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Abstract

We present an extension theorem for polynomial functions that proves a quasi-optimal
bound for a lifting from L2 on edges onto a fractional order Sobolev space on triangles.
The extension is such that it can be further extended continuously by zero within the trace
space of H1. Such an extension result is critical for the analysis of non-overlapping domain
decomposition techniques applied to the p- and hp-versions of the finite and boundary element
methods for elliptic problems of second order in three dimensions.
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1 Introduction

This paper presents an extension theorem for polynomials from edges of triangles into its interior.
Quasi-boundedness (i.e. weakly depending on the polynomial degree of the data) is proved within
Sobolev spaces that are inherent to elliptic problems of second order in three space dimensions
(L2 on edges and a specific fractional order Sobolev space on triangles).

Polynomial extension theorems are critical for the analysis of approximation errors and do-
main decomposition strategies when dealing with high order finite element (FEM) or boundary
element methods (BEM), in particular the p- and hp-versions. Non-overlapping domain de-
composition techniques rely on the stable splitting of different types of basis functions (nodal,
edge, interior functions), see, e.g., [18]. Associated with individual subspaces are specific bilinear
forms, e.g. L2-bilinear form for functions associated with the so-called wire basket and energy
bilinear form for local subspaces associated with elements and faces of elements. The analysis of
the L2-part living on the wire basket of the mesh requires an extension of nodal and edge basis
functions onto elements, continuously in the energy norm. One way to do this is to first extend
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from the wire basket of elements onto faces, and then e.g. discrete harmonically onto elements.
For hexahedral meshes, where a tensor product structure of basis functions can be conveniently
employed, such extensions are well analysed, see [17, 11, 2, 13]. For tetrahedral meshes (or trian-
gular meshes when dealing with the BEM) this problem has not been adequately solved so far.
It is essential to find low energy extensions in order to get the best possible condition number
for corresponding additive Schwarz methods. Existing results show condition number bounds of
the order C(p)(log p)2 (FEM, with an unspecified function C), see [7], or (log p)7 (BEM), see [8].
Here, p denotes the polynomial degree of basis functions. (Here and in the following, we always
write log p for simplicity, meaning 1 + log(p+ 1) when p = 0 or p = 1. The extension results are
trivial for these polynomial degrees.) Both results mentioned before are not optimal and need
to be improved. In fact, for moderate polynomial degrees O(log p) is comparable with O(p) and
removing any unnecessary power of log p greatly improves the theoretical bound. A key tool
for the analysis is, as mentioned before, an appropriate extension theorem. Such an extension
theorem is the subject of this paper. Cao and Guo [8] avoided the use of an explicit extension
construction by assuming that basis functions are extended from the sides in a discrete harmonic
fashion (with respect to the hypersingular integral operator) to the elements. In contrast, Bicǎ
followed a construction introduced by Maday [15] and analysed by Muñoz-Sola for the approx-
imation theory of finite elements in three dimensions [16]. Muñoz-Sola analysed an extension
from faces to tetrahedra and Bicǎ considered the analogue in two dimensions, extending from
sides to triangles. In this paper we follow this construction and fill several gaps which were left
open in the theory.

Let us describe in some detail what the procedure is. Extensions can be defined locally on
patches of elements. For the extension of basis functions associated with edges (so-called edge
basis functions) the situation is as indicated in Figure 1(a). A polynomial f defined on the
edge I vanishes at the endpoints of I and needs to be extended to a piecewise polynomial U on
K := T1∪T2 such that it can be extended continuously by zero onto an enlarged patch K̃ which
contains K.

For three-dimensional elliptic problems of second order the right norm on K̃ is H1/2(K̃), the
trace space of H1(Ω) onto K̃, assuming that K̃ is part of the boundary of a domain Ω ⊂ IR3. The
corresponding intrinsic space on K is denoted by H̃1/2(K) (often used in the BEM literature) or

H
1/2
00 (K) (often used in the FEM literature). Any element of H̃1/2(K) can be extended by zero

to an element of H1/2(K̃). With this notation, our above mentioned continuity of edge function
extensions renders like:

Given a polynomial f of degree p on I that vanishes at the end points of I, find a function
U on K = T1 ∪ T2 such that U |T1 and U |T2 are polynomials of degree p, U |I = f , U = 0 on ∂K
(the boundary of K) and

‖U‖H̃1/2(K) ≤ C(p) ‖f‖L2(I). (1)

For functions associated with nodes (nodal functions) the situation is analogous, see Figure 1(b).
In this situation let us denote K = ∪6

i=1Ti. The task is as follows:
For a given continuous function f on ∪Ii which is a polynomial of degree p on Ii (i = 1, . . . , 6)

and which vanishes at the endpoints of the edges Ii that lie on ∂K, find U on K such that
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Figure 1: Constructing edge and nodal basis functions by extension.

U |Ii = f |Ii, U |Ti is a polynomial of degree p (i = 1, . . . , 6), U = 0 on ∂K and

‖U‖H̃1/2(K) ≤ C(p) ‖f‖L2(∪iIi). (2)

In this paper we show that both (1) and (2) can be satisfied with C = O(log p)1/2. This result
is only quasi-optimal since the constant grows (very moderately) with p. But it is better than
any existing result we know of.

In order to prove (1), (2) we estimate separately the H 1/2(K)-norm of an extended function
U , and the part of the H̃1/2(K)-norm that makes H̃1/2(K) a subspace of H1/2(K). The latter
part is a weighted L2-norm. In fact, our technical results estimating the weighted L2-term
follow the lines given [7] where, however, several gaps had to be filled. Our estimate of the term
‖U‖H1/2(K) is new.

We do not try to give a complete overview of existing extension theorems as the one presented
here is very specifically designed towards p- and hp-FEM and BEM theory for three-dimensional
problems. More “standard” extension theorems, i.e. dealing with the Sobolev spaces L2, H1/2

and H1, are given, e.g., in [5, 16, 1]. In particular in [1], Ainsworth and Demkowicz recall existing
literature on extensions and we refer the reader to that paper for a more detailed discussion.

In the next section we recall definitions of the needed Sobolev spaces and state the main
extension theorem (Theorem 1). All the technical details and proofs are collected in Section 3.
An overview of that section is given there (before giving proofs in subsections).

Throughout the paper, C denotes a generic constant which may take on different values at
different occurrences, but which is independent of polynomial degrees p, if not otherwise stated.

2 Sobolev spaces and the main result

We define several Sobolev spaces and formulate our main extension theorem.
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We use standard Sobolev spaces where the following norms are needed: For Ω ⊂ IRn and
0 < s < 1 we define

‖u‖2Hs(Ω) := ‖u‖2L2(Ω) + |u|2Hs(Ω)

with semi-norm

|u|2Hs(Ω) :=

∫

Ω

∫

Ω

|u(x)− u(y)|2
|x− y|2s+n dx dy.

For a Lipschitz domain Ω and 0 < s < 1 the space H̃s(Ω) is defined as the completion of C∞0 (Ω)
under the norm

‖u‖2
H̃s(Ω)

:= |u|2Hs(Ω) +

∫

Ω

u(x)2

(dist(x, ∂Ω))2s
dx.

For s ∈ (0, 1/2), ‖·‖H̃s(Ω) and ‖·‖Hs(Ω) are equivalent norms whereas for s ∈ (1/2, 1) there holds

H̃s(Ω) = Hs
0(Ω), the latter space being the completion of C∞0 (Ω) with norm in Hs(Ω). Also we

note that functions from H̃s(Ω) are continuously extendible by zero onto a larger domain. For
all these results we refer to [14, 9].

For s > 0 the spaces H−s(Ω) and H̃−s(Ω) are the dual spaces of H̃s(Ω) and Hs(Ω), respec-
tively. For a Lipschitz domain (or bounded interval) Ω with boundary ∂Ω and subset Γ ⊂ ∂Ω
we also define the space H̃s(Ω,Γ) by completion of C∞0 (Ω) and using the norm

‖u‖2
H̃s(Ω,Γ)

:= |u|2Hs(Ω) +

∫

Ω

u(x)2

(dist(x,Γ))2s
dx (0 < s < 1).

There holds H̃s(Ω) ⊂ H̃s(Ω,Γ) ⊂ Hs(Ω). Fractional order Sobolev spaces can be equivalently
defined by interpolation. We will use the real K-method, see [6].

Our main result is as follows.

Theorem 1. Let T̃ be a triangle and let Γ be one of its sides or the union of two. Then, for a
given continuous function f on ∂T̃ which is a polynomial of degree up to p on each of the sides
and which vanishes on Γ, there exists an extension U on T̃ such that U is a polynomial of total
degree up to p, U = f on ∂T̃ and

‖U‖H̃1/2(T̃ ,Γ) ≤ C log1/2 p ‖f‖L2(∂T̃ ). (3)

Here, the constant C > 0 is independent of f and p.

Remark 1. An application of this theorem provides the extension results for the construction
of low-energy basis functions, as discussed in the introduction. To this end one applies it locally
on elements. For instance, for the construction of an edge basis function, a polynomial f is
given on I with f(0) = f(1) = 0. Using a piecewise affine transformation we can assume that
I1 = [0, 1]× {0} and that T2 is the reflection of T1 at I1. Then, applying the theorem twice, one
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defines U1 on T1 and U2 on T2 yielding a continuous function U by setting U |Ti := Ui, i = 1, 2.
The result (1) then follows with C(p) = log1/2 p by noting that (with K = T1 ∪ T2)

‖U‖2
H̃1/2(K)

'
2∑

i=1

‖Ui‖2H̃1/2(Ti,∂Ti∩∂K)
+

∫

T1

(U1(x, y)− U2(x,−y))2

dist((x, y), I1)
d(x, y)

=

2∑

i=1

‖Ui‖2H̃1/2(Ti,∂Ti∩∂K)
,

see [14, 9].

3 Proof of the extension theorem

PSfrag replacements

x
x

y
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I2

I3
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(0, 1)

(x, y)

x + y

Figure 2: The reference triangle T .

Without loss of generality we assume that the triangle T̃ under consideration is the reference
triangle T := {(x, y) : 0 ≤ x, y; x + y ≤ 1}. The edges of T are denoted by Ii, i = 1, 2, 3, see
Figure 2. The edges I1 and I3 will be identified with the Interval I := [0, 1], and I = I1 will be
used without further notice. We also need the polynomial spaces

Pp(I) := span{xi, 0 ≤ i ≤ p}, Pp(T ) := span{xiyj, 0 ≤ i+ j ≤ p}.

For the proof of the main theorem we need two extension operators, the operator F frequently
used in finite element analysis (see [5, 4]), and the operator E used for problems in three
dimensions (see [15, 16]). The operator E is needed for the actual construction of polynomial
extensions whereas F is required only for the analysis of E.
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The operator F is defined by

F (f)(x, y) :=
1

y

∫ x+y

x
f(t) dt.

It extends polynomials of degree p on I to polynomials of total degree p on T . It cannot be used
to construct the extension needed for Theorem 1 since, e.g., a root of f in 0 does not extend to
a zero trace of F (f) on I3. This is precisely the property of E which is defined by

E(f)(x, y) :=
x

y

∫ x+y

x

f(t)

t
dt (f(0) = 0).

More generally, for f ∈ Pp(I) we define extension operators from I1 by

E1
1(f)(x, y) :=E(f)(x, y) =

x

y

∫ x+y

x

f(t)

t
dt, if f(0) = 0,

E1
2(f)(x, y) :=

1− x− y
y

∫ x+y

x

f(t)

1− t dt if f(1) = 0,

E1(f)(x, y) :=
x(1− x− y)

y

∫ x+y

x

f(t)

t(1− t) dt if f(0) = f(1) = 0.

We note that there holds

E1(f)(x, y) = (1− x− y)E1
1(f)(x, y) + xE1

2(f)(x, y).

Moreover, E1
2(f) = 0 on I2 and E1(f) = 0 on I2 ∪ I3.

Extension operators E3
1 (for f ∈ Pp(I3) with f(1) = 0), E3

1 (if f(0) = 0) and E3 (if f(0) =
f(1) = 0) from I3 onto T are defined analogously.

For a polynomial f ∈ Pp(I2) we define

E2
2(f)(x, y) :=

y

1− x− y

∫ 1−y

x

f(t, 1− t)
(1− t) dt, if f(1, 0) = 0,

E2
3(f)(x, y) :=

x

1− x− y

∫ 1−y

x

f(t, 1− t)
t

dt, if f(0, 1) = 0,

E2f(x, y) :=
xy

1− x− y

∫ 1−y

x

f(t, 1− t)
t(1− t) dt, if f(1, 0) = f(0, 1) = 0.

There holds

E2f(x, y) = xE2
2(f) + yE2

3(f)

and E2
2(f) = 0 on I1, E2

3(f) = 0 on I3, E2(f) = 0 on I1 ∪ I3.
It is easy to see that all the extensions are polynomials of degree p on T . Furthermore, all the

operators which deal with polynomials that vanish in only one vertex are linear transformations
of the operator E = E1

1 . Therefore we only have to analyse the operator E. The main results
concerning this operator are given in the next theorem.
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Theorem 2. For f ∈ Pp(I) with f(0) = 0 there holds

‖E(f)‖H̃1/2(T,I3) ≤ C log1/2 p ‖f‖L2(I). (4)

For f ∈ Pp(I) with f(1) = 0 there holds

‖E1
2 (f)‖H̃1/2(T,I2) ≤ C log1/2 p ‖f‖L2(I). (5)

For f ∈ Pp(I) with f(0) = f(1) = 0 there holds

‖E1(f)‖H̃1/2(T,I2∪I3) ≤ C log1/2 p ‖f‖L2(I). (6)

The proof of this theorem is divided into three parts. In Section 3.1 we analyse E as a
mapping H̃1/2(I, 0) → H1(T ) and in Section 3.2 from H−1/2(I) onto L2(T ). These results are
then used in Section 3.3 to prove the theorem. The proof of the main theorem (Theorem 1) is
given in Section 3.4.

3.1 Boundedness of E : Pp(I) ∩ H̃1/2(I, 0)→ H1(T )

Lemma 1. Let 0 ≤ x ≤ 1 and f ∈ L2(x, 1). Then there holds

∫ 1−x

0

1

y2

(∫ x+y

x
f(t) dt

)2

dy ≤ 4

∫ 1

x
f2(t) dt. (7)

Proof. Recall Hardy’s inequality (p > 1, r 6= 0):

∫ ∞

0
y−r(F (y))p dy ≤

(
p

|r − 1|

)p ∫ ∞

0
y−r(yf(y))p dy,

where F (y) =
∫∞
y f(t) dt for r < 1, and F (y) =

∫ y
0 f(t) dt for r > 1, see [10, Theorem 330].

We use this inequality for r = 2, p = 2 and with

F (y) :=

∫ y

0
f(x+ t) dt =

∫ x+y

x
f(t) dt.

Extending f by zero from (x, 1) onto (x,∞) we then obtain

∫ 1−x

0

1

y2

(∫ x+y

x
f(t) dt

)2

dy =

∫ 1−x

0

1

y2

(∫ y

0
f(x+ t) dt

)2

dy

≤
∫ ∞

0

1

y2

(∫ y

0
f(x+ t) dt

)2

dy ≤ 4

∫ 1−x

0
f2(x+ y) dy = 4

∫ 1

x
f2(y) dy.

7



Lemma 2. There exists a constant C > 0 such that, for any f ∈ H 1/2(I), there holds

‖F (f)‖H1(T ) ≤ C ‖f‖H1/2(I), (8)

‖F (f)‖L2(T ) ≤ C ‖x1/2f(x)‖L2(I). (9)

Proof. The bound (8) is [4, Lemma 7.1]. To prove (9) we use Lemma 1 to conclude that there
holds

‖F (f)‖2L2(T ) =

∫ 1

0

∫ 1−x

0

1

y2

(∫ x+y

x
f(t) dt

)2

dy dx

≤ 4

∫ 1

0

∫ 1

x
f(t)2 dt dx = 4

∫ 1

0
f(t)2

∫ t

0
dx dt = 4‖t1/2f‖2L2(I).

This proves the lemma.

The following lemma states the main result of this subsection.

Lemma 3. There exists a constant C > 0 such that

‖E(f)‖H1(T ) ≤ C ‖f‖H̃1/2(I,0) ∀f ∈ Pp(I), f(0) = 0.

Proof. The proof follows the techniques from [16, Lemma 6] where the three-dimensional case
is considered. Using (9) we estimate

‖E(f)‖2L2(T ) ≤ ‖F (|f |)‖2L2(T ) ≤ C ‖x1/2 f(x)‖2L2(I) ≤ C ‖f‖2L2(I). (10)

To estimate the H1(T )-semi-norm we calculate the first order derivatives of E and F .

∂E(f)

∂x
=

1

y

∫ x+y

x

f(t)

t
dt+

x

y

(
f(x+ y)

x+ y
− f(x)

x

)
,

∂E(f)

∂y
= − x

y2

∫ x+y

x

f(t)

t
dt+

x

y

f(x+ y)

x+ y
,

∂F (f)

∂x
=

1

y
f(x+ y)− 1

y
f(x),

∂F (f)

∂y
= − 1

y2

∫ x+y

x
f(t) dt+

1

y
f(x+ y).

By (8) there holds ‖F (f)‖H1(T ) ≤ C ‖f‖H1/2(I) such that it is enough to bound the differences

of E and F in the H1(T )-semi-norm.
Calculating

∂E(f)

∂x
− ∂F (f)

∂x
=

1

y

∫ x+y

x

f(t)

t
dt+

f(x+ y)

y

(
x

x+ y
− 1

)
, (11)
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let us denote the two terms on the right-hand side by

R1 :=
1

y

∫ x+y

x

f(t)

t
dt, R2 :=

f(x+ y)

y

(
x

x+ y
− 1

)
.

It is clear that

|R1| =
∣∣∣∣
1

y

∫ x+y

x

f(t)

t
dt

∣∣∣∣ ≤
1

y

∫ x+y

x

|f(t)|
t

dt = F

( |f(t)|
t

)
.

Using (9) we find that

‖R1‖L2(T ) ≤
∥∥∥∥F
( |f(t)|

t

)∥∥∥∥
L2(T )

≤ C
∥∥∥∥x1/2 f(x)

x

∥∥∥∥
L2(I)

= C ‖x−1/2f(x)‖L2(I). (12)

Next we estimate R2. Since 0 ≤ 1− x
x+y ≤ 1 we obtain

|R2| =
∣∣∣∣
f(x+ y)

y

(
x

x+ y
− 1

)∣∣∣∣ =
1

y

∣∣∣∣f(x+ y)
y

x+ y

∣∣∣∣

≤ 1

y
|f(x+ y)− f(x)| y

x+ y
+
|f(x)|
x+ y

≤ 1

y
|f(x+ y)− f(x)|+ |f(x)|

x+ y
.

The first term on the right-hand side can be bounded by

∥∥∥∥
1

y

(
f(x+ y)− f(x)

)∥∥∥∥
2

L2(T )

=

∫ 1

0

∫ 1−x

0

(
f(x+ y)− f(x)

)2

y2
dy dx

=

∫ 1

0

∫ 1

x

(
f(z)− f(x)

)2

(z − x)2
dz dx ≤

∫ 1

0

∫ 1

0

(
f(z)− f(x)

)2

(z − x)2
dz dx = |f |2

H1/2(I)
.

For the second term we obtain
∫ 1

0

∫ 1−x

0

f(x)2

(x+ y)2
dy dx ≤

∫ 1

0

f(x)2

x
dx = ‖x−1/2f(x)‖2L2(I).

Combination of the last three estimates yields

‖R2‖2L2(T ) ≤ C
(
|f |2

H1/2(I)
+ ‖x−1/2f(x)‖2L2(I)

)
. (13)

Now we examine the derivatives with respect to y. There holds

∂E(f)

∂y
− ∂F (f)

∂y
=

1

y2

∫ x+y

x
f(t)

(
1− x

t

)
dt+

f(x+ y)

y

(
x

x+ y
− 1

)
= R3 +R2

with

R3 :=
1

y2

∫ x+y

x
f(t)

(
1− x

t

)
dt.
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The term R2 has already been estimated. It remains to bound R3. Since 0 ≤ 1 − x
t ≤

y
t for

t ∈ [x, x+ y], we get

|R3| ≤
1

y

∫ x+y

x

|f(t)|
t

dt = F

( |f(t)|
t

)
.

This can be estimated like R1 and it follows that

‖R3‖L2(T ) ≤ C ‖x−1/2f(x)‖L2(I). (14)

Eventually, using (8), the triangle inequality and estimates (10) and (12), (13), (14), the lemma
is proved.

3.2 Quasi-boundedness of E : Pp(I) ∩H−1/2(I)→ L2(T )

Lemma 4. There exists a constant C > 0, independent of p, such that for any f ∈ Pp(I) and
ε ∈ (0, 1/2) there holds

∥∥∥yε−1 ‖f‖H−1/2+ε(x,x+y)

∥∥∥
L2(T )

≤ C√
ε
‖f‖H−1/2+ε(I).

Proof. For y ∈ [0, 1] the function ‖f‖H−1/2+ε(x,x+y) is continuous with respect to x ∈ [0, 1 − y].
This can be seen by estimating

∣∣∣‖f‖H−1/2+ε(x1,x1+y) − ‖f‖H−1/2+ε(x2,x2+y)

∣∣∣

=
∣∣∣‖f(x1 + ·)‖H−1/2+ε(0,y) − ‖f(x2 + ·)‖H−1/2+ε(0,y)

∣∣∣
≤ ‖f(x1 + ·)− f(x2 + ·)‖H−1/2+ε(0,y) ≤ ‖f(x1 + ·)− f(x2 + ·)‖L2(0,y)

and using the uniform continuity of f .
Therefore, ‖f‖H−1/2+ε(x,x+y) is Riemann integrable in x and we can calculate the integral as

the limit of Riemann sums. To this end we define a partition of [0, 1 − y] into Nh intervals:

xi := i
1− y
Nh

, i = 0, . . . , Nh, h :=
1− y
Nh

.

We obtain

∫ 1−y

0
‖f‖2

H−1/2+ε(x,x+y)
dx = lim

h→0

Nh−1∑

i=0

h‖f‖2
H−1/2+ε(xi,xi+y)

.

Every interval (xi, xi+y) = (ih, ih+y), i = 0, . . . , Nh−1, overlaps with at most O( yh) intervals.
Therefore, we can use a colouring argument together with the estimate

∑

i

‖f‖2Hs(γi)
≤ C ‖f‖2Hs(0,1), ∪iγ̄i ⊂ (0, 1), γi ∩ γi = ∅ (i 6= j),
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(see, e.g., [3]) to obtain

lim
h→0

Nh−1∑

i=0

h‖f‖2
H−1/2+ε(xi,xi+y)

≤ C lim
h→0

h
y

h
‖f‖2

H−1/2+ε(0,1)
= C y‖f‖2

H−1/2+ε(0,1)
.

We finish the proof by calculating

∥∥yε−1 ‖f‖H−1/2+ε(x,x+y)

∥∥2

L2(T )
=

∫ 1

0
y2ε−2

∫ 1−y

0
‖f‖2

H−1/2+ε(x,x+y)
dx dy

≤ C
∫ 1

0
y2ε−2 y‖f‖2

H−1/2+ε(0,1)
dy = C ‖f‖2

H−1/2+ε(0,1)

∫ 1

0
y2ε−1 dy = C

1

2ε
‖f‖2

H−1/2+ε(I)
.

The next lemma is the main result of this subsection. It represents the key ingredient for
the proof of our extension theorems (Theorems 1 and 2).

Lemma 5. There exists a constant C > 0, independent of p, such that

‖E(f)‖L2(T ) ≤ C log p ‖f‖H−1/2(I) ∀f ∈ Pp(I), f(0) = 0.

Proof. Let ε ∈ (0, 1/4) and (x, y) ∈ T , x > 0. Making use of the duality between the spaces
H−1/2+ε(x, x+ y) and H̃1/2−ε(x, x+ y) we obtain

∫ x+y

x

f(t)

t
dt ≤ ‖t−1‖H̃1/2−ε(x,x+y)‖f‖H−1/2+ε(x,x+y). (15)

We bound the first term on the right-hand side:

‖t−1‖2
H̃1/2−ε(x,x+y)

= |t−1|2
H1/2−ε(x,x+y)

+

∫ x+y

x

t−2

dist(t;x, x+ y)2(1/2−ε) dt

≤ |t−1|2
H1/2−ε(x,x+y)

+ C

(∫ x+y

x

t−2

|t− x|1−2ε
dt+

∫ x+y

x

t−2

|t− x− y|1−2ε
dt

)
.

(16)

To estimate the H1/2−ε(x, x+ y)-semi-norm we calculate

‖t−1‖2L2(x,x+y) =
y

x(x+ y)

and

|t−1|2H1(x,x+y) =
x2y + xy2 + 1

3y
3

x3(x+ y)3
≤ y

x3(x+ y)
.

11



Then interpolation yields (see, e.g., [6])

|t−1|H1/2−ε(x,x+y) . ‖t−1‖1/2+ε
L2(x,x+y)

‖t−1‖1/2−ε
H1(x,x+y)

≤
(

y1/2+ε

x1/2+ε(x+ y)1/2+ε

y1/2−ε

x3/2−3ε(x+ y)1/2−ε

)1/2

=
y1/2xε

x(x+ y)1/2
≤ y1/2xε

x3/2
. (17)

The second term on the right-hand side of (16) can be estimated by

∫ x+y

x

t−2

|t− x|1−2ε
dt ≤ 1

x2

∫ x+y

x

1

(t− x)1−2ε
dt =

1

x2

y2ε

2ε
, (18)

and the second term by

∫ x+y

x

t−2

|t− x− y|1−2ε
dt ≤ 1

x2

∫ x+y

x

1

(x+ y − t)1−2ε
dt =

1

x2

y2ε

2ε
. (19)

Thus we get from (15), together with (16), (17), (18) and (19), the bound

∫ x+y

x

f(t)

t
dt ≤ ‖t−1‖H̃1/2−ε(x,x+y) ‖f‖H−1/2+ε(x,x+y)

≤ C
(
y1/2xε

x3/2
+

1√
ε

yε

x

)
‖f‖H−1/2+ε(x,x+y).

Using this bound we start estimating ‖E(f)‖L2(T ):

‖E(f)‖L2(T ) ≤ C
∥∥∥∥
(
xε−1/2y−1/2 +

1√
ε
yε−1

)
‖f‖H−1/2+ε(x,x+y)

∥∥∥∥
L2(T )

≤ C
∥∥∥xε−1/2y−1/2‖f‖H−1/2+ε(x,x+y)

∥∥∥
L2(T )

+
C√
ε

∥∥∥yε−1‖f‖H−1/2+ε(x,x+y)

∥∥∥
L2(T )

. (20)

To bound the factor ‖f‖H−1/2+ε(x,x+y) in the first term on the right-hand side of (20) we use
scaling properties of the norms involved together with a linear transformation forward and
backward to the interval (x, x+ 1), see, e.g., [12, Lemma 2]. Denoting by f̃ the correspondingly
linearly transformed polynomial f , this gives

‖f‖2
H−1/2+ε(x,x+y)

≤ C y1−2(−1/2+ε)‖f̃‖2
H−1/2+ε(x,x+1)

= C y2ε(y2−4ε)‖f̃‖2
H−1/2+ε(x,x+1)

≤ C y2ε(y2−4ε)‖f̃‖2
H−1/2+2ε(x,x+1)

≤ C y2ε(y2−4ε)
1

y1−2(−1/2+2ε)
‖f‖2

H−1/2+2ε(x,x+y)

= C y2ε‖f‖2H−1/2+2ε(x,x+y) ≤ C y
2ε‖f‖2H−1/2+2ε(I).
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Hence
∥∥∥xε−1/2y−1/2‖f‖H−1/2+ε(x,x+y)

∥∥∥
L2(T )

≤ C ‖xε−1/2yε−1/2‖L2(T ) · ‖f‖H−1/2+2ε(I)

≤ C ‖xε−1/2‖L2(I) · ‖yε−1/2‖L2(I) · ‖f‖H−1/2+2ε(I)

≤ C

2ε
‖f‖H−1/2+2ε(I).

For the second term on the right-hand side of (20) we apply Lemma 4. We then conclude, using
the inverse property of polynomials (see [12, Lemma 4]) that for f ∈ Pp(I) there holds

‖E(f)‖L2(T ) ≤ C
(

1

ε
‖f‖H−1/2+2ε(I) +

1

ε
‖f‖H−1/2+ε(I)

)

≤ C 1

ε

(
p4ε + p2ε

)
‖f‖H−1/2(I) ≤ C log p ‖f‖H−1/2(I).

Here we have chosen ε := log−1 p. This proves the lemma.

3.3 Proof of Theorem 2

Proof of (4). Lemmas 3 and 5 yield two bounds for E:

‖E(f)‖H1(T ) ≤ C ‖f‖H̃1/2(I,0)

and

‖E(f)‖L2(T ) ≤ C log p ‖f‖H−1/2(I)

for all polynomials f ∈ Pp(I) with f(0) = 0. Interpolation thus proves the boundedness

‖E(f)‖H1/2(T ) ≤ C log1/2 p ‖f‖L2(I). (21)

In order to finish the proof of (4) it is therefore left to bound the weighted L2-norm that
contributes to ‖E(f)‖H̃1/2(T,I3). Here we use Lemma 1 and obtain

‖x−1/2E(f)‖2L2(T ) =

∫ 1

0

∫ 1−x

0

x

y2

(∫ x+y

x

f(t)

t
dt

)2

dy dx

≤ 4

∫ 1

0
x

(∫ 1

x

f(t)2

t2
dt

)
dx = 4

∫ 1

0

f(t)2

t2

∫ t

0
x dx dt = 2‖f‖2L2(I). (22)

This finishes the proof of (4).

Proof of (5). This can be obtained by a linear transformation to the previous case.

13



Proof of (6). For this estimate we use techniques that had been proposed in [7]. Recall
that there holds

E1(f)(x, y) = (1− x− y)E(f)(x, y) + xE1
2(f)(x, y).

We consider only the first term. The second can be bounded analogously. In order to bound
the H1/2-semi-norm we need the following estimate: For (x, y) ∈ T and (x′, y′) ∈ T there holds

|(1− x− y)E(f)(x, y) − (1− x′ − y′)E(f)(x′, y′)|2
= |(1− x− y)E(f)(x, y)− (1− x− y)E(f)(x′, y′)

+ (1− x− y)E(f)(x′, y′)− (1− x′ − y′)E(f)(x′, y′)|2

≤ 2(1− x− y)2|E(f)(x, y)−E(x′, y′)|2 + 2(x′ − x+ y′ − y)2|E(f)(x′, y′)|2

≤ |E(f)(x, y)−E(f)(x′, y′)|2 + 2(x′ − x+ y′ − y)2|E(f)(x′, y′)|2.

Then, using the definition of the H1/2(T )-norm and the estimate (21), we obtain

|(1 − x− y)E(f)|2
H1/2(T )

≤ C
(
|E(f)|2

H1/2 +

∫ 1

0

∫ 1−y

0

∫ 1

0

∫ 1−y′

0

(x′ − x+ y′ − y)2
(
E(f)(x′, y′)

)2
(
(x′ − x)2 + (y′ − y)2

)3/2 dx′ dy′ dx dy

)

≤ C
(
|E(f)|2

H1/2 + ‖E(f)‖2L2

)
= C ‖E(f)‖2

H1/2(T )
≤ C log p ‖f‖2L2(I).

Eventually we estimate the weighted L2-norm corresponding to the edge I3 (the one for I2 is
straightforward):

‖x−1/2(1− x− y)E(f)‖2L2(T ) =

∫ 1

0

∫ 1−y

0

x(1− x− y)2

y2

(∫ x+y

x

f(t)

t
dt

)2

dx dy

≤
∫ 1

0

∫ 1−y

0

x

y2

(∫ x+y

x

f(t)

t
dt

)2

dx dy ≤ C ‖f‖2L2(I).

The last step is (22). This finishes the proof of Theorem 2.

3.4 Proof of Theorem 1

As mentioned at the beginning of this section we consider, instead of T̃ , the reference triangle
T . We define fi := f |Ii ∈ Pp(Ii), i = 1, 2, 3. It is enough to consider the two cases Γ = I2 (i.e.
f2 = 0) and Γ = I2 ∪ I3 (i.e. f2 = 0, f3 = 0).

Case Γ = I2 ∪ I3. This case is covered by Theorem 2.

Case Γ = I2. We have to show that there exists U ∈ Pp(T ) such that U = f on ∂T and

‖U‖H̃1/2(T,I2) ≤ C log1/2 p ‖f‖L2(∂T ).
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To this end define U1 := E1
2(f1). By Theorem 2 there holds

‖U1‖H̃1/2(T,I2) ≤ C log1/2 p ‖f‖L2(I). (23)

Further let g3 be the trace of U1 on I3. Making use of Lemma 1 we can bound

‖g3‖2L2(I3) = ‖E1
2 (f1)‖2L2(I3) =

∫ 1

0

(1− y)2

y2

(∫ y

0

f1(t)

1− t dt
)2

dy

≤
∫ 1

0

1

y2

(∫ y

0
|f1(t)| dt

)2

dy ≤ 4‖f1‖2L2(I).

Due to the continuity of f there holds (g3 − f3)(1, 0) = (g3 − f3)(0, 1) = 0. Using E3 we extend
g3− f3 to a polynomial U3 ∈ Pp(T ) with U3 = 0 on I1 and I2, and applying the case before (i.e.
Theorem 2) and the previous estimate we obtain

‖U3‖H̃1/2(T,I2) ≤ ‖U3‖H̃1/2(T,I1∪I2) ≤ C log1/2 p ‖g3 − f3‖L2(I3) ≤ C log1/2 p ‖f‖L2(∂T ). (24)

Finally, setting U := U1 − U3 and combining the estimates (23) and (24) we finish the proof.
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Press, 1952.

[11] N. Heuer, An iterative substructuring method for the p-version of the boundary element
method for hypersingular integral equations in three dimensions, Numer. Math., 79 (1998),
pp. 371–396. Erratum vol. 87, no. 4, pp. 793–794, 2001.

[12] , Additive Schwarz method for the p-version of the boundary element method for the
single layer potential operator on a plane screen, Numer. Math., 88 (2001), pp. 485–511.

[13] N. Heuer and E. P. Stephan, An additive Schwarz method for the h-p version of the
boundary element method for hypersingular integral equations in IR3, IMA J. Numer. Anal.,
21 (2001), pp. 265–283.

[14] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Appli-
cations I, Springer-Verlag, New York, 1972.
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