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Abstract. In this paper we extend recent results on the a priori and a posteriori error
analysis of an augmented mixed finite element method for the linear elasticity problem, to
the case of incompressible materials. Similarly as before, the present approach is based on
the introduction of the Galerkin least-squares type terms arising from the constitutive and
equilibrium equations, and from the relations defining the pressure in terms of the stress
tensor and the rotation in terms of the displacement, all them multiplied by stabilization
parameters. We show that these parameters can be suitably chosen so that the resulting
augmented variational formulation is defined by a strongly coercive bilinear form, whence the
associated Galerkin scheme becomes well posed for any choice of finite element subspaces.
Next, we derive a reliable and efficient residual-based a posteriori error estimator for the
augmented mixed finite element scheme. Finally, several numerical results confirming the
theoretical properties of this estimator, and illustrating the capability of the corresponding
adaptive algorithm to localize the singularities and the large stress regions of the solution,
are also reported.

1. Introduction

The stabilization of dual-mixed variational formulations through the application of diverse
procedures has been widely investigated during the last two decades. In particular, the aug-
mented variational formulations, also known as Galerkin least-squares methods, and which go
back to [14] and [15], have already been extended in different directions. Some applications to
elasticity problems can be found in [17] and [9], and a non-symmetric variant was considered
in [13] for the Stokes problem. In addition, stabilized mixed finite element methods for related
problems, including Darcy and incompressible flows, can be seen in [2], [6], [16], [20], [21], and
[23]. For an abstract framework concerning the stabilization of general mixed finite element
methods, we refer to [8].

On the other hand, a new stabilized mixed finite element method for plane linear elasticity
with homogeneous Dirichlet boundary conditions was presented and analyzed in [18]. The
approach there is based on the introduction of suitable Galerkin least-squares terms arising
from the constitutive and equilibrium equations, and from the relation defining the rotation in
terms of the displacement. It is shown that the resulting continuous and discrete augmented
formulations are well posed, and that the latter becomes locking-free. Moreover, since the
augmented variational formulation is strongly coercive, arbitrary finite element subspaces can
be utilized in the discrete scheme, which constitutes one of its main advantages. In particular,
Raviart-Thomas spaces of lowest order for the stress tensor, piecewise linear elements for
the displacement, and piecewise constants for the rotation can be used. The corresponding
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extension to the case of non-homogeneous Dirichlet boundary conditions was provided recently
in [19]. In addition, a residual based a posteriori error analysis yielding a reliable and efficient
estimator for the augmented method from [18], is provided in the recent work [5]. A posteriori
error analyses of the traditional mixed finite element methods for the elasticity problem can
be seen in [10] and the references therein.

The purpose of the present paper is to extend the results from [18] and [5] to the case
of incompressible elasticity. The rest of this work is organized as follows. In Section 2 we
describe the boundary value problem of interest, establish its dual-mixed variational formula-
tion, and prove that it is well-posed. Then, in Sections 3 and 4 we introduce and analyze the
continuous and discrete augmented formulations, respectively. Next, in Section 5 we develop
the residual-based a posteriori error analysis of our augmented mixed finite element method.
Finally, several numerical results confirming the reliability and efficiency of the estimator are
provided in Section 6. The capability of the corresponding adaptive algorithm to localize the
singularities and the large stress regions of the solution is also illustrated here.

We end this section with some notations to be used below. Given any Hilbert space U , U2

and U2×2 denote, respectively, the space of vectors and square matrices of order 2 with entries
in U . In particular, I is the identity matrix of R

2×2, and given τ := (τij), ζ := (ζij) ∈ R
2×2,

we write as usual τ t := (τji) , tr(τ ) :=
∑2

i=1 τii , τ d := τ − 1
2 tr(τ ) I , and τ : ζ :=

∑2
i,j=1 τij ζij . Also, in what follows we utilize the standard terminology for Sobolev spaces and

norms, employ 0 to denote a generic null vector, and use C and c, with or without subscripts,
bars, tildes or hats, to denote generic constants independent of the discretization parameters,
which may take different values at different places.

2. The problem and its dual-mixed formulation

Let Ω be a bounded and simply connected polygonal domain in R
2 with boundary Γ. Our

goal is to determine the displacement u, the stress tensor σ, and the pressure-like unknown
p of a linear incompressible material occupying the region Ω, under the action of an external
force. In other words, given a volume force f ∈ [L2(Ω)]2, we seek a symmetric tensor field σ,
a vector field u and a scalar field p such that

σ = 2µ ε(u) − p I in Ω , div(σ) = − f in Ω ,

div(u) = 0 in Ω , u = 0 on Γ ,
(2.1)

where ε(u) := 1
2 (∇u + (∇u)t) is the linearized strain tensor, µ is the shear modulus, and

div stands for the usual divergence operator div acting along each row of the tensor.
Since tr(ε(u)) = div(u) in Ω, we find from the first equation in (2.1) that the incom-

pressibility condition div(u) = 0 in Ω can be stated in terms of the stress tensor and the
pressure as follows

p +
1

2
tr(σ) = 0 in Ω . (2.2)

Next, we choose to impose weakly the symmetry of σ through the introduction of the infini-
tesimal rotation tensor γ := 1

2 (∇u− (∇u)t) as a further unknown (see [1] and [24]), which
yields

1

2µ
(σ + pI) = ε(u) = ∇u− γ in Ω . (2.3)

Note that (2.2) and (2.3) imply the modified constitutive equation

1

2µ
σd = ε(u) in Ω . (2.4)
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Then, testing equations (2.3) and (2.2) and weakly taking care of the equilibrium equation
of (2.1) and the symmetry of σ gives rise to the problem: Find (σ, p, (u,γ)) in H(div; Ω) ×
L2(Ω) ×Q such that

1

2µ

∫

Ω
σ : τ +

1

2µ

∫

Ω
p tr(τ ) +

1

2µ

∫

Ω
q tr(σ) +

1

µ

∫

Ω
p q +

∫

Ω
u · div(τ ) +

∫

Ω
γ : τ = 0,

∫

Ω
v · div(σ) +

∫

Ω
η : σ = −

∫

Ω
f · v,

for all (τ , q, (v,η)) ∈ H(div; Ω) × L2(Ω) ×Q, where

H(div; Ω) := {τ ∈ [L2(Ω)]2×2 : div(τ ) ∈ [L2(Ω)]2} and Q := [L2(Ω)]2 × [L2(Ω)]2×2
asym ,

with

[L2(Ω)]2×2
asym :=

{

η ∈ [L2(Ω)]2×2 : η + ηt = 0
}

.

Now, noting that

σ : τ + p tr(σ) + q tr(τ ) + 2 pq = σd : τ d + 2

(

p+
1

2
tr(σ)

)(

q +
1

2
tr(τ )

)

,

the last system can be written in the more compact form: Find (σ, p, (u,γ)) in H(div; Ω) ×
L2(Ω) ×Q such that

1

2µ

∫

Ω
σd : τ d +

1

µ

∫

Ω

(

p+
1

2
tr(σ)

)(

q +
1

2
tr(τ )

)

+

∫

Ω
u · div(τ ) +

∫

Ω
γ : τ = 0,

∫

Ω
v · div(σ) +

∫

Ω
η : σ = −

∫

Ω
f · v,

(2.5)

for all (τ , q, (v,η)) ∈ H(div; Ω) × L2(Ω) × Q. At this point we observe that for any c ∈ R,
(cI,−c, (0,0)) is a solution of the homogeneous version of system (2.5). Hence, in order to
avoid this non-uniqueness we consider the decomposition

H(div; Ω) = H0 ⊕ R I , (2.6)

where H0 :=
{

τ ∈ H(div; Ω) :

∫

Ω
tr(τ ) = 0

}

, and require from now on that σ ∈ H0.

The following lemma guarantees that the test space can also be restricted to H0.

Lemma 2.1. Any solution of (2.5) with σ ∈ H0 is also solution of: Find (σ, p, (u,γ)) ∈
H0 × L2(Ω) ×Q such that

1

2µ

∫

Ω
σd : τ d +

1

µ

∫

Ω

(

p+
1

2
tr(σ)

)(

q +
1

2
tr(τ )

)

+

∫

Ω
u · div(τ ) +

∫

Ω
γ : τ = 0,

∫

Ω
v · div(σ) +

∫

Ω
η : σ = −

∫

Ω
f · v,

(2.7)

for all (τ , q, (v,η)) ∈ H0 ×L2(Ω)×Q. Conversely, any solution of (2.7) is also a solution of

(2.5).

Proof. It is immediate that any solution of (2.5) with σ ∈ H0 is also a solution of (2.7).
Conversely, let (σ, p, (u,γ)) be a solution of (2.7). Because of (2.6) it suffices to prove that
(σ, p, (u,γ)) also satisfies (2.5) if tested with (I, 0, (0,0)). This requires that

∫

Ω

(

p+ 1
2 tr(σ)

)

vanishes which can be seen to be true by selecting (τ , q, (v,η)) = (0, 1, (0,0)) ∈ H0×L
2(Ω)×Q

in (2.7). �
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Furthermore, we now let H := H0 × L2(Ω), consider a constant κ0 > 0, and introduce a
generalized version of (2.7): Find ((σ, p), (u,γ)) in H ×Q such that

a((σ, p), (τ , q)) + b(τ , (u,γ)) = 0 ∀ (τ , q) ∈ H ,

b(σ, (v,η)) = −

∫

Ω
f · v ∀ (v,η) ∈ Q ,

(2.8)

where a : H ×H −→ R and b : H0 ×Q −→ R are the bounded bilinear forms defined by

a((ζ, r), (τ , q)) :=
1

2µ

∫

Ω
ζd : τ d +

κ0

µ

∫

Ω

(

r +
1

2
tr(ζ)

)(

q +
1

2
tr(τ )

)

(2.9)

and

b(ζ, (v,η)) :=

∫

Ω
v · div(ζ) +

∫

Ω
η : ζ (2.10)

for (ζ, r), (τ , q) in H and (v,η) in Q. Note that (2.7) corresponds to (2.8) with κ0 = 1.
In order to show that the formulations (2.8) are independent of κ0 > 0, we prove next that

they are all equivalent to the simplified version arising after replacing the incompressibility
condition (2.2) into (2.8) (equivalently, taking κ0 = 0 in (2.8)), that is: Find (σ, (u,γ)) ∈
H0 ×Q such that

a0(σ, τ ) + b(τ , (u,γ)) = 0 ∀ τ ∈ H0 ,

b(σ, (v,η)) = −

∫

Ω
f · v ∀ (v,η) ∈ Q ,

(2.11)

where a0 : H0 ×H0 −→ R is the bounded bilinear form defined by

a0(ζ, τ ) :=
1

2µ

∫

Ω
ζd : τ d ∀ (ζ, τ ) ∈ H0 ×H0 .

Lemma 2.2. Problems (2.8) and (2.11) are equivalent. Indeed, ((σ, p), (u,γ)) ∈ H × Q is a

solution of (2.8) if and only if (σ, (u,γ)) ∈ H0 ×Q is a solution of (2.11) and p = −1
2 tr(σ).

Proof. It suffices to take τ = 0 in (2.8) and then use that the traces of the tensor-valued
functions in H(div; Ω) live in L2(Ω) as the pressure test functions do. �

The following lemmata will be useful in order to prove well-posedness of (2.8) and (2.11).

Lemma 2.3. There exists a positive constant β, depending only on Ω such that

sup
τ∈H(div;Ω)

τ 6=0

∫

Ω v · div(τ ) +
∫

Ω η : τ

‖τ‖H(div;Ω)

≥ β ‖(v,η)‖Q (2.12)

for all (v,η) in Q.

Proof. See Lemma 4.3 in [4] for a detailed proof. �

Lemma 2.4. There exists c1 > 0, depending only on Ω, such that

c1 ‖τ‖
2
[L2(Ω)]2×2 ≤

∥

∥τ d
∥

∥

2

[L2(Ω)]2×2 + ‖div(τ )‖2
[L2(Ω)]2 ∀ τ ∈ H0, (2.13)

Proof. See Lemma 3.1 in [3] or Proposition 3.1 of Chapter IV in [7]. �

We are now in a position to state the following theorem.
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Theorem 2.5. Problem (2.11) has a unique solution (σ, (u,γ)) ∈ H0 × Q. Moreover, there

exists a positive constant C, depending only on Ω, such that

‖(σ, (u,γ))‖H(div;Ω)×Q ≤ C ‖f‖[L2(Ω)]2 .

Proof. It suffices to prove that the bilinear forms a0 and b satisfy the hypotheses of the
Babuška-Brezzi theory. Indeed, given (v,η) in Q it is easy to see that

sup
τ∈H0

τ 6=0

∫

Ω v · div(τ ) +
∫

Ω η : τ

‖τ‖H(div;Ω)

= sup
τ∈H(div;Ω)

τ 6=0

∫

Ω v · div(τ ) +
∫

Ω η : τ

‖τ‖H(div;Ω)

, (2.14)

which, together with Lemma 2.3, proves the continuous inf-sup condition for b. Now, let V
be the kernel of the operator induced by b, that is

V := {τ ∈ H0 : b(τ , (v,η)) = 0 ∀ (v,η) ∈ Q}

=
{

τ ∈ H0 : div(τ ) = 0 and τ = τ t in Ω
}

.

It follows, applying Lemma 2.4, that for each τ ∈ V there holds

a0(τ , τ ) =
1

2µ

∥

∥τ d
∥

∥

2

[L2(Ω)]2×2 ≥
c1
2µ

‖τ‖2
[L2(Ω)]2×2 =

c1
2µ

‖τ‖2
H(div;Ω) ,

which shows that the bilinear form a0 is strongly coercive in V . Finally, a straightforward
application of the classical result given by Theorem 1.1 in Chapter II of [7] completes the
proof. �

Theorem 2.6. Problem (2.8) has a unique solution ((σ, p), (u,γ)) ∈ H × Q, independent of

κ0, and there holds p = −1
2 tr(σ). Moreover, there exists a constant C > 0, depending only

on Ω, such that

‖((σ, p), (u,γ))‖H×Q ≤ C ‖f‖[L2(Ω)]2 .

Proof. It is a direct consequence of Lemma 2.2, which gives the equivalence between (2.8) and
(2.11), and Theorem 2.5, which yields the well-posedness of (2.11). �

3. The augmented dual-mixed variational formulations

In the following we enrich the formulations (2.8) and (2.11) with residuals arising from the
modified constitutive equation (2.4), the equilibrium equation, and the relation defining the
rotation as a function of the displacement. More precisely, as in [18] we substract the second
from the first equation in both (2.8) and (2.11) and then add the Galerkin least-squares terms
given by

κ1

∫

Ω

(

ε(u) −
1

2µ
σd

)

:

(

ε(v) +
1

2µ
τ d

)

= 0, (3.1)

κ2

∫

Ω
div(σ) · div(τ ) = −κ2

∫

Ω
f · div(τ ), (3.2)

and

κ3

∫

Ω

(

γ −
1

2

(

∇u− (∇u)t
)

)

:

(

η +
1

2

(

∇v − (∇v)t
)

)

= 0, (3.3)

for all (τ ,v,η) ∈ H0 × [H1
0 (Ω)]2 × [L2(Ω)]2×2

asym, where (κ1, κ2, κ3) is a vector of positive pa-

rameters to be specified later. We notice that (3.1) and (3.3) implicitly require now the
displacement u to live in the smaller space [H1

0 (Ω)]2.
In this way, instead of (2.8) we propose the following augmented variational formulation:

Find (σ, p,u,γ) ∈ H := H0 × L2(Ω) × [H1
0 (Ω)]2 × [L2(Ω)]2×2

asym such that

A((σ, p,u,γ), (τ , q,v,η)) = F (τ , q,v,η) ∀ (τ , q,v,η) ∈ H , (3.4)
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where the bilinear form A : H × H −→ R and the functional F : H −→ R are defined by

A((σ, p,u,γ), (τ , q,v,η)) := a((σ, p), (τ , q)) + b(τ , (u,γ)) − b(σ, (v,η))

+ κ1

∫

Ω

(

ε(u) −
1

2µ
σd

)

:

(

ε(v) +
1

2µ
τ d

)

+ κ2

∫

Ω
div(σ) · div(τ )

+ κ3

∫

Ω

(

γ −
1

2

(

∇u− (∇u)t
)

)

:

(

η +
1

2

(

∇v − (∇v)t
)

)

(3.5)

and

F (τ , q,v,η) :=

∫

Ω
f · (v − κ2 div(τ )) . (3.6)

Similarly, instead of (2.11) we propose: Find (σ,u,γ) ∈ H0 := H0 × [H1
0 (Ω)]2 × [L2(Ω)]2×2

asym

such that
A0((σ,u,γ), (τ ,v,η)) = F0(τ ,v,η) ∀ (τ ,v,η) ∈ H0 , (3.7)

where the bilinear form A0 : H0 × H0 −→ R and the functional F0 : H0 −→ R are defined by

A0((σ,u,γ), (τ ,v,η)) := a0(σ, τ ) + b(τ , (u,γ)) − b(σ, (v,η))

+ κ1

∫

Ω

(

ε(u) −
1

2µ
σd

)

:

(

ε(v) +
1

2µ
τ d

)

+ κ2

∫

Ω
div(σ) · div(τ )

+ κ3

∫

Ω

(

γ −
1

2

(

∇u− (∇u)t
)

)

:

(

η +
1

2

(

∇v − (∇v)t
)

)

(3.8)

and

F0(τ ,v,η) :=

∫

Ω
f · (v − κ2 div(τ )) . (3.9)

The analogue of Lemma 2.2 is given now.

Lemma 3.1. Problems (3.4) and (3.7) are equivalent. Indeed, (σ, p,u,γ) ∈ H is a solution of

(3.4) if and only if (σ,u,γ) ∈ H0 is a solution of (3.7) and p = −1
2 tr(σ).

Proof. It suffices to take (τ ,v,η) = (0,0,0) in (3.4) and then use again that the traces of the
tensor-valued functions in H(div; Ω) live in L2(Ω) as the pressure test functions do. �

In what follows we aim to show the well-posedness of (3.7). The main idea is to choose the
vector of parameters (κ1, κ2, κ3) such that A0 be strongly coercive on H0 with respect to the
norm ‖ · ‖

H0
defined by

‖(τ ,v,η)‖
H0

:=
{

‖τ‖2
H(div;Ω) + |v|2[H1(Ω)]2 + ‖η‖2

[L2(Ω)]2×2

}1/2
.

We first notice, after simple computations, that
∫

Ω

(

ε(v) −
1

2µ
τ d

)

:

(

ε(v) +
1

2µ
τ d

)

= ‖ε(v)‖2
[L2(Ω)]2×2 −

1

4µ2

∥

∥τ d
∥

∥

2

[L2(Ω)]2×2 ,

and that
∫

Ω

(

η −
1

2

(

∇v − (∇v)t
)

)

:

(

η +
1

2

(

∇v − (∇v)t
)

)

= ‖η‖2
[L2(Ω)]2×2 + ‖ε(v)‖2

[L2(Ω)]2×2 − |v|2[H1(Ω)]2 ,

which gives

A0((τ ,v,η), (τ ,v,η)) =
1

2µ

(

1 −
κ1

2µ

)

∥

∥τ d
∥

∥

2

[L2(Ω)]2×2 + κ2 ‖div(τ )‖2
[L2(Ω)]2

+ (κ1 + κ3) ‖ε(v)‖2
[L2(Ω)]2×2 − κ3 |v|2[H1(Ω)]2 + κ3 ‖η‖2

[L2(Ω)]2×2 .

(3.10)
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Now, Korn’s first inequality (see, e.g., Theorem 10.1 in [22]) establishes that

‖ε(v)‖2
[L2(Ω)]2 ≥

1

2
|v|2[H1(Ω)]2 ∀v ∈ [H1

0 (Ω)]2 , (3.11)

and hence (3.10) yields

A0((τ ,v,η), (τ ,v,η)) ≥
1

2µ

(

1 −
κ1

2µ

)

∥

∥τ d
∥

∥

2

[L2(Ω)]2×2 + κ2 ‖div(τ )‖2
[L2(Ω)]2

+
(κ1 − κ3)

2
|v|2[H1(Ω)]2 + κ3 ‖η‖2

[L2(Ω)]2×2 .

Then, choosing κ1 and κ2 such that

0 < κ1 < 2µ and 0 < κ2 ,

and applying Lemma 2.4, we deduce that

A0((τ ,v,η), (τ ,v,η)) ≥ α2 ‖τ‖2
H(div;Ω) +

(κ1 − κ3)

2
|v|2[H1(Ω)]2 + κ3 ‖η‖2

[L2(Ω)]2×2 ,

where

α2 := min
{

c1α1,
κ2

2

}

, α1 := min

{

1

2µ

(

1 −
κ1

2µ

)

,
κ2

2

}

,

and c1 is the constant that appears in Lemma 2.4. In addition, choosing the parameter κ3

such that 0 < κ3 < κ1, we find that

A0((τ ,v,η), (τ ,v,η)) ≥ α ‖(τ ,v,η)‖2
H0

∀ (τ ,v,η)) ∈ H0 , (3.12)

where

α := min

{

α2,
(κ1 − κ3)

2
, κ3

}

.

As a consequence of the above analysis, we obtain the following main results.

Theorem 3.2. Assume that there hold

0 < κ1 < 2µ , 0 < κ2 , and 0 < κ3 < κ1 .

Then, the augmented variational formulation (3.7) has a unique solution (σ,u,γ) ∈ H0.

Moreover, there exists a positive constant C, depending only on µ and (κ1, κ2, κ3), such that

‖(σ,u,γ)‖H0
≤ C ‖F0‖H′

0
≤ C ‖f‖[L2(Ω)]2 .

Proof. It is clear from (3.8) and (3.12) that A0 is bounded and strongly coercive on H0 with
constants depending on µ and (κ1, κ2, κ3). Also, the linear functional F0 (cf. (3.9)) is clearly
continuous with norm bounded by (1 + κ2) ‖f‖[L2(Ω)]2 . Therefore, the assertion is a simple

consequence of the Lax-Milgram Lemma. �

Theorem 3.3. Assume that there hold

0 < κ1 < 2µ , 0 < κ2 , and 0 < κ3 < κ1 .

Then the augmented variational formulation (3.4) has a unique solution (σ, p,u,γ) ∈ H,

independent of κ0, and there holds p = −1
2 tr(σ). Moreover, there exists a positive constant

C, depending only on µ and (κ1, κ2, κ3), such that ‖(σ, p,u,γ)‖
H

≤ C ‖f‖[L2(Ω)]2 .

Proof. It is a direct consequence of Lemma 3.1 and Theorem 3.2. �
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We end this section by emphasizing that the introduction of the augmented formulations
(3.4) and (3.7) is motivated by the possibility of using arbitrary finite element subspaces in
the definition of the associated Galerkin schemes. This is certainly guaranteed by the strong
coerciveness of the resulting bilinear form, as already proved for A0 (cf. (3.12)) and as will be
proved for A in the next section. We also remark here that at first glance it could seem, due to
Lemmata 2.2 and 3.1, that there is actually no need of considering the continuous variational
formulations (2.8) and (3.4) since the equivalent ones, given respectively by (2.11) and (3.7),
are clearly simpler. Nevertheless, as we show below in Section 4, the main interest in (2.8) and
particularly in the corresponding augmented formulation (3.4) lies in the associated Galerkin
scheme, which provides more flexibility for choosing the pressure finite element subspace.

4. The augmented mixed finite element methods

We now let Hσ

0,h, Hp
h, Hu

0,h and Hγ

h be arbitrary finite element subspaces of H0, L
2(Ω),

[H1
0 (Ω)]2 and [L2(Ω)]2×2

asym, respectively, and define

Hh := Hσ

0,h ×Hp
h ×Hu

0,h ×Hγ

h and H0,h := Hσ

0,h ×Hu

0,h ×Hγ

h .

In addition, let κ0, κ1, κ2, and κ3 be given positive parameters. Then, the Galerkin schemes
associated with (3.4) and (3.7) read: Find (σh, ph,uh,γh) ∈ Hh such that

A((σh, ph,uh,γh), (τ h, qh,vh,ηh)) = F (τ h, qh,vh,ηh) ∀ (τ h, qh,vh,ηh) ∈ Hh , (4.1)

and: Find (σh,uh,γh) ∈ H0,h such that

A0((σh,uh,γh), (τ h,vh,ηh)) = F0(τ h,vh,ηh) ∀ (τh,vh,ηh) ∈ H0,h . (4.2)

The following theorem provides the unique solvability, stability, and convergence of (4.2).

Theorem 4.1. Assume that the parameters κ1, κ2, and κ3 satisfy the assumptions of Theorem

3.2 and let H0,h be any finite element subspace of H0. Then, the Galerkin scheme (4.2) has a

unique solution (σh,uh,γh) ∈ H0,h, and there exist positive constants C, C̃, independent of

h, such that

‖(σh,uh,γh)‖
H0

≤ C sup
(τh,vh,ηh)∈H0,h

(τh,vh,ηh)6=0

|F0(τ h,vh,ηh)|

‖(τ h,vh,ηh)‖
H0

≤ C ‖f‖[L2(Ω)]2 ,

and

‖(σ,u,γ) − (σh,uh,γh)‖
H0

≤ C̃ inf
(τh,vh,ηh)∈H0,h

‖(σ,u,γ) − (τ h,vh,ηh)‖
H0

. (4.3)

Proof. Since A0 is bounded and strongly coercive on H0 (cf. (3.8) and (3.12)) with constants
depending on µ and (κ1, κ2, κ3), the proof follows from a straightforward application of the
Lax-Milgram Lemma and Cea’s estimate. �

In order to define an explicit finite element subspace of H0, we now let {Th}h>0 be a regular

family of triangulations of the polygonal region Ω̄ by triangles T of diameter hT such that
Ω̄ = ∪{T : T ∈ Th} and define h := max {hT : T ∈ Th}. Given an integer ℓ ≥ 0 and a subset
S of R

2, we denote by Pℓ(S) the space of polynomials of total degree at most ℓ defined on S.
Also, for each T ∈ Th we define the local Raviart-Thomas space of order zero

RT0(T ) := span

{(

1
0

)

,

(

0
1

)

,

(

x1

x2

)}

⊆ [P1(T )]2,
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where

(

x1

x2

)

is a generic vector of R
2, and let H̃σ

h be the corresponding global space, that is

H̃σ

h :=
{

τ h ∈ H(div; Ω) : τh|T ∈ [RT0(T )t]2 ∀T ∈ Th

}

. (4.4)

Then we let H̃0,h := H̃σ

0,h × H̃u

0,h × H̃γ

h , where

H̃σ

0,h :=

{

τh ∈ H̃σ

h :

∫

Ω
tr(τh) = 0

}

, (4.5)

H̃u

0,h :=
{

vh ∈ [C(Ω̄)]2 : vh|T ∈ [P1(T )]2 ∀T ∈ Th , vh = 0 on ∂Ω
}

, (4.6)

and

H̃γ

h :=
{

ηh ∈ [L2(Ω)]2×2
asym : ηh|T ∈ [P0(T )]2×2 ∀T ∈ Th

}

. (4.7)

The approximation properties of these subspaces are given as follows (see [7], [11], [18]):

(APσ

0,h) For each r ∈ (0, 1] and for each τ ∈ [Hr(Ω)]2×2 ∩H0 with div(τ ) ∈ [Hr(Ω)]2 there

exists τ h ∈ H̃σ

0,h such that

‖τ − τ h‖H(div;Ω) ≤ C hr
{

‖τ‖[Hr(Ω)]2×2 + ‖div(τ )‖[Hr(Ω)]2

}

.

(APu

0,h) For each r ∈ [1, 2] and for each v ∈ [H1+r(Ω)]2 ∩ [H1
0 (Ω)]2 there exists vh ∈ H̃u

0,h such

that

‖v − vh‖[H1(Ω)]2 ≤ C hr ‖v‖[H1+r(Ω)]2 .

(APγ

h) For each r ∈ [0, 1] and for each η ∈ [Hr(Ω)]2×2 ∩ [L2(Ω)]2×2
asym there exists ηh ∈ H̃γ

h
such that

‖η − ηh‖[L2(Ω)]2×2 ≤ C hr ‖η‖[Hr(Ω)]2×2 .

Then, we have the following result providing the rate of convergence of (4.2) with H0,h = H̃0,h.

Theorem 4.2. Let (σ,u,γ) ∈ H0 and (σh,uh,γh) ∈ H̃0,h be the unique solutions of the

continuous and discrete augmented formulations (3.7) and (4.2), respectively. Assume that

σ ∈ [Hr(Ω)]2×2, div(σ) ∈ [Hr(Ω)]2, u ∈ [H1+r(Ω)]2, and γ ∈ [Hr(Ω)]2×2, for some r ∈ (0, 1].
Then there exists C > 0, independent of h, such that

‖(σ,u,γ) − (σh,uh,γh)‖
H0

≤

C hr
{

‖σ‖[Hr(Ω)]2×2 + ‖div(σ)‖[Hr(Ω)]2 + ‖u‖[H1+r(Ω)]2 + ‖γ‖[Hr(Ω)]2×2

}

.

Proof. It follows from the Cea estimate (4.3) and the approximation properties (APσ

0,h),

(APu

0,h), and (APγ

h). �

We now go back to the general situation and state the discrete analogue of Lemma 3.1,
which gives a sufficient condition for the equivalence between (4.1) and (4.2).

Lemma 4.3. Assume that the pressure finite element subspace Hp
h contains the traces of the

members of the stress tensor finite element subspace Hσ

0,h, that is,

tr(Hσ

0,h) ⊆ Hp
h, (4.8)

Then, problems (4.1) and (4.2) are equivalent: (σh, ph,uh,γh) ∈ Hh is a solution of (4.1) if

and only if (σh,uh,γh) ∈ H0,h is a solution of (4.2) and ph = −1
2 tr(σh).
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Proof. Let (σh, ph,uh,γh) ∈ Hh be a solution of (4.1). It is clear from (4.8) that ph + 1
2 tr(σh)

belongs to Hp
h. Then, taking (τ h, qh,vh,ηh) = (0, ph + 1

2tr(σh),0,0) ∈ Hh, we find from
(4.1) that

κ0

µ

∫

Ω

(

ph +
1

2
tr(σh)

)2
= 0 ,

which yields ph = −1
2 tr(σh). Conversely, given (σh,uh,γh) ∈ H0,h a solution of (4.2), we let

ph := −1
2 tr(σh) and see that (σh, ph,uh,γh) ∈ Hh becomes a solution of (4.1). �

A particular example of finite element subspaces satisfying (4.8) is given by (cf. (4.5))

Hσ

0,h := H̃σ

0,h and Hp
h :=

{

qh ∈ L2(Ω) : qh|T ∈ P1(T ) ∀T ∈ Th

}

.

Anyway, it becomes clear from Lemma 4.3 that the augmented scheme (4.1) makes sense
only for pressure finite element subspaces not satisfying the condition (4.8). According to the
above, we now aim to show that (4.1) is well-posed when an arbitrary finite element subspace
Hh of H is considered. The idea, similarly as for A0, is to choose κ0, κ1, κ2, and κ3 such that
A be strongly coercive on H with respect to the norm ‖ · ‖H defined by

‖(τ , q,v,η)‖
H

:=
{

‖τ‖2
H(div;Ω) + ‖q‖2

L2(Ω) + |v|2[H1(Ω)]2 + ‖η‖2
[L2(Ω)]2×2

}1/2
.

In fact, we first notice that

A((τ , q,v,η), (τ , q,v,η)) =
1

2µ

(

1 −
κ1

2µ

)

∥

∥τ d
∥

∥

2

[L2(Ω)]2×2 +
κ0

µ

∥

∥

∥

∥

q +
1

2
tr(τ )

∥

∥

∥

∥

2

L2(Ω)

+ κ2 ‖div(τ )‖2
[L2(Ω)]2 + (κ1 + κ3) ‖ε(v)‖2

[L2(Ω)]2×2 − κ3 |v|2[H1(Ω)]2 + κ3 ‖η‖2
[L2(Ω)]2×2 ,

which, using again Korn’s first inequality, employing the estimate
∥

∥

∥

∥

q +
1

2
tr(τ )

∥

∥

∥

∥

2

L2(Ω)

≥
1

2
‖q‖2

L2(Ω) −

∥

∥

∥

∥

1

2
tr(τ )

∥

∥

∥

∥

2

L2(Ω)

≥
1

2
‖q‖2

L2(Ω) −
1

2
‖τ‖2

[L2(Ω)]2×2 ,

and taking κ0 > 0, yields

A((τ , q,v,η), (τ , q,v,η)) ≥
1

2µ

(

1 −
κ1

2µ

)

∥

∥τ d
∥

∥

2

[L2(Ω)]2×2 −
κ0

2µ
‖τ‖2

[L2(Ω)]2×2

+ κ2 ‖div(τ )‖2
[L2(Ω)]2 +

κ0

2µ
‖q‖2

L2(Ω) +
(κ1 − κ3)

2
|v|2[H1(Ω)]2 + κ3 ‖η‖2

[L2(Ω)]2×2 .

Then, choosing κ1 and κ2 such that

0 < κ1 < 2µ and 0 < κ2 ,

and applying Lemma 2.4, we deduce that

A((τ , q,v,η), (τ , q,v,η)) ≥

(

c1 α1 −
κ0

2µ

)

‖τ‖2
[L2(Ω)]2×2 +

κ2

2
‖div(τ )‖2

[L2(Ω)]2

+
κ0

2µ
‖q‖2

L2(Ω) +
(κ1 − κ3)

2
|v|2[H1(Ω)]2 + κ3 ‖η‖2

[L2(Ω)]2×2 ,

where c1 is the constant from Lemma 2.4 and

α1 := min

{

1

2µ

(

1 −
κ1

2µ

)

,
κ2

2

}

.

Hence, choosing the parameters κ0 and κ3 such that

0 < κ0 < 2µ c1 α1 and 0 < κ3 < κ1 ,
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we find that

A((τ , q,v,η), (τ , q,v,η)) ≥ α ‖(τ , q,v,η)‖2
H ∀ (τ , q,v,η)) ∈ H , (4.9)

where

α := min

{

α2,
κ0

2µ
,
(κ1 − κ3)

2
, κ3

}

and α2 := min

{

c1 α1 −
κ0

2µ
,
κ2

2

}

.

We are now in a position to establish the following result.

Theorem 4.4. Assume that there hold

0 < κ0 < 2µ c1 α1 , 0 < κ1 < 2µ , 0 < κ2 , and 0 < κ3 < κ1 .

In addition, let Hh be any finite element subspace of H. Then, the Galerkin scheme (4.1) has

a unique solution (σh, ph,uh,γh) ∈ Hh, and there exist positive constants C, C̃, independent

of h, such that

‖(σh, ph,uh,γh)‖
H

≤ C sup
(τh,qh,vh,ηh)∈Hh

(τh,qh,vh,ηh)6=0

|F (τ h, qh,vh,ηh)|

‖(τ h, qh,vh,ηh)‖
H

≤ C ‖f‖[L2(Ω)]2 ,

and

‖(σ, p,u,γ) − (σh, ph,uh,γh)‖
H

≤ C̃ inf
(τh,qh,vh,ηh)∈Hh

‖(σh, ph,uh,γh) − (τ h, qh,vh,ηh)‖
H
.

Proof. Since A is bounded and strongly coercive on H (cf. (3.5) and (4.9)) with constants
depending on µ and (κ0, κ1, κ2, κ3), the proof follows from a straightforward application of
the Lax-Milgram Lemma, and Cea’s estimate. �

In order to consider an explicit Galerkin scheme (4.1), we now let

H̃p
h :=

{

qh ∈ L2(Ω) : qh|T ∈ P0(T ) ∀T ∈ Th

}

,

and define

H̃h := H̃σ

0,h × H̃p
h × H̃u

0,h × H̃γ

h , (4.10)

where H̃σ

0,h, H̃u

0,h, and H̃γ

h are given, respectively, by (4.5), (4.6), and (4.7).

The approximation property of H̃p
h is given as follows (see [7], [11]):

(APp
h) For each r ∈ [0, 1] and for each q ∈ Hr(Ω) there exists qh ∈ H̃p

h such that

‖q − qh‖L2(Ω) ≤ C hr ‖q‖Hr(Ω) .

Then, we have the following theorem providing the rate of convergence of (4.1) with Hh = H̃h.

Theorem 4.5. Let (σ, p,u,γ) ∈ H and (σh, ph,uh,γh) ∈ H̃h be the unique solutions of the

continuous and discrete augmented formulations (3.4) and (4.1), respectively. Assume that

σ ∈ [Hr(Ω)]2×2, div(σ) ∈ [Hr(Ω)]2, u ∈ [Hr+1(Ω)]2, and γ ∈ [Hr(Ω)]2×2, for some r ∈ (0, 1].
Then there exists C > 0, independent of h, such that

‖(σ, p,u,γ) − (σh, ph,uh,γh)‖
H

≤

Chr
{

‖σ‖[Hr(Ω)]2×2 + ‖div(σ)‖[Hr(Ω)]2 + ‖u‖[Hr+1(Ω)]2 + ‖γ‖[Hr(Ω)]2×2

}

.
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Proof. We first notice, according to Theorem 3.3 and the hypothesis on σ, that p = −1
2 tr(σ)

belongs to Hr(Ω) and that ‖p‖Hr(Ω) ≤ C ‖σ‖[Hr(Ω)]2×2 . Then, the proof follows from the Cea

estimate from Theorem 4.4 and the approximation properties (APσ

0,h), (APp
h), (APu

0,h), and

(APγ

h). �

At this point we would like to emphasize the main features of our augmented Galerkin
schemes (4.1) and (4.2), as compared to each other, besides the fact that both of them can
be implemented with any finite element subspace of H and H0, respectively. In fact, it is
important to notice on one hand that (4.2) allows an explicit and simple definition of the
whole vector of parameters (κ1, κ2, κ3) (cf. Theorem 3.2), whereas the choice of κ0 in (4.1)
depends on the unknown constant c1 from Lemma 2.4. On the other hand, it is clear that
(4.1) provides more flexibility for approximating the pressure since the corresponding finite
element subspace Hp

h can be chosen arbitrarily, whereas (4.2) needs a postprocess to compute

ph in terms of σh, either simply as ph := −1
2 tr(σh) or projecting −1

2 tr(σh) onto some finite
element subspace.

We end this section by mentioning that a useful discussion on the actual implementation
of augmented Galerkin schemes of the present kind can be seen in [18].

5. A residual based a posteriori error estimator

In this section we derive a residual based a posteriori error estimator for (4.1), much in the
spirit of [5]. The analysis for (4.2) is contained in what follows, and hence we omit details.

First we introduce several notations. Given T ∈ Th, we let E(T ) be the set of its edges, and
let Eh be the set of all edges of the triangulation Th. Then we write Eh = Eh,Ω ∪ Eh,Γ, where
Eh,Ω := {e ∈ Eh : e ⊆ Ω} and Eh,Γ := {e ∈ Eh : e ⊆ Γ}. In what follows, he stands for the length
of the edge e. Further, given τ ∈ [L2(Ω)]2×2 such that τ |T ∈ C(T ) on each T ∈ Th, an edge
e ∈ E(T )∩Eh,Ω, and the unit tangential vector tT along e, we let J [τ tT ] be the corresponding
jump across e, that is, J [τ tT ] := (τ |T − τ |T ′)|etT , where T ′ is the other triangle of Th having
e as an edge. Abusing notation, when e ∈ Eh,Γ, we also write J [τ tT ] := τ |etT . We recall
here that tT := (−ν2, ν1)

t, where νT := (ν1, ν2)
t is the unit outward vector normal to ∂T .

Analogously, we define the normal jumps J [τνT ]. In addition, given scalar, vector and tensor
valued fields v, ϕ := (ϕ1, ϕ2) and τ := (τij), respectively, we let

curl(v) :=

(

− ∂v
∂x2
∂v
∂x1

)

, curl(ϕ) :=

(

curl(ϕ1)
t

curl(ϕ2)
t

)

, and curl(τ ) :=

(

∂τ12
∂x1

− ∂τ11
∂x2

∂τ22
∂x1

− ∂τ21
∂x2

)

.

Then, letting (σ, p,u,γ) ∈ H and (σh, ph,uh,γh) ∈ Hh be the unique solutions of the con-
tinuous and discrete augmented formulations (3.4) and (4.1), respectively, we define for each
T ∈ Th a local error indicator θT as follows:

θ2
T := ‖f + div(σh)‖2

[L2(T )]2 +
∥

∥σh − σt
h

∥

∥

2

[L2(T )]2×2 + ‖γh −
1

2

(

∇uh − (∇uh)t
)

‖2
[L2(T )]2×2

+ h2
T ‖curl

( 1

2µ
σd

h + γh

)

‖2
[L2(T )]2 + h2

T ‖curl
(

ph +
1

2
tr(σh)

)

‖2
[L2(T )]2

+ h2
T ‖curl

(

ε(uh)d −
1

2µ
σd

h

)

‖2
[L2(T )]2

+
∑

e∈E(T )

he‖J
[

( 1

2µ
σd

h −∇uh + γh

)

tT

]

‖2
[L2(e)]2

+
∑

e∈E(T )

he‖J
[

(

ph +
1

2
tr(σh)

)

tT

]

‖2
[L2(e)]2 +

∑

e∈E(T )

he‖J
[

(

ε(uh)d −
1

2µ
σd

h

)

tT

]

‖2
[L2(e)]2
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+ h2
T ‖div

(

ε(uh) −
1

2µ

1

2
(σh + σt

h)d
)

‖2
[L2(T )]2

+ h2
T ‖div

(

γh −
1

2

(

∇uh − (∇uh)t
)

)

‖2
[L2(T )]2

+
∑

e∈E(T )∩Eh,Ω

he‖J
[

(

ε(uh) −
1

2µ

1

2
(σh + σt

h)d
)

νT

]

‖2
[L2(e)]2

+
∑

e∈E(T )∩Eh,Ω

he‖J
[

(

γh −
1

2

(

∇uh − (∇uh)t
)

)

νT

]

‖2
[L2(e)]2 .

(5.1)

The residual character of each term on the right hand side of (5.1) is quite clear. As usual

the expression θ :=

{

∑

T∈Th

θ2
T

}1/2

is employed as the global residual error estimator.

The following theorem is the main result of this section.

Theorem 5.1. Let (σ, p,u,γ) ∈ H and (σh, ph,uh,γh) ∈ Hh be the unique solutions of (3.4)
and (4.1), respectively. Then there exist positive constants Ceff and Crel, independent of h,
such that

Ceff θ ≤ ‖(σ − σh, p− ph,u− uh,γ − γh)‖
H

≤ Crel θ . (5.2)

The efficiency of the global error estimator (lower bound in (5.2)) is proved below in Sub-
section 5.2 and the reliability of the global error estimator (upper bound in (5.2)) is derived
now.

5.1. Reliability. We begin with the following preliminary estimate.

Lemma 5.2. There exists C > 0, independent of h, such that

C ‖(σ − σh, p− ph,u − uh,γ − γh)‖
H

≤

sup
(τ ,q,v,η)∈H\{0}

div(τ)=0

A((σ − σh, p− ph,u− uh,γ − γh), (τ , q,v,η))

‖(τ , q,v,η)‖
H

+ ‖f + div(σh)‖[L2(Ω)]2 (5.3)

Proof. Let us define σ∗ = ε(z), where z ∈ [H1
0 (Ω)]2 is the unique solution of the boundary

value problem: −div(ε(z)) = f + div(σh) in Ω, z = 0 on Γ. It follows that σ∗ ∈ H0 and the
corresponding continuous dependence result establishes the existence of c > 0 such that

‖σ∗‖H(div;Ω) ≤ c ‖f + div(σh)‖[L2(Ω)]2 . (5.4)

In addition, div(σ − σh − σ∗) = −f − div(σh) + (f + div(σh)) = 0 in Ω. Let α and M be
the coercivity and boundedness constants of A. Then, using the coercivity of A we find that

α ‖(σ − σh − σ∗, p− ph,u − uh,γ − γh)‖2
H

≤ A((σ − σh − σ∗, p− ph,u − uh,γ − γh), (σ − σh − σ∗, p − ph,u − uh,γ − γh))

≤ A((σ − σh, p− ph,u− uh,γ − γh), (σ − σh − σ∗, p− ph,u − uh,γ − γh))

−A((σ∗, 0,0,0), (σ − σh − σ∗, p − ph,u − uh,γ − γh)),

which, employing the boundedness of A, yields

α ‖(σ − σh − σ∗, p − ph,u − uh,γ − γh)‖
H

≤ sup
(τ ,q,v,η)∈H\{0}

div(τ)=0

A((σ − σh, p− ph,u− uh,γ − γh), (τ , q,v,η))

‖(τ , q,v,η)‖
H

+M ‖σ∗‖H(div;Ω) . (5.5)
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Hence, (5.3) follows straightforwardly from the triangle inequality, (5.4) and (5.5). �

It remains to bound the first term on the right hand side of (5.3). To this end, we will make
use of the well known Clément interpolation operator, Ih : H1(Ω) −→ Xh (cf. [12]), with Xh

given by

Xh :=
{

vh ∈ C(Ω̄) : vh|T ∈ P1(T ) ∀T ∈ Th

}

,

which satisfies the standard local approximation properties stated below in Lemma 5.3. It is
important to remark that Ih is defined in [12] so that Ih(v) ∈ Xh ∩H1

0 (Ω) for all v ∈ H1
0 (Ω).

Lemma 5.3. There exist constants C1, C2 > 0, independent of h, such that for all v ∈ H1(Ω)
there holds

‖v − Ih(v)‖L2(T ) ≤ C1hT ‖v‖H1(ω̃T ) ∀T ∈ Th,

and

‖v − Ih(v)‖L2(e) ≤ C2h
1/2
e ‖v‖H1(ω̃e) ∀ e ∈ Eh,

where ω̃T and ω̃e are the union of all elements sharing at least one point with T and e,
respectively.

Proof. See [12]. �

We now let (τ , q,v,η) ∈ H, (τ , q,v,η) 6= 0, such that div(τ ) = 0 in Ω. Since Ω is
connected, there exists a stream function ϕ := (ϕ1, ϕ2) ∈ [H1(Ω)]2 such that

∫

Ω ϕ1 =
∫

Ω ϕ2 = 0
and τ = curl(ϕ). Then, denoting ϕh := (Ih(ϕ1), Ih(ϕ2)), we define τ h := curl(ϕh).

It can be seen that, since τ h has [H1(T )]2×2-regularity on each triangle (in fact, it is
piecewise constant), and its rows have continuous normal components across each interior

edge, τh has a L2(Ω) divergence, which is zero. Thus, τh belongs to H̃σ

h (cf. (4.4)). The

decomposition τ h = τh,0 + dhI, holds, where τh,0 ∈ H̃σ

0,h (cf. (4.5)) and dh =
R

Ω
tr(τh)

2|Ω| ∈ R.

We also define vh := (Ih(v1), Ih(v2)) ∈ Hu
0 , the vector Clément interpolant of v := (v1, v2) ∈

[H1
0 (Ω)]2. From the Galerkin orthogonality, it follows that

A((σ − σh, p− ph,u − uh,γ − γh), (τ , q,v,η)) =

A((σ − σh, p− ph,u − uh,γ − γh), (τ − τ h,0, q,v − vh,η)). (5.6)

Also, from (3.5), the orthogonality between symmetric and asymmetric tensors, and as a
consequence, again, of the Galerkin orthogonality, it follows that

A((σ − σh, p− ph,u− uh,γ − γh), (dhI, 0,0,0))

=
κ0

µ

∫

Ω

(

p− ph +
1

2
tr(σ − σh)

)

1

2
tr(dhI)

= A((σ − σh, p− ph,u− uh,γ − γh), (0, dh,0,0))

= 0 .

(5.7)

Hence, (5.6), (5.7) and (4.1) give

A((σ − σh, p− ph,u − uh,γ − γh), (τ , q,v,η))

= A((σ − σh, p− ph,u− uh,γ − γh), (τ − τ h, q,v − vh,η))

= F (τ − τh, q,v − vh,η) −A((σh, ph,uh,γh), (τ − τh, q,v − vh,η)),

(5.8)
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which, after some algebraic manipulations, yields that

A((σ − σh, p− ph,u− uh,γ − γh), (τ , q,v,η))

=

∫

Ω
(f + div(σh)) · (v − vh) +

∫

Ω

(

1

2
(σh − σt

h) − κ3(γh −
1

2

(

∇uh − (∇uh)t
)

)

)

: η

−

∫

Ω

{

κ1

(

ε(uh) −
1

2µ

1

2
(σd

h + (σd
h)t)

)

+ κ3(γh −
1

2

(

∇uh − (∇uh)t
)

)

}

: ∇(v − vh)

−

∫

Ω

{(

1

2µ
σd

h −∇uh + γh

)

+
κ0

2µ

(

ph +
1

2
tr(σh)

)

I +
κ1

2µ

(

ε(uh)d −
1

2µ
σd

h

)}

: (τ − τh)

−
κ0

µ

∫

Ω

(

ph +
1

2
tr(σh)

)

p.

(5.9)

The rest of reliability consists in deriving suitable upper bounds for each one of the terms
appearing on the right hand side of (5.9). We begin by noticing that direct applications of
the Cauchy-Schwarz inequality give

∣

∣

∣

∣

∫

Ω

1

2
(σh − σt

h) : η

∣

∣

∣

∣

≤
∥

∥σh − σt
h

∥

∥

[L2(Ω)]2×2 ‖η‖[L2(Ω)]2×2 , (5.10)

∣

∣

∣

∣

∫

Ω
(γh −

1

2

(

∇uh − (∇uh)t
)

) : η

∣

∣

∣

∣

≤

∥

∥

∥

∥

γh −
1

2

(

∇uh − (∇uh)t
)

∥

∥

∥

∥

[L2(Ω)]2×2

‖η‖[L2(Ω)]2×2 ,

(5.11)
and

∣

∣

∣

∣

∫

Ω

(

ph +
1

2
tr(σh)

)

p

∣

∣

∣

∣

≤

∥

∥

∥

∥

ph +
1

2
tr(σh)

∥

∥

∥

∥

L2(Ω)

‖p‖L2(Ω) . (5.12)

The decomposition Ω̄ =
⋃

T∈Th
T and the use of integration by parts formulae on each element

are employed next to handle the terms from the third and the fourth rows of (5.9). We first
replace τ −τh by curl(ϕ−ϕh) and use that curl(∇uh) = 0 on each triangle T ∈ Th, to obtain

∫

Ω

(

1

2µ
σd

h −∇uh + γh

)

: (τ − τh) =
∑

T∈Th

∫

T

(

1

2µ
σd

h −∇uh + γh

)

: curl(ϕ − ϕh)

=
∑

T∈Th

∫

T
curl

(

1

2µ
σd

h + γh

)

· (ϕ − ϕh)

−
∑

e∈Eh

〈

J

[(

1

2µ
σd

h −∇uh + γh

)

tT

]

,ϕ − ϕh

〉

[L2(e)]2
, (5.13)

∫

Ω

(

ph +
1

2
tr(σh)

)

I : (τ − τh) =
∑

T∈Th

∫

T

(

ph +
1

2
tr(σh)

)

I : curl(ϕ − ϕh)

=
∑

T∈Th

∫

T
curl

(

ph +
1

2
tr(σh)

)

· (ϕ − ϕh)

−
∑

e∈Eh

〈

J

[(

ph +
1

2
tr(σh)

)

tT

]

,ϕ − ϕh

〉

[L2(e)]2
, (5.14)



16 LEONARDO E. FIGUEROA, GABRIEL N. GATICA, AND NORBERT HEUER

and

∫

Ω

(

ε(uh)d −
1

2µ
σd

h

)

: (τ − τh) =
∑

T∈Th

∫

T

(

ε(uh)d −
1

2µ
σd

h

)

: curl(ϕ − ϕh)

=
∑

T∈Th

∫

T
curl

(

ε(uh)d −
1

2µ
σd

h

)

· (ϕ − ϕh)

−
∑

e∈Eh

〈

J

[(

ε(uh)d −
1

2µ
σd

h

)

tT

]

,ϕ − ϕh

〉

[L2(e)]2
. (5.15)

On the other hand, using that v − vh = 0 on Γ, we get

∫

Ω

(

ε(uh) −
1

2µ

1

2
(σh + σt

h)d
)

: ∇(v − vh)

= −
∑

T∈Th

∫

T
div

(

ε(uh) −
1

2µ

1

2
(σh + σt

h)d
)

· (v − vh)

+
∑

e∈Eh,Ω

〈

J

[(

ε(uh) −
1

2µ

1

2
(σh + σt

h)d
)

νT

]

,v − vh

〉

[L2(e)]2
, (5.16)

and

∫

Ω

(

γh −
1

2

(

∇uh − (∇uh)t
)

)

: ∇(v − vh)

= −
∑

T∈Th

∫

T
div

(

γh −
1

2

(

∇uh − (∇uh)t
)

)

· (v − vh)

+
∑

e∈Eh,Ω

〈

J

[(

γh −
1

2

(

∇uh − (∇uh)t
)

)

νT

]

,v − vh

〉

[L2(e)]2
. (5.17)

In what follows we apply again the Cauchy-Schwarz inequality, Lemma 5.3 and the fact
that the number of triangles is bounded independently of h in both ω̃T and ω̃e to derive the
estimates for the expression

∫

Ω(f + div(σh)) · (v − vh) in (5.9) and the right hand sides of
(5.13), (5.14), (5.15), (5.16), and (5.17), with constants C independent of h. Indeed, we easily
have

∣

∣

∣

∣

∫

Ω
(f + div(σh)) · (v − vh)

∣

∣

∣

∣

≤ C







∑

T∈Th

h2
T ‖f + div(σh)‖2

[L2(T )]2







1/2

‖v‖[H1(Ω)]2 . (5.18)

In addition, for the terms containing the stream funcion ϕ (cf. (5.13), (5.14), (5.15)), we get

∣

∣

∣

∣

∣

∣

∑

T∈Th

∫

T
curl

(

1

2µ
σd

h + γh

)

· (ϕ − ϕh)

∣

∣

∣

∣

∣

∣

≤ C







∑

T∈Th

h2
T

∥

∥

∥

∥

curl

(

1

2µ
σd

h + γh

)
∥

∥

∥

∥

2

[L2(T )]2







1/2

‖ϕ‖[H1(Ω)]2 , (5.19)
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∣

∣

∣

∣

∣

∣

∑

T∈Th

∫

T
curl

(

ph +
1

2
tr(σh)

)

· (ϕ − ϕh)

∣

∣

∣

∣

∣

∣

≤ C







∑

T∈Th

h2
T

∥

∥

∥

∥

curl

(

ph +
1

2
tr(σh)

)
∥

∥

∥

∥

2

[L2(T )]2







1/2

‖ϕ‖[H1(Ω)]2 , (5.20)

∣

∣

∣

∣

∣

∣

∑

T∈Th

∫

T
curl

(

ε(uh)d −
1

2µ
σd

h

)

· (ϕ − ϕh)

∣

∣

∣

∣

∣

∣

≤ C







∑

T∈Th

h2
T

∥

∥

∥

∥

curl

(

ε(uh)d −
1

2µ
σd

h

)
∥

∥

∥

∥

2

[L2(T )]2







1/2

‖ϕ‖[H1(Ω)]2 , (5.21)

∣

∣

∣

∣

∣

∣

∑

e∈Eh

〈

J

[(

1

2µ
σd

h −∇uh + γh

)

tT

]

,ϕ − ϕh

〉

[L2(e)]2

∣

∣

∣

∣

∣

∣

≤ C







∑

e∈Eh

he

∥

∥

∥

∥

J

[(

1

2µ
σd

h −∇uh + γh

)

tT

]∥

∥

∥

∥

2

[L2(e)]2







1/2

‖ϕ‖[H1(Ω)]2 , (5.22)

∣

∣

∣

∣

∣

∣

∑

e∈Eh

〈

J

[(

ph +
1

2
tr(σh)

)

tT

]

,ϕ − ϕh

〉

[L2(e)]2

∣

∣

∣

∣

∣

∣

≤ C







∑

e∈Eh

he

∥

∥

∥

∥

J

[(

ph +
1

2
tr(σh)

)

tT

]
∥

∥

∥

∥

2

[L2(e)]2







1/2

‖ϕ‖[H1(Ω)]2 , (5.23)

and

∣

∣

∣

∣

∣

∣

∑

e∈Eh

〈

J

[(

ε(uh)d −
1

2µ
σd

h

)

tT

]

,ϕ − ϕh

〉

[L2(e)]2

∣

∣

∣

∣

∣

∣

≤ C







∑

e∈Eh

he

∥

∥

∥

∥

J

[(

ε(uh)d −
1

2µ
σd

h

)

tT

]
∥

∥

∥

∥

2

[L2(e)]2







1/2

‖ϕ‖[H1(Ω)]2 . (5.24)

We observe here, due to the equivalence between ‖ϕ‖[H1(Ω)]2 and ‖∇ϕ‖[L2(Ω)]2×2 , that

‖ϕ‖[H1(Ω)]2 ≤ C ‖∇ϕ‖[L2(Ω)]2×2 = C ‖curl(ϕ)‖[L2(Ω)]2×2 = C ‖τ‖H(div;Ω) ,

which allows to replace ‖ϕ‖[H1(Ω)]2 by ‖τ‖H(div;Ω) in the above estimates (5.19) - (5.24).
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Similarly, for the terms on the right hand side of (5.16) and (5.17), we find that

∣

∣

∣

∣

∣

∣

∑

T∈Th

∫

T
div

(

ε(uh) −
1

2µ

1

2
(σh + σt

h)d
)

· (v − vh)

∣

∣

∣

∣

∣

∣

≤ C







∑

T∈Th

h2
T

∥

∥

∥

∥

div

(

ε(uh) −
1

2µ

1

2
(σh + σt

h)d
)
∥

∥

∥

∥

2

[L2(T )]2







1/2

‖v‖[H1(Ω)]2 , (5.25)

∣

∣

∣

∣

∣

∣

∑

T∈Th

∫

T
div

(

γh −
1

2

(

∇uh − (∇uh)t
)

)

· (v − vh)

∣

∣

∣

∣

∣

∣

≤ C







∑

T∈Th

h2
T

∥

∥

∥

∥

div

(

γh −
1

2

(

∇uh − (∇uh)t
)

)∥

∥

∥

∥

2

[L2(T )]2







1/2

‖v‖[H1(Ω)]2 , (5.26)

∣

∣

∣

∣

∣

∣

∑

e∈Eh,Ω

〈

J

[(

ε(uh) −
1

2µ

1

2
(σh + σt

h)d
)

νT

]

,v − vh

〉

[L2(e)]2

∣

∣

∣

∣

∣

∣

≤ C







∑

e∈Eh,Ω

he

∥

∥

∥

∥

J

[(

ε(uh) −
1

2µ

1

2
(σh + σt

h)d
)

νT

]∥

∥

∥

∥

2

[L2(e)]2







1/2

‖v‖[H1(Ω)]2 , (5.27)

and
∣

∣

∣

∣

∣

∣

∑

e∈Eh,Ω

〈

J

[(

γh −
1

2

(

∇uh − (∇uh)t
)

)

νT

]

,v − vh

〉

[L2(e)]2

∣

∣

∣

∣

∣

∣

≤ C







∑

e∈Eh,Ω

he

∥

∥

∥

∥

J

[(

γh −
1

2

(

∇uh − (∇uh)t
)

)

νT

]∥

∥

∥

∥

2

[L2(e)]2







1/2

‖v‖[H1(Ω)]2 . (5.28)

Therefore, placing (5.19) - (5.24) (resp. (5.25) - (5.28)) back into (5.13) - (5.15) (resp.
(5.16) and (5.17)), employing the estimates (5.10), (5.11), (5.12) and (5.18), and using the
identities

∑

e∈Eh,Ω

∫

e
=

1

2

∑

T∈Th

∑

e∈E(T )∩Eh,Ω

∫

e

and
∑

e∈Eh

∫

e
=
∑

e∈Eh,Ω

∫

e
+
∑

T∈Th

∑

e∈E(T )∩Eh,Γ

∫

e
,

we conclude from (5.9) that

sup
(τ ,q,v,η)∈H\{0}

div(τ)=0

A((σ − σh, p− ph,u− uh,γ − γh), (τ , q,v,η))

‖(τ , q,v,η)‖
H

≤ Cθ. (5.29)

This inequality and Lemma 5.2 complete the proof of reliability of θ.
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We remark that when the finite element subspace Hh is given by (4.10), that is, when
σh|T ∈ [RT0(T )]2, ph|T ∈ P0(T ), uh|T ∈ [P1(T )]2, and γh|T ∈ [P0(T )]2×2, then the expression
(5.1) for θ2

T simplifies to

θ2
T := ‖f + div(σh)‖2

[L2(T )]2 +
∥

∥σh − σt
h

∥

∥

2

[L2(T )]2×2 + ‖γh −
1

2

(

∇uh − (∇uh)t
)

‖2
[L2(T )]2×2

+ h2
T ‖curl

( 1

2µ
σd

h

)

‖2
[L2(T )]2 + h2

T ‖curl
(1

2
tr(σh)

)

‖2
[L2(T )]2

+
∑

e∈E(T )

he‖J
[

( 1

2µ
σd

h −∇uh + γh

)

tT

]

‖2
[L2(e)]2

+
∑

e∈E(T )

he‖J
[

(

ph +
1

2
tr(σh)

)

tT

]

‖2
[L2(e)]2 +

∑

e∈E(T )

he‖J
[

(

ε(uh)d −
1

2µ
σd

h

)

tT

]

‖2
[L2(e)]2

+ h2
T ‖div

( 1

2µ

1

2
(σh + σt

h)d
)

‖2
[L2(T )]2

+
∑

e∈E(T )∩Eh,Ω

he‖J
[

(

ε(uh) −
1

2µ

1

2
(σh + σt

h)d
)

νT

]

‖2
[L2(e)]2

+
∑

e∈E(T )∩Eh,Ω

he‖J
[

(

γh −
1

2

(

∇uh − (∇uh)t
)

)

νT

]

‖2
[L2(e)]2 .

(5.30)

5.2. Efficiency of the a posteriori error estimator. In this section we proceed as in
[5] and apply results ultimately based on inverse inequalities (see [11]) and the localization
technique introduced in [25], which is based on triangle-bubble and edge-bubble functions, to
prove the efficiency of our a posteriori estimator θ (lower bound of the estimate (5.2)).

Our goal is to estimate the thirteen terms defining the error indicator θ2
T (cf. (5.1)). Using

f = −div(σ), the symmetry of σ, and γ = 1
2 (∇u− (∇u)t), we first observe that there hold

‖f + div(σh)‖2
[L2(T )]2 = ‖div(σ − σh)‖2

[L2(T )]2 , (5.31)

∥

∥σh − σt
h

∥

∥

2

[L2(T )]2×2 ≤ 4 ‖σ − σh‖
2
[L2(T )]2×2 , (5.32)

and

‖γh −
1

2

(

∇uh − (∇uh)t
)

‖2
[L2(T )]2×2 ≤ 2

{

‖γ − γh‖
2
[L2(T )]2×2 + |u− uh|

2
[H1(T )]2

}

. (5.33)

The upper bounds of the remaining ten terms, which depend on the mesh parameters hT

and he, will be derived next. To this end we will make use of Lemmata 5.4 - 5.7 below. Lemma
5.4 is required for the terms involving the curl and curl operators, Lemma 5.5 handles the
terms involving tangential jumps across the edges of Th, Lemma 5.6 is required for the terms
containing the div operator, and Lemma 5.7 is used to take care of the terms encompassing
normal jumps across the edges of Th. For their proofs we refer to [5] and references therein.
In what follows, we let

we := ∪{T ′ ∈ Th : e ∈ E(T ′)} .

Lemma 5.4. Let ρh ∈ [L2(Ω)]2×2 be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th.

In addition, let ρ ∈ [L2(Ω)]2×2 be such that curl(ρ) = 0 on each T ∈ Th. Then, there exists

c > 0, independent of h, such that for any T ∈ Th

‖curl(ρh)‖[L2(T )]2 ≤ ch−1
T ‖ρ − ρh‖[L2(T )]2×2 . (5.34)
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Lemma 5.5. Let ρh ∈ [L2(Ω)]2×2 be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th.

Then, there exists c > 0, independent of h, such that for any e ∈ Eh

‖J [ρhtT ]‖[L2(e)]2 ≤ ch−1/2
e ‖ρh‖[L2(ωe)]2×2 . (5.35)

Lemma 5.6. Let ρh ∈ [L2(Ω)]2×2 be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th.

Then, there exists c > 0, independent of h, such that for any T ∈ Th

‖div(ρh)‖[L2(T )]2 ≤ ch−1
T ‖ρh‖[L2(T )]2×2 . (5.36)

Lemma 5.7. Let ρh ∈ [L2(Ω)]2×2 be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th.

Then, there exists c > 0, independent of h, such that for any e ∈ Eh

‖J [ρhνT ]‖[L2(e)]2 ≤ ch−1/2
e ‖ρh‖[L2(ωe)]2×2 . (5.37)

We now complete the proof of efficiency of θ by conveniently applying Lemmata 5.4 - 5.7
to the corresponding terms defining θ2

T .

Lemma 5.8. There exist C1, C2, C3 > 0, independent of h, such that for any T ∈ Th

h2
T ‖curl

( 1

2µ
σd

h + γh

)

‖2
[L2(T )]2 ≤ C1

{

‖σ − σh‖
2
[L2(T )]2×2 + ‖γ − γh‖

2
[L2(T )]2×2

}

, (5.38)

h2
T ‖curl

(

ph +
1

2
tr(σh)

)

‖2
[L2(T )]2 ≤ C2

{

‖p− ph‖
2
L2(T ) + ‖σ − σh‖

2
[L2(T )]2×2

}

, (5.39)

and

h2
T ‖curl

(

ε(uh)d −
1

2µ
σd

h

)

‖2
[L2(T )]2 ≤ C3

{

|u− uh|
2
[H1(T )]2 + ‖σ − σh‖

2
[L2(T )]2×2

}

. (5.40)

Proof. Applying Lemma 5.4 with ρh := 1
2µσd + γh and ρ := ∇u = 1

2µσd + γ, and then using

the triangle inequality and the continuity of τ −→ τ d we obtain (5.38). Similarly, (5.39) and
(5.40) follow from Lemma 5.4 with ρh := phI+ 1

2tr(σh)I and ρ := pI+ 1
2 tr(σ)I = 0 (cf. (2.2)),

and ρh := ε(uh)d − 1
2µσd

h and ρ := ε(u)d − 1
2µσd = 0 (cf. (2.4)), respectively. �

Lemma 5.9. There exist C4, C5, C6 > 0, independent of h, such that for any e ∈ Eh

he‖J
[

( 1

2µ
σd

h −∇uh + γh

)

tT

]

‖2
[L2(e)]2

≤ C4

{

‖σ − σh‖
2
[L2(ωe)]2×2 + |u− uh|

2
[H1(ωe)]2 + ‖γ − γh‖

2
[L2(ωe)]2×2

}

, (5.41)

he‖J
[

(

ph +
1

2
tr(σh)

)

tT

]

‖2
[L2(e)]2 ≤ C5

{

‖p− ph‖
2
L2(ωe) + ‖σ − σh‖

2
[L2(ωe)]2×2

}

, (5.42)

and

he‖J
[

(

ε(uh)d −
1

2µ
σd

h

)

tT

]

‖2
[L2(e)]2 ≤ C6

{

|u− uh|
2
[H1(ωe)]2 + ‖σ − σh‖

2
[L2(ωe)]2×2

}

. (5.43)
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Proof. The estimate (5.41) follows from Lemma 5.5 with ρh := 1
2µσd

h −∇uh +γh, introducing

0 = 1
2µσd − ∇u + γ (cf. (2.2) - (2.4)) in the resulting estimate and applying the triangle

inequality and the continuity of τ −→ τ d. Analogously, estimate (5.42) (resp. (5.43)) is
obtained from Lemma 5.5 defining ρh as (ph + 1

2tr(σh))I (resp. ε(uh)d − 1
2µσd

h) and then

introducing 0 = (p+ 1
2tr(σ))I (resp. 0 = ε(uh)d − 1

2µσd
h) (cf. (2.2) (resp. (2.4))). �

Lemma 5.10. There exist C7, C8 ≥ 0, independent of h, such that for any T ∈ Th

h2
T ‖div

(

ε(uh) −
1

2µ

1

2
(σh + σt

h)d
)

‖2
[L2(T )]2 ≤ C7

{

|u − uh|
2
[H1(T )]2 + ‖σ − σh‖

2
[L2(T )]2×2

}

(5.44)
and

h2
T ‖div

(

γh −
1

2

(

∇uh − (∇uh)t
)

)

‖2
[L2(T )]2 ≤ C8

{

‖γ − γh‖
2
[L2(T )]2×2 + |u− uh|

2
[H1(T )]2

}

.

(5.45)

Proof. The estimate (5.44) follows from Lemma 5.6 defining ρh := ε(uh) − 1
2µ

1
2(σh + σt

h)d,

introducing 0 = ε(u) − 1
2µ

1
2 (σ + σt)d (cf. (2.4)), and then using the triangle inequality

and the continuity of the operators ε and τ −→ τ d. Similarly, applying Lemma 5.6 with
ρh := γh − 1

2 (∇uh − (∇uh)t) and introducing 0 = γ − 1
2 (∇u− (∇u)t) yields (5.45). �

Lemma 5.11. There exist C9, C10 > 0, independent of h, such that for any e ∈ Eh

he‖J
[

(

ε(uh) −
1

2µ

1

2
(σh + σt

h)d
)

νT

]

‖2
[L2(e)]2 ≤ C9

{

|u− uh|
2
[H1(T )]2 + ‖σ − σh‖

2
[L2(T )]2×2

}

(5.46)
and

he‖J
[

(

γh −
1

2

(

∇uh − (∇uh)t
)

)

νT

]

‖2
[L2(e)]2 ≤ C10

{

‖γ − γh‖
2
[L2(T )]2×2 + |u− uh|

2
[H1(T )]2

}

.

(5.47)

Proof. The estimate (5.46) follows from Lemma 5.7 with ρh := ε(uh) − 1
2µ

1
2(σh + σt

h)d,

introducing 0 = ε(u) − 1
2µ

1
2 (σ + σt)d (cf. (2.4)) and then employing again the triangle

inequality and the continuity of the operators ε and τ −→ τ d. Analogously, the estimate
(5.47) follows from Lemma 5.7 defining ρh := γh − 1

2 (∇uh − (∇uh)t) and then introducing

0 = γ − 1
2 (∇u− (∇u)t). �

Thus, the efficiency of θ follows straightforwardly from the estimates (5.31) - (5.47) after
summing over all T ∈ Th and using that the number or triangles on each domain ωe is bounded
by two.

6. Numerical results

In this section we present several numerical results illustrating the performance of the
augmented finite element scheme (4.1) and the a posteriori error estimator θ analyzed in

Section 5, using the specific finite element subspace H̃h (cf. (4.10)). We recall that in this
case the local indicator θ2

T reduces to (5.30). Now, in order to implement the zero integral

mean condition for functions of the space H̃σ

0,h (cf. (4.5)), we introduce, as described in [18],
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a Lagrange multiplier ϕh ∈ R. That is, instead of (4.1) with Hh = H̃h, we consider the

equivalent problem: Find (σh, ph,uh,γh, ϕh) ∈ H̃σ

h × H̃p
h × H̃u

0,h × H̃γ

h × R such that

A((σh, ph,uh,γh), (τ h, qh,vh,ηh)) + ϕh

∫

Ω
tr(τ h) = F ((τ h, qh,vh,ηh)),

ψh

∫

Ω
tr(σh) = 0,

(6.1)

for all (τ h, qh,vh,ηh, ψh) ∈ H̃σ

h × H̃p
h × H̃u

0,h × H̃γ

h × R. We state the equivalence between

(4.1) and (6.1) through the application of the following Theorem, adapted from Theorem 4.3
in [18].

Theorem 6.1.

(1) Let (σh, ph,uh,γh) ∈ H̃h be the solution of (4.1). Then (σh, ph,uh,γh, 0) is a solution

of (6.1).

(2) Let (σh, ph,uh,γh, ϕh) ∈ H̃σ

h × H̃p
h × H̃u

0,h × H̃γ

h × R be a solution of (6.1). Then

ϕh = 0 and (σh, ph,uh,γh) is the solution of (4.1).

Proof. We first observe, according to the definition of A (cf. (3.5)), that for each (τ , q,v,η) ∈
H(div; Ω) × L2(Ω) × [H1

0 (Ω)]2 × [L2(Ω)]2×2
asym there holds

A((τ , q,v,η), (I,−1,0,0)) = 0. (6.2)

Now, let (σh, ph,uh,γh) be the solution of (4.1), and let (τ h, qh,vh,ηh) ∈ H̃σ

h ×H̃p
h×H̃

u

0,h×H̃
γ

h .

We write τ h = τ 0,h+dhI, with τ 0,h ∈ H̃σ

0,h and dh ∈ R and observe that (τ 0,h, qh+dh,vh,ηh) ∈

H̃h, whence (3.6), (4.1) and (6.2) yield

F (τ h, qh,vh,ηh) = F (τ 0,h, qh + dh,vh,ηh) = A((σh, ph,uh,γh), (τ 0,h, qh + dh,vh,ηh))

= A((σh, ph,uh,γh), (τ h, qh,vh,ηh)).

This identity and the fact that σh clearly satisfies the second equation of (6.1), show that
(σh, ph,uh,γh, 0) is indeed a solution of (6.1).

Conversely, let (σh, ph,uh,γh, ϕh) ∈ H̃σ

h ×H̃p
h×H̃

u

0,h×H̃
γ

h ×R be a solution of (6.1). Then,

taking (τ h, qh,vh,ηh) = (I,−1,0,0) in the first equation of (6.1) and using (3.6) and (6.2),
we find that ϕh = 0, whence (σh, ph,uh,γh) becomes the solution of (4.1). �

In what follows, N stands for the total number of degrees of freedom (unknowns) of (6.1),
which, at least for uniform refinements, behaves asymptotically as six times the numbers of
elements of each triangulation. Also, the individual and total errors are denoted by

e(σ) := ‖σ − σh‖H(div;Ω) , e(p) := ‖p− ph‖L2(Ω) ,

e(u) := |u− uh|[H1(Ω)]2 , e(γ) := ‖γ − γh‖[L2(Ω)]2×2 ,

and
e :=

{

[e(σ)]2 + [e(p)]2 + [e(u)]2 + [e(γ)]2
}1/2

,

respectively, whereas the effectivity index with respect to θ is defined by e/θ.
Since the augmented method (for the compressible case) was shown in [18] to be robust with

respect to the parameters κ1, κ2, and κ3, we simply consider for all the examples (κ1, κ2, κ3) =
(

µ, 1
2µ ,

µ
2

)

, which satisfy the assumptions of Theorem 4.4. In addition, since the choice of κ0

in (4.1) depends on the unknown constant c1 from Lemma 2.4, we simply take here κ0 = µ.
As we will see below, this choice works out well in all the examples

We now specify the data of the three examples to be presented here. We take Ω as either
the square ]0, 1[2 or the triangle T̂ := {(x1, x2) : x1, x2 > 0 and x1 + x2 < 1}, and choose the
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datum f so that the exact solution u(x1, x2) := (u1(x1, x2), u2(x1, x2))
t and p(x1, x2) are given

in the table below. Actually, according to (2.1) we have σ = 2µε(u) − pI, and hence simple
computations show that f := −div(σ) = −µ∆u− µ∇(div u) + ∇p = −µ∆u + ∇p. We also
recall that the rotation γ is defined by 1

2 (∇u− (∇u)t). In all the examples we take µ = 1.0.
We emphasize that from (2.1) an admissible solution u must satisfy both u = 0 on Γ and

div(u) = 0 in Ω, and from (2.2) and the fact that σ ∈ H0 (cf. (2.6)) an admissible solution p

must satisfy

∫

Ω
p = 0.

Example Ω u(x1, x2) p(x1, x2)

1 ]0, 1[2 curl(x2
1x

2
2(x1 − 1)2(x2 − 1)2) x2

1 + x2
2 −

2

3

2 T̂ 102 curl
(

x2

1x
2

2(1 − x1 − x2)
2(x2

1 + x2

2)
−3/4

)

x2

1 + x2

2 −
1

3

3 ]0, 1[2 curl

(

9 x2

1x
2

2(1 − x1)
2(1 − x2)

2

(300 x1 − 100)2 + (300 x2 − 100)2 + 90

)

(

x1

100

)2
+
(

x2

100

)2
− 2

3
× 10−4

We observe that the solution of Example 2 is singular at the boundary point (0, 0). Thus,
according to Theorem 4.5 we expect a rate of convergence lower than 1 for the uniform
refinement. On the other hand, the solution of Example 3 shows a large stress region in the
vicinity of the interior point (1/3, 1/3).

The numerical results shown below were obtained in a Pentium Xeon computer with dual

processors using a Fortran Code and the Triangle mesh generator. The linear system arising
from (6.1) is solved with the sequential LU package. Individual errors are computed on each
triangle using a Gaussian quadrature rule.

We first utilize the Example 1 to illustrate the good behaviour of the a posteriori error
estimator θ in a sequence of quasi-uniform meshes. In Table 1 we present the individual and
total errors, the a posteriori estimators, and the effectivity indexes for this example with this
sequence of quasi-uniform meshes. The index always remains in a neighborhood of 0.600 in
this example, which confirms the reliability and efficiency of θ.

Next we consider Examples 2 and 3 to illustrate the performance of the following adaptive
algorithm based on θ for the computation of solutions of (6.1):

1. Start with a coarse mesh Th.
2. Solve the Galerkin scheme (6.1) for the current mesh Th.
3. Compute θT for each triangle T ∈ Th.
4. Consider stopping criterion and decide to finish or go to next step.
5. Instruct the mesh generator to ensure that in the next mesh the region enclosed by

each element T ′ ∈ Th of the current mesh whose local indicator θT ′ satisfies θT ′ ≥
1
2 max {θT : T ∈ Th} encompasses no triangle with area larger than |T ′|

4 .
6. Generate the next mesh, store it as Th and go to step 2.

At this point we introduce the experimental rate of convergence, which, given two consec-
utive triangulations with degrees of freedom N and N ′ and corresponding errors e and e′, is
defined by

r(e) := −2
log(e/e′)

log(N/N ′)
.

In Tables 2 through 5 we provide the individual and total errors, the experimental rates of
convergence, the a posteriori error estimators and the effectivity indexes for the uniform and
adaptive refinements as applied to Examples 2 and 3. In this case the quasi-uniform sequences
of meshes are generated by instructing the mesh generator to provide only triangles with area
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Table 1. Mesh sizes, individual and total errors, a posteriori error estimators,
and effectivity indexes for a sequence of quasi-uniform meshes (Example 1).

N h e(σ) e(p) e(u) e(γ) e θ e/θ
99 0.500 0.681E-00 0.151E-00 0.130E-00 0.587E-01 0.712E-00 0.923E-00 0.772
165 0.500 0.557E-00 0.126E-00 0.844E-01 0.453E-01 0.579E-00 0.794E-00 0.729
207 0.500 0.528E-00 0.115E-00 0.818E-01 0.428E-01 0.548E-00 0.738E-00 0.743
363 0.288 0.374E-00 0.791E-01 0.609E-01 0.367E-01 0.389E-00 0.589E-00 0.660
435 0.271 0.345E-00 0.756E-01 0.584E-01 0.315E-01 0.359E-00 0.523E-00 0.687
627 0.257 0.282E-00 0.601E-01 0.463E-01 0.271E-01 0.293E-00 0.452E-00 0.648
849 0.250 0.253E-00 0.555E-01 0.420E-01 0.273E-01 0.264E-00 0.412E-00 0.639
1245 0.250 0.204E-00 0.485E-01 0.358E-01 0.220E-01 0.214E-00 0.335E-00 0.638
1707 0.147 0.181E-00 0.388E-01 0.305E-01 0.198E-01 0.188E-00 0.303E-00 0.622
2433 0.125 0.148E-00 0.323E-01 0.254E-01 0.154E-01 0.155E-00 0.243E-00 0.635
3369 0.125 0.128E-00 0.287E-01 0.218E-01 0.135E-01 0.133E-00 0.211E-00 0.632
4833 0.125 0.103E-00 0.229E-01 0.185E-01 0.120E-01 0.108E-00 0.180E-00 0.603
6927 0.077 0.880E-01 0.188E-01 0.154E-01 0.961E-02 0.918E-01 0.149E-00 0.615
9681 0.065 0.743E-01 0.159E-01 0.131E-01 0.851E-02 0.776E-01 0.129E-00 0.601
13563 0.062 0.632E-01 0.137E-01 0.112E-01 0.736E-02 0.661E-01 0.111E-00 0.595

Table 2. Individual and total errors, experimental rates of convergence, a
posteriori error estimators, and effectivity indexes for a sequence of quasi-
uniform meshes (Example 2).

N e(σ) e(p) e(u) e(γ) e r(e) θ e/θ
159 0.159E+03 0.626E+01 0.103E+02 0.527E+01 0.160E+03 —– 0.166E+03 0.965
633 0.122E+03 0.363E+01 0.677E+01 0.366E+01 0.123E+03 0.383 0.127E+03 0.965
2367 0.941E+02 0.202E+01 0.365E+01 0.198E+01 0.942E+02 0.403 0.961E+02 0.979
9591 0.725E+02 0.107E+01 0.188E+01 0.106E+01 0.725E+02 0.373 0.733E+02 0.989

below a decreasing threshold, subject to a minimum angle constraint. We observe from these
tables that the errors of the adaptive procedure decrease much faster than those obtained by
the quasi-uniform one, which is confirmed by the experimental rates of convergence provided
there. This fact can also be seen in Figures 1 and 2 where we display the total error e vs.
the degrees of freedom N for both refinements. As shown by the values of r(e), particularly
in Example 2 (where r(e) approaches 0.38 for the quasi-uniform refinement), the adaptive
method is able to recover, at least approximately, the quasi-optimal rate of convergence O(h)
for the total error. Furthermore, the effectivity indexes remain again bounded from above and
below, which confirms the reliability and efficiency of θ for the adaptive algorithm. On the
other hand, some intermediate meshes obtained with the adaptive refinement are displayed in
Figures 3 and 4. Note that the method is able to recognize the singularities and large stress
regions of the solutions. In particular, this fact is observed in Example 2 (see Figure 3) where
adapted meshes are highly refined around the singular point (0, 0). Similarly, the adapted
meshes obtained in Example 3 (see Figure 4) concentrate the refinement around the interior
point (1/3, 1/3), where the largest stress occur.

Summarizing, the numerical results presented in this section exhibit, on one hand, the
expected O(h) behaviour of this augmented method for smooth problems and, on the other
hand, underline the reliability and efficiency of θ. In addition, they strongly demonstrate
that the associated adaptive algorithm is much more suitable than a uniform discretization
procedure when solving problems with non-smooth solutions.
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Table 3. Individual and total errors, experimental rates of convergence, a
posteriori error estimators, and effectivity indexes for the adaptive refinement
(Example 2).

N e(σ) e(p) e(u) e(γ) e r(e) θ e/θ
159 0.159E+03 0.626E+01 0.103E+02 0.527E+01 0.160E+03 —– 0.166E+03 0.965
249 0.119E+03 0.569E+01 0.892E+01 0.489E+01 0.119E+03 1.301 0.128E+03 0.929
345 0.109E+03 0.542E+01 0.837E+01 0.454E+01 0.110E+03 0.508 0.118E+03 0.926
417 0.993E+02 0.541E+01 0.836E+01 0.455E+01 0.999E+02 1.021 0.109E+03 0.912
531 0.910E+02 0.542E+01 0.825E+01 0.451E+01 0.916E+02 0.716 0.101E+03 0.899
627 0.841E+02 0.485E+01 0.809E+01 0.422E+01 0.847E+02 0.944 0.943E+02 0.898
981 0.711E+02 0.379E+01 0.622E+01 0.314E+01 0.715E+02 0.758 0.781E+02 0.915
1545 0.578E+02 0.313E+01 0.534E+01 0.273E+01 0.582E+02 0.906 0.642E+02 0.906
1899 0.560E+02 0.267E+01 0.441E+01 0.233E+01 0.563E+02 0.324 0.610E+02 0.922
2571 0.499E+02 0.255E+01 0.410E+01 0.210E+01 0.501E+02 0.759 0.544E+02 0.922
3651 0.413E+02 0.224E+01 0.353E+01 0.187E+01 0.416E+02 1.068 0.456E+02 0.912
5187 0.355E+02 0.202E+01 0.325E+01 0.162E+01 0.357E+02 0.867 0.390E+02 0.915
6957 0.310E+02 0.184E+01 0.297E+01 0.149E+01 0.312E+02 0.910 0.344E+02 0.906
9843 0.253E+02 0.133E+01 0.216E+01 0.115E+01 0.254E+02 1.179 0.280E+02 0.909
13707 0.214E+02 0.114E+01 0.194E+01 0.102E+01 0.215E+02 1.014 0.238E+02 0.904
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Figure 1. Total errors e vs. degrees of freedom N for the quasi-uniform and
adaptive refinements (Example 2).
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Table 4. Individual and total errors, experimental rates of convergence, a
posteriori error estimators, and effectivity indexes for a sequence of quasi-
uniform meshes (Example 3).

N e(σ) e(p) e(u) e(γ) e r(e) θ e/θ
435 0.228E+03 0.691E+00 0.210E+01 0.106E+01 0.228E+03 —– 0.228E+03 1.000
1245 0.195E+03 0.738E+01 0.562E+01 0.248E+01 0.195E+03 0.294 0.196E+03 0.999
3369 0.204E+03 0.613E+01 0.354E+01 0.177E+01 0.204E+03 —– 0.204E+03 1.000
9681 0.133E+03 0.126E+01 0.183E+01 0.102E+01 0.133E+03 0.815 0.133E+03 0.998

Table 5. Individual and total errors, experimental rates of convergence, a
posteriori error estimators, and effectivity indexes for the adaptive refinement
(Example 3).

N e(σ) e(p) e(u) e(γ) e r(e) θ e/θ
435 0.228E+03 0.691E+00 0.210E+01 0.106E+01 0.228E+03 —– 0.228E+03 1.000
555 0.221E+03 0.681E+01 0.542E+01 0.299E+01 0.221E+03 0.270 0.222E+03 0.995
651 0.178E+03 0.369E+01 0.300E+01 0.167E+01 0.178E+03 2.702 0.178E+03 0.998
819 0.119E+03 0.119E+01 0.155E+01 0.778E+00 0.119E+03 3.473 0.119E+03 0.997
1083 0.752E+02 0.919E+00 0.115E+01 0.591E+00 0.752E+02 3.320 0.756E+02 0.995
1431 0.500E+02 0.733E+00 0.914E+00 0.544E+00 0.500E+02 2.933 0.504E+02 0.992
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Figure 2. Total errors e vs. degrees of freedom N for the quasi-uniform and
adaptive refinements (Example 3).
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Figure 3. Adapted intermediate meshes with 981, 1899, 9843, and 13707
degrees of freedom (Example 2).
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