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Abstract

We prove an a priori error estimate for the hp-version of the boundary element method
with weakly singular operators in three dimensions. The underlying meshes are quasi-
uniform. Our model problem is that of the Laplacian exterior to an open surface where
the solution has strong singularities which are not L2-regular. Our results confirm previ-
ously conjectured convergence rates in h (the mesh size) and p (the polynomial degrees)
and these rates are given explicitly in terms of the exponents of the singular functions. In
particular, for sufficiently smooth given data we prove a convergence in the energy norm like
O(h1/2p−1).

Key words: hp-version with quasi-uniform meshes, boundary element method, weakly singu-
lar operators, singularities
AMS Subject Classification: 41A10, 65N15, 65N38

1 Introduction

In recent papers we proved several a priori error estimates for the p- and the hp-version with
quasi-uniform meshes of the boundary element method (BEM). The p-version of the BEM is
a finite element Galerkin method for boundary integral equations where a fixed mesh is used
and where the approximation is improved by increasing polynomial degrees. The hp-version
combines mesh refinements with the increase of polynomial degrees.

We are particularly interested in three-dimensional elliptic problems of second order in do-
mains interior or exterior to polyhedra or exterior to open surfaces. The corresponding boundary
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integral equations thus live on polyhedral or open surfaces and their solutions are irregular at
edges and vertices. In this paper we analyse the hp-version of the BEM for weakly singular
operators that appear when considering Dirichlet-type boundary value problems. For problems
in two dimensions (on polygons or open curves) it is long known that the p-version converges
twice as fast as the h-version (in terms of numbers of unknowns), see [3] for the finite element
method (FEM) and [12] for the BEM. In three dimensions this fact has been confirmed only
recently and only partially. For instance, for polyhedra, there are no corresponding a priori error
estimates for the hp-version of the FEM with quasi-uniform meshes. For results on the p-version
see [11].

In three dimensions, Schwab and Suri [16] were the first to analyse the p-version of the BEM,
but only for hypersingular operators and on closed surfaces where solutions are in H1. In [5] we
improved and extended those results to the case of open surfaces (where solutions are not in H1

in general). The case of weakly singular operators (only the p-version) has been dealt with in
[7]. In [6] we extended the p-version results for hypersingular operators to the hp-version with
quasi-uniform meshes. Preliminary results for the hp-version and weakly singular operators have
been presented in [4]. There, non-optimal estimates (depending on an unspecified parameter ǫ)
and only for smooth boundary curves are proved.

In this paper, we fully extend our p-version results from [7] to the hp-version with quasi-
uniform meshes. We prove that, for singular functions, the p-version converges also for weakly
singular operators twice as fast as the h-version. In particular, we prove the conjecture from [13]
claiming that for sufficiently smooth given data the hp-version on open surfaces converges like
O(h1/2p−1). Here, h refers to the mesh size and p specifies the polynomial degree. Usually, hp-
version results are obtained from corresponding p-version results be scaling arguments. However,
in the case of weakly singular operators, the energy space is a negative order Sobolev space
and corresponding norms are defined by duality. Therefore, technical details are somewhat
involved. But more importantly, the energy norm is not scalable under affine transformations.
We circumvent this difficulty by considering a specific family of norms which are scalable.

To prove our a priori error estimate we consider the representation of the exact solution
to our model problem by a finite number of singular functions plus a smooth remainder. We
present exact approximation results for the singularities and prove an hp-approximation result
on quasi-uniform meshes for smooth functions based on Sobolev regularity (Theorem 4.1). The
technique to prove Theorem 4.1 appears to be standard for the h-version but, to our knowledge,
the hp-result is new.

Let us note that, of course, the hp-version with geometrically graded meshes is, at least
for standard elliptic problems, more attractive than the hp-version with quasi-uniform meshes.
Whereas the latter converges at most algebraically fast the former method converges faster than
any algebraic order [13]. However, for problems with an oscillating behaviour a uniformly lower
bound for p, not being small, can be advantageous to minimise numerical dispersion errors,
see [1, 14]. Secondly, in contrast to the hp-version with geometric meshes, quasi-uniform hp-
methods deal with high order polynomial degrees also close to singularities and the required
analysis (provided in this paper) is interesting.

Let us present our model problem. We consider a plane open surface Γ ⊂ IR3 with polygonal
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boundary so that it can be discretised by meshes consisting of triangles and parallelograms. We
note that our analysis will apply to open and closed piecewise smooth Lipschitz surfaces but for
ease of presentation we consider the geometrically simpler case of a flat surface with polygonal
boundary. Our model problem is the variational formulation of the equation with single layer
potential V stemming from the Laplacian: Find u ∈ H̃−1/2(Γ) such that

〈V u, v〉 = 〈f, v〉 ∀v ∈ H̃−1/2(Γ). (1.1)

Here, f ∈ H1/2(Γ) is a given function,

V u(x) :=
1

4π

∫

Γ

u(y)

|x− y|
dSy, V : H̃−1/2(Γ) → H1/2(Γ),

is the single layer potential operator of the Laplacian, 〈·, ·〉 = 〈·, ·〉L2(Γ) denotes the extension

of the L2(Γ)-inner product by duality, and H̃−1/2(Γ) is the dual space of H1/2(Γ). For the
definition of H1/2(Γ) see Section 3.

The paper is organised as follows. In the next section we define the hp-version of the BEM
for the approximate solution of our model problem. We review regularity results for the solution
to problem (1.1) and formulate the main theorem stating an a priori error estimate for the hp-
version of the BEM with quasi-uniform meshes. In Section 3 we recall definitions of the Sobolev
spaces and their norms, and collect several technical lemmas. Sections 4 and 5 are focused on
the approximation analysis of smooth and singular functions in negative order Sobolev norms.
In Section 6 the obtained results are combined to prove a general approximation theorem.

Throughout the paper, C denotes a generic positive constant which does not depend on h
or p.

2 The hp-version of the BEM and an a priori error estimate

For the approximate solution of (1.1) we apply the hp-version of the BEM on quasi-uniform
meshes. In what follows, h > 0 and p ≥ 0 will always specify the mesh parameter and a polyno-
mial degree, respectively. For any Ω ⊂ IRn we will denote ρΩ = sup{diam(B); B is a ball in Ω}.

Let M = {∆h} be a family of meshes ∆h = {Γj ; j = 1, . . . , J} on Γ, where the elements
Γj are open triangles or parallelograms such that Γ̄ = ∪J

j=1Γ̄j . For any Γj ∈ ∆h we denote
hj = diam(Γj). In this paper we consider a family M of quasi-uniform meshes ∆h on Γ in the
sense that there exist positive constants σ1, σ2 independent of h = max

j
hj such that for any

Γj ∈ ∆h and arbitrary ∆h ∈ M there holds

h ≤ σ1hj, hj ≤ σ2ρΓj . (2.1)

Let Q = (−1, 1)2 and T = {(x1, x2); 0 < x1 < 1, 0 < x2 < x1} be the reference square and
triangle, respectively. Then for any Γj ∈ ∆h one has Γj = Mj(K) where Mj is an affine mapping
with Jacobian |Jj | ≃ h2

j and K = Q or T as appropriate.
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Below we will refer to three different unions of elements. The union of the elements at a
node v is denoted by Av, i.e., Āv := ∪{Γ̄j; v ∈ Γ̄j}, the union of the elements at one edge e by
Ae (the endpoints of e are not included in e), Āe := ∪{Γ̄j; Γ̄j ∩ e 6= ø}, and Aev := Av ∩Ae.

Further, P1
p (T ) denotes the set of polynomials on T of total degree ≤ p, and P2

p (Q) is the

set of polynomials on Q of degree ≤ p in each variable. Let K ⊂ IR2 be an arbitrary triangle or
parallelogram, and let K = M(T ) or K = M(Q) with an invertible affine mapping M . Then by
Pp(K) we denote the set of polynomials v on K such that v ◦M ∈ P1

p (T ) if K is a triangle and
v ◦M ∈ P2

p (Q) if K is a parallelogram (in particular, we will use this notation for K = Q and
K = T ). For a given non-negative integer p, we then consider the space of piecewise polynomials
on the mesh ∆h ∈ M,

V h,p(Γ) := {v ∈ L2(Γ); v|Γj ∈ Pp(Γj), j = 1, . . . , J}.

Note that V h,p(Γ) ⊂ H̃−1/2(Γ). Now, the hp-version of the BEM is: Find uhp ∈ V h,p(Γ) such
that

〈V uhp, v〉 = 〈f, v〉 ∀v ∈ V h,p(Γ). (2.2)

Since the operator V is continuous, symmetric, and positive definite, any boundary element
method for problem (1.1) converges quasi-optimally, see [9, 17], i.e., there exists a constant
C > 0 independent of h and p such that

‖u− uhp‖H̃−1/2(Γ) ≤ C inf{‖u− v‖H̃−1/2(Γ); v ∈ V h,p(Γ)}. (2.3)

Before giving our main result stating an a priori error estimate for (2.2) let us recall the typical
structure of the solution of our model problem for a sufficiently smooth right-hand side function
f . We use the notation of [5, 16] and refer for more details to [19, 20].

Let V and E denote the sets of vertices and edges of Γ, respectively. For v ∈ V , let E(v)
denote the set of edges with v as an end point. Then, the solution u of (1.1) has the form

u = ureg +
∑

e∈E

ue +
∑

v∈V

uv +
∑

v∈V

∑

e∈E(v)

uev, (2.4)

where, using local polar and Cartesian coordinate systems (rv, θv) and (xe1, xe2) with origin v,
there hold the following representations:

(i) The regular part ureg ∈ Hk(Γ), k > 0.
(ii) The edge singularities ue have the form

ue =
me
∑

j=1





se
j
∑

s=0

bejs(xe1)| log xe2|
s



x
γe

j−1

e2 χe
1(xe1)χ

e
2(xe2), (2.5)

where γe
j+1 ≥ γe

j ≥ 1
2 , and me, s

e
j are integers. Here, χe

1, χ
e
2 are C∞ cut-off functions with χe

1 = 1
in a certain distance to the end points of e and χe

1 = 0 in a neighbourhood of these vertices.
Moreover, χe

2 = 1 for 0 ≤ xe2 ≤ δe and χe
2 = 0 for xe2 ≥ 2δe with some δe ∈ (0, 1

2 ). The functions
bejsχ

e
1 are in Hm(e) for m as large as required.
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(iii) The vertex singularities uv have the form

uv = χv(rv)
nv
∑

i=1

qv
i
∑

t=0

Bv
it| log rv|

tr
λv

i −1
v wv

it(θv), (2.6)

where λv
i+1 ≥ λv

i > 0, nv, q
v
i ≥ 0 are integers, and Bv

it are real numbers. Here, χv is a C∞

cut-off function with χv = 1 for 0 ≤ rv ≤ τv and χv = 0 for rv ≥ 2τv with some τv ∈ (0, 1
2). The

functions wv
it are in Hq(0, ωv) for q as large as required. Here, ωv denotes the interior angle (on

Γ) between the edges meeting at v.
(iv) The edge-vertex singularities uev have the form

uev = uev
1 + uev

2 ,

where

uev
1 =

me
∑

j=1

nv
∑

i=1





se
j
∑

s=0

qv
i
∑

t=0

s
∑

l=0

Bev
ijlts| log xe1|

s+t−l| log xe2|
l



x
λv

i −γe
j

e1 x
γe

j −1

e2 χv(rv)χ
ev(θv) (2.7)

and

uev
2 =

me
∑

j=1

se
j
∑

s=0

Bev
js (rv)| log xe2|

sx
γe

j −1

e2 χv(rv)χ
ev(θv) (2.8)

with

Bev
js (rv) =

s
∑

l=0

Bev
jsl(rv)| log rv|

l. (2.9)

Here, qv
i , se

j, λ
v
i , γ

e
j , χ

v are as above, Bev
ijlts are real numbers, and χev is a C∞ cut-off function

with χev = 1 for 0 ≤ θv ≤ βv and χev = 0 for 3
2βv ≤ θv ≤ ωv for some βv ∈ (0,min{ωv/2, π/8}].

The functions Bev
jsl may be chosen such that

Bev
js (rv)χ

v(rv)χ
ev(θv) = χjs(xe1, xe2)χ

e
2(xe2), (2.10)

where the extension of χjs by zero onto IR2+ := {(xe1, xe2); xe2 > 0} lies in Hm(IR2+) for m as
large as required. Here, χe

2 is a C∞ cut-off function as in (ii).
The following theorem is the main result of this paper.

Theorem 2.1 Let u ∈ H̃−1/2(Γ) be the solution of (1.1) with sufficiently smooth given function
f ∈ H1/2(Γ) such that representation (2.4)–(2.10) holds. Let v0 ∈ V , e0 ∈ E(v0) be such that
min{λv0

1 + 1/2, γe0

1 } = minv∈V,e∈E(v) min{λv
1 + 1/2, γe

1}, with λv
1 and γe

1 being as in (2.5)–(2.8).
Then, for any h > 0 and every p ≥ min {λv0

1 − 1, γe0

1 − 3/2}, the BE approximation uhp defined
by (2.2) satisfies

‖u− uhp‖H̃−1/2(Γ) ≤ C hmin {λ
v0

1
+1/2,γ

e0
1

} (p+ 1)−2 min {λ
v0

1
+1/2,γ

e0
1

}
(

1 + log p+1
h

)β+ν
, (2.11)
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where

β =

{

qv0

1 + se0

1 + 1
2 if λv0

1 = γe0

1 − 1
2 ,

qv0

1 + se0

1 otherwise,
(2.12)

for numbers qv0

1 , s
e0

1 as given in (2.7), and

ν =

{ 1
2 if p = min {λv0

1 − 1, γe0

1 − 3
2},

0 otherwise.
(2.13)

If 0 ≤ p < min {λv0

1 − 1, γe0

1 − 3/2}, then for any h > 0 there holds

‖u− uhp‖H̃−1/2(Γ) ≤ C hp+3/2. (2.14)

The positive constants C in (2.11) and (2.14) are independent of h and p.

Proof. Considering enough singularity terms in representation (2.4)–(2.8) we obtain a suffi-
ciently high regularity for the function ureg ∈ Hk(Γ). Then, due to the quasi-optimal convergence
(2.3) of the BEM, the assertion immediately follows from Theorem 6.1 below. 2

3 Preliminaries

First of all, let us recall the Sobolev spaces and norms that will be used, see [15]. For a domain
Ω ⊂ IRn and an integer s, let Hs(Ω) be the closure of C∞(Ω) with respect to the norm

‖u‖2
Hs(Ω) = ‖u‖2

Hs−1(Ω) + |u|2Hs(Ω) (s ≥ 1),

where

|u|2Hs(Ω) =

∫

Ω
|Dsu(x)|2 dx, and H0(Ω) = L2(Ω).

Here, |Dsu(x)|2 =
∑

|α|=s |D
αu(x)|2 in the usual notation with multi-index α = (α1, . . . , αn) and

with respect to Cartesian coordinates x = (x1, . . . , xn). For a positive non-integer s = m + σ
with integer m ≥ 0 and 0 < σ < 1, the norm in Hs(Ω) is

‖u‖2
Hs(Ω) = ‖u‖2

Hm(Ω) + |u|2Hs(Ω)

with semi-norm

|u|2Hs(Ω) =
∑

|α|=m

∫

Ω

∫

Ω

|Dαu(x) −Dαu(y)|2

|x− y|n+2σ
dx dy.

The Sobolev spaces H̃s(Ω) for s ∈ (0, 1) and for a bounded Lipschitz domain Ω are defined by
interpolation. We use the real K-method of interpolation (see [15]) to define

H̃s(Ω) =
(

L2(Ω),Ht
0(Ω)

)

s
t
,2

(1/2 < t ≤ 1, 0 < s < t).
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Here, Ht
0(Ω) (0 < t ≤ 1) is the completion of C∞

0 (Ω) in Ht(Ω) and we identify H1
0 (Ω) and

H̃1(Ω). Note that the Sobolev spaces Hs(Ω) also satisfy the interpolation property

Hs(Ω) =
(

L2(Ω),H1(Ω)
)

s,2
(0 < s < 1).

Furthermore, the semi-norm | · |H1(Ω) defines the norm on H̃1(Ω) due to Poincaré’s inequality.
For s ∈ [−1, 0) the Sobolev spaces and their norms are defined by duality with L2(Ω) =

H0(Ω) = H̃0(Ω) as pivot space:

Hs(Ω) = (H̃−s(Ω))′, H̃s(Ω) = (H−s(Ω))′,

‖u‖Hs(Ω) = sup
06=v∈H̃−s(Ω)

|〈u, v〉L2(Ω)|

‖v‖H̃−s(Ω)

, ‖u‖H̃s(Ω) = sup
06=v∈H−s(Ω)

|〈u, v〉L2(Ω)|

‖v‖H−s(Ω)
,

where

〈u, v〉L2(Ω) =

∫

Ω
u(x)v(x)dx.

Let us recall the following estimates for the above norms from [2, Theorem 4.1] (see also [18,
Lemma 3.2], where these estimates are given for the case of complex interpolation). Let Ω be
partitioned into non-overlapping Lipschitz subdomains Ω1, . . . ,ΩN . Then for s ∈ [−1, 1] there
hold

N
∑

j=1

‖u|Ωj‖
2
Hs(Ωj)

≤ ‖u‖2
Hs(Ω) ∀u ∈ Hs(Ω) (3.1)

and

‖u‖2
H̃s(Ω)

≤
N
∑

j=1

‖u|Ωj‖
2
H̃s(Ωj)

∀u ∈ H̃s(Ω) with u|Ωj ∈ H̃s(Ωj) for j = 1, . . . ,N. (3.2)

Remark 3.1 We have introduced the Sobolev spaces Hs(Ω) for any real s ≥ −1 and note that
estimate (3.1) is valid for all these values of s (see [2]).

The scaling properties of the norms ‖ · ‖Hs(Ω) and ‖ · ‖H̃s(Ω) for s ∈ [−1, 1] are formulated in

the following lemma (cf. [2, Lemma 4.3]).

Lemma 3.1 Let Kh and K be two open subsets of IRn such that Kh = M(K) under an invertible
affine mapping M . Assume that diamKh ≃ ρKh ≃ h and diamK ≃ ρK ≃ 1. Let u and û be
the functions defined on Kh and K, respectively, such that û = u ◦M and u = û ◦M−1. Then,
for any positive integer m,

|u|Hm(Kh) ≃ h
n
2
−m|û|Hm(K) (3.3)

if û ∈ Hm(K). Moreover, for s ∈ [0, 1] there hold

C1h
n
2 ‖û‖Hs(K) ≤ ‖u‖Hs(Kh) ≤ C2h

n
2
−s‖û‖Hs(K) (3.4)
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if û ∈ Hs(K);
‖u‖H̃s(Kh) ≃ h

n
2
−s‖û‖H̃s(K) (3.5)

if û ∈ H̃s(K);
C1h

n
2
+s‖û‖H̃−s(K) ≤ ‖u‖H̃−s(Kh) ≤ C2h

n
2 ‖û‖H̃−s(K) (3.6)

if û ∈ H̃−s(K); and
‖u‖H−s(Kh) ≃ h

n
2
+s‖û‖H−s(K) (3.7)

if û ∈ H−s(K).

Proof. The equivalence (3.3) is valid due to [8, Theorem 3.1.2]. This gives (3.4) for s = 0, 1.
The equivalence (3.5) for s = 0, 1 is also deduced from (3.3), because | · |H1(K) defines the norm

on H̃1(K). For s ∈ (0, 1), one obtains (3.4), (3.5) by interpolation, and for s ∈ [0, 1], estimates
(3.6), (3.7) then follow by duality because 〈u, v〉L2(Kh) ≃ hn〈û, v̂〉L2(K). 2

Inequalities (3.4) and (3.6) in Lemma 3.1 show that the norms ‖ · ‖Hs(Ω) and ‖ · ‖H̃−s(Ω)

defined above are not scalable for s ∈ (0, 1]. Therefore, following [10], we consider for a generic
subdomain ω ⊂ Ω another family of norms ‖ · ‖Hs

h
(ω) and ‖ · ‖H̃s

h
(ω) (s ∈ [−1, 1]) which are

scalable. Let
‖u‖H0

h
(ω) = ‖u‖H̃0

h
(ω) = ‖u‖L2(ω),

‖u‖2
H1

h
(ω) = diam(ω)−2‖u‖2

L2(ω) + |u|2H1(ω) and ‖u‖2
H̃1

h
(ω)

= |u|2H1(ω).

Then, analogously as for traditional norms, the norms ‖ · ‖Hs
h
(ω) and ‖ · ‖H̃s

h
(ω) for s ∈ (0, 1)

are defined by interpolation and for s ∈ [−1, 0) by duality arguments. Note that the index h
does not refer to the diameter of ω, it is rather an index to indicate the scalability of the norms
under affine transformations of ω onto a reference subdomain (element). This fact is formulated
in Lemma 3.2 below. In order to prove the analogs of estimates (3.1), (3.2) for these scalable
norms, one needs some additional assumptions (see Lemma 3.3).

Lemma 3.2 [10, Lemma 3.1] Let Kh, K ⊂ IR2 satisfy the assumptions of Lemma 3.1. Then
using the notation of Lemma 3.1 there hold for real s ∈ [−1, 1]

‖u‖Hs
h
(Kh) ≃ h1−s‖û‖Hs(K)

if û ∈ Hs(K), and
‖u‖H̃s

h
(Kh) ≃ h1−s‖û‖H̃s(K)

if û ∈ H̃s(K).
Both equivalences are uniform for h > 0.
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Lemma 3.3 [10, Lemma 3.2] Let Ω ⊂ IR2 be partitioned into shape regular convex polygonal
subdomains Ωj (j = 1, . . . , N) which are affine transformations of a fixed set of polygons. Then,
for all u ∈ Hs(Ω), s ∈ [0, 1], with

∫

Ωj
u dx = 0 (j = 1, . . . ,N) there holds

N
∑

j=1

‖u|Ωj‖
2
Hs

h
(Ωj)

≤ C‖u‖2
Hs(Ω). (3.8)

Moreover, for all u ∈ H̃s(Ω), s ∈ [−1, 0], with u|Ωj ∈ H̃s(Ωj) and
∫

Ωj
u dx = 0 (j = 1, . . . ,N)

there holds

‖u‖2
H̃s(Ω)

≤ C
N
∑

j=1

‖u|Ωj‖
2
H̃s

h
(Ωj)

. (3.9)

The positive constants C in (3.8) and (3.9) are independent of u and N .

We will also need the following auxiliary statement.

Lemma 3.4 Let Ωh ⊂ IR2 be a polygonal domain such that diam Ωh ≃ ρΩh ≃ h. Then for all
v ∈ H̃−s(Ωh) with s ∈ [0, 1], there holds

∥

∥

∥

∥

v −
1

|Ωh|

∫

Ωh
v dx

∥

∥

∥

∥

H̃−s
h

(Ωh)

≤ C‖v‖H̃−s
h

(Ωh) (3.10)

with a positive constant C independent of v and h.

Proof. Denote v̄ := 1
|Ωh|

∫

Ωh v dx. Then for s ∈ [0, 1]

‖v̄‖H̃−s
h

(Ωh) =
1

|Ωh|

∣

∣

∣

∣

∫

Ωh
v dx

∣

∣

∣

∣

‖1‖H̃−s
h

(Ωh) ≤
1

|Ωh|
‖v‖H̃−s

h
(Ωh) ‖1‖Hs

h
(Ωh) ‖1‖H̃−s

h
(Ωh). (3.11)

Since |Ωh| ≃ h2 and, due to Lemma 3.2,

‖1‖Hs
h
(Ωh) ≃ h1−s, ‖1‖H̃−s

h
(Ωh) ≃ h1+s,

we deduce from (3.11)
‖v̄‖H̃−s

h
(Ωh) ≤ C‖v‖H̃−s

h
(Ωh).

Then (3.10) follows by using the triangle inequality. 2
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4 Auxiliary approximation results

In this section we formulate several results regarding the approximation of smooth and singular
functions in negative order Sobolev norms.

For the hp-approximation of smooth functions on quasi-uniform meshes we prove the fol-
lowing statement, which gives an estimate for the approximation error in the H̃s(Γ)-norm,
s ∈ [−1, 0].

Theorem 4.1 Let m ≥ 0. Then for any u ∈ Hm(Γ) there exists uhp ∈ V h,p(Γ) such that for
s ∈ [−1, 0]

‖u− uhp‖H̃s(Γ) ≤ Chµ−s(p + 1)s−m‖u‖Hm(Γ), (4.1)

where µ = min {m, p + 1}.

Proof. In view of the bound (3.2) one needs to find a piecewise polynomial uhp such that for
any element Γj ⊂ ∆h there holds

‖(u− uhp)|Γj‖
2
H̃s(Γj)

≤ Ch2(µ−s)(p + 1)2(s−m)‖u|Γj‖
2
Hm(Γj)

(4.2)

with s ∈ [−1, 0] and µ = min {m, p + 1}.
(i) First we prove that for any v ∈ Hm(Γj) there exists a polynomial vp ∈ Pp(Γj) such that

‖v − vp‖
2
L2(Γj)

≤ Ch2µ(p+ 1)−2m‖v‖2
Hm(Γj)

. (4.3)

Let Kh = Γj ∈ ∆h and K = Q (or K = T ) such that Kh = Mj(K) under affine mapping
Mj . Then, due to Lemma 4.1 of [3], there exists a family of operators {π̂p}, p = 0, 1, 2, . . .,
π̂p : Hm(K) → Pp(K) such that for any v̂ ∈ Hm(K)

‖v̂ − π̂pv̂‖L2(K) ≤ C(p+ 1)−m‖v̂‖Hm(K), m ≥ 0.

Moreover, if v̂ ∈ Pp(K), then π̂pv̂ = v̂.
On the other hand, if v ∈ Hm(Kh), then v̂ = v ◦Mj ∈ Hm(K) and one has (see, e.g., [3,

Lemma 4.4])
inf

ϕ̂∈Pp(K)
‖v̂ − ϕ̂‖Hm(K) ≤ Chmin {m,p+1}−1‖v‖Hm(Kh).

These two results yield (for details, see [3, Lemma 4.5])

‖v̂ − π̂pv̂‖L2(K) ≤ Chmin {m,p+1}−1(p+ 1)−m‖v‖Hm(Kh), m ≥ 0.

Let vp := (π̂pv̂) ◦M
−1
j = v̂p ◦M

−1
j . Then vp ∈ Pp(Γj) and making use of Lemma 3.2 we deduce

that
‖v − vp‖L2(Γj) ≤ Ch1‖v̂ − v̂p‖L2(K) ≤ Chµ(p + 1)−m‖v‖Hm(Γj).

This proves (4.3).
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(ii) Now, for given u ∈ Hm(Γ) let uhp ∈ V h,p(Γ) be defined piecewise, on the elements Γj, by
the L2(Γj)-projection onto Pp(Γj). Then, by (4.3) and using the minimising property of the
L2-projection, we find the estimate

‖(u− uhp)|Γj‖L2(Γj) ≤ Chµ(p + 1)−m‖u‖Hm(Γj). (4.4)

Now, by the definition of the H̃s(Γj)-norm and by the orthogonality of the L2(Γj)-projection,
we find that

‖(u− uhp)|Γj‖H̃s(Γj ) = sup
v∈H−s(Γj)\{0}

〈u− uhp, v〉L2(Γj)

‖v‖H−s(Γj)

= sup
v∈H−s(Γj)\{0}

inf
vp∈Pp(Γj)

〈u− uhp, v − vp〉L2(Γj)

‖v‖H−s(Γj)

≤ ‖u− uhp‖L2(Γj) sup
v∈H−s(Γj)\{0}

inf
vp∈Pp(Γj)

‖v − vp‖L2(Γj)

‖v‖H−s(Γj)
. (4.5)

By (4.3) there holds

sup
v∈H−s(Γj)\{0}

inf
vp∈Pp(Γj)

‖v − vp‖L2(Γj)

‖v‖H−s(Γj)
≤ Chmin {−s,p+1}(p + 1)s = Ch−s(p+ 1)s.

Therefore, (4.5) together with (4.4) proves that

‖(u− uhp)|Γj‖
2
H̃s(Γj)

≤ Ch2µ(p + 1)−2m‖u‖2
Hm(Γj)

h−2s(p+ 1)2s.

This is (4.2).
To finish the proof of the theorem it remains to combine inequalities (4.2) over all the

elements of the mesh and to apply (3.2). 2

Now let us recall some known results regarding the approximation of singularities by polyno-
mials of arbitrary degree in negative order Sobolev spaces on triangles (parallelograms) of fixed
size. In the propositions below K ⊂ IR2 will always denote a triangle or parallelogram such that
diamK ≃ ρK ≃ 1. The particular location of K in IR2 will be additionally specified in each
proposition. We will consider three types of singular functions on K which correspond to the
vertex singularity (see (2.6)) and to the edge-vertex singularities of both types (see (2.7)–(2.10)):

u1(x) = rλ−1| log r|βχ(r)w(θ), (4.6)

u2(x) = xλ−γ
1 xγ−1

2 | log x1|
β1| log x2|

β2χ(r)χ̃(θ), (4.7)

u3(x) = xγ−1
2 | log x2|

βχ1(x1, x2)χ2(x2), (4.8)

where λ > −1
2 and γ > 0 are real numbers, β, β1, β2 ≥ 0 are integers, (r, θ) are polar coordinates

in IR2, χ, χ̃, χ2 are C∞ cut-off functions satisfying

suppχ ⊂ [0, τ0], supp χ̃ ⊂ [0, β0], suppχ2 ⊂ [0, δ0]

for some τ0, β0, δ0 > 0, and the functions w, χ1 are sufficiently smooth.
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Proposition 4.1 Let K ⊂ IR2 and suppose that the origin O is a vertex of K. Let u1 be
given by (4.6) and assume that suppχ ⊂ [0, τ0] for 0 < τ0 < ρK . Then there exists a sequence
u1,p ∈ Pp(K), p = 0, 1, 2, . . . , such that for −1 ≤ s < min {0, λ}

‖u1 − u1,p‖H̃s(K) ≤ C (p+ 1)−2(λ−s) (1 + log(p+ 1))β . (4.9)

Proof. If p = 0, then we set u1,p = 0 on K, and (4.9) is valid. For p ≥ 1, the assertion follows
from [7, Theorem 3.6] by adjusting the constant C. 2

Proposition 4.2 [7, Theorem 3.4] Let K ⊂ IR2+. Suppose that the origin O is a vertex of K
and one of the other vertices of K lies on the right semi-axis Ox1. Let u2 be given by (4.7) and
assume that suppu2 ⊂ S̄0 = {(r, θ); 0 ≤ r ≤ τ0, 0 ≤ θ ≤ β0 <

π
4 } ⊂ K̄. Then there exists a

sequence u2,p ∈ Pp(K), p = 0, 1, 2, . . . , such that for −1 ≤ s < min {0, λ, γ − 1
2}

‖u2 − u2,p‖H̃s(K) ≤ C (p + 1)−2(min {λ,γ−1/2}−s) (1 + log(p + 1))β1+β2+σ, (4.10)

where σ = 1
2 if λ = γ − 1

2 , and σ = 0 otherwise.

Proposition 4.3 Let K ⊂ IR2+ and suppose that at least one vertex of K lies on the axis Ox1.
Let u3 be given by (4.8) with χ1 ∈ Hm(K), m > 2γ + 3, and assume that suppχ2 ⊂ [0, δ0]
for 0 < δ0 < ρK . Then there exists a sequence u3,p ∈ Pp(K), p = 0, 1, 2, . . . , such that for
−1 ≤ s < min {0, γ − 1

2}

‖u3 − u3,p‖H̃s(K) ≤ C (p+ 1)−2(γ−1/2−s) (1 + log(p + 1))β ‖χ1‖Hm(K). (4.11)

Proof. For s = −1
2 , this statement follows from [7, Theorem 3.2]. As shown in [7, Remark 3.4],

the general estimate (4.11) for −1 ≤ s < min {0, γ − 1
2} also holds. 2

5 The hp-approximation of singularities

We will use the results of Propositions 4.1–4.3 to estimate the errors of piecewise polynomial
approximations of the singular functions ue, uv, uev

1 , and uev
2 (see (2.5)–(2.8)) on quasi-uniform

meshes. For each singular function we prove an error estimate in terms of both the mesh size h
and the polynomial degree p.

5.1 Approximation of the edge-vertex singularity uev
1

Let e ∈ E be an edge of Γ with vertices v, w. By lv and lw we will denote the edges of ∂Ae such
that l̄v ∩ ē = {v} and l̄w ∩ ē = {w}.
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Let us consider the cut-off functions χv and χev which appear in the expression for the
edge-vertex singularity uev

1 (see (2.7)). We adjust the supports of these cut-off functions as
follows:

suppχv ⊂ [0, 2τv ] with 0 < τv < min {1
4 dist {v,w}, 1

2},

suppχev ⊂ [0, 3
2βv] with 0 < βv ≤ min {1

2θ0,
1
2ωv,

π
8 },

where θ0 is the minimal angle of the elements in the mesh ∆h. Then uev
1 vanishes outside the

sector S = {(rv, θv); 0 < rv < 2τv, 0 < θv <
3
2βv}, in particular, uev

1 = 0 on lv ∪ lw. Note that
these conclusions also hold for the edge-vertex singularity uev

2 given by (2.8).

Theorem 5.1 Let u = uev
1 be given by (2.7). Then there exists uhp ∈ V h,p(Γ) with p ≥ min {λ−

1, γ − 3
2} such that for s ∈ [−1,min {0, λ, γ − 1

2}),

‖u− uhp‖H̃s(Γ) ≤ C hmin {λ,γ−1/2}−s (p + 1)−2(min {λ,γ−1/2}−s)
(

1 + log p+1
h

)β+ν
, (5.1)

where λ = λv
1 > −1

2 , γ = γe
1 > 0,

β =

{

qv
1 + se

1 + 1
2 if λv

1 = γe
1 −

1
2 ,

qv
1 + se

1 otherwise,

and

ν =

{ 1
2 if p = min {λ− 1, γ − 3

2},

0 otherwise.

If 0 ≤ p < min {λ− 1, γ − 3
2}, then there exists uhp ∈ V h,p(Γ) satisfying for s ∈ [−1, 0]

‖u− uhp‖H̃s(Γ) ≤ C hp+1−s. (5.2)

Proof. For simplicity we consider the singular function

u(x1, x2) = xλ−γ
1 xγ−1

2 | log x1|
β1 | log x2|

β2χv(r)χev(θ), (5.3)

where λ = λv
1 > −1

2 , γ = γe
1 > 0, and β1, β2 ≥ 0 are integers.

Let us introduce an auxiliary cut-off function χ2 ∈ C∞(IR+) such that for some δ ∈ (0, 1)

χ2(t) = 1 for 0 ≤ t ≤ δ/2 and χ2(t) = 0 for t ≥ δ.

Denote h0 = (σ1σ2)
−1h, where σ1, σ2 are the same as in (2.1). We decompose the function u in

(5.3) as

u = uχv(r/h0) + u(1 − χv(r/h0))χ2(x2/h0) + u(1 − χv(r/h0))(1 − χ2(x2/h0))

=: ϕ1 + ϕ2 + ϕ3. (5.4)

We will approximate the functions ϕi (i = 1, 2, 3) in (5.4) separately.
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Approximation of ϕ1. Due to the adjustment of the supports of the cut-off functions χv and
χev, there holds suppϕ1 ⊂ K̄h, where Kh = Γ1 ⊂ Aev is the element touching the edge e and
the vertex v. Moreover, if K ⊂ IR2+ denotes a triangle or parallelogram such that Kh = M(K),
where

M : xi = hx̂i, i = 1, 2, x ∈ Kh, x̂ ∈ K, (5.5)

then K satisfies the assumptions of Proposition 4.2.
For h < 1

2 one has

ϕ̂1(x̂) = ϕ1(hx̂1, hx̂2) = hλ−1
β1
∑

k1=0

β2
∑

k2=0

(

β1

k1

)(

β2

k2

)

| log h|k1+k2 f̂β1−k1,β2−k2
(x̂),

where
f̂k1,k2

(x̂) = x̂λ−γ
1 x̂γ−1

2 | log x̂1|
k1 | log x̂2|

k2χv(σ1σ2r̂)χ
ev(θ̂),

r̂ = (x̂2
1 + x̂2

2)
1/2, θ̂ = arctan(x̂2/x̂1), ki = 0, . . . , βi (i = 1, 2).

By Proposition 4.2, for each pair (k1, k2) there exists a polynomial ĝk1,k2
∈ Pp(K) approxi-

mating f̂k1,k2
on K and satisfying for −1 ≤ s < min {0, λ, γ − 1

2}

‖f̂k1,k2
− ĝk1,k2

‖H̃s(K) ≤ C (p+ 1)−2(min {λ,γ−1/2}−s) (1 + log(p + 1))k1+k2+σ.

Hence, setting

ψ̂1(x̂) := hλ−1
β1
∑

k1=0

β2
∑

k2=0

(

β1

k1

)(

β2

k2

)

| log h|k1+k2 ĝβ1−k1,β2−k2
(x̂),

we estimate

‖ϕ̂1 − ψ̂1‖H̃s(K)

≤ hλ−1(p+ 1)−2(min {λ,γ−1/2}−s)(1 + log(p+ 1))σ ×

×
β1,β2
∑

k1,k2=0

(

β1

k1

)(

β2

k2

)

| log h|k1+k2C(k1, k2)(1 + log(p+ 1))β1−k1+β2−k2

≤ C(β1, β2)h
λ−1(p+ 1)−2(min {λ,γ−1/2}−s)

(

1 + log p+1
h

)β1+β2

(1 + log(p+ 1))σ . (5.6)

Let ψ1 := ψ̂1 ◦M
−1 on Kh = Γ1. Then ψ1 ∈ Pp(Γ1) and making use of Lemma 3.2 we deduce

from (5.6)

‖ϕ1 − ψ1‖H̃s
h
(Γ1) ≤ Chλ−s(p+ 1)−2(min {λ,γ−1/2}−s)

(

1 + log p+1
h

)β1+β2

(1 + log(p+ 1))σ , (5.7)

where −1 ≤ s < min {0, λ, γ − 1
2}, σ = 1

2 if λ = γ − 1
2 , and σ = 0 otherwise.
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Approximation of ϕ2. The function ϕ2 in (5.4) has a singular behaviour only with respect to x2

and has a small support, suppϕ2 ⊂ (Āe∩R̄
h
1 ), whereRh

1 = {(r, θ); τvh0 < r < 2τv , 0 < θ < 3
2βv}.

Let us write ϕ2 as
ϕ2(x1, x2) = xγ−1

2 | log x2|
β2χ1(x1, x2)χ2(x2/h0), (5.8)

where
χ1(x1, x2) := xλ−γ

1 | log x1|
β1χv(r)χev(θ)(1 − χv(r/h0)).

Note that χ1 ∈ C∞(Ae), suppχ1 ⊂ R̄h
1 , in particular, χ1 = 0 on the edges lv, lw ⊂ ∂Ae.

Moreover, for any integer t ≥ 0 there holds

|χ1|Ht(Ae) ≤ C logβ1(1/h)h1/2−t







hλ−γ+1/2 if λ < γ − 1/2,
log1/2(1/h) if λ = γ − 1/2,
1 if λ > γ − 1/2,

(5.9)

see [6, proof of Theorem 5.1]. To approximate the function ϕ2 given by (5.8), we consider an
element Kh = Γj ⊂ Ae. Let K ⊂ IR2+ be a triangle or parallelogram such that Kh = M(K),
where M is defined by (5.5). Then at least one vertex of K lies on the axis Ox̂1 and

ϕ̂2(x̂) = ϕ2(hx̂1, hx̂2) = hγ−1
β2
∑

k=0

(

β2

k

)

| log h|kf̂β2−k(x̂),

where
f̂k(x̂) = x̂γ−1

2 | log x̂2|
kχ̂1(x̂)χ2(σ1σ2x̂2),

χ̂1(x̂) = χ1(hx̂1, hx̂2), k = 0, 1, . . . , β2. Applying Proposition 4.3 to each function f̂k (k =
0, 1, . . . , β2) we find polynomials ĝk ∈ Pp(K) such that for −1 ≤ s < min {0, γ − 1

2} and for any
integer m > 2γ + 3

‖f̂k − ĝk‖H̃s(K) ≤ C (p+ 1)−2(γ−1/2−s) (1 + log(p+ 1))k ‖χ̂1‖Hm(K).

Hence, setting

ψ̂2(x̂) := hγ−1
β2
∑

k=0

(

β2

k

)

| log h|kĝβ2−k(x̂), ψ2,j := ψ̂2 ◦M
−1 ∈ Pp(Γj)

and applying Lemma 3.2 and Lemma 3.1 we estimate for any element Γj ⊂ Ae

‖ϕ2 − ψ2,j‖H̃s
h
(Γj)

≃ h1−s‖ϕ̂2 − ψ̂2‖H̃s(K)

≤ Chγ−s
β2
∑

k=0

(

β2

k

)

| log h|k‖f̂β2−k − ĝβ2−k‖H̃s(K)

≤ Chγ−s(p+ 1)−2(γ−1/2−s)
(

1 + log p+1
h

)β2

‖χ̂1‖Hm(K)

≤ Chγ−s(p+ 1)−2(γ−1/2−s)
(

1 + log p+1
h

)β2

( m
∑

t=0

h2(t−1)|χ1|
2
Ht(Γj)

)

1
2
. (5.10)
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Approximation of ϕ1 and ϕ2 on Γ. Using the polynomial approximations ψ1(x), x ∈ Γ1 ⊂
Aev and ψ2,j(x), x ∈ Γj ⊂ Ae, constructed above, we define piecewise polynomial functions φ1

and φ2 as follows (below, Γj is an arbitrary element of the mesh ∆h):

φ1|Γj :=

{

ψ1 + 1
|Γ1|

∫

Γ1
(ϕ1 − ψ1) dx if Γj = Γ1 ⊂ Aev,

0 if Γj 6= Γ1,

φ2|Γj :=

{

ψ2,j + 1
|Γj |

∫

Γj
(ϕ2 − ψ2,j) dx if Γj ⊂ Ae,

0 if Γj ⊂ (Γ\Ae).

Then φi ∈ V h,p(Γ), i = 1, 2, and for any element Γj ∈ ∆h there holds
∫

Γj

(ϕi − φi) dx = 0, i = 1, 2.

Therefore, applying Lemma 3.3 and Lemma 3.4 we estimate by (5.7)

‖ϕ1 − φ1‖H̃s(Γ) ≤ C

(

∑

j

‖(ϕ1 − φ1)|Γj‖
2
H̃s

h
(Γj)

)1/2

= C ‖(ϕ1 − φ1)|Γ1
‖H̃s

h
(Γ1)

= C

∥

∥

∥

∥

(ϕ1 − ψ1) −
1

|Γ1|

∫

Γ1

(ϕ1 − ψ1) dx

∥

∥

∥

∥

H̃s
h
(Γ1)

≤ C ‖ϕ1 − ψ1‖H̃s
h
(Γ1)

≤ Chλ−s(p+ 1)−2(min {λ,γ−1/2}−s)
(

1 + log p+1
h

)β1+β2

(1 + log(p+ 1))σ , (5.11)

where −1 ≤ s < min {0, λ, γ − 1
2} and σ is the same as in (5.7).

Analogously, using (5.10) we obtain for −1 ≤ s < min {0, γ − 1
2} and for integer m > 2γ + 3

‖ϕ2 − φ2‖
2
H̃s(Γ)

≤ C
∑

j: Γj⊂Ae

‖(ϕ2 − φ2)|Γj‖
2
H̃s

h
(Γj)

≤ C
∑

j: Γj⊂Ae

‖ϕ2 − ψ2,j‖
2
H̃s

h
(Γj)

≤ Ch2(γ−s)(p+ 1)−4(γ−1/2−s)
(

1 + log p+1
h

)2β2

m
∑

t=0

h2(t−1)|χ1|
2
Ht(Ae). (5.12)

Hence, making use of estimates (5.9) for the semi-norms of χ1, we find

‖ϕ2 − φ2‖H̃s(Γ) ≤ Chmin {λ,γ−1/2}−s(p+ 1)−2(γ−1/2−s)
(

1 + log p+1
h

)β2

(log(1/h))β1+σ, (5.13)

where −1 ≤ s < min {0, γ − 1
2} and σ is the same as in (5.7).

Approximation of ϕ3. Now we approximate the smooth function ϕ3 in (5.4). Note that
ϕ3 ∈ C∞

0 (Γ). Moreover, using the results of [6] (see the proof of Theorem 5.1 therein) we can
estimate the norm of ϕ3. In fact, making use of estimate (5.15) in [6] with λ and γ replaced by
λ− 1 and γ − 1, respectively, we have for any integer m ≥ min {λ, γ − 1

2}

‖ϕ3‖Hm(Γ) ≤ Chmin {λ,γ−1/2}−m(log(1/h))β1+β2+σ+ν ,
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where σ is the same as in (5.7), ν = 1
2 if m = min {λ, γ − 1

2}, and ν = 0 if m > min {λ, γ − 1
2}.

Therefore, applying Theorem 4.1, we find φ3 ∈ V h,p(Γ) such that for s ∈ [−1, 0]

‖ϕ3 − φ3‖H̃s(Γ) ≤ Chµ−s+min {λ,γ−1/2}−m(p+ 1)s−m(log(1/h))β1+β2+σ+ν , (5.14)

where m ≥ min {λ, γ − 1
2}, m ≥ 0, and µ = min {m,p + 1}.

If p > 2min {λ+ 1
2 , γ} − 1, we select an integer m satisfying

2min {λ+ 1
2 , γ} < m ≤ p+ 1.

Then µ = m > min {λ, γ − 1
2} and (p+ 1)s−m ≤ (p + 1)−2(min {λ,γ−1/2}−s) for any s ∈ [−1, 0].

If min {λ, γ − 1
2} − 1 < p ≤ 2min {λ+ 1

2 , γ} − 1 (i.e., p is bounded), we choose an integer m
such that

max
{

0, min {λ, γ − 1
2}
}

< m ≤ p+ 1,

and if p = min {λ, γ − 1
2} − 1, then we take m = min {λ, γ − 1

2} = p + 1. In both these cases

µ = m ≥ min {λ, γ − 1
2} and (p+ 1)s−m ≤ C(λ, γ) (p + 1)−2(min {λ,γ−1/2}−s) for any s ∈ [−1, 0].

Thus, for any p ≥ min {λ, γ − 1
2} − 1 = min {λ − 1, γ − 3

2}, selecting m as indicated above
we find by (5.14)

‖ϕ3 − φ3‖H̃s(Γ) ≤ Chmin {λ,γ−1/2}−s(p+ 1)−2(min {λ,γ−1/2}−s)(log(1/h))β1+β2+σ+ν , (5.15)

where s ∈ [−1, 0], σ is the same as in (5.7), ν = 1
2 if p = min {λ − 1, γ − 3

2}, and ν = 0 if
p > min {λ− 1, γ − 3

2}.

Approximation of u = ϕ1 + ϕ2 + ϕ3. Let us define uhp := φ1 + φ2 + φ3 ∈ V h,p(Γ). Then
combining estimates (5.11), (5.13), and (5.15) we obtain (5.1).

It remains to consider the case 0 ≤ p < min {λ − 1, γ − 3
2}. In this case one does not need

decomposition (5.4). Since u ∈ Hm(Γ) with 1 ≤ m < min {λ, γ − 1
2}, we apply Theorem 4.1 to

find uhp ∈ V h,p(Γ) satisfying for s ∈ [−1, 0]

‖u− uhp‖H̃s(Γ) ≤ Chmin {m,p+1}−s‖u‖Hm(Γ).

Hence, selecting m ∈ [p+ 1,min {λ, γ − 1
2}) we obtain (5.2). 2

5.2 Approximation of the singular functions uev
2 and uv

In this sub-section we study the approximation of the edge-vertex singularity uev
2 and the vertex

singularity uv. The proofs of the two theorems below are analogous to the proof of Theorem 5.1,
they use the same idea and similar arguments relying on the corresponding p-version results of
[7] and some technical results from [6]. That is why we sketch both proofs omitting inessential
details.

First, let us consider the edge-vertex singularity uev
2 given by (2.8), (2.10).
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Theorem 5.2 Let u = uev
2 be given by (2.8), (2.10). Then there exists uhp ∈ V h,p(Γ) with

p ≥ γ − 3
2 such that for s ∈ [−1,min {0, γ − 1

2}),

‖u− uhp‖H̃s(Γ) ≤ C hγ−1/2−s (p+ 1)−2(γ−1/2−s)
(

1 + log p+1
h

)β+ν
, (5.16)

where γ = γe
1 > 0, β = se

1 ≥ 0 is integer, ν = 1
2 if p = γ − 3

2 , and ν = 0 otherwise.
If 0 ≤ p < γ − 3

2 , then there exists uhp ∈ V h,p(Γ) satisfying for s ∈ [−1, 0]

‖u− uhp‖H̃s(Γ) ≤ C hp+1−s. (5.17)

Proof. Let
u(x1, x2) = xγ−1

2 | log x2|
βχ1(x1, x2)χ

e
2(x2), (5.18)

where γ = γe
1 > 0, β ≥ 0 is integer, χe

2 ∈ C∞(IR+) is the same as in (2.5), χ1 ∈ Hm(Γ) with m
as large as required. We decompose u as

u = uχe
2(x2/h0) + u(1 − χe

2(x2/h0)) =: ϕ2 + ϕ3, h0 = (σ1σ2)
−1h. (5.19)

The singular part ϕ2 of decomposition (5.19) has the same form as in (5.8) with β2 = β and
with an arbitrary function χ1 ∈ Hm(Γ). Therefore, there exists φ2 ∈ V h,p(Γ) satisfying for
−1 ≤ s < min {0, γ − 1

2} and for any integer k > 2γ + 3 (cf. estimate (5.12))

‖ϕ2 − φ2‖
2
H̃s(Γ)

≤ Ch2(γ−s)(p + 1)−4(γ−1/2−s)
(

1 + log p+1
h

)2β
k
∑

t=0

h2(t−1)|χ1|
2
Ht(Ae). (5.20)

Since meas (Ae) ≃ h and χ1 ∈ Hm(Γ) with sufficiently large m, we estimate

k
∑

t=0

h2(t−1) |χ1|
2
Ht(Ae)

≤ Ch−2 ‖χ1‖
2
Ck(Āe) meas (Ae) ≤ Ch−1 ‖χ1‖

2
Hm(Γ).

Then we obtain by (5.20)

‖ϕ2 −φ2‖H̃s(Γ) ≤ Chγ−1/2−s(p+1)−2(γ−1/2−s)
(

1+ log p+1
h

)β
, s ∈ [−1,min {0, γ− 1

2}). (5.21)

To approximate the smooth part ϕ3 ∈ Hm(Γ) of decomposition (5.19) we apply Theorem 4.1:
there exists φ3 ∈ V h,p(Γ) such that for s ∈ [−1, 0]

‖ϕ3 − φ3‖H̃s(Γ) ≤ Chµ−s(p+ 1)s−k‖ϕ3‖Hk(Γ), (5.22)

where k ∈ [0,m] and µ = min {k, p+ 1}.
Recalling the definition of χe

2 (see (2.5)), we find by simple calculations

‖ϕ3‖
2
Hk(Γ) ≤ C(log(1/h))2β

2δe
∫

h0δe

x
2(γ−1−k)
2 dx2.
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Hence, for any integer k satisfying max {0, γ − 1
2} ≤ k ≤ m, we obtain by (5.22)

‖ϕ3 − φ3‖H̃s(Γ) ≤ Chγ−1/2−k+µ−s(p+ 1)s−k(log(1/h))β+ν , s ∈ [−1, 0], (5.23)

where µ = min {k, p+ 1}, ν = 1
2 if k = γ − 1

2 , and ν = 0 if k > γ − 1
2 .

If p ≥ γ − 3
2 , then similarly as in the proof of Theorem 5.1 we select an integer k such that

µ = k in (5.23) and (p + 1)s−k ≤ C(γ)(p + 1)−2(γ−1/2−s) for any s ∈ [−1, 0]. Then combination
of (5.21) and (5.23) gives (5.16) with uhp := φ2 + φ3 ∈ V h,p(Γ).

If 0 ≤ p < γ − 3
2 , then u ∈ Hk(Γ) with 1 ≤ k < γ − 1

2 . In this case we apply Theorem 4.1
directly to the function u: there exists uhp ∈ V h,p(Γ) such that for s ∈ [−1, 0]

‖u− uhp‖H̃s(Γ) ≤ Chmin {k,p+1}−s‖u‖Hk(Γ).

Hence, selecting k ∈ [p+ 1, γ − 1
2) we prove (5.17). 2

Now, let v be a vertex of Γ and let Av be the union of elements Γj with v ∈ Γ̄j.

Theorem 5.3 Let u = uv be given by (2.6). Then there exists uhp ∈ V h,p(Γ) with p ≥ λ − 1
such that for −1 ≤ s ≤ min {0, λ},

‖u− uhp‖H̃s(Γ) ≤ C hλ−s (p+ 1)−2(λ−s)
(

1 + log p+1
h

)β+ν
, (5.24)

where λ = λv
1 > −1

2 , β = qv
1 ≥ 0 is integer, ν = 1

2 if p = λ− 1, and ν = 0 otherwise.
If 0 ≤ p < λ− 1, then there exists uhp ∈ V h,p(Γ) satisfying for s ∈ [−1, 0]

‖u− uhp‖H̃s(Γ) ≤ C hp+1−s. (5.25)

Proof. Let
u = rλ−1| log r|βχv(r)w(θ),

where λ = λv
1 > −1

2 , β ≥ 0 is integer, χv is the same as in (2.6), w ∈ Hm(0, ωv), ωv denotes the
interior angle on Γ at v, and m is as large as required.

We decompose u as u = ϕ1 + ϕ2, where

ϕ1 := uχv(r/h0), ϕ2 := u(1 − χv(r/h0)), h0 = (σ1σ2)
−1h. (5.26)

The singular function ϕ1 has a small support, suppϕ1 ⊂ Āv. Let Kh = Γj ⊂ Av and let
K ⊂ IR2 be a triangle or parallelogram such that Kh = M(K), where M is defined by (5.5).
Then O = (0, 0) is a vertex of K and for h < 1

2 we have

ϕ̂1(x̂) = ϕ1(hx̂1, hx̂2) = hλ−1r̂λ−1
β
∑

k=0

(

β

k

)

| log h|k| log r̂|β−kχv(σ1σ2r̂)w(θ̂).
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Applying Proposition 4.1 to each function r̂λ−1| log r̂|kχv(σ1σ2r̂)w(θ̂), k = 0, . . . , β, we find a
polynomial ψ̂1 ∈ Pp(K) such that for −1 ≤ s ≤ min {0, λ}

‖ϕ̂1 − ψ̂1‖H̃s(K) ≤ C hλ−1 (p+ 1)−2(λ−s)
(

1 + log p+1
h

)β
.

Hence, setting ψ1,j := ψ̂1 ◦M
−1 ∈ Pp(Γj) and applying Lemma 3.2 we estimate

‖ϕ1 − ψ1,j‖H̃s
h
(Γj)

≤ C hλ−s (p+ 1)−2(λ−s)
(

1 + log p+1
h

)β
. (5.27)

Now we define a piecewise polynomial φ1 (below, Γj ∈ ∆h is an arbitrary element):

φ1|Γj :=

{

ψ1,j + 1
|Γj |

∫

Γj
(ϕ1 − ψ1,j) dx if Γj ⊂ Av,

0 if Γj ⊂ (Γ\Av).

Then φ1 ∈ V h,p(Γ) and
∫

Γj
(ϕ1 − φ1) dx = 0 for any Γj ∈ ∆h. Therefore, recalling that the

number νv of elements in Av is bounded independently of h and making use of Lemmas 3.3, 3.4
we obtain by (5.27)

‖ϕ1 − φ1‖H̃s(Γ) ≤ C hλ−s (p+ 1)−2(λ−s)
(

1 + log p+1
h

)β
, −1 ≤ s < min {0, λ}. (5.28)

The smooth function ϕ2 ∈ Hm(Γ) (see (5.26)) is approximated by using Theorem 4.1: there
exists φ2 ∈ V h,p(Γ) such that for s ∈ [−1, 0]

‖ϕ2 − φ2‖H̃s(Γ) ≤ Chµ−s(p+ 1)s−k‖ϕ2‖Hk(Γ), (5.29)

where k ∈ [0,m] and µ = min {k, p+ 1}. Furthermore, recalling the definition of χv (see (2.6)),
we find by simple calculations (cf. estimate (6.10) in [6] with λ replaced by λ− 1)

‖ϕ2‖
2
Hk(Γ) ≤ C(log(1/h))2β

2τv
∫

τvh0

r2(λ−1−k) rdr, 0 ≤ k ≤ m. (5.30)

Thus, for any integer k satisfying max {0, λ} ≤ k ≤ m, estimates (5.29) and (5.30) yield

‖ϕ2 − φ2‖H̃s(Γ) ≤ Chµ−s+λ−k(p+ 1)s−k(log(1/h))β+ν , s ∈ [−1, 0], (5.31)

where ν = 1
2 if k = λ and ν = 0 if k > λ.

If p ≥ λ− 1, then similarly as in the proof of Theorem 5.1 we select an integer k such that
µ = k in (5.31) and (p + 1)s−k ≤ C(λ) (p + 1)−2(λ−s) for any s ∈ [−1, 0]. Then combination of
(5.28) and (5.31) gives (5.24) with uhp := φ1 + φ2 ∈ V h,p(Γ).

The proof of estimate (5.25) is analogous to the proof of the corresponding results in Theo-
rems 5.1 and 5.2. 2
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6 The general approximation result

Combining the approximation results for smooth and singular functions from Sections 4 and 5,
we estimate the approximation error for the function u given by (2.4)–(2.10).

Theorem 6.1 Let the function u be given by (2.4)–(2.10) on Γ with γe
1 > 0 and λv

1 > −1
2 . Also,

let v0 ∈ V , e0 ∈ E(v0) be such that min{λv0

1 + 1/2, γe0

1 } = minv∈V,e∈E(v) min {λv
1 + 1/2, γe

1}, with
λv

1 and γe
1 being as in (2.5)–(2.8). Then, for any h > 0 and every p ≥ min {λv0

1 − 1, γe0

1 − 3/2},
there exists a function uhp ∈ V h,p such that for −1 ≤ s < min {0, λv0

1 , γ
e0

1 − 1/2}

‖u− uhp‖H̃s(Γ) ≤ C max
{

hmin {k,p+1}−s (p+ 1)s−k,

hmin {λ
v0

1
,γ

e0
1

−1/2}−s (p + 1)−2(min {λ
v0

1
,γ

e0
1

−1/2}−s)
(

1 + log p+1
h

)β+ν
}

,

(6.1)

where β and ν are defined by (2.12) and (2.13), respectively.
If 0 ≤ p < min {λv0

1 − 1, γe0

1 − 3/2}, then for any h > 0 there exists uhp ∈ V h,p such that for
s ∈ [−1, 0]

‖u− uhp‖H̃s(Γ) ≤ C hmin {k,p+1}−s. (6.2)

Proof. To approximate the smooth part ureg ∈ Hk(Γ) of decomposition (2.4) we use Theo-
rem 4.1, and applying Theorems 5.1, 5.2, and 5.3 we find piecewise polynomial approximations
for the singularities uev and uv on Γ. We also observe that the proof of Theorem 5.2 applies
to the edge singularity terms given by (2.5). In fact, each component of ue can be written
in the more general form (5.18) and the statement of Theorem 5.2 remains valid for u = ue.
Thus combining the corresponding error estimates from the mentioned theorems we obtain (6.1)
and (6.2). 2
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