
Adaptive boundary element method for the exterior Stokes

problem in three dimensions

Vincent J. Ervin ∗ Norbert Heuer †

Abstract

We present an adaptive refinement strategy for the h-version of the boundary element
method with weakly singular operators on surfaces. The model problem deals with the exte-
rior Stokes problem, and thus considers vector functions. Our error indicators are computed
by local projections onto one-dimensional subspaces defined by mesh refinement. These in-
dicators measure the error separately for the vector components and allow for component
independent adaption. Assuming a saturation condition the indicators give rise to an efficient
and reliable error estimator. Also we describe how to deal with meshes containing quadri-
laterals which are not shape regular. The theoretical results are underlined by numerical
experiments. To justify the saturation assumption, in an appendix we prove optimal lower
a priori error estimates for edge singularities on uniform and graded meshes.
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1 Introduction and formulation of the problem

In this paper, we continue the investigation of adaptive strategies for Galerkin approximation
based on indicators related to subspace decompositions. For initial ideas and the finite element
method (FEM) see [12, 2]. For extensions to the boundary element method (BEM) with weakly
singular and hypersingular operators in two and three dimensions, see [18, 20, 19, 17]. Here,
we analyze this strategy for vector functions in three dimensions and the weakly singular op-
erator. The Stokes problem serves as the model situation. Weakly singular operators act on
the dual of the trace space of H1-functions. This makes the analysis more technical than that
for hypersingular operators (which act on the trace space of H 1-functions). This difference in
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the analysis applies to the three-dimensional situation since in two dimensions one may simply
use differentiation and integration (on curves with respect to the arc length) to map between
both energy spaces. For the three-dimensional case and weakly singular operators (and subspace
decomposition based indicators) we only know of the references [18, 20]. In [18], however, no
proofs for the weakly singular operator on surfaces are given, and in [20] only the scalar situation
for rectangular quasi-uniform meshes is analyzed. Here, we give an analysis for vector functions
on triangular/quadrilateral meshes. This analysis includes distorted quadrilateral elements if
appropriate subspace decompositions are considered. We need to assume a saturation property.
For a typical edge singularity, in an appendix we prove asymptotically optimal lower error es-
timates, analyzing the approximation on uniform and graded rectangular meshes. Using these
lower bounds one can prove that the saturation property is satisfied for a sufficient refinement
of the mesh. The error indicators we propose give local information on elements for different
refinement directions and for the vector components separately. Our analysis of the stability of
the subspace decompositions is based in part on [16] where the p-version for the weakly singular
operator (of the Laplacian) is studied. There, the focus is on the p-version and rectangular
quasi-uniform meshes. Here, we elaborate all the mesh dependent details and consider meshes
consisting of quadrilateral and triangular elements.

In [6] several a posteriori error estimates for the BEM are studied. In particular, efficiency
of a two-level estimator on curves is proved. The proof can be generalized to show efficiency of
our estimator on surfaces (as has been indicated by one referee) for the case of the enrichment
space T (see (2.4)) comprised of piecewise constants. In this paper we base our analysis on
the additive Schwarz framework which is not restricted, a priori, to T being piecewise constant
functions.

Let us describe our model problem. In what follows Γ ⊂ IR3 can be an open or closed
piecewise smooth obstacle. For ease of presentation, and since we will present numerical results
only for a special situation, we restrict our presentation to an open plane polygonal screen. The
homogeneous exterior Stokes problem reads as follows: Find a velocity field u and a pressure
field p such that

−ν∆u +∇p = 0 in ΩΓ = IR3 \ Γ̄,
div u = 0 in ΩΓ and

u = g on Γ.
(1.1)

where ν is the given constant viscosity of the fluid. The pressure p is not unique. Extending Γ to
a smooth closed surface ∂Ω with interior domain Ω one finds that p is determined within Ω only
up to a constant. In the exterior domain Ω′ := IR3 \Ω̄, p is unique when requiring an appropriate
decay condition. For uniqueness of u one also needs a decay condition. Following Wendland
& Zhu [25] (see also, e.g., [15]) we incorporate such a condition by requiring p ∈ L2(ΩΓ) and
assuming finite energy of the velocity in a weighted space, u ∈ W1(∆,ΩΓ) := (W 1(∆,ΩΓ))3,
where

W 1(∆,ΩΓ) := {u ∈W 1(ΩΓ);
√

1 + r2∆u ∈ L2(ΩΓ)}
with

W 1(ΩΓ) := {u;
u√

1 + r2
∈ L2(ΩΓ),

∂u

∂xi
∈ L2(ΩΓ), r = |x|, i = 1, 2, 3}.
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The fundamental solution of (1.1) is given by (with identity I)

E(x, y) = 1
8πν

(
1
|x−y|I + (x−y)(x−y)T

|x−y|3
)
,

P(x, y) = 1
4π

x−y
|x−y|3 .

(1.2)

Let v ∈ H̃
−1/2
0 (Γ) be the solution of the following boundary integral equation with single layer

potential operator V:

Vv(x) :=

∫

Γ
E(x, y)v(y) dSy = g(x), x ∈ Γ. (1.3)

Then a variational solution (u, p) of (1.1) with given g ∈ H1/2(Γ) is

u(x) =
∫
Γ E(x, y)v(y) dSy , x ∈ IR3,

p(x) =
∫
Γ P(x, y)v(y) dSy , x ∈ ΩΓ,

(1.4)

see [25, Theorem 2.1].
The operator V is positive definite on

H̃
−1/2
0 (Γ) := {w ∈ H̃−1/2(Γ); 〈w,n〉 = 0},

see [25]. Here,

H̃−1/2(Γ) =
(
H̃−1/2(Γ)

)3
,

n is the normal vector on Γ (in a specified direction) and 〈·, ·〉 = 〈·, ·〉L2(Γ) denotes the extension

of the (L2(Γ))3-inner product by duality. Also, H1/2(Γ) is the space of vector functions with
components in H1/2(Γ). For a definition of H̃−1/2(Γ) and H1/2(Γ) see §3. In the following, we
use the symbol ‖ · ‖V to denote the norm induced by the operator V. This norm is equivalent

to the H̃
−1/2
0 (Γ)-norm,

〈Vw,w〉 ' ‖w‖2
H̃−1/2(Γ)

∀w ∈ H̃
−1/2
0 (Γ), (1.5)

see [25].
The remainder of the paper is organized as follows. In §2 we define the boundary element

spaces for the approximate solution of (1.3). We define error indicators based on projections onto
local subspaces defined by mesh refinement and state the main results, Theorems 2.1 and 2.2.
Theorem 2.1 proves stability of the underlying subspace decomposition and Theorem 2.2 con-
cludes efficiency and reliability of the resulting error estimator, assuming a saturation property
and shape regular elements. In Theorem 2.2’ we extend the results in Theorem 2.2 to include
meshes containing distorted quadrilateral elements. All the technical details and the proof of
Theorem 2.1 are given in §3. In §4 we present some numerical results for adaptive methods based
on our error indicators. Moreover, the stability property stated by Theorem 2.1 is demonstrated
for highly non-uniform rectangular and triangular meshes. In §5 we give asymptotically optimal
error estimates for the approximation of an edge singularity which typically appears as part of
the solution on open surfaces. Moreover, we comment on the saturation assumption.
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2 Adaptive boundary element method

We solve (1.3) by the Galerkin method. To this end we introduce three sequences of shape
regular meshes of triangles and/or quadrilaterals {Γij; j ∈ Ji}, Γ̄ = ∪j∈JiΓ̄ij (i = 1, 2, 3). Here
Ji is the index set {1, 2, . . . , Ni} withNi being the number of elements of the corresponding mesh.
By shape regular meshes we refer to meshes which need not be quasi-uniform (not even locally)
but where the elements are shape regular, i.e. the smallest diameter of exterior circles can be
uniformly bounded by a constant times the largest diameter of interior circles. For quadrilaterals
one also bounds the interior angles away from π. The case of meshes which contain distorted
quadrilateral elements (fulfilling the angle condition but not being shape regular) is considered
at the end of this section. We do not need continuous basis functions. That means our basis
functions (piecewise constants) are related with elements and not nodes or sides. Therefore, we
do not use regular meshes. Our ansatz space consists of piecewise constant functions in each of
the components. Formally we have three spaces of scalar functions

Si := {v ∈ L2(Γ); v|Γij is constant ∀j ∈ Ji}, i = 1, 2, 3. (2.1)

In our numerical experiments we implement the constraint condition 〈v,n〉 = 0 by a Lagrangian
multiplier. The boundary element space then is

S := {v = (v1, v2, v3)T ; vi ∈ Si, i = 1, 2, 3, 〈v,n〉 = 0}. (2.2)

Of course, the three meshes {Γij ; j ∈ Ji} (i = 1, 2, 3) may coincide and then we have a space of
vector functions being piecewise constant with respect to the same mesh.

The boundary element method then reads as follows: Find vh ∈ S such that

〈Vvh,w〉 = 〈g,w〉 ∀w ∈ S. (2.3)

In order to define an a posteriori error estimator we need a refined ansatz space that gives
an improved approximation. To this end we divide all the triangles and quadrilaterals as in
Figures 1, 2 and add the functions indicated on the right sides of the figures. The “+” and “–”
signs mean positive and negative values which are constant on the respective elements. They
are chosen such that the additional functions have integral mean zero. This is done for all
components in the space S. The enriched space is denoted by S̃ and can be represented by the
direct decomposition

S̃ = S⊕T. (2.4)

To obtain local error indicators we fully decompose T, i.e. with respect to the vector components,
with respect to the elements and with respect to the individual additional functions indicated
on the right hand sides of Figures 1, 2. Formally we write this decomposition as

S̃ = S⊕⊕3
i=1 ⊕j∈Ji ⊕k∈{a,b,c}T ki (Γij). (2.5)

Here, T ki (Γij) is the span of the vector function whose components different from i are zero and
whose ith component has support Γ̄ij and is piecewise constant of the type (k) (indicated by
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(b)

(c)

(a)

Figure 1: Division of triangles

(a), (b), or (c) in Figures 1, 2). By construction all the subspaces T ki (Γij) consist of functions
with integral mean zero. This is an important property that will be used in the analysis below.

Note that the construction of S̃ is such that, on triangles, all the sides are halved in-
dependently and, on quadrilaterals, the sides are halved simultaneously. Thus, S̃ contains
at least all the piecewise constant functions on a mesh that comes from the previous mesh
{Γ1j × Γ2,k × Γ3,l; j ∈ J1, k ∈ J2, l ∈ J3} by halving the longest sides. For a typical problem
with singularities it is therefore likely that the following saturation assumption is satisfied (for
more details see §5):

(A1) Let vh ∈ S be the Galerkin solution defined by (2.3) and let ṽh ∈ S̃ be the improved
Galerkin solution (by solving (2.3) within S̃). Then there exists a constant σ < 1 being
independent of h (a characteristic mesh size) such that

‖v − ṽh‖V ≤ σ‖v − vh‖V.

Here, v is the exact solution of (1.3).

Note that the decomposition (2.5) implicitly gives a component-wise decomposition, i.e.,

S̃i := Si ⊕⊕j∈Ji ⊕k∈{a,b,c} T ki (Γij), i = 1, 2, 3, (2.6)

with S̃ = (⊕3
i=1S̃i)∩ {v; 〈v,n〉 = 0}. In order to define error indicators and the error estimator

we introduce for each of the subspaces a projection operator: P0 : S̃→ S by

〈VP0r,w〉 = 〈Vr,w〉 ∀w ∈ S

and Pij,k : S̃→ T ki (Γij) by

〈VPij,kr,w〉 = 〈Vr,w〉 ∀w ∈ T ki (Γij). (2.7)
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(b)

(c)

(a)

Figure 2: Division of quadrilaterals

The sum P := P0 +
∑3
i=1

∑
j∈Ji

∑
k∈{a,b,c} Pij,k is known as the additive Schwarz operator and

corresponds to a preconditioned stiffness matrix for V. Now local error indicators are defined
by using the projections Pij,k (j ∈ Ji, i = 1, 2, 3, k ∈ {a,b, c}):

θ2
ij,k := 〈VPij,k(vh − ṽh), Pij,k(vh − ṽh)〉.

The sum Θ2 :=
∑3
i=1

∑
j∈Ji

∑
k∈{a,b,c} θ

2
ij,k is the square of our a posteriori error estimator. Note

that the analogous indicator θ0 for the space S for P0 vanishes since P0(vh) = P0(ṽh) = vh.
Also note that, since the subspaces T ki (Γij) are one-dimensional, the error indicators can simply
be calculated via

θ2
ij,k = 〈Vφij,k, φij,k〉c2ij,k.

Here, φij,k is the basis function spanning T ki (Γij) and Pij,k(vh − ṽh) = cij,kφij,k. For the
calculation of cij,k only a scalar equation must be inverted. In order to do so one does not need
explicitly the improved approximation ṽh. By the Galerkin orthogonality of v − ṽh to S̃, the
right hand side in (2.7) for r = ṽh can be calculated by 〈Vṽh,w〉 = 〈g,w〉 where g is the given
function in (1.3).

It is well known that, depending on the parameter σ of the saturation assumption (A1),
reliability and efficiency of the error estimator Θ can be estimated by using the minimum and
maximum eigenvalues of the operator P (see, e.g., [2, 20]):

Proposition 2.1 Let the assumption (A1) be satisfied and let λmin(P ) and λmax(P ) be the
minimum and maximum eigenvalues of the additive Schwarz operator P implicitly defined by
the decomposition (2.5). Then there holds

Θ2

λmax(P )
≤ ‖v − vh‖2V ≤

Θ2

λmin(P )(1− σ2)
.
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The main results are stability of the decomposition (2.5) and, consequently, an estimate for
the efficiency and reliability of our a posteriori error estimator.

Theorem 2.1 (stability) Assume that the meshes {Γij ; j ∈ Ji}, i = 1, 2, 3, are shape regular.
Then there exist constants c1, c2 > 0 which are independent of the meshes (as long as they are
shape regular) such that

λmin(P ) ≥ c1 and λmax(P ) ≤ c2.

Theorem 2.2 (efficiency and reliability) Let the assumption (A1) be satisfied and assume
that the meshes {Γij ; j ∈ Ji}, i = 1, 2, 3, are shape regular. Then there exist constants C1,
C2 > 0 which are independent of the meshes (as long as they are shape regular) such that

C1Θ ≤ ‖v − vh‖V ≤ C2
Θ√

1− σ2
.

Proof. Apply Proposition 2.1 selecting C1 = 1/
√
c2 and C2 = 1/

√
c1. 2

Meshes with distorted quadrilateral elements

Theorem 2.2 assumes shape regularity of the elements which is used to prove stability of the
underlying decomposition defining the local error indicators. However, to approximate efficiently
edge singularities distorted elements (affine images of rectangles with high aspect ratio) are
needed. Therefore, it is desirable to be able to deal with such elements in a posteriori error
analysis. To this end we note that in our analysis shape regularity is needed just for the enriched
ansatz space which is decomposed. Since no continuity of the basis functions is necessary one
can easily ensure the shape regularity by subdividing the stretched quadrilaterals appropriately.
In the following we describe which steps need to be changed.

First we use a different notation for the meshes used to define the ansatz space S. The
three meshes for the three components now are denoted by {Γ̃ij ; j ∈ J̃i}, i = 1, 2, 3. They may
contain shape regular triangles and quadrilaterals which just satisfy the angle condition. Then
the spaces Si and S in (2.1), (2.2) are defined as before, using the elements Γ̃ij .

In order to define the enriched ansatz space S̃ we perform a previous mesh refinement. All the
distorted quadrilateral elements are subdivided into shape regular quadrilaterals (see Figure 3),
whereas the shape regular elements are not divided. After this refinement step the meshes are
denoted by {Γij ; j ∈ Ji}, i = 1, 2, 3, and they are shape regular. The new meshes define, as
in (2.2) and using (2.1), a space of piecewise constant vector functions with integral mean zero.
This space will be denoted by T0 and there holds S ⊂ T0.

With the space T0 we proceed as previously described for S. All the elements Γij are divided
as in Figures 1, 2, thus defining the spaces T ki (Γij), k ∈ {a,b, c}. Corresponding to (2.5), we
then have the following decomposition of the enriched ansatz space S̃:

S̃ = T0 ⊕⊕3
i=1 ⊕j∈Ji ⊕k∈{a,b,c}T ki (Γij). (2.8)
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Figure 3: Division of distorted quadrilaterals

As in (2.6), this means decomposing component-wise as

S̃i := T0i ⊕⊕j∈Ji ⊕k∈{a,b,c} T ki (Γij), i = 1, 2, 3,

with S̃ = (⊕3
i=1S̃i) ∩ {v; 〈v,n〉 = 0} and T0 = (⊕3

i=1T0i) ∩ {v; 〈v,n〉 = 0}.
The error indicators θ2

ij,k are as before, and θ2
0 := 〈VP0(vh − ṽh), P0(vh − ṽh)〉 with P0 :

S̃→ T0 defined by
〈VP0r,w〉 = 〈Vr,w〉 ∀w ∈ T0.

Note that we now have a global contribution θ0 which usually does not vanish. The dimension of
the system for the calculation of P0(vh − ṽh) depends on the number of distorted elements one
needs to subdivide, and on their aspect ratio. Using this global contribution, the a posteriori
error estimator now is Θ := (θ2

0 +
∑3
i=1

∑
j∈Ji

∑
k∈{a,b,c} θ

2
ij,k)

1/2.

With these changes we obtain efficiency and reliability of Θ as before.

Theorem 2.2’ Let the assumption (A1) be satisfied and assume that the meshes {Γ̃ij ; j ∈ J̃i},
i = 1, 2, 3, consist of shape regular triangles and/or quadrilaterals which satisfy a maximum
angle condition. Then there exist constants C1, C2 > 0 which are independent of the meshes
such that

C1Θ ≤ ‖v − vh‖V ≤ C2
Θ√

1− σ2
.

Proof. Apply Proposition 2.1 using the decomposition (2.8) instead of (2.5). Bounds for the
eigenvalues of the additive Schwarz operator P are given, as before, by Theorem 2.1. 2
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3 Technical details and proof of Theorem 2.1

First let us introduce the norms we will use. On Γ we take the standard L2 and H1-norms and
define intermediate spaces by the K-method of interpolation (cf. [3]):

Hs(Γ) := [L2(Γ),H1(Γ)]s (0 < s < 1)

with norm

‖v‖Hs(Γ) :=

(∫ ∞

0
t−2sK(t, v)2 dt

t

)1/2

.

Here, the K-functional is defined by

K(t, v) := inf
v=v1+v2

(
‖v1‖2L2(Γ) + t2‖v2‖2H1(Γ)

)1/2
.

The semi-norm in Hs(Γ) is denoted by |v|Hs(Γ). It is defined by interpolation as before, using
the semi-norm instead of the norm in H1(Γ). Also we need the spaces

H̃s(Γ) := [L2(Γ),H1
0 (Γ)]s (0 < s < 1)

where H1
0 (Γ) is the completion of C∞0 (Γ) in H1(Γ) and the norm ‖ · ‖H1

0 (Γ) is given by the

semi-norm | · |H1(Γ) in H1(Γ). For negative s we define the Sobolev spaces by duality:

Hs(Γ) := (H̃−s(Γ))′, H̃s(Γ) := (H−s(Γ))′ (−1 ≤ s < 0).

For a subdomain γ ⊂ Γ of diameter h, we analogously define the spaces H̃s(γ) for 0 < s < 1, and
Hs(γ) := (H̃−s(γ))′ for −1 ≤ s < 0. Proceeding in the same way to define H̃s(γ) for negative s
(as the dual space of H−s(γ)) one does not get scalable norms. Therefore, we define

Hs
h(γ) := [L2(γ),H1

h(γ)]s (0 < s < 1) using ‖ · ‖H1
h

(γ) := (h−2‖ · ‖2L2(γ) + | · |2H1(γ))
1/2

with norm ‖ · ‖Hs
h

(γ). For negative s we define, as before by duality,

H̃s
h(γ) := (H−sh (γ))′ (−1 ≤ s < 0),

where the norm ‖ · ‖H−s
h

(γ) is taken in H−sh (γ). Note that the index h in the notation of the

norms always refers to the diameter of the subdomain under consideration.
The norms defined above on local subdomains are scalable under affine transformations onto

a reference subdomain (or element). For ease of presentation we also use the notation H s
h(γ) for

s < 0 and H̃s
h(γ) for s > 0 with norms ‖ · ‖Hs

h
(γ) and ‖ · ‖H̃s

h
(γ) (where no L2-terms occur which

need a weight factor depending on h). The scaling properties of the norms are summarized by
the following lemma.
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Lemma 3.1 Let γ and γh be two affine-equivalent open subsets of IR2, Th(γ) = γh for an
invertible affine mapping Th. Assuming shape regularity of γh with diam(γh) = h and fixed γ
with diam(γ) = 1, there holds for v ∈ Hs(γ) and vh := v ◦ T−1

h the equivalence of norms

‖vh‖2Hs
h

(γh) ' h2−2s‖v‖2Hs(γ), s ∈ [−1, 1]

uniformly for h > 0. Moreover, for v ∈ H̃s(γ) and with the above notation, there holds

‖vh‖2H̃s
h

(γh)
' h2−2s‖v‖2

H̃s(γ)
, s ∈ [−1, 1].

Again, the equivalence is uniform for h > 0.

Proof. Let the affine mapping be given by Th(x) = Bhx + bh for Bh ∈ IR2×2 and bh ∈ IR2.
Standard estimates give, see, e.g., [8, Theorem 3.1.2],

|v|Hm(γ) ≤ c‖Bh‖m|det(Bh)|−1/2|vh|Hm(γh), m = 0, 1

and
|vh|Hm(γh) ≤ c‖B−1

h ‖m|det(Bh)|1/2|v|Hm(γ), m = 0, 1.

Both constants c are independent of γh. Also one finds

‖Bh‖ ≤ diam(γh)/ sup{diam(S); S is a ball contained in γ}

and
‖B−1

h ‖ ≤ diam(γ)/ sup{diam(S); S is a ball contained in γh},
see [8, Theorem 3.1.3]. Due to the relation |det(Bh)| = |γh|/|γ| and the shape regularity of γh,
this gives, by definition of the norms,

‖vh‖2Hs
h

(γh) ' h2−2s‖v‖2Hs(γ), s = 0, 1,

and
‖vh‖2H̃s

h
(γh)
' h2−2s‖v‖2

H̃s(γ)
, s = 0, 1.

Interpolation yields the analogous results for s ∈ (0, 1). Using the definition of the norms for
s < 0 by duality, these relations also hold for s ∈ [−1, 0). 2

Before dealing with domain decompositions for the scalable norms let us recall estimates for
the standard norms from [1] (see also [22] where these estimate are given for the J -method of
interpolation): Let Γ be partitioned into nonoverlapping Lipschitz subdomains Γj , j = 1, . . . , J .
Then, for s ∈ [−1, 1], there hold

J∑

j=1

‖v|Γj‖2Hs(Γj)
≤ ‖v‖2Hs(Γ) ∀v ∈ Hs(Γ) (3.1)
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and

‖v‖2
H̃s(Γ)

≤
J∑

j=1

‖v|Γj‖2H̃s(Γj)
∀v ∈ H̃s(Γ) with v|Γj ∈ H̃s(Γj). (3.2)

For the scalable norms introduced above one needs additional assumptions in order for these
estimates to hold. We prove the following lemma.

Lemma 3.2 Let Γ be partitioned into shape regular convex polygonal subdomains Γj, j =
1, . . . , J , which are affine transformations of a fixed set of polygons. Then, for all v ∈ H̃s(Γ),
s ∈ [0, 1], with

∫
Γj
v dx = 0, j = 1, . . . , J , there holds

J∑

j=1

‖v|Γj‖2Hs
h

(Γj)
≤ c‖v‖2Hs(Γ) ≤ c‖v‖2H̃s(Γ)

. (3.3)

The constant c is independent of v and the number of subdomains. Moreover, for v ∈ H̃s(Γ),
s ∈ [−1, 0], with v|Γj ∈ H̃s(Γj) and

∫
Γj
v dx = 0, j = 1, . . . , J , there holds

‖v‖2
H̃s(Γ)

≤ c
J∑

j=1

‖v|Γj‖2H̃s
h

(Γj)
. (3.4)

Again, the constant c is independent of v and J .

Proof. The second inequality in (3.3) is due to the definition of the norms. In order to prove
the first estimate in (3.3) we show that, for v̄j := 1/|Γj |

∫
Γj
v dx, j = 1, . . . , J , there holds

J∑

j=1

‖v|Γj − v̄j‖2Hs
h

(Γj)
≤ c‖v‖2Hs(Γ) ∀v ∈ Hs(Γ). (3.5)

Note that v̄j is well defined for s ≥ 0 since 1|Γj ∈ L2(Γj) ⊂ H̃−sh (Γj) = (Hs
h(Γj))

′. On a fixed
star shaped subdomain γ ⊂ Γ there holds by the Poincaré-Friedrichs’ inequality

‖v − 1

|γ|

∫

γ
v dx‖H1(γ) ≤ C(γ)|v|H1(γ), (3.6)

see, e.g., [5, Lemma 4.3.14]. By affine transformations, this yields for γ = Γj being one subdo-
main of Γ with diameter h the equivalence

‖v − v̄‖2H1
h

(γ) =
1

h2
‖v − v̄‖2L2(γ) + |v|2H1(γ) ' |v|2H1(γ)

with v̄ := 1/|γ| ∫γ v dx. This equivalence is uniform under affine transformations which ensure
shape regularity. Noting that ‖v − v̄‖L2(γ) ≤ ‖v‖L2(γ) we obtain by interpolation

‖v − v̄‖Hs
h

(γ) ≤ c|v|Hs(γ) ≤ c‖v‖Hs(γ) ∀v ∈ Hs(γ), s ∈ [0, 1]. (3.7)
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The constant c > 0 is independent of the subdomain γ = Γj of the partition. Then (3.5) follows
by combining (3.7) and (3.1).

For s ∈ [−1, 0] one obtains (3.4) by duality from (3.5) for −s as follows. Let v ∈ H̃s(Γ) with
v|Γj ∈ H̃s(Γj) and

∫
Γj
v dx = 0 be given. Taking ϕ ∈ H−s(Γ) we find

|〈ϕ, v〉L2(Γ)|2 =
∣∣∣
J∑

j=1

〈ϕ|Γj , v|Γj 〉L2(Γj)

∣∣∣
2

=
∣∣∣
J∑

j=1

〈ϕ|Γj − ϕ̄j , v|Γj 〉L2(Γj)

∣∣∣
2

≤
( J∑

j=1

‖v|Γj‖H̃s
h

(Γj)
‖ϕ|Γj − ϕ̄j‖H−s

h
(Γj)

)2

≤
J∑

j=1

‖v|Γj‖2H̃s
h

(Γj)

J∑

j=1

‖ϕ|Γj − ϕ̄j‖2H−s
h

(Γj)

(3.5)

≤
J∑

j=1

‖v|Γj‖2H̃s
h

(Γj)
c‖ϕ‖2H−s(Γ),

hence

‖v‖2
H̃s(Γ)

= sup
06=ϕ∈H−s(Γ)

|〈ϕ, v〉L2(Γ)|2
‖ϕ‖2H−s(Γ)

≤ c
J∑

j=1

‖v|Γj‖2H̃s
h

(Γj)
.

This proves (3.4). 2

Remark 3.1 Lemma 3.2 holds for more general partitions (than those described in §2) of Γ.
Central point to its proof is establishing the Poincaré-Friedrichs’ inequality on subdomains (3.6).
See [13, 11] for generalizations.

Before proving Theorem 2.1 let us identify the Sobolev norm which is uniformly equivalent
(under scalings) to the norm given by the integral operator V.

Lemma 3.3 Let γ ⊂ IR2 be a Lipschitz domain with diameter 1, and for an invertible affine
transformation Th let γh := {Th(x); x ∈ γ} be the transformed domain with diameter h. Let

us assume that γh is shape regular uniformly for h > 0. Then, for v ∈ H̃
−1/2
0 (γ), with integral

mean zero normal component, and vh(x) := v(T−1
h (x)) (x ∈ γh) there holds the equivalence of

norms
〈Vvh,vh〉L2(γh) ' ‖vh‖2H̃−1/2

h
(γh)

uniformly for 0 < h ≤ H. Here, H is a positive constant and the norm ‖·‖
H̃
−1/2
h

(γh)
is the product

norm in H̃
−1/2
h (γh) using ‖ · ‖

H̃
−1/2
h

(γh)
for the components. The bilinear form 〈Vvh,vh〉L2(γh)

is to be understood in the sense that V is defined for functions on γh.
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Proof. For a fixed domain γ, the equivalence of the norms is given by (1.5). Neglecting
translations, any affine transformation Th maintaining shape regularity can be written as a
composition of a transformation T0 (mapping γ to a shape regular domain γ0 of diameter 1) and
a scaling x 7→ hx. We show the uniform equivalence of

〈Vv0,v0〉L2(γ0) ' ‖v0‖2
H̃
−1/2
h

(γ0)
(3.8)

under affine transformations T0 which keep the diameter of γ0 (= 1) and its shape regularity.
Then, the assertion follows by proving the equivalence of

〈Vvh,vh〉L2(γh) ' ‖vh‖2H̃−1/2
h

(γh)
(3.9)

under scalings x 7→ hx uniformly for h > 0.
To prove (3.8) we assume without loss of generality that γ ⊂ Γ and γ0 ⊂ Γ. We consider

v ∈ H̃
−1/2
0 (γ) with transformed function v0(x) := v(T−1

0 (x)) on γ0. We denote by v∗0 the

extension by 0 of v0 onto Γ. By the equivalence (1.5) for any w ∈ H̃
−1/2
0 (Γ) there holds

〈Vv0,v0〉L2(γ0) = 〈Vv∗0,v
∗
0〉L2(Γ) ' ‖v∗0‖2H̃−1/2(Γ)

.

Therefore, in order to prove (3.8), we only have to show the uniform equivalence of the norms

‖v∗0‖H̃−1/2(Γ) ' ‖v0‖H̃−1/2(γ0).

Writing v∗0 = (v∗0,1, v
∗
0,2, v

∗
0,3) there holds

‖v∗0‖2H̃−1/2(Γ)
=

3∑

i=1

‖v∗0,i‖2H̃−1/2(Γ)

and

‖v∗0,i‖H̃−1/2(Γ) = sup
06=w∈H1/2(Γ)

〈w, v∗0,i〉L2(Γ)

‖w‖H1/2(Γ)

= sup
06=w∈H1/2(Γ)

〈w, v0,i〉L2(γ0)

‖w‖H1/2(Γ)

.

Since ‖w‖H1/2(Γ) ≥ ‖w‖H1/2(γ0) we directly obtain

‖v∗0,i‖H̃−1/2(Γ) ≤ sup
06=w∈H1/2(γ0)

〈w, v0,i〉L2(γ0)

‖w‖H1/2(γ0)

= ‖v0,i‖H̃−1/2(γ0).

On the other hand, for the Lipschitz domain γ0 there exists an extension operator E : H1/2(γ0)
→ H1/2(Γ) which is bounded and whose bound depends only on the number of Lipschitz map-
pings used to describe the boundary of γ0 and their Lipschitz constants, see, e.g., [21]. More
precisely, by Theorem 5 in [21, Chapter VI, Section 3] there exists a bounded operator E :
Hk(γ0)→ Hk(IR2) (k = 0, 1) such that, by interpolation, E : H1/2(γ0)→ H1/2(IR2). Then one
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obtains, by taking the restriction H1/2(IR2) → H1/2(Γ), an operator E : H1/2(γ0) → H1/2(Γ)
with bound ‖E‖. Therefore,

‖v∗0,i‖H̃−1/2(Γ) = sup
06=w∈H1/2(Γ)

〈w, v∗0,i〉L2(Γ)

‖w‖H1/2(Γ)

≥ sup
06=w0∈H1/2(γ0)

〈Ew0, v
∗
0,i〉L2(Γ)

‖Ew0‖H1/2(Γ)

≥ ‖E‖−1 sup
06=w0∈H1/2(γ0)

〈w0, v0,i〉L2(γ)

‖w0‖H1/2(γ0)

= ‖E‖−1‖v0,i‖H̃−1/2(γ0).

For affine transformations to shape regular domains γ0, ‖E‖−1 is uniformly bounded from below
by a positive constant. This finishes the proof of (3.8).

It remains to prove (3.9) for scalings x 7→ hx. Transforming γ0 to γh := hγ0 and using the
homogeneity of the kernel E(hx, hy) = h−1E(x, y), we compute

〈Vvh,vh〉L2(γh) =

∫

γh

∫

γh

E(x, y)vh(x)vh(y) dy dx

= h4
∫

γ0

∫

γ0

E(hx, hy)v0(x)v0(y) dy dx

= h3
∫

γ0

∫

γ0

E(x, y)v0(x)v0(y) dy dx = h3 〈Vv0,v0〉L2(γ0).

On the other hand, due to Lemma 3.1, there holds for a single component v0 of v0 on γ0 (and
with vh being the transformed component)

‖vh‖2
H̃
−1/2
h

(γh)
' h3‖v0‖2H̃−1/2(γ0)

which, together with (3.8), proves (3.9). 2

Proof of Theorem 2.1. By standard results of the additive Schwarz theory (see, e.g., [7]),
and since the decomposition (2.5) is direct, one has to show that there exist constants c1, c2 > 0
such that

c1


〈Vw0,w0〉+

∑

i,j,k

〈Vwij,k,wij,k〉

 ≤

〈
V(w0 +

∑

i,j,k

wij,k), (w0 +
∑

i,j,k

wij,k)

〉
(3.10)

and

〈
V(w0 +

∑

i,j,k

wij,k), (w0 +
∑

i,j,k

wij,k)

〉
≤ c2


〈Vw0,w0〉+

∑

i,j,k

〈Vwij,k,wij,k〉

 (3.11)

for any w0 ∈ S and any wij,k ∈ T ki (Γij), j ∈ Ji, i = 1, 2, 3, k ∈ {a,b, c}.
Let us denote the ith component of wij,k by wij,k (the other components of wij,k vanish by

construction), the ith component of w0 by wi0 and wi := wi0 +
∑
j∈Ji

∑
k∈{a,b,c}wij,k, i = 1, 2, 3.
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Then, using the equivalence of 〈Vw0,w0〉 and ‖w0‖2H̃−1/2(Γ)
due to (1.5), the equivalence of the

norm in H̃
−1/2
h and the norm given by V for functions with integral mean zero (by Lemma 3.3),

and recalling the product structure of the space H̃
−1/2
0 (Γ), one finds that (3.10), (3.11) are

equivalent to the existence of positive constants c1, c2 such that

c1




3∑

i=1

‖wi0‖2H̃−1/2(Γ)
+
∑

i,j,k

‖wij,k‖2H̃−1/2
h

(Γij)


 ≤

3∑

i=1

‖wi‖2H̃−1/2(Γ)
(3.12)

and
3∑

i=1

‖wi‖2H̃−1/2(Γ)
≤ c2




3∑

i=1

‖wi0‖2H̃−1/2(Γ)
+
∑

i,j,k

‖wij,k‖2H̃−1/2
h

(Γij)


 . (3.13)

It therefore suffices to estimate

ci1


‖wi0‖2H̃−1/2(Γ)

+
∑

j,k

‖wij,k‖2H̃−1/2
h

(Γij )


 ≤ ‖wi‖2H̃−1/2(Γ)

(3.14)

and

‖wi‖2H̃−1/2(Γ)
≤ ci2


‖wi0‖2H̃−1/2(Γ)

+
∑

j,k

‖wij,k‖2H̃−1/2
h

(Γij)


 (3.15)

for any wi0 ∈ Si and any wij,k ∈ T ki (Γij), j ∈ Ji, i = 1, 2, 3, k ∈ {a,b, c}. Then setting
c1 := min{c11, c21, c31} and c2 := max{c12, c22, c32} we obtain (3.12), (3.13) and the theorem is
proved.

Note that the numbers ci1, ci2 in (3.14) and (3.15) are bounds for the extremum eigenvalues
of the additive Schwarz operator which belongs to the decomposition (2.6). The set of functions
{wij,k; j ∈ Ji, k ∈ {a,b, c}} consists of triples of functions which are non-zero on the same
element. These functions span the three-dimensional spaces Ti(Γij) := ⊕k∈{a,b,c}T ki (Γij), j ∈ Ji,
where T ki (Γij) is the span of the function (over Γij) denoted by (k) on the right side of Figure 1
(if Γij is a triangle) or of Figure 2 (if Γij is a quadrilateral).

We prove stability of the splitting of wi with respect to the elements, i.e., the existence of
constants ci1, ci2 > 0 such that

ci1


‖wi0‖2H̃−1/2(Γ)

+
∑

j∈Ji
‖wij‖2

H̃
−1/2
h

(Γij )


 ≤ ‖wi‖2H̃−1/2(Γ)

(3.16)

and

‖wi‖2H̃−1/2(Γ)
≤ ci2


‖wi0‖2H̃−1/2(Γ)

+
∑

j∈Ji
‖wij‖2

H̃
−1/2
h

(Γij)


 (3.17)
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where wij =
∑
k∈{a,b,c} wij,k ∈ Ti(Γij) in the representation (3.14), (3.15). Since the functions

wij,k, k = a,b, c, are linearly independent the expressions

‖wij‖H̃−1/2
h

(Γij )
and

(
‖wij,a‖2

H̃
−1/2
h

(Γij)
+ ‖wij,b‖2H̃−1/2

h
(Γij )

+ ‖wij,c‖2
H̃
−1/2
h

(Γij)

)1/2

are equivalent norms. The uniformity of this equivalence with respect to the elements Γij can
be seen by considering affine transformations of a fixed element to shape regular elements using
Lemma 3.1. It therefore suffices to prove (3.16) and (3.17). This is the scalar situation presented
in [20] (without giving a proof) for the situation of quasi-uniform rectangular meshes (see also
[16, Corollary 1] for an improved estimate under the same restrictions).

Here we show that (3.16) and (3.17) can be proved under the only assumption of shape
regularity of the elements. Estimate in (3.17) is a combination of the triangle inequality and
Lemma 3.2:

‖wi‖2H̃−1/2(Γ)
≤ 2


‖wi0‖2H̃−1/2(Γ)

+ ‖
∑

j∈Ji
wij‖2H̃−1/2(Γ)




≤ c


‖wi0‖2H̃−1/2(Γ)

+
∑

j∈Ji
‖wij‖2

H̃
−1/2
h

(Γij)


 .

To prove (3.16) we show that

∑

j∈Ji
‖wij‖2

H̃
−1/2
h

(Γij )
≤ c‖wi‖2H̃−1/2(Γ)

. (3.18)

The assertion then follows by the triangle inequality and (3.4). Denoting by Qij the L2(Γij)-
projection operator onto the constants we can write wij = wi − Qij(wi) on Γij. Using the
orthogonality 〈Qij(wi), v −Qij(v)〉 = 0 for arbitrary functions v ∈ L2(Γij), this gives

〈wij , v〉L2(Γij) = 〈wi, v −Qij(v)〉L2(Γij) ∀ v ∈ L2(Γij).

Therefore, we can bound the dual norm of wij by

‖wij‖H̃−1/2+ε
h

(Γij)
= sup

v∈H1/2−ε(Γij)

〈wij , v〉
‖v‖

H
1/2−ε
h

(Γij)

≤ ‖wi‖H−1/2+ε
h

(Γij)
sup

v∈H1/2−ε(Γij)

‖v −Qij(v)‖
H̃

1/2−ε
h

(Γij)

‖v‖
H

1/2−ε
h

(Γij )

. (3.19)

Here, ε > 0 is arbitrary but sufficiently small and we used that H
−1/2+ε
h (Γij) is the dual space

of H̃
1/2−ε
h (Γij) with uniformly equivalent norms (under scalings).
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It is well known that the norms in H̃s and Hs on Lipschitz domains are equivalent for
|s| < 1/2, see [14]. More precisely, by [16, Lemma 5] there holds

‖v −Qij(v)‖
H̃

1/2−ε
h

(Γij)
≤ c

ε
‖v −Qij(v)‖

H
1/2−ε
h

(Γij)
.

Here, the constant c does not depend on ε nor the diameter of Γij since the norms in H̃
1/2−ε
h (Γij)

and H
1/2−ε
h (Γij) both scale the same way due to Lemma 3.1. This, of course, hings on the shape

regularity of the elements Γij. The operator Qij is continuous from L2(Γij)→ L2(Γij) and from
H1(Γij) → H1(Γij), see [16, (24)]. The latter continuity simply follows from |Qij(v)|H1(Γij) =

0. Therefore, one also obtains Qij : H1
h(Γij) → H1

h(Γij), such that, by interpolation, Qij :

H
1/2−ε
h (Γij) → H

1/2−ε
h (Γij). Then we obtain from (3.19) and the previous observation the

estimate
‖wij‖H̃−1/2+ε

h
(Γij )

≤ c

ε
‖wi‖H−1/2+ε

h
(Γij )

.

Using this estimate one finds

‖wij‖H̃−1/2
h

(Γij)
≤ cdiam (Γij)

ε‖wij‖H̃−1/2+ε
h

(Γij)
≤ c

ε
diam (Γij)

ε‖wi‖H−1/2+ε
h

(Γij)
. (3.20)

Here, for the first estimate, one simply transforms back and forth to a reference elements and

uses the scaling properties of the norms in H̃
−1/2
h and H̃

−1/2+ε
h on shape regular elements. Using

again Lemma 3.1, now for the norms in H
−1/2+ε
h and H

−1/2
h (Γij), one finds by the same argument

‖wi‖H−1/2+ε
h

(Γij )
≤ c

diam (Γij)ε
‖wi‖H−1/2

h
(Γij )

(3.21)

which is an inverse property for piecewise constant functions. Combining (3.20) and (3.21) we
obtain

‖wij‖H̃−1/2
h

(Γij )
≤ c

ε
‖wi‖H−1/2

h
(Γij)

.

Taking a fixed, sufficiently small ε > 0 and summing the squares of the last estimation this
yields ∑

j∈Ji
‖wij‖2

H̃
−1/2
h

(Γij)
≤ c

∑

j∈Ji
‖wi‖2

H
−1/2
h

(Γij)
≤ c‖wi‖2H̃−1/2(Γ)

.

The last upper bound is due to (3.1) by noting that ‖ · ‖
H
−1/2
h

(Γij)
= ‖ · ‖H−1/2(Γij)

by definition

of Hs(γ) for s ∈ [−1, 0] at the beginning of Section 3. This proves (3.18) and the proof of the
theorem is finished. 2

4 Numerical results

4.1 Example 1: polygonal surface

We solve the integral equation (1.3) on the plane surface piece Γ indicated by Figure 4 with right
hand side function g = (g1, g2, g3) where g1 = g2 = 1 and g3(x1, x2) = x1 + x2, x = (x1, x2) ∈ Γ.
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We did not take g3 = 1 since testing with functions with mean zero normal component, here the
third component, would give the trivial solution for the third component of v. The horizontal
and vertical sides of Γ, as subdomain of IR2, have length 1. Since Γ is an open surface piece
the solution v of (1.3) usually exhibits strong singularities at the edges and corners. Due to the
chosen shape of Γ it is not obvious what an optimal mesh for the boundary element method
looks like (which, for a rectangle, just needs rectangular elements). We start with the initial
mesh indicated in Figure 4, consisting of quadrilaterals and triangles, and use piecewise constant
trial functions. The scheme (2.3) then gives an approximation for the true solution v and we use
our indicators to refine the mesh thus giving improved approximations. For simplicity we do not
subdivide distorted rectangles into shape regular sub-elements (as is necessary for the proof of
Theorem 2.2’). The efficiency of the estimator in our numerical experiments is still convincing,
see Figure 6.

Our adaptive algorithm is as follows. We determine the maximum of all the elemental
indicators

θmax = max
i,j

θij

where
θij := θ2

ij,a + θ2
ij,b + θ2

ij,c

according to the full decomposition (2.5), and refine the element Γij (the jth element for the ith
component) whenever θij ≥ 1

2θmax. The refinement of Γij is done anisotropically as follows. For
a triangle Γij : if 0.7 θij,k is larger than the sum of the other two indicators then the element is
halved as referenced by (k) in Figure 1. If none of the indicators fulfills this condition then the
element is divided into four triangles by connecting the midpoints of the sides. Additionally we
restrict halving elements by a minimum angle condition. For a quadrilateral: if 0.7 θij,a is larger
than both the other indicators then the element is halved along the bold line in Figure 2(a),
and analogously in the case (b). Otherwise the element is divided into four quadrilaterals
by connecting opposite midpoints of the sides. This is the standard strategy and indicated
by “indicators w.r.t. directions” in the figures. To underline its efficiency we also study
pure elemental indicators by just using the terms θij and performing isotropic refinement, i.e.
subdivision into four elements where θij ≥ 1

2θmax. This strategy is referred to by “indicators
w.r.t. elements”. Finally, to demonstrate the influence of the individual adaption of the
components, we also perform an adaption which is uniform with respect to the three vector
components, but still uses the anisotropic refinement from the first strategy. This is realized by
joining the indicators for the components,

θ2
j,k := θ2

1j,k + θ2
2j,k + θ2

3j,k, k ∈ {a,b, c},

defining
θ2
j := θ2

j,a + θ2
j,b + θ2

j,c, θ∗max := max
j∈J

θj,

(the index sets are equal, J := J1 = J2 = J3) and performing as in the standard situation: refine
Γij according to the directional strategy by using the direction indicators θj,k, k =a,b,c, whenever
θj ≥ 1

2θ
∗
max. This adaption is referred to by “indicators w.r.t. directions (uniform)”.
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In order to present the relative errors in energy norm for the different methods we approxi-
mate the norm of the true solution v by extrapolation and use the symmetry of the operator V
to obtain

‖v − vh‖2V = ‖v‖2V − ‖vh‖2V.
Of course, substituting ‖v‖V by an extrapolated value, we only obtain approximations for the
errors. Our results underline the expected behavior of the strategies. Figure 5 shows the errors
for the uniform h-version (initial mesh as in Figure 4 and subsequent uniform element divisions),
and for the adaptive versions. Obviously, the adaptive versions converge faster than the uniform
version and, moreover, anisotropic refinements based on indicators for directions lead to better
convergence than isotropic refinements. This is reasonable since our problem exhibits edge
singularities which can be best approximated by anisotropic meshes. It also becomes clear that
component independent adaption further reduces the number of unknowns and leads to better
convergence. Of course, we cannot expect a better convergence rate for this method since we
save asymptotically at most two thirds of the unknowns (e.g., when two of the components of
the true solution are smooth).

Figure 6 plots the error estimator Θ (belonging to the full decomposition) divided by the
error in energy norm (its approximation by extrapolation), for sequences of meshes obtained
by the uniform h-version and the three adaptive strategies. The results are almost constant
and reflect good efficiency of the estimator, as stated by Theorem 2.2 for shape regular meshes.
The statement of Theorem 2.2, however, depends on assumption (A1), i.e. on the saturation
parameter σ. Table 1 lists numerical approximations for this parameter, for the uniform method
and the adaptive versions based on elemental and directional indicators. Here, N denotes the
dimension of the actual ansatz space and Ñ is the dimension of the enriched ansatz space.
Except the second value for the uniform method (which needs the norm of the boundary element
solution on a quite fine mesh) all the values are around 0.7. This is the value which one expects
in the presence of edge singularities of the type dist(x, ∂Γ)−0.5. In fact, the a priori error
estimate O(h1/2) in this case indicates for mesh halving an asymptotic saturation parameter
σ ≈ (1/2)1/2 ≈ 0.7. We refer to §5 for more details. In Figures 7, 8, 9 we present the meshes
(always one for each of the three components of vh) obtained by the three adaptive strategies
for the step when the error in the approximation is approximately 10% in the energy norm.
All the meshes exhibit refinement towards edges and corners. Note that the incoming corner
does not exhibit a strong singularity since we are dealing with the problem exterior to Γ. The
mesh refinements work well for rectangular and triangular elements. Also note that the meshes
for the three components are different in Figures 7 and 9. We do not have a regularity theory
for the individual components of the solution at hand. But the different meshes (with different
refinement priorities) indicate at least different dominant terms in the singularity expansions of
the components of v.
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Figure 4: The surface with initial mesh of rectangles and triangles.
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Figure 5: Relative error in energy norm: uniform and adaptive methods.
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Figure 6: Testing efficiency/reliability: error estimator divided by error in energy norm.

N Ñ (1) (2) (3)

45 180 0.759 0.760 0.760
68 272 0.725
72 288 0.726

127 508 0.722
150 600 0.723
180 720 0.857
193 772 0.712
260 1040 0.698
300 1200 0.707
343 1372 0.675
627 2508 0.659

Table 1: The saturation parameter σ for uniform refinement (1), shape regular refinement using
indicators w.r.t. elements (2), and refinement using indicators w.r.t. directions (3).
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306 elements 291 elements 396 elements

Figure 7: Adaptively refined meshes (for three components) using indicators w.r.t. elements,
10.8% error for 993 unknowns.

186 elements 186 elements 186 elements

Figure 8: Adaptively refined mesh (same mesh for the three components) using indicators w.r.t.
directions (uniform), 10.1% error for 558 unknowns.
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122 elements 123 elements 186 elements

Figure 9: Adaptively refined meshes (for three components) using indicators w.r.t. directions,
10.5% error for 431 unknowns.
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4.2 Example 2: testing stability.

The numerical results presented in the previous section underline the statement of Theorem 2.2
for the reliability and efficiency of the error estimator Θ on shape regular meshes. In this
section we numerically investigate the theoretical basis of Theorem 2.2. This is the stability
of decomposition (2.5) on shape regular meshes, stated by Theorem 2.1. Here, we do not
approximate a real problem but artificially create highly non-uniform meshes. Then, assembling
the corresponding stiffness matrices for the integral operator V, we calculate the minimum
and maximum eigenvalues of the corresponding additive Schwarz operator P and those of the
stiffness matrix A. Figure 10 shows the types of meshes used to generate a sequence of non-
uniform rectangular meshes. The left, middle and right meshes together are an example in
this sequence of meshes used for the first, second and third components, respectively, of the
unknown function. Table 2 lists the corresponding results, depending on the maximum mesh
ratio (being the same for the three components): maximum side length divided by minimum side
length. As before, N denotes the dimension of the ansatz space formed by the three non-uniform
meshes. Analogously, we study a sequence of highly refined triangular meshes as in Figure 11.
The corresponding results are given in Table 3. All the results demonstrate independence of
the extremum eigenvalues of P on the mesh ratio, as described in Theorem 2.1. We have
also performed numerical experiments (not presented here) which indicate that the extremum
eigenvalues of P do indeed depend on the aspect ratio of the elements.

Figure 10: Test meshes: shape regular rectangular elements.
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N hmax/hmin λmin(A) λmax(A) λmin(P ) λmax(P )

27 1 0.474E-01 0.501 0.447 1.83
45 2 0.692E-02 0.451 0.370 1.89
63 4 0.865E-03 0.449 0.329 1.88
81 8 0.108E-03 0.449 0.326 1.89
99 16 0.135E-04 0.449 0.332 1.88

117 32 0.169E-05 0.449 0.338 1.88
135 64 0.211E-06 0.449 0.340 1.88
153 128 0.264E-07 0.449 0.341 1.87
171 256 0.330E-08 0.449 0.342 1.87
189 512 0.413E-09 0.449 0.342 1.87

Table 2: Test meshes like in Fig. 10: extremum eigenvalues of the stiffness matrix and of the
additive Schwarz operator for enriched spaces.

Figure 11: Test meshes: shape regular triangular elements.
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N hmax/hmin λmin(A) λmax(A) λmin(P ) λmax(P )

54 1 0.135E-01 0.252 0.409 2.15
72 2 0.207E-02 0.243 0.396 2.16
90 4 0.254E-03 0.242 0.378 2.16

108 8 0.318E-04 0.242 0.366 2.15
126 16 0.397E-05 0.242 0.360 2.15
144 32 0.496E-06 0.242 0.355 2.15
162 64 0.621E-07 0.242 0.352 2.15
180 128 0.776E-08 0.242 0.350 2.15
198 256 0.970E-09 0.242 0.349 2.15

Table 3: Test meshes like in Fig. 11: extremum eigenvalues of the stiffness matrix and of the
additive Schwarz operator for enriched spaces.

5 Appendix

In this section we analyze the saturation assumption (A1) in the presence of strong singularities
and for uniform and graded meshes. The solution v of (1.3) is, up to a normal vector of constant
length, the jump of the stress vector across Γ, see [25, (2.15)]. Even for smooth data, this stress
vector in general exhibits corner and corner edge singularities, see [25, 10, 9] and the references
cited there. For representations of these singularities in tensor product form see [23].

We consider Γ = {(x1, x2, 0); 0 < x1, x2 < 1} and assume that the solution v of (1.3) is,
close to the lower edge and the corner (0, 0, 0), of the form

v(x1, x2) = w(x1, x2)x
λ−1/2
1 x

−1/2
2 (5.1)

with λ > 0 and a smooth vector function w whose components are equal to 1 close to the edge
x2 = 0 (for small angles in polar coordinates with center (0, 0)). We assume that the singular
behaviour of v at the other corners/edges is analogous. Of course, there are more singularities
of different types, but the one assumed above is the strongest for an open surface and smooth
data [10, 25, 4]. This singularity therefore dominates the convergence of the boundary element
approximation, which is studied now.

We consider sequences of rectangular meshes which are graded towards the edges. For a
precise definition we divide Γ into four squares and map each square to Q = (0, 1)× (0, 1)×{0}
such that the part of the boundary of Γ is mapped to the edges x1 = 0 and x2 = 0 of Q. For a
grading parameter β ≥ 1, integer N > 0 and h = 1/N we introduce the graded mesh generated
by the lines

x1 =

(
i

N

)β
, x2 =

(
j

N

)β
, i, j = 0, . . . , N.

This mesh on Q defines a mesh on Γ which is graded towards the edges for β > 1. For β = 1
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the mesh is uniform. Considering vector functions with piecewise constant components on the
given mesh, this defines the boundary element space S, cf. (2.2).

Then we have the following asymptotically optimal error estimate.

Theorem 5.1 Let Γ = (0, 1)×(0, 1)×{0} and assume that the singular behaviour of the solution
v of (1.3) is as described in (5.1). Define the Galerkin approximation vh by (2.3) with ansatz
space S as defined before. Then there exist constants c0, c1 > 0 such that

c0h
α ≤ ‖v − vh‖V ≤ c1hα

with α = 1/2 for β = 1 and α = 3/2 for β > 3.

Proof. By the quasi-optimal convergence of the Galerkin method, the a priori error estimate
is, up to constant factors, a result of best approximation in the Sobolev space H̃−1/2(Γ). The
upper bound of the approximation error for the assumed singularity is given by [24, Lemma
3.1] with detailed proofs cited from [22]. (The appearing ε > 0 in that result is for technical
reasons due to another type of singularity.) It remains to prove the lower bound. Let γ :=
(a, b) × (0, d) × {0} ⊂ Γ with 0 < a < b, d ≤ 1/2 denote a surface piece which touches the
boundary of Γ at (a, b) × {0} × {0}. We assume that γ is so small that the function w from
(5.1) satisfies w|γ = 1 (the constant vector with components 1). It follows from (1.5) and the
definition of H̃s(Γ) that

‖v − vh‖V ≥ c‖vi − vh,i‖H−1/2(γ).

Here, for i ∈ {1, 2, 3}, vi and vh,i are the ith components of v and vh. We choose an arbitrary
i. It suffices to prove that

‖xλ−1/2
1 x

−1/2
2 − φ‖H−1/2(γ) ≥ chα (5.2)

for any piecewise constant function φ (with respect to a given mesh) and a constant c > 0.
Without loss of generality assume that, for a given mesh grading parameter β ≥ 1, the

subdomain is γ = ((1/3)β , (1/2)β)× (0, (1/3)β )×{0} and that the mesh on γ (which is induced
from the one on Γ) is given by the lines

x1 = si, x2 = sj, i = 2N, . . . , 3N, j = 0, . . . , 2N

with

sj :=

(
j

6N

)β
.

The elements of the mesh are γij := (si−1, si)×(sj−1, sj)×{0}, i = 2N+1, . . . , 3N , j = 1, . . . , 2N .
Their lengths in x1- and x2-directions are hi and hj , respectively, with hj := sj − sj−1. By the
selection of γ (depending on β) their holds hi > hj for any element γij on γ.

In order to establish (5.2), we begin by showing that

‖ψ‖H−1/2(γij )
� h1/2

i hj‖ψ̃‖H−1/2(Q) (5.3)
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where “ ˜ ” denotes the affine transformation of a function from γij to Q = (0, 1)× (0, 1)× {0}:
ψ̃(x1, x2) := ψ

(
(1−x1)si−1 +x1si, (1−x2)sj−1 +x2sj

)
. (Here and in the following, a(h) � b(h)

means that there exists a constant c > 0 which is independent of h such that a(h) ≥ c b(h) for all
h, and analogously for “�”. For expressions a(h), b(h) involving general functions the constant
c does not depend on them. The relation a(h) ' b(h) means a(h) � b(h) and a(h) � b(h).)

Since hi > hj , we have

‖φ‖L2(γij) ' h
1/2
i h

1/2
j ‖φ̃‖L2(Q), |φ|H1(γij) �

(
hi
hj

)1/2

|φ̃|H1(Q),

and by interpolation,

‖φ‖H̃1/2(γij )
� h1/2

i ‖φ̃‖H̃1/2(Q).

By duality this gives

‖ψ‖H−1/2(γij)
= sup

φ∈H̃1/2(γij)\{0}

〈ψ, φ〉L2(γij )

‖φ‖H̃1/2(γij)

� sup
φ̃∈H̃1/2(Q)\{0}

hihj〈ψ̃, φ̃〉L2(Q)

h
1/2
i ‖φ̃‖H̃1/2(Q)

= h
1/2
i hj‖ψ̃‖H−1/2(Q)

which is (5.3).
Let us estimate the error on the elements γi1, i = 2N + 1, . . . , 3N , which are adjacent to the

edge x2 = 0. By (5.3) we obtain for any ci1 ∈ IR

‖xλ−1/2
1 x

−1/2
2 − ci1‖H−1/2(γi1) � h

1/2
i h1‖(si−1 + hix1)λ−1/2(s1x2)−1/2 − ci1‖H−1/2(Q)

= h
1/2
i h1s

−1/2
1 s

λ−1/2
i−1 ‖(1 +

hi
si−1

x1)λ−1/2x
−1/2
2 − c̃i1‖H−1/2(Q) (5.4)

with constant c̃i1 = s
1/2
1 s

1/2−λ
i−1 ci1. There holds

inf
c̃i1∈IR

‖(1 +
hi
si−1

x1)λ−1/2x
−1/2
2 − c̃i1‖H−1/2(Q) =: dN,i1 ≥ c > 0 (5.5)

for a constant c which is independent of i and N for i = 2N + 1, . . . , 3N (we write dN,i1 to

emphasize the dependence on N). In fact, for any i, the function (1 + hi
si−1

x1)λ−1/2x
−1/2
2 is not

constant such that dN,i1 > 0 for any N and i ∈ {2N + 1, . . . , 3N}. If (5.5) did not hold then
there must exist subsequences Nn and in → ∞ such that dNn,in1 → 0 for n → ∞ (note that
Nn →∞ if and only if in →∞). Since hi/si−1 → 0 for i→∞ we then obtain the existence of a

constant c such that x
−1/2
2 − c = 0 in H−1/2(Q) which is a contradiction. Therefore, (5.5) holds.

Next, h1 = s1 = hβ , si−1 ≥ (1/3)β for i ≥ 2N + 1, and we conclude from (5.4) that

‖xλ−1/2
1 x

−1/2
2 − ci1‖H−1/2(γi1) � h

1/2
i hβ/2 (5.6)
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uniformly for i = 2N + 1, . . . , 6N .
Now we estimate the norms on the remaining elements γij , i ≥ 2N + 1, j > 1. As before we

obtain by transformation

‖xλ−1/2
1 x

−1/2
2 − cij‖H−1/2(γij)

� h1/2
i hj‖(si−1 + hix1)λ−1/2(sj−1 + hjx2)−1/2 − cij‖H−1/2(Q)

= h
1/2
i hj(s

−1/2
j−1 − s

−1/2
j )s

λ−1/2
i−1 ‖(1 +

hi
si−1

x1)λ−1/2 (sj−1 + hjx2)−1/2

s
−1/2
j−1 − s

−1/2
j

− c̃ij‖H−1/2(Q)

= h
1/2
i hj(s

−1/2
j−1 − s

−1/2
j )s

λ−1/2
i−1 ‖φi(x1)ψj(x2)− c̃ij‖H−1/2(Q) (5.7)

with constant c̃ij = cijs
1/2−λ
i−1 /(s

−1/2
j−1 −s

−1/2
j ) and functions φi(x1) = (1+ hi

si−1
x1)λ−1/2, ψj(x2) =

(sj−1 + hjx2)−1/2/(s
−1/2
j−1 − s

−1/2
j ). We prove that there holds

inf
c̃ij∈IR

‖φi(x1)ψj(x2)− c̃ij‖H−1/2(Q) =: dN,ij ≥ c̃ > 0 (5.8)

for a constant c̃ which does not depend on i, j and N (i ∈ {2N + 1, . . . , 3N}, j ∈ {2, . . . , 2N}).
As for (5.5) we note that dN,ij > 0 for any i and j in the above mentioned ranges. If (5.8) did
not hold then there must exist subsequences Nn, (in, jn), n = 1, 2, . . ., such that dNn,injn → 0 as
n→∞. As above, since as n→∞ Nn →∞, then in →∞ also. Hence

φin(x1) = (1 +
hin
sin−1

x1)λ−1/2 → 1 (n→∞).

If the sequence jn is bounded then there must exist a j∗ such that a subsequence of jn, jnm = j∗.
Then φinm (x1)ψjnm (x2) = φinm (x1)ψj∗(x2)→ ψj∗(x2) in H−1/2(Q) (m→∞), but

inf
c̃ij∗∈IR

‖ψj∗(x2)− c̃ij∗‖H−1/2(Q) = inf
c̃ij∗∈IR

‖(sj∗−1 + hj∗x2)−1/2

s
−1/2
j∗−1 − s

−1/2
j∗

− c̃ij∗‖H−1/2(Q) > 0.

Thus, if (5.8) fails the sequence jn must be unbounded. Without loss of generality we may
assume that the sequence jn is strictly increasing. We estimate

‖φinψjn − c̃injn‖H−1/2(Q) ≥ (5.9)
∣∣∣‖φinψjn − ψjn −

φin − 1

1−
(

jn
jn−1

)−β/2 ‖H−1/2(Q) − ‖ψjn +
φin − 1

1−
(

jn
jn−1

)−β/2 − c̃injn‖H−1/2(Q)

∣∣∣.

Note that

ψj(x2) =
(sj−1 + hjx2)−1/2

s
−1/2
j−1 − s

−1/2
j

=
(1 + [( j

j−1)β − 1]x2)−1/2

1− ( j
j−1)−β/2

,

thus

ψjn(x2)− 1

1− ( jn
jn−1)−β/2

→ −x2 (n→∞) (5.10)
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and

φin(x1)ψjn(x2)− ψjn(x2)− φin(x1)− 1

1−
(

jn
jn−1

)−β/2 =

(φin(x1)− 1)︸ ︷︷ ︸
→0 (n→∞)

(
ψjn(x2)− 1

1−
(

jn
jn−1

)−β/2
)

︸ ︷︷ ︸
→−x2 (n→∞)

→ 0 (n→∞).

Therefore, continuing with (5.9),

lim inf
n→∞ inf

c̃injn∈IR
‖φinψjn − c̃injn‖H−1/2(Q)

≥ lim inf
n→∞ inf

c̃injn∈IR
‖ψjn +

φin − 1

1−
(

jn
jn−1

)−β/2 − c̃injn‖H−1/2(Q)

= lim inf
n→∞ inf

c̃injn∈IR
‖ψjn +

φin

1−
(

jn
jn−1

)−β/2 − c̃injn‖H−1/2(Q) (5.11)

Now, a direct calculation shows that for in ∈ {2Nn + 1, . . . , 3Nn} and jn ∈ {2, . . . , 2Nn} there
exists a sequence of constants {cn} such that

φin(x1)

1−
(

jn
jn−1

)−β/2 − cn − (2λ− 1)
jn
in
x1 → 0 (n→∞).

Thus, again using (5.10), we obtain

lim inf
n→∞ inf

c̃injn∈IR
‖ψjn +

φin

1−
(

jn
jn−1

)−β/2 − c̃injn‖H−1/2(Q)

= lim inf
n→∞ inf

c̃injn∈IR
‖ − x2 + (2λ− 1)

jn
in
x1 − c̃injn‖H−1/2(Q). (5.12)

As in ∈ {2Nn + 1, . . . , 3Nn} and jn ∈ {2, . . . , 2Nn}, jn/in ∈ (0, 1). Hence,

lim inf
n→∞ inf

c̃injn∈IR
‖ − x2 + (2λ− 1)

jn
in
x1 − c̃injn‖H−1/2(Q) ≥

inf
c∈(0,1)

inf
c̃injn∈IR

‖ − x2 + (2λ− 1)cx1 − c̃injn‖H−1/2(Q) > 0. (5.13)

Combining (5.11)–(5.13) yields a contradiction to the assumption dNn,injn → 0. Hence (5.8)
holds.
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Noting that si−1 ≥ (1/3)β for i ≥ 2N + 1, then from (5.7) we obtain, for another constant
c̃ > 0,

‖xλ−1/2
1 x

−1/2
2 − cij‖H−1/2(γij )

� c̃h1/2
i hj(s

−1/2
j−1 − s

−1/2
j ) (5.14)

= c̃h
1/2
i

(
j

6N

)β (
1− (

j − 1

j
)β
)(

j

6N

)−β/2 (
(
j − 1

j
)−β/2 − 1

)

� h
1/2
i j

β
2
−2N−

β
2 (5.15)

for i = 2N + 1, . . . , 3N , j = 2, . . . , 2N . Using (3.1) and combining (5.6) with (5.15) we obtain

‖xλ−1/2
1 x

−1/2
2 − φ‖2H−1/2(γ) �

3N∑

i=2N+1

2N∑

j=1

‖xλ−1/2
1 x

−1/2
2 − φ‖2H−1/2(γij )

�
3N∑

i=2N+1

hi


hβ +N−β

2N∑

j=2

jβ−4


 � hβ +N−βNβ−3 = hβ + h3.

Choosing β = 1 and β > 3 we obtain the smallest lower bounds for the uniform mesh and the
optimally graded mesh, respectively, as stated in the theorem. 2

Remark 5.1 Using the optimal a priori error estimate of the theorem one obtains

‖v − vh2‖V ≤ c
(
h2

h1

)α
‖v − vh1‖V

for the solution v and Galerkin approximations vhi of (1.3) in the presence of the strong edge
singularities where α ∈ [1/2, 3/2] depends on the mesh grading. Therefore, choosing a sufficiently
fine mesh for the definition of the enriched ansatz space S̃ in (2.4) one obtains a constant
parameter σ < 1 in the saturation assumption (A1), in the case of graded or uniform meshes.

Remark 5.2 A posteriori error estimation and adaptive mesh refinement are different tasks.
In order to guarantee the saturation property asymptotically (in the presence of singularities)
for adaptively refined meshes additional refinement criteria seem to be necessary.

For instance, convergence for problems with solutions that behave like (5.1) requires that
every element will be refined eventually. When starting with rectangular elements, our adaptive
algorithm refines them by halving in one or both directions, thus giving meshes where quotients
of widths (in a certain direction) of neighboring elements (longer length divided by shorter or
equal length) are integer powers of 2.

Let us consider an edge defined by x = 0 and let us exclude corners such that the dominant

behaviour of the unknown solution is x
−1/2
2 . Our numerical results show that, in the preasymp-

totic range and close to the edge (e.g. on the subdomain γ = (0, 1)× (0, 1)× {0}) the algorithm
produces a mesh that is geometrically graded towards the edge. It is of the type γ̄ = ∪J+1

j=1 γ̄j for a
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certain integer J with γj = (0, 1)× (sj−1, sj)×{0} and s0 = 0, sj = 1/2J−j+1 (j = 1, . . . , J+1).
Designing the algorithm such that the width of the largest elements is bounded from above (here
only in direction x2), e.g. hj := sj−sj−1 ≤ 1/2l for an integer l ≤ J (where l→∞ is necessary
to guarantee convergence), we obtain a mixed graded-uniform mesh. The x2-coordinates of the
element edges are

s0, s1, s2, · · · sJ−l, sJ−l+1 = s̃J−l+1, s̃J−l+2, · · · s̃J−l+2l

0, 1
2J
, 1

2J−1 , · · · 1
2l+1 ,

1
2l
, 2

2l
, · · · 2l

2l
= 1

That means that {γj = (0, 1)× (sj−1, sj)×{0}; j = 1, . . . , J − l+ 1} constitutes a geometrically
graded mesh whereas {γj = (0, 1) × (s̃j−1, s̃j) × {0}; j = J − l + 2, . . . , J − l + 2l} form a (in
x2-direction) uniform mesh.

Direct application of the estimates of this section (substituting the old mesh data sj, hj by

the new data sj, s̃j and hj), and considering the particular case of the edge singularity x
−1/2
2 ,

yields (cf. (5.14))

‖x−1/2
2 − cj‖H−1/2(γj )

� 1

2(J−j)/2 (j = 1, . . . , J − l + 1)

and

‖x−1/2
2 − cj‖H−1/2(γJ−l+j ) �

1

2l/2
(j − 1)−1/2(1− (1− 1

j
)1/2) (j = 2, . . . , 2l).

This gives

‖x−1/2
2 − cj‖2H−1/2(γ) �

J−l+1∑

j=1

1

2J−j
+

1

2l

2l∑

j=2

(j − 1)−1(1− (1− 1

j
)1/2)2 � 1

2l
= max

j
hj.

Therefore, the uniform part of the mesh dominates the convergence which is linear in h :=
maxj hj. Since the mixed graded-uniform mesh is a refinement of the uniform mesh of width
h (in x2-direction), the approximation error for the mixed mesh can only be less than or equal
to the error for the uniform mesh. For uniform meshes linear convergence is obtained such
that, together with the lower bound above, the convergence for the mixed mesh is linear in h.
Therefore, we conjecture that the analysis of this section applies to the meshes generated by our
algorithm (if one incorporates an upper bound for the maximum elements’ width) if singularities
of the mentioned types (5.1) are present. In particular, the saturation assumption then follows
for sufficiently fine meshes from Remark 5.1 with α = 1.
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