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Abstract

This paper establishes a foundation of non-conforming boundary elements. We present
a discrete weak formulation of hypersingular integral operator equations that uses Crouzeix–
Raviart elements for the approximation. The cases of closed and open polyhedral surfaces
are dealt with. We prove that, for shape regular elements, this non-conforming boundary
element method converges and that the usual convergence rates of conforming elements are
achieved. Key ingredient of the analysis is a discrete Poincaré-Friedrichs inequality in fractional
order Sobolev spaces. A numerical experiment confirms the predicted convergence of Crouzeix–
Raviart boundary elements.
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1 Introduction

Discontinuous finite elements are widely used and well analysed. In this paper we demonstrate that
there is some hope to develop such techniques also for boundary integral equations of the first kind
with hypersingular operators.

The analysis of finite elements for the discretisation of boundary integral equations of the first
kind goes back to Nédélec and Planchard [13], and Hsiao and Wendland [10]. Stephan [14] studied
boundary elements for singular problems on open surfaces. Hypersingular boundary integral equa-
tions are well-posed in fractional Sobolev spaces of order 1/2 and conforming Galerkin discretisations
require continuous basis functions. In [8] we showed that the homogeneous essential condition for
approximating functions on the boundary of an (open) surface can be efficiently implemented by
a Lagrangian multiplier. This was the first step towards the analysis of non-conforming boundary
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elements. In this paper we analyse a non-conforming boundary element method (BEM) with dis-
continuous elements. More precisely, we study the use of piecewise linear Crouzeix–Raviart elements
[5] where jumps of basis functions across element boundaries have integral mean zero. In this way,
our meshes are triangular and regular, but basis functions are not continuous. We prove that, for
sufficiently smooth given data and on closed surfaces, this method converges like O(h1/2) in a dis-
crete H1/2-norm (see Theorem 2) whereas the conforming method has the same rate of convergence
in the energy norm (see [1]). Here, h indicates the parameter of the triangular meshes. (On open
surfaces there is a slight loss in the convergence order of both methods when using standard Sobolev
regularity.) General discontinuous methods for hypersingular operators have not yet been analysed.

Our model problem is that of the Laplacian exterior to a polyhedral domain or exterior to an
open polyhedral surface. When considering Dirichlet boundary conditions this problem reduces to
the integral equation

Wu := −∂ν

∫

Γ

∂ν(y)

[ 1

4π| · −y|

]
u(y)dΓ(y) = f on Γ. (1)

Here, Γ is the open or closed surface, W is the hypersingular operator and f is a given function.
For the analysis we will need the regularity f ∈ L2(Γ). We will consider the two cases of closed and
open surfaces separately, and for ease of presentation we assume that Γ is plane with a polygonal
boundary in the open case.

Hypersingular integral operators are not well-posed on spaces of discontinuous functions. We
therefore consider a particular weak formulation of (1) that is equivalent to (1) when considering
the energy space of W and that is well-posed also for discontinuous elements. Following [8] we use

integration by parts to rewrite (1) in the weak form: Find u ∈ H̃1/2(Γ) such that

a(u, v) := 〈V curlu, curl v〉 = 〈f, v〉 ∀v ∈ H̃1/2(Γ). (2)

Here, V is the single-layer operator defined by

V ψ :=

∫

Γ

ψ(y)

4π| · −y|
dΓ(y), (3)

and curl is the surface curl operator. For sufficiently smooth surface Γ and function Φ in R
3 with

Φ = φ on Γ, curlφ = ν ·curl Φ on Γ with ν being the exterior unit normal vector on Γ and curl being
the standard curl operator. For the definition and properties of curl on closed Lipschitz surfaces Γ
and operating on functions of H1/2(Γ), see [4]. For open surfaces we refer to [8]. A definition of the
Sobolev spaces H1/2(Γ) and H̃1/2(Γ) is given at the end of this section.

In [8] we introduced a Lagrangian multiplier to deal with the homogeneous essential boundary
condition for basis functions on the boundary of Γ (in the case of open surfaces). In this paper we
extend this idea to deal with all inter-element discontinuities and prove quasi-optimal convergence
of the discrete scheme.

One key issue in both this paper and [8], is to prove ellipticity of the bilinear form in (2). This
requires, on one hand, the definition of appropriate “energy spaces” and, on the other hand, the
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availability of a corresponding Poincaré–Friedrichs inequality. The latter inequality is needed since
(2) defines only a positive semi-definite bilinear form. In [8] this situation is relatively simple:
the appropriate space is H1/2(Γ) (a precise definition is given below) and the Poincaré–Friedrichs
inequality (needed to make the semi-norm in H1/2(Γ) a norm on approximation spaces satisfying a
Lagrangian multiplier condition) is needed on the fixed domain Γ. In our case the “energy space” is
H1/2(Γ, Th) (to be defined below) which requires only piecewise H1/2-regularity with respect to the
given mesh. Therefore, we need to establish a discrete Poincaré–Friedrichs inequality in fractional
order Sobolev spaces. To this end we will follow the analysis by Brenner [2] who considered the
piecewise H1-case. In this paper, we will use it only for the particular case of discrete functions
which allows us to prove the optimal rate of convergence of the non-conforming boundary element
method. As this result is of interest in itself, we state and prove it in its full generality in piecewise
fractional order Sobolev spaces.

Another technical difficulty in this paper is that, in order to deal with inter-element discontinuities
in a discrete weak sense, one faces the problem that the trace operator (needed to analyse jumps of
functions across element edges) is not well-defined in the energy space of hypersingular operators (it

is H̃1/2(Γ) which will also be defined below). In [8] we solved this problem by switching to slightly
more regular spaces and by using inverse properties to return to the energy space. We use the same
technique in this paper but have to consider the case where the domains (individual elements) are
not fixed but h-dependent (h being the mesh parameter). We therefore need to consider carefully
the scaling properties of fractional order Sobolev norms.

An overview of the remainder of this paper is as follows. Below we define the needed Sobolev
spaces and specify some notations. For the case of a closed surface, the boundary element method
with Crouzeix–Raviart elements is introduced in the next section. In Section 3 we present our main
result Theorem 2 which states a quasi-optimal a priori error estimate for the discrete scheme on a
closed surface. Some technical results follow and the proof of Theorem 2 is given at the end of the
section. The case of an open surface is dealt with in Section 4. Numerical results which confirm our
theory on open surfaces are presented in Section 5. In an appendix (Section A) we study a discrete
Poincaré–Friedrichs inequality for functions of fractional order Sobolev spaces and for piecewise linear
functions.

Sobolev spaces. Let Γ ⊂ R
3 be the boundary of a closed Lipschitz polyhedron. The spaces Hr(Γ)

for −1 ≤ r ≤ 1 can be defined in a standard way (see, e.g., [12] for the general Lipschitz case and
[11] for smooth, open and closed, surfaces). For positive r we will consider the Aronszain–Slobodecki
seminorms

|u|r,Γ :=
[ ∫

Γ

∫

Γ

|u(x) − u(y)|2

|x − y|2r+2
dΓ(x)dΓ(y)

]1/2

, 0 < r < 1,

and the norms ‖ · ‖2
r,Γ := ‖ · ‖2

0,Γ + | · |2r,Γ, where the zero index is used for the L2 = H0 norm. The
norms for negative order spaces are the corresponding dual norms. Let Θ be any flat surface with
polygonal boundary and let Γ be an arbitrary polyhedral surface that includes Θ in one of its faces.
For r ∈ [0, 1] we define the space Hr(Θ) of functions that admit an extension to a function in Hr(Γ),
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endowed with the norm ‖ · ‖r,Θ defined as above. We also consider the space H̃r(Θ) of functions
whose extension by zero belongs to Hr(Γ). For 0 < r < 1 a norm in this space is given by

‖u‖2
r,∼,Θ := |u|2r,Θ +

∫

Θ

|u|2

dist( · , ∂Θ)
.

For r = 1 we take the usual Sobolev norm. Notice that for 0 < r < 1/2, H̃r(Θ) = Hr(Θ) and
for 1/2 < r < 1, the norm ‖ · ‖r,Θ is equivalent to ‖ · ‖r,∼,Θ on the subspace of Hr(Θ)-functions
whose trace on the boundary of Θ vanishes. Though, we maintain this last notation for duality. The
corresponding dual spaces have the tilde sign interchanged,

H−r(Θ) := (H̃r(Θ))′, H̃−r(Θ) := (Hr(Θ))′.

The norms of the negative index spaces H̃r(Θ) will be also denoted ‖ · ‖r,∼,Θ.
The tangential vector curl operator can be easily defined in H1(Γ) and H1(Θ). Extension to

fractional order spaces on Γ can be accomplished following the construction of [3] extended in [4].
For the case of a flat open surface, we refer to [8]. Properties will be referred to as needed in the
text.

Notations. Given any space X, we will write X := X3 endowed with the product norm. The
symbol . will be used in the usual sense, as for instance in [2]. In short, ah . bh when there exists
a constant C > 0 independent of the discretisation parameter h such that ah ≤ Cbh. The double
inequality ah . bh . ah is simplified to ah ≈ bh. In our case, the constants are also independent of
the fractional Sobolev index ǫ whenever this is present.

2 Crouzeix–Raviart boundary elements

Let Γ ⊂ R
3 be the boundary of a closed Lipschitz polyhedron. Consider a sequence of shape-regular

triangular meshes Th of Γ without hanging nodes and the corresponding sets of edges Eh. We will
use the spaces

Hr(Th) :=
∏

T∈Th

Hr(T ), L2(Eh) :=
∏

e∈Eh

L2(e),

as well as the broken Sobolev norms and seminorms, defined for the appropriate indices,

‖ · ‖2
r,Th

:=
∑

T∈Th

‖ · ‖2
r,T , | · |2r,Th

:=
∑

T∈Th

| · |2r,T .

Let us define the discrete spaces

Hh :=
∏

T∈Th

P1(T ), Mh :=
∏

e∈Eh

P0(e),
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and, denoting by me the midpoint of e ∈ Eh, the Crouzeix–Raviart space is

Vh := {vh ∈ Hh | vh continuous in me ∀e ∈ Eh}.

Here, for integer r, Pr(T ) denotes the space of polynomials on T up to total degree r, and corre-
spondingly for other geometric objects. For any function v ∈ H1/2+ǫ(Th) with ǫ > 0 we define the
inter-element jumps

[v] ∈ L2(Eh) :=
∏

e∈Eh

L2(e),

by assigning an orientation to the normal vectors on edges so that we have a positive sign on the
side of e pointed out by the normal vector.

Notice that if we denote

b(v, λ) :=
∑

e∈Eh

∫

e

[ v ] λ

for v ∈ H1(Th) and λ ∈ L2(Eh) then, given vh ∈ Hh,

vh ∈ Vh ⇐⇒ b(vh, µh) = 0 ∀µh ∈ Mh.

Let curlh : H1(Th) → L2(Γ) be the piecewise tangential curl operator and

ah(u, v) := 〈V curlhu, curlhv〉

where V is the single-layer operator defined in (3). Here, 〈·, ·〉 denotes the L2(Γ) inner product and
its extension to duality between H1/2(Γ) and H−1/2(Γ) (or their vector valued versions). All these
bilinear forms we denote by the same symbol. Then consider the problem

[
uh ∈ Vh,

∫
Γ
uh = 0,

ah(uh, vh) = 〈f, vh〉 ∀vh ∈ Vh.
(4)

This problem can be equivalently stated as
[

uh ∈ V 0
h ,

ah(uh, vh) = 〈f, vh〉 ∀vh ∈ V 0
h ,

with V 0
h := {vh ∈ Vh |

∫
Γ
vh = 0}.

Proposition 1 Problem (4) is equivalent to




(uh, λh) ∈ Hh × Mh,
∫

Γ
uh = 0,

a(uh, vh) + b(vh, λh) = 〈f, vh〉 ∀vh ∈ Hh,

b(uh, µh) = 0 ∀µh ∈ Mh.

Both problems are uniquely solvable.
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Proof. Since V is elliptic in H−1/2(Γ), the only point to prove is the implication

b(vh, λh) = 0 ∀vh ∈ Hh =⇒ λh = 0.

To prove this, take a triangle T and let Nα
T ∈ P1(T ) (α ∈ {1, 2, 3}) be the Lagrange basis functions

associated with its vertices. If E(T ) is the set of edges of T and λe is the value of λh on e then it is
simple to see that ∑

e∈E(T )

λe

∫

e

Nα
T = 0, α = 1, 2, 3

implies λe = 0 for all e ∈ E(T ). The remainder of the proof is straightforward. ¤

3 An a priori error estimate for Crouzeix–Raviart boundary

elements

In this section we present an a priori error estimate for the BEM with Crouzeix–Raviart elements.
Henceforth we denote by hT the diameter of T ∈ Th, by he the length of e ∈ Eh and

h := max{hT |T ∈ Th}, hmin := min{hT |T ∈ Th}.

We also assume shape regularity of the triangulation so that he ≈ hT for all e ∈ E(T ). Given T ∈ Th

we denote by FT an affine bijective transformation from the reference triangle T̂ := {(x1, x2) | 0 ≤
x1, x2 ≤ 1, x1 + x2 ≤ 1} onto T . Also, given v : T → R we write v̂ := v ◦ FT .

We consider the discrete norm

‖vh‖
2
h := |vh|

2
1/2,Th

+
∑

e∈Eh

h−1
e

∣∣∣
∫

e

[ vh ]
∣∣∣
2

+
∣∣∣
∫

Γ

vh

∣∣∣
2

, vh ∈ Hh.

Notice that
‖vh‖h = |vh|1/2,Th

∀vh ∈ V 0
h . (5)

The main result, Theorem 2 below, is the quasi-optimal convergence of the BEM with Crouzeix–
Raviart elements, with respect to the discrete norm just introduced. Improved estimates assuming
additional regularity will be indicated at the end of this section.

Theorem 2 Assume that f ∈ L2(Γ). Then there holds

‖u − uh‖1/2,Th
. h1/2‖u‖1,Γ.

Here, u and uh are the solutions of (1) subject to
∫
Γ
u = 0 and (4), respectively.

A proof of this theorem is given in the remainder of this section. We will need, however, a discrete
Poincaré–Friedrichs inequality (Theorem 8) which will be presented and proved in Section A. The
case of an open screen Γ will be studied in Section 4.
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3.1 Technical details and the proof of Theorem 2

Before proving Theorem 2 we collect some technical results.

Proposition 3 There holds

ah(vh, vh) & ‖vh‖
2
1/2,Th

∀vh ∈ V 0
h . (6)

Proof. Since H−1/2(Γ) →֒
∏

T H−1/2(T ) with injection constant being independent of the triangula-
tion, we obtain [ ∑

T∈Th

‖curl (vh|T )‖2
−1/2,T

]1/2

. ‖curlhvh‖−1/2,Γ.

Also, there holds
‖curl p̂‖

−1/2, bT ≈ |p̂|1/2, bT ∀p̂ ∈ P1(T̂ ). (7)

Recalling the equivalences

h1/2|v̂|1/2, bT ≈ |v|1/2,T , h3/2‖v̂‖
−1/2, bT ≈ ‖v‖−1/2,T , (8)

(note the scaling property of the negative order Sobolev norm, see [9, Lemma 2]) and taking into
account the change of variables in the curl operator, (7) implies that

‖curl p‖−1/2,T ≈ |p|1/2,T ∀p ∈ P1(T ), ∀T ∈ Th (9)

and therefore, by (5)

[ ∑

T∈Th

‖curl(vh|T )‖2
−1/2,T

]1/2

≈ |vh|1/2,Th
= ‖vh‖h ∀vh ∈ V 0

h .

Then, Theorem 8 implies that

‖curlhvh‖−1/2,Γ & |vh|1/2,Th
+ ‖vh‖0,Γ ∀vh ∈ V 0

h . (10)

By the ellipticity of the single-layer operator V there holds

ah(vh, vh) & ‖curlhvh‖
2
−1/2,Γ

and therefore, (10) proves the statement. ¤

Consider the spaces of conforming elements

Ch := Hh ∩ C(Γ), C0
h := {ψh ∈ Ch |

∫

Γ

ψh = 0} ⊂ V 0
h .

Comparison with this space gives the following Strang-type error estimate.
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Proposition 4 There holds

|u − uh|1/2,Th
+ ‖u − uh‖0,Γ . inf

ψh∈C0

h

‖u − ψh‖1/2,Γ + sup
vh∈V 0

h

|a(u − uh, vh)|

‖curlhvh‖−1/2,Γ

.

Proof. Let ψh ∈ C0
h. By the discrete ellipticity (6) we have the bound

|uh − ψh|1/2,Th
+ ‖uh − ψh‖0,Γ . sup

vh∈V 0

h

|ah(uh − ψh, vh)|

‖curlhvh‖−1/2,Γ

≤ sup
vh∈V 0

h

|ah(u − uh, vh)|

‖curlhvh‖−1/2,Γ

+ sup
vh∈V 0

h

|ah(u − ψh, vh)|

‖curlhvh‖−1/2,Γ

.

Since u − ψh ∈ H1/2(Γ) we have curlh(u − ψh) = curl(u − ψh) and by the continuity of curl :
H1/2(Γ) → H−1/2(Γ),

|ah(u − ψh, vh)| = |〈V curl (u − ψh), curlhvh〉|

. ‖curl (u − ψh)‖−1/2,Γ‖curlhvh‖−1/2,Γ

. ‖u − ψh‖1/2,Γ‖curlhvh‖−1/2,Γ.

The result follows straightforwardly from the preceding bounds by adding and subtracting an arbi-
trary ψh ∈ C0

h in the error term on the left-hand side of the statement. ¤

Let te be the unit tangential vector that arises from a positive π/2 rotation of the normal vector
taken to define signs of the jumps. The consistency term can be bounded by using the following
result.

Proposition 5

sup
vh∈V 0

h

|a(u − uh, vh)|

‖curlhvh‖−1/2,Γ

. inf
µh∈Mh

[ ∑

e∈Eh

‖te · V curlu − µh‖
2
0,e

]1/2

Proof. By integrating by parts over each triangle, we obtain for vh ∈ Vh

a(u − uh, vh) = 〈V curl u, curlhvh〉 − 〈f, vh〉

=
∑

e∈Eh

〈te · V curl u, [vh]〉e =
∑

e∈Eh

〈te · V curl u − µh, [vh]〉e. (11)

Here, µh is an arbitrary function of Mh. Now consider the reference elements (see Figure 3.1)

T̂1 := T̂ , T̂2 := {(x̂, ŷ) ∈ [0, 1]2 | x̂ + ŷ ≥ 1},

ê := {(x̂, ŷ) ∈ [0, 1]2 | x̂ + ŷ = 1} = T̂1 ∩ T̂2
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and the finite-dimensional space

P̂ :=
{

p̂ : [0, 1]2 → R

∣∣∣ p̂|bTi
∈ P1, i = 1, 2,

∫

be

[p̂] = 0
}

,

where we have the bound

‖[p̂]‖2
0,be ≤ Ĉ

[
|p̂|2

1/2, bT1

+ |p̂|2
1/2, bT2

]
∀p̂ ∈ P̂. (12)

Let e ∈ Eh and let T1, T2 be the triangles that share e as an edge. With a continuous piecewise affine
map we transform bijectively the reference triplet (T̂1, T̂2, ê) onto (T1, T2, e). Notice that vh ∈ Vh,

restricted to T1 ∪ T2, is transformed back onto an element of P̂. Using (8) and (12) we obtain

‖[vh]‖
2
0,e ≈ h‖[v̂h]‖

2
0,be . h

(
|v̂h|

2
1/2, bT1

+ |v̂h|
2
1/2, bT2

)
≈ |vh|

2
1/2,T1

+ |vh|
2
1/2,T2

∀vh ∈ Vh,

whence [ ∑

e∈Eh

‖[vh]‖
2
0,e

]1/2

. |vh|1/2,Th
.

Together with (9) this proves that

[ ∑

e∈Eh

‖[vh]‖
2
0,e

]1/2

. ‖curlhvh‖−1/2,Γ ∀vh ∈ Vh. (13)

This bound and (11) imply the statement of the proposition. ¤

T
1

^ T
1

T
2

T
2

e
e

^^

Figure 1: The reference double triangle of the proof of Proposition 5 and its transformed image.

Making use of Propositions 4 and 5, the proof of Theorem 2 is reduced to approximation and
regularity arguments. Before giving the proof we present some approximation results.

Recall the equivalence, obtained by changing to the reference element (the first inequality of (8)
is just a particular case of this):

|v|2r,T ≈ h2−2r
T |v̂|2

r, bT
, 0 ≤ r ≤ 1. (14)

Recall also the trace lemma on a fixed domain

‖v‖0,∂ bT ≤
C

ǫ1/2
‖v‖1/2+ǫ, bT ∀v ∈ H1/2+ǫ(T̂ ), ∀ǫ ∈ (0, 1/2]. (15)
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This formulation is proven as Lemma 4.3 in [8], based on bounds that can be found in [12] for

example. Also, for the best L2(T̂ ) approximation by constants, we have by interpolation
∥∥∥v −

1

|T̂ |

∫

bT

v
∥∥∥

0, bT
≤ C|v|r, bT ∀v ∈ Hr(T̂ ), ∀r ∈ [0, 1]. (16)

Therefore ∥∥∥v −
1

|T̂ |

∫

bT

v
∥∥∥

r, bT
≤ C|v|r, bT ∀v ∈ Hr(T̂ ), ∀r ∈ [0, 1].

With (15) and (16) it is simple to prove that there holds
∥∥∥v −

1

|T̂ |

∫

bT

v
∥∥∥

0,∂ bT
≤

C

ǫ1/2
|v|1/2+ǫ, bT ∀v ∈ H1/2+ǫ(T̂ ), ∀ǫ ∈ (0, 1/2]. (17)

Lemma 6 For all ǫ ∈ (0, 1/2],

inf
µh∈Mh

[ ∑

e∈Eh

‖v − µh‖
2
0,e

]1/2

. ǫ−1/2hǫ|v|1/2+ǫ,Γ ∀v ∈ H1/2+ǫ(Γ).

Proof. If e ∈ E(T ) (it is immaterial which of the two possible triangles sharing e we choose), it is
simple to see that

inf
c∈R

‖v − c‖2
0,e ≈ he inf

c∈R

‖v̂ − c‖2
0,be

. ǫ−1he|v̂|
2
1/2+ǫ, bT

≈ ǫ−1h2ǫ
T |v|21/2+ǫ,T ,

where in the last two inequalities we have respectively applied (17) and (14), as well as the fact that
he ≈ hT . The result follows by adding the contribution from all edges. ¤

Proof of Theorem 2. Combining Propositions 4 and 5 we obtain

|u − uh|1/2,Th
+ ‖u − uh‖0,Γ

. inf
ψh∈C0

h

‖u − ψh‖1/2,Γ + inf
µh∈Mh

[ ∑

e∈Eh

‖te · V curlu − µh‖
2
0,e

]1/2

. (18)

Note that, since by assumption f ∈ L2(Γ), there holds u ∈ H1(Γ). By well-known approximation
properties by piecewise polynomial functions the first term on the right-hand side of (18) can be
bounded like

inf
ψh∈C0

h

‖u − ψh‖1/2,Γ . h1/2|u|1,Γ. (19)

For the second term we use Lemma 6 with ǫ = 1/2 and recall the continuity of V curl : H1(Γ) →
H1(Γ). This yields

inf
µh∈Mh

[ ∑

e∈Eh

‖te · V curlu − µh‖
2
0,e

]1/2

. h1/2‖u‖1,Γ.
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This finishes the proof. ¤

Some improvement on the order of convergence can be obtained assuming additional regularity
of the solution. For 1 < s < 3/2 consider

Hs(Γ) := {u ∈ H1(Γ) |u|L ∈ Hs(L) ∀L face of Γ},

endowed with the product norm of the norms on the faces and the H1(Γ) norm. The spaces Hs(L)
are the traditional Sobolev spaces on the faces. If u ∈ Hs(Γ), the bound (19) can be improved to

inf
ψh∈C0

h

‖u − ψh‖1/2,Γ . C1(s) hs−1/2|u|s,Γ.

Similarly, it is possible to obtain a bound

inf
µh∈Mh

[ ∑

e∈Eh

‖te · V curlu − µh‖
2
0,e

]1/2

. C2(s)h
s−1/2‖V curl u‖s,Γ, (20)

assuming enough regularity of V curlu.

4 The case of an open flat screen

Let now Γ be a flat open screen with polygonal boundary. We assume that it is placed in horizontal
position and we construct a closed cubical surface S including Γ in its top face and a copy of it in
the lower face, as shown in Figure 4. Since we will make occasional reference to this closed surface
and since there are significant differences between the closed and the open surface cases, we will
indicate with a sub- or superscript S any continuous or discrete element related to the closed surface
S. Symbols related to the open screen Γ do not have an additional index.

Γ S 

Figure 2: Geometrical configuration. The screen Γ is inserted in a face of a cube S, with a copy of
it on the opposite face. The discretisation of the cubical surface will keep this symmetry.

We are given a triangulation of Γ, Th, and consider the set of all sides of this triangulation, Eh.
The triangulation of Γ is extended to a triangulation of S, respecting the symmetry of the top and
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low faces, i.e., the inherited triangulations of these faces are assumed to be identical. For orientation,
we will always assume that an edge on ∂Γ takes as positive sense the interior triangle. We then define
the jump operator H1(Th) → L2(Eh) as follows: vh ∈ H1(Th) is extended by zero to all remaining
triangles outside Γ and the jumps are taken only on Eh ⊂ ES

h . Obviously, with this definition, jumps
over edges on ∂Γ are simply restrictions to these edges. The spaces Hh and Mh are defined as before,
whereas now

Vh := {vh ∈ Hh |

∫

e

[vh] = 0 ∀e ∈ Eh}.

This definition implies continuity at midpoints of interior edges and zero value at midpoints of edges
on ∂Γ. The discrete problem is

[
uh ∈ Vh,

ah(uh, vh) = 〈f, vh〉Γ ∀vh ∈ Vh,
(21)

where ah(uh, vh) := 〈V curlhuh, curlhvh〉Γ. Notice that since the surface is now open, we do not
impose the condition of cancellation of the integral of uh over the surface. Finally, the discrete norm
is

‖vh‖
2
h,Γ := |vh|

2
1/2,Th

+
∑

e∈Eh

h−1
e

∣∣∣
∫

e

[vh]
∣∣∣
2

, vh ∈ Hh.

Similarly to Theorem 8 we have

‖vh‖0,Γ . ‖vh‖h,Γ ∀vh ∈ Hh,

as can be seen as follows. We extend vh ∈ Hh to ṽh ∈ HS
h in a particular way. On the copy of Γ

lying on the opposite face of S we take −vh (translated to the corresponding positions) and extend
by zero onto the remaining elements. In this way

∫

S

ṽh = 0, ‖ṽh‖
2
0,S = 2‖vh‖

2
0,Γ, ‖ṽh‖

2
h = 2‖vh‖

2
h,Γ,

and the result follows from Theorem 8. From the ellipticity of V in H̃−1/2(Γ), the uniform continuity

of the injection H̃−1/2(Γ) →֒
∏

T∈Th
H−1/2(T ), (9) and Theorem 8, we obtain

ah(vh, vh) & ‖vh‖
2
1/2,Th

∀vh ∈ Vh.

This corresponds to (6). The discrete space of conforming functions is

Ch := {ψh ∈ Hh |ψh ∈ C(Γ), ψh|∂Γ = 0} = Hh ∩ H̃1/2(Γ) ⊂ Vh.

In order to be able to repeat the arguments in Proposition 4 we note that V : H̃−1/2(Γ) → H1/2(Γ)

and curl : H̃1/2(Γ) → H̃−1/2(Γ) are bounded (for the latter property see Lemma 2.2 in [8]). Also,
modifying (13), we get

[ ∑

e∈Eh

‖[vh]‖
2
0,e

]1/2

. ‖curlhvh‖−1/2,∼,Γ ∀vh ∈ Vh.

12



Analogously to (18) one proves that

‖u − uh‖1/2,Th
. inf

ψh∈Ch

‖u − ψh‖1/2,Γ + inf
µh∈Mh

[ ∑

e∈Eh

‖te · V curlu − µh‖
2
0,e

]1/2

.

For f ∈ L2(Γ) the expected regularity is u ∈ H̃1−ǫ(Γ) (ǫ > 0). This eventually proves the following
error estimate for the boundary element method with Crouzeix–Raviart elements on open surfaces.

Theorem 7 Let Γ be an open plane screen with polygonal boundary and assume that f ∈ L2(Γ).
Then there holds

‖u − uh‖1/2,Th
. h1/2−ǫ‖u‖1−ǫ,∼,Γ.

Here, u and uh are the solutions of (1) and (21), respectively.

5 Numerical results

We consider the model problem (1) with Γ = (0, 1) × (0, 1) and f = 1, and use uniform triangular

meshes Th. In this case there holds u ∈ H̃1−ǫ(Γ) for any ǫ > 0. Theorem 7 proves that the Crouzeix–
Raviart boundary element method converges like O(h1/2−ǫ) for any ǫ > 0 whereas the conforming
method converges like O(h1/2), see [1]. (Note, however, that the missing ǫ in the convergence order of
the conforming method is due to a refined error analysis for singularities which, in principle, should
also be applicable to the non-conforming method.)

The exact solution u is unknown and we proceed similarly as in [8] to calculate an upper bound
for the error in the semi-norm |u − uh|H1/2(Γ,Th). There holds

a(u − uh, u − uh) ≥ C|u − uh|
2
H1/2(Γ,Th).

Since u and uh solve (1) and (21), respectively, one finds that

a(u − uh, u − uh) = a(u, u) − 2a(u, uh) + a(uh, uh) = 〈Wu, u〉 + 〈f, uh〉 − 2a(u, uh).

Integration by parts (cf. [8, Lemma 4.2]) proves

a(u, uh) = 〈V curlu, curlhuh〉 =
∑

T∈Th

(〈Wu, uh〉T − 〈t · V curlu, uh〉∂T )

= 〈Wu, uh〉 −
∑

e∈Eh

〈t · V curl u − µh, [uh]〉e ∀µh ∈ Mh.

Here, we made use of the integral-mean-zero property of the Crouzeix–Raviart elements on the
edges and [uh] is the trace of uh|T onto e if e ⊂ ∂T ∩ ∂Γ. Therefore, we obtain by also using the

13



approximation property (20) together with V curlu ∈ H1−ǫ(Γ) (see [8])

|u − uh|
2
H1/2(Γ,Th)

. |〈Wu, u〉 − 〈f, uh〉| + 2 inf
µh∈Mh

(∑

e∈Eh

‖t · V curlu − µh‖
2
0,e

)1/2(∑

e∈Eh

‖[uh]‖
2
0,e

)1/2

. |〈Wu, u〉 − 〈f, uh〉| + h1/2−ǫ‖V curlu‖1−ǫ,∼,Γ

(∑

e∈Eh

‖[uh]‖
2
0,e

)1/2

∀ǫ > 0.

That is, for ǫ > 0 there holds

|u − uh|H1/2(Γ,Th) . |〈Wu, u〉 − 〈f, uh〉|
1/2 + C(ǫ) h1/4−ǫ

(∑

e∈Eh

‖[uh]‖
2
0,e

)1/4

(22)

with C(ǫ) = ‖V curlu‖1−2ǫ,∼,Γ. The terms 〈f, uh〉 and ‖[uh]‖0,e can be easily calculated and we
approximate 〈Wu, u〉 by an extrapolated value that we denote by ‖u‖2

ex (cf. [7]). Therefore, instead
of the relative error ‖u − uh‖H1/2(Γ,Th)/‖u‖1/2,∼,Γ, we present results for the terms on the right-hand
side of (22), normalised by ‖u‖ex.

The results are presented in Figure 3 in a double-logarithmic scale, and are plotted versus h. The
curve (1) represents the values of |〈Wu, u〉−〈f, uh〉|

1/2 (normalised by ‖u‖ex) and (2) gives the values

of h1/4
(∑

e∈Eh
‖[uh]‖

2
0,e

)1/4

(again normalised) measuring the jumps of the approximation. The curve

(2) is parallel to the line h1/2 which is also given, and the curve (1) is of higher order in this range of
unknowns. Therefore, the theoretical result of about O(h1/2)-convergence of the Crouzeix–Raviart
boundary element method is confirmed. Moreover, the errors are dominated by the jumps of the
discontinuous approximations. For comparison, we also give the normalised H̃1/2(Γ)-errors of the
conforming boundary element method which also behave like O(h1/2).

A A fractional order discrete Poincaré–Friedrichs

inequality

The following result is central to the proof of our main theorem (Theorem 2). It is a discrete
Poincaré–Friedrichs inequality in fractional order Sobolev spaces. A corresponding result for the
integer order space H1 has been proved by Brenner [2, Theorem 5.1].

Theorem 8 There hold

‖v‖2
0,Γ . ǫ−1|v|21/2+ǫ,Th

+
∑

e∈Eh

h−1−2ǫ
e

∣∣∣
∫

e

[ v ]
∣∣∣
2

+
∣∣∣
∫

Γ

v
∣∣∣
2

∀v ∈ H1/2+ǫ(Th), ∀ǫ ∈ (0, 1/2)

and

‖v‖0,Γ . ‖v‖h ∀v ∈ Hh.
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Figure 3: Relative error curves (normalised by ‖u‖ex): (1) |‖u‖ex − 〈f, uh〉|
1/2, (2)

h1/4
(∑

e∈Eh
‖[uh]‖

2
0,e

)1/4

, (3) error in H̃1/2(Γ) for conforming BEM.

Our proof follows closely the steps of Brenner [2] who considered piecewise H1-functions. First
let us collect some technical results.

Consider the interpolant I : H1(Th) → Vh defined by

(Iv)(me) :=
1

he

∫

e

{v},

me being the midpoint of e and {v} being the average of the values of v approaching e from the
triangles sharing e. Also, let Π : H1(Th) → Hh be defined triangle by triangle as

(ΠT v)(me) :=
1

he

∫

e

v|T .

Note that there holds

(Iv − Πv)|T (me) =
1

2he

∫

e

[ v ].

Lemma 9 For all ǫ ∈ (0, 1/2), v ∈ H1/2+ǫ(Th) and T ∈ Th,

|Iv − Πv|21/2+ǫ,T .
∑

e∈E(T )

h−1−2ǫ
e

∣∣∣
∫

e

[ v ]
∣∣∣
2

, (23)
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‖Iv − Πv‖2
0,T .

∑

e∈E(T )

∣∣∣
∫

e

[ v ]
∣∣∣
2

, (24)

‖v − Πv‖2
0,T . ǫ−1h1+2ǫ

T |v|21/2+ǫ,T , (25)

|Πv|21/2+ǫ,T . ǫ−1|v|21/2+ǫ,T . (26)

Proof. It is a simple transformation to the reference triangle. For e ∈ E(T̂ ) let N̂e be the basis
function of the Crouzeix–Raviart element associated with the edge e of the reference triangle. Let
FT : T̂ → T be an affine bijection. Then

2 (Iv − Πv)|T ◦ FT =
∑

e∈E(T )

(
h−1

e

∫

e

[ v ]
)
N̂e

so that, by (14),

|Iv − Πv|21/2+ǫ,T ≈ h1−2ǫ
T |(Iv − Πv) ◦ FT |

2
1/2+ǫ, bT

. h1−2ǫ
T h−2

T

∑

e∈E(T )

∣∣∣
∫

e

[ v ]
∣∣∣
2

max
e∈E( bT )

|N̂e|
2
1/2+ǫ, bT

.

By interpolation we see that
|N̂e|1/2+ǫ, bT . ‖N̂e‖1, bT . 1,

and the first bound is proved. For the second bound we apply exactly the same ideas to obtain

‖Iv − Πv‖2
0,T ≈ h2

T‖(Iv − Πv) ◦ FT‖
2
0, bT

.
∑

e∈E(T )

∣∣∣
∫

e

[ v ]
∣∣∣
2

.

Let v̂ := v ◦ FT and

c :=
1

|T̂ |

∫

bT

v̂.

Then, shortening Π̂ := ΠbT and using (16) and (17), we prove that

‖v̂ − Π̂v̂‖0, bT ≤ ‖v̂ − c‖0, bT + ‖Π̂(v̂ − c)‖0, bT

. ‖v̂ − c‖0, bT + ‖v̂ − c‖0,∂ bT

. |v̂|1/2+ǫ, bT + ǫ−1/2|v̂|1/2+ǫ, bT .

Now (25) follows from a transformation to the reference triangle:

‖v − Πv‖2
0,T . h2

T‖v̂ − Π̂v̂‖2
0, bT

. ǫ−1h2
T |v̂|

2
1/2+ǫ, bT

. ǫ−1h1+2ǫ
T |v|21/2+ǫ,T .

On the other hand, by (17)

|Π̂v̂|1/2+ǫ, bT = |Π̂(v̂ − c)|1/2+ǫ, bT . ‖v̂ − c‖0,∂T . ǫ−1/2|v̂|1/2+ǫ, bT .
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Therefore, transforming to the reference triangle proves

|Πv|21/2+ǫ,T ≈ h1−2ǫ
T |Π̂v̂|2

1/2+ǫ, bT
. ǫ−1h1−2ǫ

T |v̂|2
1/2+ǫ, bT

≈ ǫ−1|v|21/2+ǫ,T ,

which is (26). ¤

Lemma 10 For all ǫ ∈ (0, 1/2) and v ∈ H1/2+ǫ(Th),

|Iv|21/2+ǫ,Th
. ǫ−1|v|21/2+ǫ,Th

+
∑

e∈Eh

h−1−2ǫ
e

∣∣∣
∫

e

[ v ]
∣∣∣
2

, (27)

‖v − Iv‖2
0,Γ . ǫ−1h1+2ǫ|v|21/2+ǫ,Th

+
∑

e∈Eh

∣∣∣
∫

e

[ v ]
∣∣∣
2

. (28)

Moreover, for v ∈ Hh,

|Iv|21/2,Th
. |v|21/2,Th

+
∑

e∈Eh

h−1
e

∣∣∣
∫

e

[ v ]
∣∣∣
2

, (29)

‖v − Iv‖2
0,Γ .

∑

e∈Eh

∣∣∣
∫

e

[ v ]
∣∣∣
2

. (30)

Proof. By adding and subtracting Πv, (27) is a straightforward consequence of (23) and (26). To
prove (28), add and subtract again Πv, and use (24) and (25) to derive the required bound. Estimates
(29) and (30) are analogously proved by noting that (23) and (24) hold also for ǫ = 0. Moreover,
since Πv = v for any v ∈ Hh, (25) and (26) are not needed.

¤

Let Wh be the space of continuous P2 finite elements on Th. Let Eh : Vh → Wh be the interpolation
operator that takes values at midpoints of sides and average values at vertices where the average at
a node is calculated by taking the values of the function there from the surrounding triangles.

Lemma 11 For all r ∈ (0, 1),

‖Ehvh − vh‖
2
0,Γ .

∑

T∈Th

h2r
T |vh|

2
r,T ∀vh ∈ Vh. (31)

‖Ehvh‖0,Γ ≈ ‖vh‖0,Γ ∀vh ∈ Vh. (32)

|Ehvh|r,Γ . |vh|r,Th
∀vh ∈ Vh, (33)

with omitted constants being independent of r.

Proof. Bound (31) follows from Lemma 3.2 in [2] with element-wise inverse inequalities. From (31)
and further applications of inverse inequalities we obtain

‖Ehvh‖0,Γ . ‖vh‖0,Γ ∀vh ∈ Vh. (34)
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Let then Fh : Wh → Vh be the interpolation operator that takes values only on midpoints of the
sides. Note that FhEh = I in Vh. Then, similarly as before,

‖Fhwh − wh‖
2
0,Γ .

∑

T∈Th

h2r
T |wh|

2
r,T ∀wh ∈ Wh

and
‖Fhwh‖0,Γ . ‖wh‖0,Γ ∀wh ∈ Wh. (35)

To see the reverse bound in (32) we use the fact that vh = FhEhvh and apply (35).
Corollary 3.3. in [2] proves that

|Ehvh|1,Γ . |vh|1,Th
∀vh ∈ Vh.

Then, (33) follows by interpolation between this inequality and (34). ¤

To shorten some forthcoming expressions let us denote

Φ(v) :=
∣∣∣
∫

Γ

v
∣∣∣.

Proposition 12 For all r ∈ (0, 1)

‖vh‖0,Γ . |vh|r,Th
+ Φ(vh) ∀vh ∈ Vh. (36)

Proof. Making use of the Poincaré–Friedrichs inequality

‖v‖0,Γ ≤ C
[
|v|1,Γ + Φ(v)

]
∀v ∈ H1(Γ)

we find by interpolation that

‖v‖0,Γ ≤ C ′

[
|v|r,Γ + Φ(v)

]
∀v ∈ Hr(Γ), ∀r ∈ (0, 1). (37)

By (31) there holds

Φ(Ehvh − vh) . ‖Ehvh − vh‖0,Γ . hr|vh|r,Th
∀vh ∈ Vh. (38)

Therefore, applying successively (32), (37), (33) and (38), one verifies that

‖vh‖0,Γ . ‖Ehvh‖0,Γ . |Ehvh|r,Γ + Φ(Ehvh)

. |vh|r,Th
+ Φ(vh) + Φ(Ehvh − vh) . |vh|r,Th

+ Φ(vh)

¤
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Proof of Theorem 8. By (36), the triangular inequality and the fact that Φ(v) . ‖v‖0,Γ, it follows
that, for ǫ ∈ [0, 1/2),

‖v‖0,Γ . ‖v − Iv‖0,Γ + |Iv|1/2+ǫ,Th
+ Φ(Iv)

. ‖v − Iv‖0,Γ + |Iv|1/2+ǫ,Th
+ Φ(v).

The first assertion of the theorem is now a straightforward consequence of (27) and (28). Recalling
the definition

‖v‖2
h = |v|21/2,Th

+
∑

e∈Eh

h−1
e

∣∣∣
∫

e

[ v ]
∣∣∣
2

+
∣∣∣
∫

Γ

v
∣∣∣
2

the second assertion is consequence of (29) and (30). ¤
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