Funciones elípticas y la función \wp de Weiertrass

Fernando Herrera

May 1, 2020

En esta charla siempre consideraremos $\omega_1, \omega_2 \in \mathbb{C}$ linealmente independientes sobre \mathbb{R} .

1 Funciones elípticas

Definición. Un reticulado \mathfrak{L} es un subgrupo aditivo de \mathbb{C} que es generado por ω_1, ω_2 .

Escribimos $\mathfrak{L} = [\omega_1, \omega_2]$, luego $\mathfrak{L} = \{n\omega_1 + m\omega_2 \in \mathbb{C}/n, m \in \mathbb{Z}\}.$

Definición. Una función elíptica para \mathfrak{L} es una función f(z) definida en \mathbb{C} , excepto para singularidades aisladas, que satisface las siguientes dos propiedades:

- 1. f es meromorfa en \mathbb{C} ,
- 2. $f(z + \omega) = f(z)$, para todo $\omega \in \mathfrak{L}$.

Notar que si $\mathfrak{L} = [\omega_1, \omega_2]$, la segunda condición es equivalente a

$$f(z + \omega_1) = f(z + \omega_2) = f(z).$$

Entonces una función elíptica es una función meromorfa en \mathbb{C} , doblemente periódica. Los elementos de \mathfrak{L} son llamados periodos.

2 La función \wp de Weiertrass

Una de las funciones elípticas más importantes es la función \wp de Weiertrass, que se define como sigue: dado un complejo z que no está en el reticulado \mathfrak{L} , consideramos

$$\wp(z;\mathfrak{L}) = \frac{1}{z^2} + \sum_{\omega \in \mathfrak{L} - \{0\}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right). \tag{1}$$

En general si el reticulado $\mathfrak L$ está fijo, escribiremos $\wp(z)$ en vez de $\wp(z;\mathfrak L)$. Algunas propiedades de la función \wp para el reticulado $\mathfrak L$ son el siguiente teorema.

Teorema 1. 1. \wp es una función elíptica para \mathfrak{L} , sus singularidades son polos dobles en los elementos de \mathfrak{L} .

2. \wp satisface

$$\wp'(z)^2 = 4\wp(z)^3 - g_2(\mathfrak{L})\wp(z) - g_3(\mathfrak{L})$$

donde

$$g_2(\mathfrak{L}) = 60 \sum_{\omega \in \mathfrak{L} - \{0\}} \frac{1}{\omega^4}$$
$$g_3(\mathfrak{L}) = 140 \sum_{\omega \in \mathfrak{L} - \{0\}} \frac{1}{\omega^6}$$

3. \wp satisface

$$\wp(z+z_2) = -\wp(z) - \wp(z_2) + \frac{1}{4} \left(\frac{\wp'(z) - \wp'(z_2)}{\wp(z) - \wp(z_2)} \right)$$

 $si\ z, z_2, z + z_2 \notin \mathfrak{L}.$

Lema 1. Si \mathfrak{L} es un reticulado y r > 2 entonces

$$G_r(\mathfrak{L}) = \sum_{\omega \in \mathfrak{L} - \{0\}} \frac{1}{\omega^r}$$

 $converge\ absolutamente.$

Dem: Para $\mathfrak{L} = [\omega_1, \omega_2]$ necesitamos mostrar que la serie

$$\sum_{\omega \in \mathfrak{L} - \{0\}} \frac{1}{|\omega|^r} = \sum_{n,m \in \mathbb{Z}} \frac{1}{|n\omega_1 + m\omega_2|^r}$$

converge. Denotamos $M=\min\{|x\omega_1+y\omega_2|/x^2+y^2=1\}$, luego $\forall x,y\in\mathbb{R}$

$$|x\omega_1 + y\omega_2| \ge M\sqrt{x^2 + y^2}$$

entonces

$$\sum_{n,m \in \mathbb{Z}} ' \frac{1}{|n\omega_1 + m\omega_2|^r} \leq \frac{1}{M^r} \sum_{n,m \in \mathbb{Z}} ' \frac{1}{(n^2 + m^2)^{r/2}}.$$

Esta última serie se puede acotar por la serie doble

$$\int \int_{x^2+y^2>1} \frac{1}{(x^2+y^2)^{r/2}} dx dy$$

la cual es convergente cuando r>2 terminando la demostración del lema.

Ahora podemos mostrar que \wp es holomorfa en $\mathbb{C} - \mathfrak{L}$. A saber, sea Ω un compacto de $\mathbb{C} - \mathfrak{L}$, es suficiente con mostrar que la serie en (1) converge absoluta y uniformemente en Ω . Tomamos un real R tal que $|z| \leq R$ para todo $z \in \Omega$. Además consideramos los $\omega \in \mathfrak{L}$ que satisfacen $|\omega| \geq 2R$. Entonces $|z - \omega| \geq \frac{1}{2} |\omega|$ y se puede ver

$$\left| \frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right| = \left| \frac{z(2\omega - z)}{\omega^2 (z-\omega)^2} \right| \le \frac{R(2|\omega| + \frac{1}{2}|\omega|)}{|\omega|^2 (\frac{1}{4}|\omega|^2)} = \frac{10R}{|\omega|^3}.$$

Ya que los periodos de la desigualdad $|\omega| \ge 2R$ son todos excepto una cantidad finita de \mathfrak{L} , usando lema 1 tenemos que la serie de la función \wp converge absoluta y uniformemente en Ω . Usando lema de análisis complejo obtenemos \wp es holomorfa en $\mathbb{C} - \mathfrak{L}$ y tiene un polo doble en el origen.

Notar que la función \wp es par, pues $(-z-\omega)^2=(z-(-\omega))^2$ y la serie es absolutamente convergente. Ahora mostramos que \wp es periódica. Comenzamos considerando la derivada de la serie de \wp , obteniendo

$$\wp'(z) = -2\sum_{\omega \in \mathfrak{L}} \frac{1}{(z-\omega)^3}.$$

Usando la misma idea anterior, esta serie converge absoluta y uniformemente sobre conjuntos compactos de $\mathbb{C} - \mathfrak{L}$, se sigue que \wp' es una función elíptica para \mathfrak{L} . Digamos $\mathfrak{L} = [\omega_1, \omega_2]$. Ya que \wp' es periódica, las funciones $\wp(z)$ y $\wp(z + \omega_i)$ tienen la misma derivada luego difieren por una constante, digamos $\wp(z) = \wp(z+\omega_i)+C$. Evaluando esta igualdad en $z = -\omega_i/2$ (que no pertenece a \mathfrak{L}) obtenemos

$$\wp(-\omega_i/2) = \wp(-\omega_i/2 + \omega_i) + C = \wp(\omega_i/2) + C.$$

Ya que \wp es par, C tiene que ser nula, entonces \wp es periódica. Además, ya que \wp tiene un polo de orden dos en el origen, se concluye que \wp tiene polos dobles en cada punto de \mathfrak{L} . Hemos probado la primera afirmación.

Para mostrar la segunda aseveración del teorema, primero calculamos la serie de Laurent de \wp en el origen.

Lema 2. Sea $\wp(z;\mathfrak{L})=\wp(z)$ la función de Weiertrass para el reticulado \mathfrak{L} . Entonces en una vecindad del origen tenemos

$$\wp(z) = \frac{1}{z^2} + \sum_{n=1}^{\infty} (2n+1)G_{2n+2}(\mathfrak{L}) z^{2n}$$

Dem: Para |x| < 1 consideramos la expansión

$$\frac{1}{(1-x)^2} = 1 + \sum_{n=1}^{\infty} (n+1)x^n.$$

Si $|z| < |\omega|$, entonces ponemos $x = z/\omega$ en la última serie y se tiene

$$\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} = \sum_{n=1}^{\infty} \frac{n+1}{\omega^{n+2}} z^n.$$

Luego sumando sobre $\mathfrak{L} - \{0\}$ tenemos

$$\wp(z) = \frac{1}{z^2} + \sum_{\omega \in \mathfrak{L} - \{0\}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right) = \frac{1}{z^2} + \sum_{\omega \in \mathfrak{L} - \{0\}} \sum_{n=1}^{\infty} \frac{n+1}{\omega^{n+2}} z^n = \frac{1}{z^2} + \sum_{n=1}^{\infty} (n+1) G_{n+2}(\mathfrak{L}) z^n.$$

Ya que \wp es par, todos los coeficientes impares deben ser nulos, obteniendo lo propuesto en el lema. Del lema podemos ver que

$$\wp'(z) = \frac{-2}{z^3} + \sum_{n=1}^{\infty} 2n(2n+1)G_{2n+2}(\mathfrak{L})z^{2n-1},$$

y calculando los primeros términos de \wp^3 y \wp' vemos

$$\wp(z)^3 = \frac{1}{z^6} + \frac{9G_4(\mathfrak{L})}{z^2} + 15G_6(\mathfrak{L}) + \sum_{n=1}^{\infty} a_n z^n$$

$$\wp'(z)^2 = \frac{4}{z^6} - \frac{24G_4(\mathfrak{L})}{z^2} - 80G_6(\mathfrak{L}) + \sum_{n=1}^{\infty} b_n z^n.$$

Ahora consideramos la siguiente función

$$F(z) = \wp'(z)^2 - 4\wp(z)^3 + 60G_4(\mathfrak{L})\wp(z) + 140G_6(\mathfrak{L}).$$

Ya que \wp y \wp' son funciones elípticas, F también los es. Además, mirando las expansiones es fácil ver que F es holomorfa y se anula en el origen. Luego por la periodicidad, F se anula en todos los puntos de \mathfrak{L} . También ella es holomorfa en $\mathbb{C} - \mathfrak{L}$, finalmente F es entera. Por otra parte, las únicas funciones elípticas enteras son constantes (teorema de Liouville). Entonces en nuestro caso F es idénticamente cero. Recordando las definiciones de g_2 y g_3 vemos que $g_2(\mathfrak{L}) = 60G_4(\mathfrak{L})$ y $g_3(\mathfrak{L}) = G_6(\mathfrak{L})$ terminando con la demostración del segundo punto del teorema.

Para mostrar el tercer y último punto del teorema, veremos primero el siguiente lema.

Lema 3. Sean $z, z_2 \notin \mathfrak{L}$. Entonces $\wp(z) = \wp(z_2)$ si y sólo si $z \equiv \pm z_2 \mod \mathfrak{L}$.

Dem: Primero miramos la dirección más sencilla (\Leftarrow). La hipótesis $z \equiv \pm z_2 \mod \mathfrak{L}$ es equivalente a $z = \pm z_2 + l$, algún $l \in \mathfrak{L}$. Luego $\wp(z) = \wp(\pm z_2 + l) = \wp(\pm z_2) = \wp(z_2)$. Para la otra dirección (\Rightarrow), digamos $\mathfrak{L} = [\omega_1, \omega_2]$ y fijamos un número $-1 < \delta < 0$. Denotamos por $\mathbf{P} = \{s\omega_1 + t\omega_2/\delta \le s, t \le \delta + 1\}$ el paralelógramo y Γ su borde orientado positivamente. Notar que cualquier número complejo es congruente módulo \mathfrak{L} a un elemento en \mathbf{P} .

Fijamos z_2 y consideramos la función $f(z) = \wp(z) - \wp(z_2)$. Moviendo δ , si fuese necesario, podemos suponer que f no tiene ceros ni polos en Γ . Sabemos

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz = Z - P$$

donde Z y P es el número de ceros y polos de f en \mathbf{P} , respectivamente, contando multiplicidad. Ya que f'/f es periódica, las integrales opuestas en Γ se cancelan, y luego $\int_{\Gamma} f'(z)/f(z) dz = 0$. Esto dice que Z = P. Por otro lado, P es fácil conocerlo: mirando la definición de P, el origen es el único polo de f en \mathbf{P} ; es un polo doble y entonces Z = P = 2. Así f tiene dos ceros, contando multiplicidad, en \mathbf{P} . Ellos son $\pm z_2$.

Hay dos casos a estudiar: el primero es $z_2 \not\equiv -z_2 \mod \mathfrak{L}$, entonces módulo \mathfrak{L} , los representantes de z_2 y $-z_2$ en \mathbf{P} son dos puntos distintos. Como Z=2, ellos son los únicos ceros en \mathbf{P} con multiplicidad uno. En particular $\wp'(z_2) \not\equiv 0$. El segundo caso es $z_2 \equiv -z_2 \mod \mathfrak{L}$, es decir $2z_2 \in \mathfrak{L}$. Ya que \wp' es impar, tenemos

$$\wp'(z_2) = \wp'(z_2 - 2z_2) = \wp'(-z_2) = -\wp'(z_2)$$

lo cual obliga a $\wp'(z_2) = 0$. Entonces z_2 , módulo \mathfrak{L} , es un cero de f con multiplicidad al menos dos en \mathbf{P} , y ya que Z = 2 no hay más ceros. Esto prueba el lema.

Corolario 1. Sea $z \notin \mathfrak{L}$. Entonces $\wp'(z) = 0$ si y sólo si $2z \in \mathfrak{L}$.

Ahora demostramos el tercer y último punto del teorema. Fijamos $z_2 \notin \mathfrak{L}$ y definimos la siguiente función elíptica

$$G(z) = \wp(z+z_2) + \wp(z) + \wp(z_2) - \frac{1}{4} \left(\frac{\wp'(z) - \wp'(z_2)}{\wp(z) - \wp(z_2)} \right)^2.$$

Mostraremos que G es entera y nula en el origen, luego será idénticamente nula y obtendremos el tercer punto del teorema. Mirando el lema 3 es claro que las posibles singularidades de G vienen de

tres conjuntos: \mathfrak{L} , $\mathfrak{L} + \{z_2\}$ y $\mathfrak{L} + \{-z_2\}$. Por la periodicidad de G es suficiente considerar G(0), $G(z_2)$ y $G(-z_2)$. Comenzamos con G(0). Usando las expansiones de Laurent de \wp y \wp' , uno ve que

$$\frac{1}{4} \left(\frac{\wp'(z) - \wp'(z_2)}{\wp(z) - \wp(z_2)} \right)^2 = \frac{1}{4} \left(\frac{-2/z^3 - \wp'(z_2) + \dots}{1/z^2 - \wp(z_2) + \dots} \right)^2 = \frac{1}{z^2} + 2\wp(z_2) + \dots$$

donde ... significa que es una serie con potencias positivas de z. Luego

$$G(z) = \wp(z + z_2) + \frac{1}{z^2} + \wp(z_2) + \dots - \frac{1}{z^2} - 2\wp(z_2) - \dots,$$

obteniendo G(0) = 0.

Ahora estudiamos $G(z_2)$ y para simplificar el argumento, asumiremos que $2z_2 \notin \mathfrak{L}$. Amplificando por el factor $z-z_2$ en el cuociente tenemos

$$G(z_2) = \wp(2z_2) + 2\wp(z_2) - \frac{1}{4} \left(\frac{\wp''(z_2)}{\wp'(z_2)} \right)^2.$$

Ya que $2z_2 \notin \mathfrak{L}$, el corolario muestra que $\wp'(z_2) \neq 0$ y se deduce que $G(z_2)$ está definido. Ahora vamos con $G(-z_2)$ y para esto miramos algunas series de Laurent en $z=-z_2$:

$$\wp(z+z_2) = \frac{1}{(z+z_2)^2} + \dots$$

$$\wp(z) = \wp(-z_2) + \wp'(-z_2)(z+z_2) + \dots = \wp(z_2) - \wp'(z_2)(z+z_2) + \dots,$$

ahora ... significa potencia positivas de $z+z_2$. Usando que $\wp'(z_2) \neq 0$ y estas expansiones, es fácil ver que $G(-z_2)$ también está definido. Esto muestra que G es entera y que se anula en 0, luego G se anula en todo el plano complejo. El caso $2z_2 \in \mathfrak{L}$ lo dejamos al asistente motivado. Hemos demostrado el teorema.