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Abstract

The coupling of local discontinuous Galerkin (LDG) and boundary element methods (BEM), which
has been developed recently to solve linear and nonlinear exterior transmission problems, employs
a mortar-type auxiliary unknown to deal with the weak continuity of the traces at the interface
boundary. As a consequence, the main features of LDG and BEM are maintained and hence the
coupled approach benefits from the advantages of both methods. In this paper we propose a direct
procedure that, instead of a mortar variable, makes use of a finite element subspace whose functions
are required to be continuous only on the coupling boundary. In this way, the normal derivative
becomes the only boundary unknown, and hence the total number of unknown functions is reduced
by two. We prove the stability of the new discrete scheme and derive an a priori error estimate in
the energy norm. The analysis is also extended to the case of nonlinear problems.
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1 Introduction

The coupling of local discontinuous Galerkin and boundary element methods, as applied to linear
exterior boundary value problems in the plane, has been introduced and analyzed for the first time in
[15]. The model problem there is the Poisson equation in an annular domain coupled with the Laplace
equation in the surrounding unbounded exterior region. The corresponding extension to a class of
nonlinear-linear exterior transmission problems, which is also motivated by previous applications of
the LDG method to some nonlinear problems in heat conduction and fluid mechanics (see, e.g. [5], [6],
and [21]), was developed recently in [7], [8], and [9]. In these works, the authors consider a nonlinear
elliptic equation in divergence form in an annular region coupled with discontinuous transmission
conditions on the interface boundary and the Poisson equation in the exterior unbounded domain.
In both the linear and nonlinear cases the technique employed resembles the usual coupling of finite
element and boundary element methods, but the corresponding analysis becomes quite different. In
particular, in order to deal with the weak continuity of the traces at the coupling boundary, a mortar-
type auxiliary unknown representing an interior approximation of the normal derivative needs to be
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50018 Zaragoza, Spain, email: jsayas@unizar.es

1



defined. Hence, different mesh sizes on that boundary and special relationships between them are
required. In addition, the continuity and ellipticity estimates of the bilinear form involved hold with
different mesh-dependent norms, and Strang-type a priori error estimates instead of the usual Céa’s
ones are obtained.

In the present paper we simplify the approach from [15] and develop a direct procedure for the
coupling of LDG and BEM which does not make use of any mortar unknown but, instead, employs
a finite element subspace with functions that are required to be continuous only on the coupling
boundary Γ. Consequently, the normal derivative becomes the only boundary unknown and then
the total number of unknown functions is reduced by two. In order to introduce the model problem
let Ω0 be a simply connected and bounded domain in R

2 with polygonal boundary Γ0. Then, given
f ∈ L2(R2 \ Ω̄0) with compact support, we consider the exterior Dirichlet problem:

−∆u = f in R
2 \ Ω̄0, u = 0 on Γ0 ,

u(x) = O(1) as |x| → ∞ .
(1.1)

Next, let Γ be a closed polygonal curve such that the support of f is inside the annular domain Ω
enclosed by Γ0 and Γ. We assume that this support does not intersect Γ. Then (1.1) can be written
as the Poisson equation in Ω:

−∆u = f in Ω, u = 0 on Γ0 , (1.2)

and the Laplace equation in the exterior domain Ωe := R
2 \ (Ω̄0 ∪ Ω̄):

−∆ue = 0 in Ωe, ue(x) = O(1) as |x| → ∞ , (1.3)

coupled by the transmission conditions:

u = ue on Γ and ∂νu = ∂νue on Γ . (1.4)

Here, ∂νu denotes the normal derivative of u with normal vector pointing outside Ω. The purpose
of this work is to solve numerically (1.1) by means of a new LDG-BEM coupling which, similarly to
[15], consists of applying the LDG to (1.2) and the BEM to (1.3). As already mentioned the main
advantage of the method to be presented here is the reduction of the total number of unknowns,
whereas the advantage of the approach from [15] is the explicit splitting, through a suitable mortar
variable, of the LDG and BEM modules. The remainder of this work is organized as follows. In
Section 2 we introduce the boundary integral equation formulation in Ωe, define the LDG method in
Ω, and establish the resulting coupled LDG-BEM approach. Next, in Section 3 we prove the unique
solvability and stability of our discrete scheme. The associated a priori error analysis is provided in
Section 4. Then, in Section 5 we describe a Lagrange multiplier based implementation of the coupled
scheme which maintains the discontinuous character of the LDG method. Finally, in Section 6 we
extend our analysis to the class of nonlinear problems studied in [7], [8], and [9].

Throughout this paper, c and C denote positive constants, independent of the parameters and
functions involved, and may take different values at different occurrences. Given any linear space V ,
the corresponding vector valued space V × V endowed with the product norm will be denoted by V.
If O is an open set, its closure, or a polygonal curve, and s ∈ R, then | · |s,O and ‖ · ‖s,O denote the
seminorm and norm in the Sobolev space Hs(O). In particular, the norms of Hs(Γ) are denoted by
‖ · ‖s,Γ. Also, 〈·, ·〉 denotes both the L2(Γ) inner product and its extension to the duality pairing of
H−s(Γ) ×Hs(Γ).
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2 The coupled LDG-BEM approach

2.1 The boundary integral formulation in the exterior domain

We use Green’s representation formula for ue in Ωe,

ue(x) =

∫

Γ
∂ν(y)E(x,y)u(y) dsy −

∫

Γ
E(x,y)λ(y) dsy + c ∀x ∈ Ωe , (2.1)

where E(x,y) := −
1

2π
log |x − y| is the fundamental solution of the Laplacian in R

2, λ = ∂νu, and c

is a constant. Note that we made use of the transmission conditions (1.4). It is well-known that (2.1)
gives rise to the following system of boundary integral equations:

Wu − (1
2I − K′)λ = −λ on Γ ,

(1
2I − K)u + Vλ + c = 0 on Γ ,

(2.2)

where V, K, K′, and W are the boundary integral operators associated with the single, double, adjoint
of the double, and hypersingular layer potentials, respectively. We recall from [12] that their main
mapping properties are given by V : H−1/2(Γ) → H1/2(Γ), K : H1/2(Γ) → H1/2(Γ), K′ : H−1/2(Γ) →
H−1/2(Γ), and W : H1/2(Γ) → H−1/2(Γ), and that they are defined as follows:

Vµ(x) :=

∫

Γ
E(x,y)µ(y) dsy ∀ (a.e.)x ∈ Γ , ∀ µ ∈ H−1/2(Γ) ,

Kψ(x) :=

∫

Γ
∂ν(y)E(x,y)ψ(y) dsy ∀ (a.e.)x ∈ Γ , ∀ ψ ∈ H1/2(Γ) ,

K′µ(x) :=

∫

Γ
∂ν(x)E(x,y)µ(y) dsy ∀ (a.e.)x ∈ Γ , ∀ µ ∈ H−1/2(Γ) ,

Wψ(x) := −∂ν(x)

∫

Γ
∂ν(y)E(x,y)ψ(y) dsy ∀ (a.e.)x ∈ Γ , ∀ ψ ∈ H1/2(Γ) .

Here, ∂ν(x) stands for the normal derivative operator at x ∈ Γ.

Next, according to the behaviour of u at infinity (cf. (1.1)), we observe that λ belongs to H
−1/2
0 (Γ)

where
H

−1/2
0 (Γ) := {µ ∈ H−1/2(Γ) : 〈µ, 1〉 = 0} .

We also remark in advance that the analysis of (2.2) and its discrete counterpart below will depend
on the symmetry of W and the ellipticity of V and W:

〈Wϕ,ψ〉 = 〈Wψ,ϕ〉 ∀ϕ, ψ ∈ H1/2(Γ) ,

〈µ,Vµ〉 ≥ C ‖µ‖2
−1/2,Γ ∀µ ∈ H

−1/2
0 (Γ) ,

〈Wψ,ψ〉 ≥ C ‖ψ‖2
1/2,Γ,0 ∀ψ ∈ H1/2(Γ) ,

(2.3)

where ‖ · ‖1/2,Γ,0 stands for a seminorm in H1/2(Γ). More precisely, according to the decomposition

H1/2(Γ) = H
1/2
0 (Γ) ⊕ R, with

H
1/2
0 (Γ) := {ψ ∈ H1/2(Γ) : 〈1, ψ〉 = 0} ,

we define
‖ψ‖1/2,Γ,0 := ‖ψ̃‖1/2,Γ ∀ψ = ψ̃ + c ∈ H1/2(Γ) , ψ̃ ∈ H

1/2
0 (Γ), c ∈ R . (2.4)

Equivalently, ‖ · ‖1/2,Γ,0 denotes the quotient space norm

‖ψ‖1/2,Γ,0 := inf
c∈R

‖ψ + c‖1/2,Γ ∀ψ ∈ H1/2(Γ) .
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2.2 The LDG formulation in the interior domain

The setting and analysis of the LDG formulation in Ω require several notations, definitions, and
assumptions that we recall from [15]. Let Th be a shape regular triangulation of Ω̄ (with possible
hanging nodes) made up of straight triangles K with diameter hK and unit outward normal to ∂K
given by νK . As usual, the index h denotes h := max

K∈Th

hK . Then, the edges of Th are defined as

follows. An interior edge of Th is the (non-empty) interior of ∂K ∩ ∂K ′ where K and K ′ are two
adjacent elements of Th. Similarly, a boundary edge of Th is the (non-empty) interior of ∂K ∩ Γ0 or
∂K ∩ Γ where K is an element of Th which has an edge on Γ0 or Γ. For each edge e, he represents
its length. In addition, we define E(K):={edges of K}, E int

h : set of interior edges (counted only once),

EΓ
h : set of edges on Γ, EΓ0

h : set of edges on Γ0, and Ih: interior grid generated by the triangulation,
that is Ih := ∪{e : e ∈ E int

h }. Also, we let Γh and Γ0
h be the induced meshes on the boundaries Γ and

Γ0, whose lists of edges are EΓ
h and EΓ0

h , respectively.
In what follows we assume that Th is a locally quasi-uniform mesh, i.e. there exists l > 1, indepen-

dent of the meshsize h, such that l−1 ≤ hK

hK′
≤ l for each pair K, K ′ ∈ Th sharing an interior edge.

We notice that the hypotheses on the triangulation imply that the cardinality of E(K) is uniformly
bounded, and that for each e ∈ E(K) there holds hK ≤ C l he.

Now we consider integers m ≥ 1 and r ≥ 0 with r ≥ m− 1, and define the finite element spaces

Vh :=
∏

K∈Th

Pm(K) and Σh :=
∏

K∈Th

Pr(K) . (2.5)

Hereafter, given an integer k ≥ 0 and a domain S ⊆ R
2, Pk(S) denotes the space of polynomials of

degree at most k on S. For each v := {vK}K∈Th
∈ Vh and τ := {τK}K∈Th

∈ Σh, the components vK

and τK coincide with the restrictions v|K and τ |K , when v and τ are identified as elements in L2(Ω)
and L2(Ω), respectively. Further, when no confusion arises, we omit the subscript K and just write v
and τ .

Next, given s > 1/2, let

Hs(Th) :=
∏

K∈Th

Hs(K) , L2(Ih) :=
∏

e∈E int
h

L2(e) ,

P0(Ih) :=
∏

e∈E int
h

P0(e) and P0(Ih ∪ Γ0
h) :=

∏

e∈E int
h

∪E
Γ0
h

P0(e) .

An analogue remark to the one given before, concerning components and restrictions of the elements
in Vh and Σh, is valid here for each of the product spaces above. Also, we will not use any symbol
for the trace on edges, provided it is clear from which side of an interior edge we are taking the trace.
Hence, given v ∈ H1(Th), we define the averages {v} ∈ L2(Ih) and jumps [[v]] ∈ L2(Ih) on the interior
grid Ih by

{v}e := 1
2(vK + vK ′) and [[v]]e := vKνK + vK ′νK ′ ∀ e ∈ E(K) ∩ E(K ′) .

Similarly, for vector valued functions τ ∈ H1(Th), we define {τ} ∈ L2(Ih) and [[τ ]] ∈ L2(Ih) by

{τ}e := 1
2 (τK + τK ′) and [[τ ]]e := τK · νK + τK ′ · νK ′ ∀ e ∈ E(K) ∩ E(K ′) .

In addition, let α ∈ P0(Ih ∪Γ0
h) and β ∈ P0(Ih) be given functions and assume that there exist C, c0,

c1 > 0, independent of the grid, such that

max
e∈E int

h

|βe| ≤ C and 0 < c0 ≤ hE α ≤ c1 , (2.6)
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where hE ∈ P0(Ih ∪ Γ0
h) is defined by hE |e := he ∀ e ∈ E int

h ∪ EΓ0

h .

We are now in a position to introduce the LDG scheme for the interior problem (1.2). As usual,
we first define the gradient σ := ∇u in Ω as an additional unknown where u is the exact solution of
(1.2)–(1.3). Then, let λh ∈ L2(Γ) be a discrete approximation (to be defined below) of the normal
derivative λ, and proceeding as in [10, 15] we arrive at the following global LDG formulation: Find
(σh, uh) ∈ Σh × Vh such that

∫

Ω
σh · τ −

{
∫

Ω
∇huh · τ − S(uh, τ )

}

= 0 ∀ τ ∈ Σh ,

{
∫

Ω
∇hv · σh − S(v,σh)

}

+ α(uh, v) =

∫

Ω
f v +

∫

Γ
λh v ∀ v ∈ Vh ,

(2.7)

where ∇h stands for the piecewise defined gradient, and S : H1(Th) × H1(Th) → R and α : H1(Th) ×
H1(Th) → R are the bilinear forms defined by:

S(w, τ ) :=

∫

Ih

[[w]] · ({τ} − [[τ ]]β) +

∫

Γ0

w (τ · ν) ∀ (w, τ ) ∈ H1(Th) × H1(Th) , (2.8)

and

α(w, v) :=

∫

Ih

α [[w]] · [[v]] +

∫

Γ0

αw v ∀ (w, v) ∈ H1(Th) ×H1(Th) , (2.9)

with the traces of w, v, and τ on Γ0 being defined elementwise.

2.3 The coupled LDG-BEM scheme

We now establish the coupled LDG-BEM scheme by combining a discrete form of (2.2) with the LDG
formulation (2.7). This requires a subspace for λh and an approximant uh of u which is continuous on
Γ. For the discrete space approximating λ we take, for simplicity, the partition Γh of Γ and introduce

Xh := {µh ∈ L2(Γ) : µh|e ∈ Pm−1(e) ∀ e ∈ EΓ
h } and X0

h := {µh ∈ Xh :

∫

Γ
µh = 0} . (2.10)

Then, we consider the subspace Ṽh of Vh defined by

Ṽh := {vh ∈ Vh : vh|Γ ∈ C(Γ)} .

Here, the trace vh|Γ for vh ∈ Vh is defined in a piecewise manner on the edges of Γh and the condition
vh|Γ ∈ C(Γ) means that the function composed by the piecewise traces is continuous on Γ. Hence,
substituting λh in (2.7) by a discrete version of the first equation in (2.2), in which u is replaced by
its approximant uh, and adding also a discrete formulation of the second equation in (2.2), we obtain
the following coupled LDG-BEM scheme: Find (σh, uh, λh) ∈ Σh × Ṽh ×X0

h such that
∫

Ω
σh · τ − ρ(uh, τ ) = 0 ,

ρ(v,σh) + α (uh, v)+ 〈Wuh, v〉 − 〈(1
2I − K′)λh, v〉 =

∫

Ω
f v ,

〈µ, (1
2I − K)uh〉 + 〈µ,Vλh〉 = 0

(2.11)

for all (τ , v, µ) ∈ Σh × Ṽh ×X0
h, where ρ : H1(Th) × H1(Th) → R is the bilinear form defined by

ρ(v, τ ) :=

∫

Ω
∇hv · τ − S(v, τ ) ∀ (v, τ ) ∈ H1(Th) ×H1(Th) . (2.12)
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This coupled LDG-BEM scheme is exactly of the skew-symmetric form known from the traditional
coupling of finite elements and boundary elements, see [11, 17].

In order to compare the formulation (2.11) with the one from [15] we recall that the latter is given
by: Find (σh, uh, λh̃, ϕĥ, γĥ) ∈ Σh × Vh ×X0

h̃
× Y 0

ĥ
× Z0

ĥ
such that

∫

Ω
σh · τ − ρ(uh, τ ) = 0 ,

ρ(v,σh) + α (uh, v) − 〈λh̃, v〉 =

∫

Ω
f v ,

〈ξ, uh〉 − 〈ξ, ϕĥ〉 = 0 ,

〈λh̃, ψ〉 + 〈Wϕĥ, ψ〉 − 〈(1
2I −K′)γĥ, ψ〉 = 0 ,

〈µ, (1
2I − K)ϕĥ〉 + 〈µ,Vγĥ〉 = 0

(2.13)

for all (τ , v, ξ, ψ, µ) ∈ Σh×Vh×X
0
h̃
×Y 0

ĥ
×Z0

ĥ
, where X0

h̃
⊆ L2(Γ)∩H

−1/2
0 (Γ), Y 0

ĥ
⊆ C(Γ)∩H

1/2
0 (Γ),

and Z0
ĥ
⊆ L2(Γ)∩H

−1/2
0 (Γ) are boundary element subspaces, with independent meshsizes h̃ and ĥ, for

the mortar-type auxiliary unknown λh̃ gluing the LDG and BEM modules, and for the Cauchy data
ϕĥ and γĥ, respectively. We observe that the computational implementation of (2.13) can be easily
obtained by incorporating individual codes for each module, which constitutes the main advantage of
this formulation, whereas the lower number of unknowns involved is the main strength of the present
approach (2.11).

Now, for the solvability and stability of (2.11) we need an equivalent reduced formulation which is
taken from [15]. To this end let Sh : H1(Th) → Σh be the linear operator associated with the bilinear
form S restricted to H1(Th) × Σh. That is, given w ∈ H1(Th), Sh(w) is the unique element in Σh

satisfying
∫

Ω
Sh(w) · τ = S(w, τ ) ∀ τ ∈ Σh . (2.14)

Next, let Bh : H1(Th) ×H1(Th) → R be the bilinear form defined by

Bh(w, v) := α(w, v) +

∫

Ω
(∇hw − Sh(w)) · (∇hv − Sh(v)) ∀w, v ∈ H1(Th). (2.15)

The equivalence between (2.11) and a reduced problem involving Bh is established by the following
lemma.

Lemma 2.1 Let (σh, uh, λh) ∈ Σh × Ṽh ×X0
h be a solution of (2.11). Then there holds

Bh(uh, v)+ 〈Wuh, v〉 − 〈(1
2I − K′)λh, v〉 =

∫

Ω
f v ,

〈µ, (1
2I − K)uh〉 + 〈µ,Vλh〉 = 0

(2.16)

for any (v, µ) ∈ Ṽh×X
0
h. Conversely, if (uh, λh) ∈ Ṽh×X

0
h satisfies (2.16) and σh := ∇huh−Sh(uh),

then (σh, uh, λh) is a solution of (2.11). If (uh, λh) ∈ Ṽh × X0
h is the only solution of (2.16) then

(σh, uh, λh), with σh defined as before, is the only solution of (2.11).

Proof. This result is analogous to Lemma 2.2 in [15] and is based on the fact that the first equation
in (2.11) can be written like

∫

Ω
σh · τ −

∫

Ω
(∇huh − Sh(uh) ) · τ = 0 ∀ τ ∈ Σh.

The fact that r ≥ m− 1 guarantees that ∇huh ∈ Σh, which yields σh = ∇huh − Sh(uh) and leads to
the result. �
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3 Unique solvability and stability

In this section we prove the unique solvability and stability of (2.11) through the corresponding analysis
of the equivalent reduced formulation (2.16). We first introduce seminorms

|v|21,h := ‖∇hv‖
2
0,Ω , |v|2∗ := ‖h

−1/2
E [[v]]‖2

0,Ih
+ ‖h

−1/2
E v‖2

0,Γ0
∀ v ∈ H1(Th) ,

and the norm
|||v|||2h := |v|21,h + |v|2∗ ∀ v ∈ H1(Th) .

Next, we let Bh denote the bilinear form defined by the left-hand side of (2.16), i.e.

Bh(w, η; v, µ) := Bh(w, v) + 〈Ww, v〉 − 〈(
1

2
I − K′)η, v〉 + 〈µ, (

1

2
I −K)w〉 + 〈µ,Vη〉

for
w, v ∈ H1

1/2(Th) := {w ∈ H1(Th) : w|Γ ∈ H1/2(Γ)}

and η, µ ∈ H
−1/2
0 (Γ). Analogously as before, the trace w|Γ for w ∈ H1(Th) is defined first on each edge

of Γh and the condition w|Γ ∈ H1/2(Γ) means that the function composed by the piecewise traces is
in H1/2(Γ).

Essential ingredients of our analysis are the properties of the bilinear forms Bh and Bh.

Lemma 3.1 [15, Lemma 3.2] There exist positive constants c, C, independent of h, such that

|Bh(w, v)| ≤ c |||w|||h |||v|||h ∀w, v ∈ H1(Th) (3.1)

and

Bh(v, v) ≥ C |||v|||2h ∀ v ∈ H1(Th) . (3.2)

Lemma 3.2 There exist positive constants c, C, independent of h, such that

|Bh(w, η; v, µ)| ≤ c ‖(w, η)‖h,Γ ‖(v, µ)‖h,Γ ∀ (w, η), (v, µ) ∈ H1
1/2(Th) ×H

−1/2
0 (Γ) (3.3)

and

Bh(v, µ; v, µ) ≥ C ‖(v, µ)‖2
h,Γ ∀ (v, µ) ∈ H1

1/2(Th) ×H
−1/2
0 (Γ) (3.4)

where

‖(v, µ)‖h,Γ :=
{

|||v|||2h + ‖v‖2
1/2,Γ,0 + ‖µ‖2

−1/2,Γ

}1/2
∀ (v, µ) ∈ H1

1/2(Th) ×H
−1/2
0 (Γ) .

Proof. According to the properties of the operators V, W and K (cf. Section 2.1), noting that W 1 = 0

and K 1 = −1
2 on Γ, and using the decomposition H1/2(Γ) = H

1/2
0 (Γ) ⊕ R and the definition of the

seminorm ‖ · ‖1/2,Γ,0 (cf. (2.4)), we find that

| 〈µ,Vη〉 | ≤ C ‖µ‖−1/2,Γ ‖η‖−1/2,Γ ∀µ, η ∈ H
−1/2
0 (Γ) ,

| 〈Ww, v〉 | ≤ C ‖w‖1/2,Γ,0 ‖v‖1/2,Γ,0 ∀w, v ∈ H1
1/2(Th) ,

and

| 〈µ, (
1

2
I −K)w〉 | ≤ C ‖w‖1/2,Γ,0 ‖µ‖−1/2,Γ ∀ (w,µ) ∈ H1

1/2(Th) ×H
−1/2
0 (Γ) .
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The above inequalities and Lemma 3.1 (cf. (3.1)) yield the continuity estimate (3.3) for Bh. Next, we
observe from the definition of Bh that

Bh(v, µ; v, µ) = Bh(v, v) + 〈Wv, v〉 + 〈µ,Vµ〉 ∀ (v, µ) ∈ H1
1/2(Th) ×H

−1/2
0 (Γ) ,

and hence, (2.3) and Lemma 3.1 (cf. (3.2)) imply the ellipticity estimate (3.4) for Bh. �

We are now in a position to prove the unique solvability and stability of (2.11).

Theorem 3.1 The coupled LDG-BEM scheme (2.11) is uniquely solvable and there holds the stability

estimate:

‖σh‖0,Ω + ‖(uh, λh)‖h,Γ ≤ C ‖f‖0,Ω .

Proof. By Lemma 2.1 it suffices to study the system (2.16) instead of (2.11). Indeed, the ellipticity
of Bh (cf. Lemma 3.2) implies the unique solvability of (2.16), and using additionally that ‖v‖0,Ω ≤
C |||v|||h ∀ v ∈ Vh (see [1]), we deduce the stability estimate

‖(uh, λh)‖h,Γ ≤ C ‖f‖0,Ω .

By Lemma 2.1 we then conclude the unique solvability of (2.11). By equation (3.11) in [15] there
holds

‖Sh(w)‖0,Ω ≤ C|w|∗ ∀w ∈ H1(Th). (3.5)

Therefore, making use of the relation σh = ∇huh − Sh(uh), we find that

‖σh‖0,Ω ≤ C |||uh|||h ≤ C ‖f‖0,Ω ,

which finishes the proof of the theorem. �

4 A priori error analysis

In order to derive the a priori error estimate of the coupled scheme some technical results are needed.
In what follows let K̂ denote the reference triangle

K̂ := { (x1, x2) : 0 < x1 < 1, 0 < x2 < 1 − x1 } .

We begin by recalling some local approximation properties from [4].

Lemma 4.1 Let K ∈ Th and let ê be a side of K̂. Suppose that u ∈ Hk(K) and let û := u ◦MK

where MK is an invertible affine mapping from K̂ onto K. Then, given an integer m ≥ 1, there exists

an operator π̂ : Hk(K̂) → Pm(K̂) such that

‖û− π̂ û‖Hq(K̂) ≤ C1 h
µ ‖u‖Hk(K), k ≥ 0, 0 ≤ q ≤ k , (4.1)

|(û− π̂ û)(x̂)| ≤ C2 h
µ ‖u‖Hk(K), k > 1, x̂ ∈ K̂ , (4.2)

‖û− π̂ û‖Hs(ê) ≤ C3 h
µ ‖u‖Hk(K), k > 3/2, s ∈ {0, 1} , (4.3)

where µ = min {k − 1,m}, and the positive constants C1, C2, C3 are independent of u and h but

depend on m, k, q, and s, as indicated below using a generic positive constant C:

C1 = C m−(k−q) , C2 = C m−(k−1) , C3 = Cm−(k−s−1/2) .
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Proof. This is Lemma 4.1 in [4] which is proved by collecting several results from [2, 3]. �

The following lemma, whose proof below makes extensive use of the estimates (4.1) - (4.3), provides
a global approximation property of the subspace Ṽh.

Lemma 4.2 Assume that u ∈ H1+δ(Ω) for some δ > 1/2. Then there exists vh ∈ Ṽh such that

|||u− vh|||h + ‖u− vh‖1/2,Γ,0 ≤ C hmin{δ,m} ‖u‖1+δ,Ω . (4.4)

Here, C > 0 is a constant independent of h.

Proof. We begin by defining v̄h ∈ Vh such that

|||u− v̄h|||h ≤ C hmin{δ,m} ‖u‖1+δ,Ω. (4.5)

To this end we consider any element K ∈ Th with generic invertible affine mapping MK : K̂ → K and
construct (by using Lemma 4.1) an approximation π̂ ûK of ûK := u◦MK . This piecewise construction
delivers an approximation v̄h of u given elementwise by v̄h|K := π̂ ûK ◦M−1

K . Taking into account
the scaling properties of the norms involved and applying (4.1) we obtain

|u− v̄h|
2
1,h =

∑

K∈Th

|u− v̄h|
2
1,K ≤ C

∑

K∈Th

|ûK − π̂ ûK |2
1,K̂

≤ C
∑

K∈Th

h2 min{δ,m} ‖uK‖2
1+δ,K ≤ C h2 min{δ,m} ‖u‖2

1+δ,Ω.
(4.6)

Also, (4.3) yields for any e ∈ Ih with e = K ∩K ′ the estimate

‖h
−1/2
E [[u− v̄h]]‖2

0,e

≤ 2 ‖h
−1/2
E (u− v̄h)|K‖2

0,e + 2 ‖h
−1/2
E (u− v̄h)|K ′‖2

0,e ≤ C h2min{δ,m} ‖u‖2
1+δ,K∪K ′ .

(4.7)

Edges of Γh and Γ0
h are dealt with analogously. In this way, (4.6) and (4.7) prove (4.5).

x1

x2

0

1

1z

K

K’

Γ e

^

^

K

e

Figure 1: Adjusting to continuity at the boundary.

Now, in order to find an approximant vh ∈ Ṽh which is continuous on Γ and satisfies (4.4) we have
to adjust v̄h at the nodes of the mesh that lie on Γ. Actually, this technique is standard in finite
element analysis. Note, however, that we only need to deal with boundary nodes and therefore, one
simple construction works for any polynomial degree m. We adapt v̄h to a function vh such that its
trace on Γ coincides with u|Γ in any node on Γ. This means in particular that vh is continuous on
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Γ, i.e. vh ∈ Ṽh. A generic situation is given in Figure 1. We consider the approximation of u on the
triangle K that has the edge e with Γ in common. One of the nodes of e is denoted by z. In general
u(z) is different from v̄h|K(z). Note that u is continuous since u ∈ H1+δ(Ω) with δ > 1/2. As before,
let ûK denote the linearly transformed function on K̂, that is ûK := u ◦MK . By construction of v̄h

there holds v̄h|K ◦MK = π̂ ûK . Let us assume that e is mapped onto ê := (0, 1) × {0} by M−1
K and

that M−1
K (z) = (0, 0). We then approximate ûK by

Π̂ ûK(x1, x2) := π̂ ûK(x1, x2) +
(

ûK(0, 0) − π̂ ûK(0, 0)
)

(1 − x1 − x2). (4.8)

It is clear from (4.8) that the new approximant Π̂ ûK coincides with the previous one π̂ ûK at the
other two vertices of K̂. Then, transforming back to K we obtain an approximant vh given by
vh|K := Π̂ ûK ◦M−1

K ∈ Pm(K) which, according to (4.8), satisfies

vh(z) = (Π̂ ûK ◦M−1
K )(z) = Π̂ ûK(0, 0) = ûK(0, 0) = (u ◦Mk)(0, 0) = u(z) .

Moreover, by (4.1) and (4.2) there holds

|u− vh|
2
1,K ≤ C |ûK − Π̂ ûK |2

1,K̂

≤ C
(

|ûk − π̂ ûk|
2
1,K̂

+
∣

∣(ûk − π̂ ûK)(0, 0)
∣

∣

2
)

≤ C h2 min{δ,m} ‖u‖2
1+δ,K . (4.9)

Analogously, we find by using (4.3) and (4.2)

‖h
−1/2
E [[u− vh]]‖2

0,e ≤ C ‖ûK − Π̂ ûK‖2
0,ê

≤ C
(

‖ûK − π̂ ûk)‖
2
0,ê +

∣

∣(ûk − π̂ ûK)(0, 0)
∣

∣

2
)

≤ C h2 min{δ,m} ‖u‖2
1+δ,K . (4.10)

In the latter estimate we used the fact that δ > 1/2. The estimate for the other edge of K which has
z as a node is analogous. From (4.8) it follows that the approximant vh coincides with v̄h on the third
edge of K, and in particular in the second node of e. Therefore, this method to adapt v̄h on Γ is a
local procedure and can be applied to any element and any node independently. Note that we do not
alter the approximant on the element K ′ which has only a single vertex (z in this case) on Γ. The
estimates (4.9) and (4.10) yield

|||u− vh|||h ≤ C hmin{δ,m} ‖u‖1+δ,Ω . (4.11)

In order to conclude (4.4) it just remains to show that

‖u− vh‖1/2,Γ,0 ≤ C hmin{δ,m} ‖u‖1+δ,Ω . (4.12)

For e ∈ EΓ
h let Ke denote the element which has e as an edge. When transforming Ke onto K̂ assume

that e is mapped onto ê = (0, 1) × {0}. Hence, using (4.2) and (4.3) with s = 0 we then find that
there holds

‖u− vh‖
2
0,Γ =

∑

e∈EΓ
h

‖u− vh‖
2
0,e ≤ C

∑

e∈EΓ
h

hK ‖ûK − Π̂ ûK‖2
0,ê

≤ C h2 min{δ,m}+1
∑

e∈EΓ
h

‖u‖2
1+δ,Ke

,
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and for s = 1 we obtain

‖u− vh‖
2
1,Γ =

∑

e∈EΓ
h

‖u− vh‖
2
1,e ≤ C

∑

e∈EΓ
h

h−1
K ‖ûK − Π̂ ûK‖2

1,ê

≤ C h2 min{δ,m}−1
∑

e∈EΓ
h

‖u‖2
1+δ,Ke

.

Interpolation between the last two estimates proves (4.12). This completes the proof. �

We note that defining v̄h as the L2(Ω)-orthogonal projection of u onto Vh would also yield the
estimate (4.5) (see Lemmas 4.2 and 4.4 in [15] for details). However, this choice of v̄h does not allow
the further construction of vh ∈ Ṽh satisfying the approximation property (4.4). This is the reason
why we proceed differently and employ the local approximant provided by Lemma 4.1.

Next, we derive an approximation property for the subspace X0
h. To this end, we now let

{Γ1, . . . ,ΓN} denote the edges of the polygon Γ and recall that the Sobolev space H̃−1/2(Γj) is the
dual of H1/2(Γj) := { ξ|Γj

: ξ ∈ H1/2(Γ) }. Similarly, H−1/2(Γj) is the dual of H̃1/2(Γj), the 1/2-

interpolation space between L2(Γj) and H1
0 (Γj). The norms of H̃−1/2(Γj) and H̃1/2(Γj) are denoted,

respectively, by ‖ · ‖−1/2,Γ̃j
and ‖ · ‖1/2,Γ̃j

. In particular, it is well-known (see, e.g., [24, 20]) that there

holds

‖µ‖2
−1/2,Γ ≤ C

N
∑

j=1

‖µ‖2
−1/2,Γ̃j

∀µ ∈ H−1/2(Γ) . (4.13)

Then we have the following result.

Lemma 4.3 Assume that λ ∈ H
−1/2
0 (Γ) ∩ Ht(Γ) for some t > 0. Then there exists µh ∈ X0

h such

that

‖λ− µh‖−1/2,Γ ≤ C hmin{t,m}+1/2 ‖λ‖t,Γ . (4.14)

Here, C > 0 is a constant independent of h.

Proof. We follow the strategy in [16]. Let us consider a fixed edge Γj and identify it with the interval
(0, a), a = |Γj |. Defining

Λ(x) :=

∫ x

0
(λ(s) − λ̄) ds , with λ̄ :=

1

a

∫ a

0
λ(s) ds ,

there holds Λ ∈ H̃1/2(0, a). Then, applying Theorem 3.1 from [23] one finds an element wh ∈ Ṽh|Γ
which coincides with Λ in the endpoints of Γj and which satisfies

‖Λ − wh‖1/2,Γ̃j
≤ C hmin{k−1/2,m+1/2}‖Λ‖k,Γj

∀ k > 1/2 .

Now we define µ̄h := w′
h + λ̄ on Γj . Obviously µ̄h ∈ Xh|Γj

(cf. (2.10)). Differentiation with respect

to the arc length maps H̃1/2(Γj) continuously onto H̃−1/2(Γj), see Lemma 3.4 in [23]. Moreover, the
antiderivative operator is continuous as a mapping Hk−1(Γj) → Hk(Γj) for k ≥ 0. Therefore, using
the previous estimate we find that there holds

‖λ− µ̄h‖−1/2,Γ̃j
= ‖Λ′ − w′

h‖−1/2,Γ̃j
≤ C ‖Λ −wh‖1/2,Γ̃j

≤ C hmin{k−1/2,m+1/2} ‖Λ‖k,Γj

≤ C hmin{k−1/2,m+1/2}
{

‖λ‖k−1,Γj
+ ‖λ̄‖k−1,Γj

}

≤ C hmin{k−1/2,m+1/2} ‖λ‖k−1,Γj
.
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In particular, taking k = t+ 1 we deduce that

‖λ− µ̄h‖−1/2,Γ̃j
≤ C hmin{t,m}+1/2 ‖λ‖t,Γj

.

Hence, repeating this procedure for every edge of the polygon Γ, making use of estimate (4.13), and

noting that

N
∑

j=1

‖λ‖2
t,Γj

≤ C ‖λ‖2
t,Γ , we conclude that

‖λ− µ̄h‖−1/2,Γ ≤ C hmin{t,m}+1/2 ‖λ‖t,Γ .

Finally, the stability of the decomposition H−1/2(Γ) = H
−1/2
0 (Γ) ⊕ R yields

‖λ− µh‖−1/2,Γ ≤ C ‖λ− µ̄h‖−1/2,Γ ≤ C hmin{t,m}+1/2 ‖λ‖t,Γ ,

where µ̄h = µh + c, µh ∈ X0
h ⊆ H

−1/2
0 (Γ), c ∈ R, which completes the proof. �

The a priori error estimate for the coupled LDG-BEM scheme (2.11) can be established now.

Theorem 4.1 Assume that u ∈ H1+δ(Ω) with δ > 1/2. Then there exists C > 0, independent of h,
such that

‖σ − σh‖0,Ω + ‖(u, λ) − (uh, λh)‖h,Γ ≤ C hmin{δ,m} ‖u‖1+δ,Ω . (4.15)

Proof. We first note that λ := ∂νu ∈ Hδ−1/2(Γ) and there holds

‖λ‖δ−1/2,Γ ≤ C ‖u‖1+δ,Ω . (4.16)

In fact, for δ > 1/2, ∇ : H1+δ(Ω) → Hδ(Ω) is bounded and the normal trace operator (·)|Γ · ν maps
Hδ(Ω) continuously onto Hδ−1/2(Γ). In addition, it is not difficult to see that u and λ satisfy

Bh(u, v)+ 〈Wu, v〉 − 〈(1
2I − K′)λ, v〉 =

∫

Ω
f v ,

〈µ, (1
2I − K)u〉 + 〈µ,Vλ〉 = 0

for any (v, µ) ∈ H1
1/2(Th) ×H

−1/2
0 (Γ). Using the bilinear form Bh, the above means that

Bh(u, λ; v, µ) =

∫

Ω
f v ∀ (v, µ) ∈ H1

1/2(Th) ×H−1/2(Γ) .

On the other hand, the discrete system (2.16) renders like

Bh(uh, λh; v, µ) =

∫

Ω
f v ∀ (v, µ) ∈ Ṽh ×X0

h .

Hence, the ellipticity and continuity of the bilinear form Bh (cf. Lemma 3.2) imply the quasi-optimality

‖(u, λ) − (uh, λh)‖h,Γ ≤ C ‖(u, λ) − (vh, µh)‖h,Γ ∀ (vh, µh) ∈ Ṽh ×X0
h . (4.17)

Also, since σ = ∇u = ∇u − Sh(u) and σh = ∇huh − Sh(uh) (cf. Lemma 2.1), we obtain with (3.5)
the upper bound

‖σ − σh‖0,Ω ≤ C |||u− uh|||h , (4.18)
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which, together with (4.17), gives

‖σ − σh‖0,Ω + ‖(u, λ) − (uh, λh)‖h,Γ ≤ C ‖(u, λ) − (vh, µh)‖h,Γ ∀ (vh, µh) ∈ Ṽh ×X0
h . (4.19)

Finally, applying the approximation properties from Lemmas 4.2 and 4.3 (with t = δ − 1/2), using
(4.16) in the latter one, and combining the resulting estimates with (4.19) we arrive at (4.15). This
finishes the proof. �

We remark that the a priori error estimate (4.15) is independent of the polynomial degree r that
defines the subspace Σh (cf. (2.5)). Hence, since the restriction r ≥ m− 1 is required only to deduce
that σh = ∇huh − Sh(uh) (cf. Lemma 2.1), for practical computations it suffices to take r = m− 1.

5 The coupled LDG-BEM scheme with Lagrangian multiplier

To implement the discrete scheme (2.11) one has to deal with the continuity condition of the space
Ṽh. A direct implementation is possible without any difficulty. However, in order to maintain the full
flexibility of the discontinuous method one can use a Lagrangian multiplier instead and work with
Vh rather than Ṽh. The needed multiplier is simply a vector constant. In addition, the zero mean
value condition of the unknown λh ∈ X0

h can be dealt with similarly, whence the resulting formulation
employs the subspace Xh instead of X0

h. This strategy is described in this section.
We first notice that the bilinear form of the coupled system (2.11), which is given by

Ah(ζ, w, ξ; τ , v, µ) :=

∫

Ω
ζ · τ − ρ(w, τ ) + ρ(v, ζ) + α (w, v) + 〈Ww, v〉

− 〈(
1

2
I − K′)ξ, v〉 + 〈µ, (

1

2
I − K)w〉 + 〈µ,Vξ〉 ,

is not well defined on Σh × Vh ×Xh. For instance, the well-posedness of the bilinear form 〈Ww, v〉
requires that w|Γ, v|Γ ∈ H1/2(Γ). This is in general not true for w, v ∈ Vh. Therefore, we consider
instead the bilinear form

Ãh(ζ, w, ξ; τ , v, µ) :=

∫

Ω
ζ · τ − ρ(w, τ ) + ρ(v, ζ) + α (w, v) + 〈∂hw,V∂hv〉

− 〈(
1

2
I − K′)ξ, v〉 + 〈(

1

2
I − K′)µ,w〉 + 〈µ,Vξ〉 .

Here, ∂hw is defined piecewise by ∂hw|e = (w|e)
′ for any edge e ∈ Γh and (w|e)

′ denotes the derivative
of w on e with respect to the arc length. Note that ∂hw ∈ L2(Γ) for any w ∈ Vh. Then the updated
bilinear forms 〈∂hw,V∂hv〉 and 〈(1

2I−K′)µ,w〉 are well defined for w, v ∈ Vh and µ ∈ Xh. Moreover,
there holds

〈Ww, v〉 = 〈∂hw,V∂hv〉 ∀w, v ∈ Ṽh

(see [22]) and

〈µ, (
1

2
I − K)w〉 = 〈(

1

2
I − K′)µ,w〉 ∀ (w,µ) ∈ Ṽh ×Xh

so that

Ah(ζ, w, ξ; τ , v, µ) = Ãh(ζ, w, ξ; τ , v, µ) ∀ (ζ, w, ξ), (τ , v, µ) ∈ Σh × Ṽh ×Xh .

Now, let {z1, . . . ,zn} denote the nodes of Th on Γ, and let e−i and e+i denote the two elements of Γh

which have zi as a common node. We then define the bilinear form

bh((v, µ), ~y) :=
n

∑

i=1

(

v|e+

i
(zi) − v|e−

i
(zi)

)

yi + yn+1

∫

Γ
µ
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for (v, µ) ∈ Vh ×Xh , ~y = (y1, . . . , yn+1) ∈ R
n+1, and consider the following LDG-BEM scheme with

Lagrangian multiplier ~x: Find (σh, uh, λh, ~x) ∈ Σh × Vh ×Xh × R
n+1 such that

Ãh(σh, uh, λh; τ , v, µ) + bh((v, µ), ~x) =

∫

Ω
f v ,

bh((uh, λh), ~y) = 0

(5.1)

for any (τ , v, µ, ~y) ∈ Σh × Vh ×Xh × R
n+1. Then, we have the following result.

Theorem 5.1 There exists a unique solution (σh, uh, λh, ~x) ∈ Σh × Vh × Xh × R
n+1 of (5.1) and

(σh, uh, λh) solves (2.11). In particular the error estimate from Theorem 4.1 holds.

Proof. It is immediate that there holds a (non-uniform) inf-sup condition for bh:

sup
(v,µ)∈Vh×Xh

bh((v, µ), ~y) > 0 ∀ ~y ∈ R
n+1 .

We also have that the discrete null space of bh is given by

Ṽh ×X0
h = {(v, µ) ∈ Vh ×Xh : bh((v, µ), ~y) = 0 ∀ ~y ∈ R

n+1} .

Therefore, Theorem 3.1 and the Babuška-Brezzi theory for discrete problems ensure the unique solv-
ability of (5.1) and then (σh, uh, λh) ∈ Σh × Ṽh ×X0

h becomes the unique solution of (2.11), whence
the error estimate of Theorem 4.1 holds. �

6 Extension to nonlinear problems

In this section we extend the present LDG-BEM approach to the class of nonlinear exterior transmis-
sion problems studied in [7], [8], and [9]. In order to describe the model problem let Ω0 be a simply
connected and bounded domain in R

2 with polygonal boundary Γ0. Then, let Ω1 be an annular
and simply connected domain surrounded by Γ0 and another polygonal boundary Γ1. In addition,
let a : Ω1 × R

2 → R
2 be a nonlinear function satisfying the conditions specified in [5] (see also [7])

which, in particular, imply that the associated operator becomes Lipschitz continuous and strongly
monotone. Thus, given f ∈ L2(R2 \ Ω̄0) with compact support, g0 ∈ H1/2(Γ0), g1 ∈ H1/2(Γ1), and
g2 ∈ L2(Γ1), we consider the nonlinear exterior transmission problem:

−div a(·,∇u1) = f in Ω1, u1 = g0 on Γ0,

−∆u2 = f in R
2 \ (Ω̄0 ∪ Ω̄1), u1 − u2 = g1 on Γ1,

a(·,∇u1) · ν1 −∇u2 · ν1 = g2 on Γ1, and u2(x) = O(1) as |x| → ∞ .

(6.1)

Here, ν1 stands for the unit outward normal to Γ1. This kind of problems appears in the computation
of magnetic fields of electromagnetic devices (see, e.g. [18], [19]), in some subsonic flow and fluid
mechanics problems (see, e.g. [13], [14]), and also in steady state heat conduction. For instance, in the
latter case, one has a(x,∇u(x)) = k(x,∇u(x))∇u, where u is the temperature and k : Ω1 × R

2 → R

is the heat conductivity.
Next, we introduce a closed polygonal curve Γ such that its interior contains the support of f .

Then, let Ω2 be the annular domain bounded by Γ1 and Γ and set Ωe := R
2 \ (Ω̄0 ∪ Ω̄1 ∪ Ω̄2) (see

Figure 2 below). It follows that (6.1) can be equivalently rewritten as the nonlinear boundary value
problem in Ω1:

−div a(·,∇u1) = f in Ω1, u1 = g0 on Γ0 , (6.2)
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the Poisson equation in Ω2:
−∆u2 = f in Ω2 , (6.3)

and the Laplace equation in the exterior unbounded region Ωe:

−∆u2 = 0 in Ωe, u2(x) = O(1) as |x| → ∞ , (6.4)

coupled with the transmission conditions on Γ1 and Γ, respectively,

u1 − u2 = g1 and a(·,∇u1) · ν1 − ∇u2 · ν1 = g2 on Γ1 , (6.5)

and

lim
x→x0

x∈Ω2

u2(x) = lim
x→x0

x∈Ωe

u2(x) and lim
x→x0

x∈Ω2

∇u2(x) · ν(x0) = lim
x→x0

x∈Ωe

∇u2(x) · ν(x0) (6.6)

for almost all x0 ∈ Γ, where ν(x0) denotes the unit outward normal to x0.

Ω
Ω

Γ

2

Ω 0

Ω

1

e

Γ1

Γ0

Figure 2: Geometry of the transmission problem.

We now follow [15] and [7] and introduce the gradients θ1 := ∇u1 in Ω1 and θ2 := ∇u2 in
Ω2, and the fluxes σ1 := a(·,θ1) in Ω1 and σ2 := θ2 in Ω2, as additional unknowns. Also, as in
Section 2, let λh ∈ X0

h be a discrete approximation of the normal derivative λ := ∂ν u2 on Γ, and
proceeding in the usual way (see [7] for details). We arrive at the following global LDG formulation
in Ω := Ω1 ∪ Γ1 ∪ Ω2: Find (θh,σh, uh) ∈ Σh × Σh × Ṽh such that

∫

Ω
ā(·,θh) · ζ −

∫

Ω
σh · ζ = 0 ∀ ζ ∈ Σh ,

∫

Ω
θh · τ −

{
∫

Ω
∇huh · τ − S(uh, τ )

}

= Gh(τ ) ∀ τ ∈ Σh ,

{
∫

Ω
∇hv · σh − S(v,σh)

}

+ α(uh, v) = Fh(v) +

∫

Γ
λh v ∀ v ∈ Ṽh ,

(6.7)

where

ā(·, ζ) :=

{

a(·, ζ) in Ω1

ζ in Ω2
∀ ζ ∈ [L2(Ω)]2 ,
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and the bilinear forms S : H1(Th) × L2(Ω) → R and α : H1(Th) ×H1(Th) → R as well as the linear
operators Gh : L2(Ω) → R and Fh : H1(Th) → R are defined by

S(w, τ ) :=

∫

Ih

[[w]] · ({τ} − [[τ ]]β) +

∫

Γ0

w (τ 1 · ν) +

∫

Γ1

(w1 − w2) τ 1 · ν1 ,

α(w, v) :=

∫

Ih

α [[w]] · [[v]] +

∫

Γ0

αw v +

∫

Γ1

α (w1 − w2) (v1 − v2) ,

Gh(τ ) :=

∫

Γ0

g0 τ 1 · ν +

∫

Γ1

g1 τ 1 · ν1 ,

and

Fh(v) :=

∫

Ω
f v +

∫

Γ0

α g0 v1 +

∫

Γ1

α g1 (v1 − v2) +

∫

Γ1

g2 v2

for all w , v ∈ H1(Th), τ ∈ L2(Ω), with wi := w|Ωi
, vi := v|Ωi

, and τ i := τ |Ωi
, for each i ∈ {1, 2}.

Hereafter, Th = Th,1 ∪ Th,2, where Th,1 and Th,2 are shape regular triangulations of Ω̄1 and Ω̄2,
respectively, which satisfy the same properties and assumptions as indicated in Section 2.2.

Next, introducing the boundary integral formulation in Ωe, exactly as in Section 2.1, substituting
λh in (6.7) by a discrete version of the first equation in (2.2), in which u is replaced by its approximant
uh, and adding a discrete formulation of the second equation in (2.2), we obtain the following coupled
LDG-BEM scheme: Find (θh,σh, uh, λh) ∈ Σh × Σh × Ṽh ×X0

h such that
∫

Ω
ā(·,θh) · ζ −

∫

Ω
σh · ζ = 0 ,

∫

Ω
θh · τ − ρ(uh, τ ) = Gh(τ ) ,

ρ(v,σh) + α(uh, v) + 〈Wuh, v〉 − 〈(
1

2
I − K′)λh, v〉 = Fh(v) ,

〈µ, (
1

2
I − K)uh〉 + 〈µ,Vλh〉 = 0

(6.8)

for all (ζ, τ , v, µ) ∈ Σh × Σh × Ṽh × X0
h, where ρ : H1(Th) × H1(Th) → R is the analogue of the

bilinear form defined by (2.12), that is

ρ(v, τ ) :=

∫

Ω
∇hv · τ − S(v, τ ) ∀ (v, τ ) ∈ H1(Th) ×H1(Th) .

In what follows we proceed as in Section 2.3 (see also Section 2.4 of [15]) and derive an equivalent
formulation to (6.8). We begin by defining a linear operator Sh : H1(Th) → Σh as in (2.14), where,
given v ∈ H1(Th), Sh(v) is the unique element in Σh such that

∫

Ω
Sh(v) · τ = S(v, τ ) ∀ τ ∈ Σh . (6.9)

Next, let Gh be the unique element in Σh such that
∫

Ω
Gh · τ = Gh(τ ) :=

∫

Γ0

g0 τ 1 · ν +

∫

Γ1

g1 τ 1 · ν1 ∀ τ ∈ Σh . (6.10)

It is easy to see that Gh

∣

∣

Ω2
= 0. From now on we set u :=

{

u1 in Ω1

u2 in Ω2
. Then, if the solution of

problem (6.1) satisfies u1 ∈ Ht(Ω1) and u2 ∈ Hs(Ω2), with t , s > 1, we find that Sh(u) = Gh. In
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addition, it follows from the first two equations in (6.8) that, whenever this system is solvable, there
holds

θh = ∇huh − Sh(uh) + Gh and σh = ΠΣh
ā(·,θh) , (6.11)

where ΠΣh
denotes the L2(Ω)−orthogonal projection onto Σh. We observe here, as in the proof

of Lemma 2.1, that the fact that r ≥ m − 1 guarantees that ∇huh ∈ Σh, which yields the above
expression for θh. Then, replacing the unknown σh by

ΠΣh
ā(·,∇huh − Sh(uh) + Gh)

in the third equation of (6.8), we are led to the semilinear form Ah : H1(Th)×H1(Th) → R defined by

Ah(w, v) := α(w, v) +

∫

Ω
ā(·,∇hw − Sh(w) + Gh) · (∇hv − Sh(v)) ∀w, v ∈ H1(Th) .

Moreover, we can establish the following equivalence result which constitutes the nonlinear analogue
of Lemma 2.1.

Lemma 6.1 Let (θh,σh, uh, λh) ∈ Σh ×Σh × Ṽh ×X0
h be a solution of (6.8). Then there holds

Ah(uh, v) + 〈Wuh, v〉 − 〈(1
2I − K′)λh, v〉 = Fh(v) ,

〈µ, (1
2I − K)uh〉 + 〈µ,Vλh〉 = 0

(6.12)

for any (v, µ) ∈ Ṽh×X
0
h. Conversely, if (uh, λh) ∈ Ṽh×X

0
h satisfies (6.12) and θh and σh are defined

by (6.11), then (θh,σh, uh, λh) is a solution of (6.8). If (uh, λh) ∈ Ṽh × X0
h is the only solution of

(6.12) then (θh,σh, uh, λh), with θh and σh defined as indicated above, is the only solution of (6.8).

Proof. It is similar to the proof of Lemma 2.1 (see also Lemma 2.2 in [15]) and is based on the identities
(6.11). �

We now introduce seminorms

|v|21,h := ‖∇hv‖
2
0,Ω , |v|2∗ := ‖h

−1/2
E [[v]]‖2

0,Ih
+ ‖h

−1/2
E v‖2

0,Γ0
+ ‖h

−1/2
E (v1 − v2)‖

2
0,Γ1

∀ v ∈ H1(Th),

and the norms
|||v|||2h := |v|21,h + |v|2∗ ∀ v ∈ H1(Th) ,

‖(v, µ)‖2
h,Γ := |||v|||2h + ‖v‖2

1/2,Γ,0 + ‖µ‖2
−1/2,Γ ∀ (v, µ) ∈ H1

1/2(Th) ×H
−1/2
0 (Γ) .

Next, let Ah be the semilinear form defined by the left-hand side of (6.12), i.e.

Ah(w, η; v, µ) := Ah(w, v) + 〈Ww, v〉 − 〈(
1

2
I − K′)η, v〉 + 〈µ, (

1

2
I − K)w〉 + 〈µ,Vη〉

for any (w, η), (v, µ) ∈ H1
1/2(Th) × H

−1/2
0 (Γ). The following result shows that Ah is Lipschitz con-

tinuous and strongly monotone with respect to ‖ · ‖h,Γ. This is crucial for the analysis of (6.12) (and
hence of (6.8)).

Lemma 6.2 There exist positive constants CLM and CSM , independent of h, such that

|Ah(w, η; z, ξ) − Ah(v, µ; z, ξ)| ≤ CLM ‖(w, η) − (v, µ)‖h,Γ ‖(z, ξ)‖h,Γ (6.13)

and

Ah(w, η; (w, η) − (v, µ)) − Ah(v, µ; (w, η) − (v, µ)) ≥ CSM ‖(w, η) − (v, µ)‖2
h,Γ (6.14)

for any (w, η), (v, µ), (z, ξ) ∈ H1
1/2(Th) ×H

−1/2
0 (Γ).
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Proof. The Lipschitz continuity and strong monotonicity of the semilinear form Ah with respect to
the norm ||| · |||h are provided by Lemmas 4.1 and 4.2 in [5]. The estimates required for the remaining
boundary integral terms of Ah follow exactly as in the proof of Lemma 3.2. We omit further details.
�

The unique solvability of (6.8) is established now.

Theorem 6.1 There exists a unique (θh,σh, uh, λh) ∈ Σh × Σh × Ṽh ×X0
h solution to the coupled

LDG-BEM scheme (6.8). In addition, there exists C > 0, independent of h, such that

‖θh‖0,Ω + ‖σh‖0,Ω + ‖(uh, λh)‖h,Γ ≤ C
{

N (f, g0, g1, g2) + ‖ā(·, 0)‖0,Ω

}

(6.15)

where

N (f, g0, g1, g2) :=
{

||f ||20,Ω + ||α1/2 g0||
2
0,Γ0

+ ||α1/2 g1||
2
0,Γ1

+ ||α1/2 g2||
2
0,Γ1

}1/2
.

Proof. By Lemma 6.1 it suffices to analyze the reduced system (6.12) instead of (6.8). It is clear that
(6.12) can be equivalently formulated as: Find (uh, λh) ∈ Ṽh ×X0

h such that

Ah(uh, λh; v, µ) := Fh(v) ∀ (v, µ) ∈ Ṽh ×X0
h .

Now, proceeding as in the proof of Lemma 4.4 in [5], we find C > 0, independent of h, such that

|Fh(v)| ≤ C N (f, g0, g1, g2) |||v|||h, ∀ v ∈ Ṽh . (6.16)

Hence, Lemma 6.2 and a classical result of nonlinear functional analysis imply the unique solvability
of (6.12). The rest of the proof follows very closely the proof of Theorem 3.2 in [7]. In fact, using
again the strong monotonicity of Ah, estimate (6.16), the fact that

Ah((0, 0), (v, µ)) = Ah(0, v) =

∫

Ω
ā(·,Gh) · (∇hv − Shv) ∀ (v, µ) ∈ Ṽh ×X0

h ,

the boundedness of Sh (cf. (3.5)), and the Lipschitz continuity of the nonlinear operator induced by
ā, one deduces that

‖(uh, λh)‖h,Γ ≤ C
{

N (f, g0, g1, g2) + ‖ā(·, 0)‖0,Ω + ‖Gh‖0,Ω

}

. (6.17)

Also, using the expressions for θh and σh given by (6.11) , and applying again the boundedness of Sh

and the Lipschitz continuity of ā, we obtain

‖θh‖0,Ω ≤ C
{

|||uh|||h + ‖Gh‖0,Ω

}

and ‖σh‖0,Ω ≤ C
{

‖θh‖0,Ω + ‖ā(·, 0)‖0,Ω

}

. (6.18)

Then, it is easy to show, as in the proof of Lemma 3.4 in [5], that (cf. (6.10))

‖Gh‖0,Ω ≤ C
{

||α1/2 g0||0,Γ0
+ ||α1/2 g1||0,Γ1

}

. (6.19)

In this way, (6.15) follows directly from (6.17), (6.18), and (6.19), which ends the proof. �

Finally, we prove the a priori error estimate for the coupled LDG-BEM scheme (6.8).
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Theorem 6.2 Define the additional continuous unknowns

θ =

{

θ1 := ∇u1 in Ω1

θ2 := ∇u2 in Ω2

, σ =

{

σ1 := a(·,θ1) in Ω1

σ2 := θ2 in Ω2

, and λ = ∂ν u2 on Γ .

Assume that there exist δ1, δ2 > 1/2 such that u1 ∈ H1+δ1(Ω1), u2 ∈ H1+δ2(Ω2), and σ1 ∈ [Hδ1(Ω1)]
2.

Then there exists C > 0, independent of h, such that

‖θ − θh‖0,Ω + ‖σ − σh‖0,Ω + ‖(u, λ) − (uh, λh)‖h,Γ

≤ C
{

hmin{δ1,m} ‖u1‖1+δ1,Ω1
+ hmin{δ1,m} ‖σ1‖δ1,Ω1

+ hmin{δ2,m} ‖u2‖1+δ2,Ω2

}

.
(6.20)

Proof. We observe, similarly as in the linear case (cf. Theorem 4.1), that λ ∈ Hδ2−1/2(Γ) and
‖λ‖δ2−1/2,Γ ≤ C ‖u2‖1+δ2,Ω2

. Also, according to the definitions of the semilinear form Ah and the linear
operator Fh, and taking into account the equations, the boundary conditions, and the transmission
conditions satisfied by u, one can prove that u and λ satisfy

Ah(u, λ; v, µ) = Fh(v) ∀ (v, µ) ∈ H1
1/2(Th) ×H−1/2(Γ) .

In addition, it is clear that the discrete system (6.12) renders like

Ah(uh, λh; v, µ) = Fh(v) ∀ (v, µ) ∈ Ṽh ×X0
h .

Then, the Lipschitz continuity and strong monotonicity of Ah also yield the quasi-optimal estimate
(4.17), that is

‖(u, λ) − (uh, λh)‖h,Γ ≤ C ‖(u, λ) − (vh, µh)‖h,Γ ∀ (vh, µh) ∈ Ṽh ×X0
h . (6.21)

Now, using that θh = ∇huh − Sh(uh) + Gh (cf. (6.11)), θ = ∇u in Ω, Sh(u) = Gh, and applying the
boundedness of Sh, we obtain

‖θ − θh‖0,Ω ≤ C |||u− uh|||h . (6.22)

It remains to estimate ‖σ − σh‖0,Ω. Using that σh = ΠΣh
ā(·,θh) (cf. (6.11)) and σ = ā(·,θ), and

applying the triangle inequality and the Lipschitz-continuity of the nonlinear operator induced by ā,
we deduce that

‖σ − σh‖0,Ω ≤ ‖σ − ΠΣh
σ‖0,Ω + ‖ΠΣh

{

ā(·,θ) − ā(·,θh)
}

‖0,Ω

≤ ‖σ − ΠΣh
σ‖0,Ω + C ‖θ − θh‖0,Ω .

(6.23)

Then, applying local approximation properties of piecewise polynomials (see, e.g. Lemma 4.2 in [15]),
recalling from (2.5) that on K ∈ Th, ΠΣh

reduces to the L2(K)-orthogonal projection onto Pr(K),
which is denoted by Πr

K , and noting that r + 1 ≥ m, we find that

‖σ − ΠΣh
σ‖0,Ω1

=
∑

K∈Th,1

‖σ1 − Πr
K σ1‖

2
0,K ≤ C

∑

K∈Th,1

h
2 min{δ1,r+1}
K ||σ1||

2
δ1,K

≤ C h2 min{δ1,r+1} ‖σ1‖
2
δ1,Ω1

≤ C h2 min{δ1,m} ‖σ1‖
2
δ1,Ω1

,

(6.24)

and
‖σ − ΠΣh

σ‖2
0,Ω2

=
∑

K∈Th,2

‖θ2 − Πr
K θ2‖

2
0,K

=
∑

K∈Th,2

‖∇u2 − Πr
K ∇u2‖

2
0,K ≤ C

∑

K∈Th,2

h
2 min{δ2,r+1}
K ||∇u2||

2
δ2,K

≤ C h2 min{δ2,r+1} ‖u2‖
2
1+δ2,Ω2

≤ C h2 min{δ2,m} ‖u2‖
2
1+δ2,Ω2

.

(6.25)
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In this way, the approximation properties from Lemmas 4.2 and 4.3 (with t = δ2 − 1/2), together
with the bound ‖λ‖δ2−1/2,Γ ≤ C ‖u2‖1+δ2,Ω2

, and inequalities (6.21), (6.22), (6.23), (6.24), and (6.25),
imply the required a priori error estimate and finish the proof. �

We end this section by remarking, as we did for the linear case at the end of Section 4, that
the a priori error estimate (6.20) is also independent of the polynomial degree r that defines the
subspace Σh (cf. (2.5)). Therefore, since the restriction r ≥ m − 1 is required only to deduce that
θh = ∇huh −Sh(uh) + Gh (cf. (6.11)), it suffices also to take r = m−1 in the present nonlinear case.
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