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Outline

Objective Extension of the dPG technology to solve nonlinear problems

=> Analysis of a nonlinear mixed penalized problem
=>  Approximation using broken test space and a priori error analysis

=>  Application to a strongly monotone problem, numerical experiment
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Least-square formulation

o (U,|lv) and (V, ]| v) two reflexive Hilbert spaces
e A: U — V' acontinuous operator and R: V — V' the Riesz map

e ['c V' a source term

Abstract problem
vwe U : <A’U,,'U>V/7V: <F, U>V’,V Yve V. (1)

Least-square formulation

we U : (Au,R'Aw)viy = (F, R Aw) vy Ywe U, (2)
= If A* is injective (linear or not), then (1) < (2)
= If A is linear and A* is surjective, (2) is well-posed J
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Practical Least-square approximation
The dPG method

Conforming approximation U, C U and V;, C V
Discrete operators Ay, : Uy, — V] and Ry, : Vj, — V]

Discrete leasts-square problem

up, € Uy <Ahuh, R,:lAhvh> = <Fh,R;1Ahvh> Yo, € Uy, (3)

Assume that e A is linear and A* is surjective
e There is IT € L(V, V},) such that

(Apwp,v—TIv) =0 for all (wp,v) € UpxV

Then, (3) is well-posed and |up| v, < |Fnlv;.

# Computing R; ' : V;, — V} amounts to inverse a Gramm matrix....
LS formulation (3) using discontinuous test spaces
Vi = X Vi(K)

KeQy,
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Penalized mixed formulation

& If A is nonlinear (and so as A},), the LS/dPG technologies are not competitive

Let B: U — V' and C: U — U’ such that

e B is linear continuous
e (' is nonlinear continuous
e Aluy=FinV' & Bu=Fyin V' and C(u)=Fy in U’

5 )06 - w72
B —-RJ\v) \Fy B*R™'Bu+ C(u) =B*R'Fy+ Fy

Assume that e B is surjective and e C(u) = Fy in N(B) = C(u) = Fy in U’

(5 50~ (3) ey oo
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Penalized mixed formulation

elet Fiyec U, Fyy € V' and k > 0.
) C B* u\ (Fy , ,
wevr « (§ BN () -()erer @

Assume that e B is surjective

e for all uy,up € U,

|P5(u1 — w)f S {Cw) = C(wa), ur — w2) + [ B(wr — w)|3,  (5)
Then, for all k> 0 large enough, (4) is well-posed and (u,v) € Ux V satisfies
lulo S 1Fy +&B*R™' Fylv, |olv < klBu—Fylv

- Assumption (5) means in particular that (' is strongly monotone on A/ (B)
- If C'is linear, auto-adjoint and (u, v) solves (4), then

u = argmin,c ;(C(v),v) — 2(Fy,v) + k(R (Bv — Fy), B — Fy)
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Conforming approximation

Conforming approximation U, C U and V;, C V
Discrete operators By, : U, — Vi, C, : Uy, — Uj and Ry, : V), — V],

Discrete problem

C B} U F
(uh,vh) (S UhX Vh : (BZ —H_}lth> (’U:) = <F€'Z> (S U;ILX V;’l (6)

Assume that e B is surjective

e for all uy,up € U,
|PE(u — w)|y S (Clu) = Cluz), wa — uz) + | Blur — w) [},
e There is IT € L(V, V},) such that
(Bpwp, v —Iv) = 0 for all (wp,v) € UpxV
Then, for all k > 0 large enough, (6) is well-posed and (up, v,) € UpXx V}, satisfies

lunlv, S 1Fu, + £Bi Ry Fy,luzs lonlv, < &lBrun — Fy, v,
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A priori error estimate

Continuous and discrete problems (u,v) € UxV and (up, vn) € UpXx V}, s.t.

C B* uw\ (Fu Ch By up\ _ (Fu,
B —R v Fyv )’ By, —n_th Up, o th
Assume that e B is surjective
e for all uy, us € U,

|Po(ur — u2) | S (Clw) — Cluz), wr — uz) + [ B(wr — )|,
e There is IT € L(V, V},) such that
(Bpwp, v —v) = 0 for all (wp,v) € UpxV
e (' is Lipschitz-continuous
o C(u)=FyinN(B) = C(u)=Fyin U
Then, for all £ > 0 small enough,

lonlvi, S lw = unlv S (1 + KIB* R Ble(u,vr)) Jnf Ju—wnfv.
h h

with (u,0) € UxV and (up, vs) € Up X V), the exact and the discrete solution.

v
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A model problem

Objectives Consider this penalized mixed formulation to approximate the solution
of a strongly monotone problem using optimal broken test functions (dPG)

Advective field B:Q —R%st. € WH(Q) and ess infg (—=V-8) >0
Diffusion tensor A : R — R%*? st for all o,8 € L*(9),

A Ao - A(0D172(0) < lo = 61720
<A (Al = A(16]), 0 — 0) 12

Well-posedness

Under the above assumptions, there exists an unique u € Hg () such that

—V-A(|Vu|)Vu+Bu)=f ae. inQ and u=0 a.e. ondQ.

Applications Nonlinear diffusion /filtration, image processing (Perona-Malik
diffusion), power-law materials, ...
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Linear very-weak formulation
e Formally, consider the linear/nonlinear decomposition

V- A(Vu)Vu+Bu)=f » —V:(p+pu)=f, 0 =Vu, p=2Xol)o
=B =C

e Linear surjective operator B: U — V' such that

(Bu, ’U> VI,V = (u7 ,BVU + V'T)Lz(ﬂh) + (p, VU)LZ(Qh) + (O', T)LZ(Q)
- <ﬁ”7(v)>89h — (Yn(T), ﬂ)aﬂh

with u = (u,0,p, @, p) € U := L*(Q)x L*(Q) x L*(Q) x Hy*(0Q,) x H~/2(9,)
v=(v,7) € V:=H"(Q,)xH(div;Q,) (Broken spaces)

Bu=} o JUSH@),pcH{dvQ)
—V-(p+Bu)=f, 0 =Vu, i=(u), p=alp+ Bu)
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Nonlinear penalty operator

e Linear surjective operator B: U — V' such that
(Bu,v)v v = (4, BV +VT) 120 + (P, V) 120,y + (0, T) 120
- <P, ( )>39h - <7H(T)’ @>69h

e Nonlinear penalty operator C' : U — U’ such that

(Cu),w) o0 = (Ao])o — p.aXd — Mgy a>0

with u = (u,0,p, @, p) € U = L*(Q)x L*(Q) x L*(Q) x Hyl*(00,) x H /2 (0%,)
w = (‘707777 Ty ) eU

(i) C: U — U’ is Lipschitz-continuous
(i) Assume that o > (\./\,)?, then for all u,w € U,

|P5(u — w)|y < (Cu) = Clw), u — w) + [ B(u — w)|3,
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Nonlinear penalty operator

(iii) Forallu € U, C(u) =0in N(B) = C(u) =0in U’

Sketch of the proof
e We have NV (B) = E(H}(Q2)x H) with H := {n € H(div;2)|V-n = 0} and

e Then, testing C(u) = 0 with E(0,7n) and E(1),0) yield successively
— Using the orthogonal decomposition L?(Q) = VH{ (Q) & H

Vo =A(lo|)o —p
— Using Lax-Milgram Th. and assumption ess infq (—V-8) > 0
(C(u), E(1,0)) = (Vo,al VI + B1) 2y =0 = ¢ =0

(C(w), E(0,n)) = A(lol)o — p,n)paiqy =0 = {there is o € HL(Q)
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Penalized mixed formulation

(Clu), w)y v = (Alo])o — p,ard —n) 2
(Bu, (v, 7)) v, v = (4, BV+VT) 120y + (0, T) 12(0) + (P, VV) 2(q,)
= (1 (7), Waq, — (p,1(v))oe,
Continuous problem Find u € U such that
(C(u), w) + x(Bu, R Bw) = x(F,R"'Bw), Ywec U

e Well-posed in U for all k > 0 large enough
e Problem equivalent to our model problem

Discrete problem Find u;, € U}, such that
<C’h(uh), 'wh> + n(Bhuh, R;lBhwh> = H<Fh, R;lBh'wh% Ywy, € Uy,
e Well-posed in Uy, for all s > 0 large enough
e Satisfying the quasi-optimal a priori error estimate
lu—wn|v £ (1 +£) inf |u—wp|v
wp€ Up,
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Numerical experiment

Low-order scheme
o P{(2),) : Qp-piecewise d-variate polynomials of degree &
o P1 ((0Q4) C P1(99Q4) the largest subspace s.t. y(P] 4(9Q4)) C HY?(09)
Discrete trial and test spaces
Uy = Py(Q) x PG Q) xPF(Qn) xP] (0924) x PG (9,)
Vi = P3(2) xP5 ()

Conforming approximation
o Uy, C U = LX) xL*(Q) x L*(Q) x Hil 2 (090,) x H=1/2(09,)
eV, C V= Hl(ﬂh)XH(diV;Qh)

Assume that 3 € P3(€2;,). Then, there is IT € £L(V, V},) such that

(Brwp,v—Iv) =0 for all (wp,v) € UpxV
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Numerical experiment

Exact solution u(z, y) = cos(wx/2) cos(my/2) in Q = [—1,1]?

Physical parameters B(z,y) = (y, —z) and A\(|[Vu|) =2 — (1 + |Vu|)~2

Mesh Uniform refinement of a triangular mesh

100 7 | lu— wn|r2(0)
lo —onlz o
107! — | lp = Prlzz)
o= Wl 22 o,
102 — 16 = Prl 172 (00,)
R

dim(Ux)

= Expected behavior |u — uy|y = O(h)
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Thank you for your attention

e P. Cantin & N. Heuer, 2018
"A DPG framework for strongly monotone operators", available on HAL.
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