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Outline

Objective Extension of the dPG technology to solve nonlinear problems

Ù Analysis of a nonlinear mixed penalized problem
Ù Approximation using broken test space and a priori error analysis
Ù Application to a strongly monotone problem, numerical experiment
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Least-square formulation

• (U , ||·||U ) and (V , ||·||V ) two reflexive Hilbert spaces
• A : U → V ′ a continuous operator and R : V → V ′ the Riesz map
• F ∈ V ′ a source term

Abstract problem

u ∈ U : 〈Au, v〉V ′,V = 〈F , v〉V ′,V ∀v ∈ V . (1)

Least-square formulation

u ∈ U : 〈Au,R−1Aw〉V ′,V = 〈F ,R−1Aw〉V ′,V ∀w ∈ U . (2)

Ù If A∗ is injective (linear or not), then (1) ⇔ (2)
Ù If A is linear and A∗ is surjective, (2) is well-posed
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Practical Least-square approximation
The dPG method

Conforming approximation Uh ⊂ U and Vh ⊂ V
Discrete operators Ah : Uh → V ′h and Rh : Vh → V ′h
Discrete leasts-square problem

uh ∈ Uh : 〈Ahuh,R−1
h Ahvh〉 = 〈Fh,R−1

h Ahvh〉 ∀vh ∈ Uh (3)

Discrete well-posedness
Assume that • A is linear and A∗ is surjective
• There is Π ∈ L(V ,Vh) such that

〈Ahwh, v −Πv〉 = 0 for all (wh, v) ∈ Uh×V

Then, (3) is well-posed and ||uh||Uh . ||Fh||V ′h .

♠ Computing R−1
h : Vh → V ′h amounts to inverse a Gramm matrix....

dPG method :
LS formulation (3) using discontinuous test spaces

Vh = ×
K∈Ωh

Vh(K )
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Penalized mixed formulation
♠ If A is nonlinear (and so as Ah), the LS/dPG technologies are not competitive

Let B : U → V ′ and C : U → U ′ such that
• B is linear continuous
• C is nonlinear continuous
• A(u) = F in V ′ ⇔ Bu = FV in V ′ and C (u) = FU in U ′

Equivalent formulations
(

C B∗
B −R

)(
u
v

)
=
(

FU
FV

)
⇔

{
Bu − Rv = FV

B∗R−1Bu + C (u) = B∗R−1FV + FU

Assume that • B is surjective and • C (u) = FU in N (B)′ ⇒ C (u) = FU in U ′(
C B∗
B −R

)(
u
v

)
=
(

FU
FV

)
⇔

{
Bu = FV , C (u) = FU

v = 0
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Penalized mixed formulation
• Let FU ∈ U ′, FV ∈ V ′ and κ > 0.

(u, v) ∈ U×V :
(

C B∗
B −κ−1R

)(
u
v

)
=
(

FU
FV

)
∈ U ′×V ′ (4)

Well-posedness
Assume that • B is surjective
• for all u1, u2 ∈ U ,

||PB(u1 − u2)||2U . 〈C (u1)− C (u2), u1 − u2〉+ ||B(u1 − u2)||2V ′ , (5)

Then, for all κ > 0 large enough, (4) is well-posed and (u, v) ∈ U×V satisfies

||u||U . ||FU + κB∗R−1FV ||U ′ , ||v||V ≤ κ||Bu − FV ||V ′

- Assumption (5) means in particular that C is strongly monotone on N (B)
- If C is linear, auto-adjoint and (u, v) solves (4), then

u = argminv∈U 〈C (v), v〉 − 2〈FU , v〉+ κ〈R−1(Bv − FV ),Bv − FV 〉
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Conforming approximation
Conforming approximation Uh ⊂ U and Vh ⊂ V
Discrete operators Bh : Uh → V ′h, Ch : Uh → U ′h and Rh : Vh → V ′h
Discrete problem

(uh, vh) ∈ Uh×Vh :
(

Ch B∗h
Bh −κ−1Rh

)(
uh
vh

)
=
(

FUh

FVh

)
∈ U ′h×V ′h (6)

Discrete well-posedness
Assume that • B is surjective
• for all u1, u2 ∈ U ,

||PB(u1 − u2)||2U . 〈C (u1)− C (u2), u1 − u2〉+ ||B(u1 − u2)||2V ′ ,

• There is Π ∈ L(V ,Vh) such that

〈Bhwh, v −Πv〉 = 0 for all (wh, v) ∈ Uh×V

Then, for all κ > 0 large enough, (6) is well-posed and (uh, vh) ∈ Uh×Vh satisfies

||uh||Uh . ||FUh + κB∗hR−1
h FVh ||U ′h , ||vh||Vh ≤ κ||Bhuh − FVh ||V ′h
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A priori error estimate
Continuous and discrete problems (u, v) ∈ U×V and (uh, vh) ∈ Uh×Vh s.t.(

C B∗
B −R

)(
u
v

)
=
(

FU
FV

)
,

(
Ch B∗h
Bh −κ−1Rh

)(
uh
vh

)
=
(

FUh

FVh

)
Assume that • B is surjective
• for all u1, u2 ∈ U ,

||PB(u1 − u2)||2U . 〈C (u1)− C (u2), u1 − u2〉+ ||B(u1 − u2)||2V ′ ,

• There is Π ∈ L(V ,Vh) such that

〈Bhwh, v −Πv〉 = 0 for all (wh, v) ∈ Uh×V
• C is Lipschitz-continuous
• C (u) = FU in N (B)′ ⇒ C (u) = FU in U ′

Then, for all κ > 0 small enough,

||vh||Vh . ||u − uh||U . (1 + κ||B∗R−1
h B||L(U ,U ′)) inf

wh∈Uh
||u − wh||U .

with (u, 0) ∈ U×V and (uh, vh) ∈ Uh×Vh the exact and the discrete solution.
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A model problem

Objectives Consider this penalized mixed formulation to approximate the solution
of a strongly monotone problem using optimal broken test functions (dPG)

Advective field β : Ω→ Rd s.t. β ∈W 1,∞(Ω) and ess infΩ (−∇·β) ≥ 0
Diffusion tensor λ : R→ Rd×d s.t. for all σ,θ ∈ L2(Ω),

λ−1
] ||λ(|σ|)− λ(|θ|)||2L2(Ω) ≤ ||σ − θ||2L2(Ω)

≤ λ−1
[ (λ(|σ| − λ(|θ|),σ − θ)L2(Ω)

Well-posedness
Under the above assumptions, there exists an unique u ∈ H 1

0 (Ω) such that

−∇·(λ(|∇u|)∇u + βu) = f a.e. in Ω and u = 0 a.e. on ∂Ω.

Applications Nonlinear diffusion/filtration, image processing (Perona-Malik
diffusion), power-law materials, ...
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Linear very-weak formulation
• Formally, consider the linear/nonlinear decomposition

−∇·(λ(|∇u|)∇u + βu) = f � −∇·(ρ + βu) = f , σ = ∇u︸ ︷︷ ︸
:=B

, ρ = λ(|σ|)σ︸ ︷︷ ︸
:=C

• Linear surjective operator B : U → V ′ such that

〈Bu, v〉V ′,V = (u,β·∇v +∇·τ )L2(Ωh) + (ρ,∇v)L2(Ωh) + (σ, τ )L2(Ω)

− 〈ρ̂, γ(v)〉∂Ωh − 〈γn(τ ), û〉∂Ωh

with u = (u,σ,ρ, û, ρ̂) ∈ U := L2(Ω)×L2(Ω)×L2(Ω)×H 1/2
00 (∂Ωh)×H−1/2(∂Ωh)

v = (v, τ ) ∈ V := H 1(Ωh)×H (div; Ωh) (Broken spaces)

Equivalent formulations

Bu = f̃ ⇔

{
u ∈ H 1

0 (Ω), ρ ∈ H (div; Ω)
−∇·(ρ + βu) = f , σ = ∇u, û = γ(u), ρ̂ = γn(ρ + βu)
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Nonlinear penalty operator
• Linear surjective operator B : U → V ′ such that
〈Bu, v〉V ′,V = (u,β·∇v +∇·τ )L2(Ωh) + (ρ,∇v)L2(Ωh) + (σ, τ )L2(Ω)

− 〈ρ̂, γ(v)〉∂Ωh − 〈γn(τ ), û〉∂Ωh

• Nonlinear penalty operator C : U → U ′ such that

〈C (u),w〉U ′,U = (λ(|σ|)σ − ρ, αλ[θ − η)L2(Ω) , α > 0

with u = (u,σ,ρ, û, ρ̂) ∈ U := L2(Ω)×L2(Ω)×L2(Ω)×H 1/2
00 (∂Ωh)×H−1/2(∂Ωh)

w = ( · ,θ,η, · , · ) ∈ U

Well-posedness properties (I)
(i) C : U → U ′ is Lipschitz-continuous
(ii) Assume that α > (λ]/λ[)2, then for all u,w ∈ U ,

||PB(u −w)||2U . 〈C (u)− C (w),u −w〉+ ||B(u −w)||2V ′
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Nonlinear penalty operator

Well-posedness properties (II)
(iii) For all u ∈ U , C (u) = 0 in N (B)′ ⇒ C (u) = 0 in U ′

Sketch of the proof
• We have N (B) = E(H 1

0 (Ω)×H ) with H := {η ∈ H (div; Ω)|∇·η = 0} and

E(ψ,η) = (ψ,∇ψ,η − βψ, γ(ψ), γn(η))

• Then, testing C (u) = 0 with E(0,η) and E(ψ, 0) yield successively
– Using the orthogonal decomposition L2(Ω) = ∇H 1

0 (Ω)⊕H

〈C (u),E(0,η)〉 = (λ(|σ|)σ − ρ,η)L2(Ω) = 0 ⇒
{
there is ϕ ∈ H 1

0 (Ω)
∇ϕ = λ(|σ|)σ − ρ

– Using Lax-Milgram Th. and assumption ess infΩ (−∇·β) ≥ 0

〈C (u),E(ψ, 0)〉 = (∇ϕ, αλ[∇ψ + βψ)L2(Ω) = 0 ⇒ ϕ = 0
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Penalized mixed formulation

〈C (u),w〉U ′,U = (λ(|σ|)σ − ρ, αλ[θ − η)L2(Ω)

〈Bu, (v, τ )〉V ′,V = (u,β·∇v +∇·τ )L2(Ωh) + (σ, τ )L2(Ω) + (ρ,∇v)L2(Ωh)

− 〈γn(τ ), û〉∂Ωh − 〈ρ̂, γ(v)〉∂Ωh

Continuous problem Find u ∈ U such that
〈C (u),w〉+ κ〈Bu,R−1Bw〉 = κ〈F ,R−1Bw〉, ∀w ∈ U

• Well-posed in U for all κ > 0 large enough
• Problem equivalent to our model problem

Discrete problem Find uh ∈ U h such that
〈Ch(uh),wh〉+ κ〈Bhuh,R−1

h Bhwh〉 = κ〈Fh,R−1
h Bhwh〉, ∀wh ∈ U h

• Well-posed in U h for all κ > 0 large enough
• Satisfying the quasi-optimal a priori error estimate

||u − uh||U . (1 + κ) inf
wh∈Uh

||u − wh||U
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Numerical experiment
Low-order scheme

• Pd
k (Ωh) : Ωh-piecewise d-variate polynomials of degree k

• P1
1,0(∂Ωh) ⊂ P1

1(∂Ωh) the largest subspace s.t. γ(P1
1,0(∂Ωh)) ⊂ H 1/2

00 (∂Ωh)

Discrete trial and test spaces

U h = P1
0(Ωh)×P2

0(Ωh)×P2
0(Ωh)×P1

1,0(∂Ωh)×P1
0(∂Ωh)

V h = P1
2(Ωh)×P2

2(Ωh)

Conforming approximation
• Uh ⊂ U = L2(Ω)×L2(Ω)×L2(Ω)×H 1/2

00 (∂Ωh)×H−1/2(∂Ωh)
• Vh ⊂ V = H 1(Ωh)×H (div; Ωh)

Fortin operator
Assume that β ∈ P2

0(Ωh). Then, there is Π ∈ L(V ,Vh) such that

〈Bhwh, v −Πv〉 = 0 for all (wh, v) ∈ U h×V
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Numerical experiment
Exact solution u(x, y) = cos(πx/2) cos(πy/2) in Ω = [−1, 1]2

Physical parameters β(x, y) = (y,−x) and λ(|∇u|) = 2− (1 + |∇u|)−2

Mesh Uniform refinement of a triangular mesh

101 102 103 104

10−2

10−1

100

1

dim(Uh)

||u − uh||L2(Ω)

||σ − σh||L2(Ω)

||ρ− ρh||L2(Ω)

||û − ûh||H1/2
00 (∂Ωh)

||ρ̂− ρ̂h||H−1/2(∂Ωh)

Ù Expected behavior ||u − uh||U = O(h)
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Thank you for your attention

• P. Cantin & N. Heuer, 2018
"A DPG framework for strongly monotone operators", available on HAL.
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