Now we extend both components of ¢ by zero onto I'\A, (keeping the notation ¢ for the
extension). Then ¢ € X,(I") and for 0 < s < min {1, A + 1} there holds

la = Bl () < Cp~>A17 (1 + logp)”. (B.9)

In fact, for s = 0 estimate (B.9) on I immediately follows from inequalities (B.8) on individual
elements. If 1/2 < s < min {1, A + 1}, we use the fact that HY ;(I') = H? (T') for these values of
s and then apply Lemma 3.1 of [8] to each component of (u — ¢):

2
lu =@l oy < Clu— bl SO 3 llu = Sullry-
k=1 j:T;CAy

Then (B.9) follows again from (B.8). )
Finally, for 0 < s < 1/2 estimate (B.9) is obtained via interpolation between H(I") = HY (T)
and HY (') with some s’ € (3, min {1, A +1}). Taking s = % in (B.9) we prove (B.3). O
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