
TATE ALGEBRAS

RICARDO MENARES

Abstract. These notes are intended to be a complement to section 1 of the notes by B. Conrad
[Con] on non-archimedean geometry. Most proofs are taken from [BGR84].
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1. Introduction

Let k be a field and let | · | : k → R≥0 be a non-trivial, ultrametric norm such that the
space (k, | · |) is complete. The unit disc R := {|x| ≤ 1} is a local ring, with maximal ideal

m = {|x| < 1}. We denote by k̃ := R/m the residue field.
It is a consequence of the ultrametric property that “all triangles are isosceles”, meaning that

for all x, y ∈ k such that |x| 6= |y|, we have that |x + y| = max{|x|, |y|}. This in turn implies
that R is a clopen1 set. Hence, there is a basis of the topology of k made of clopen sets, so k is
a totally disconnected topological space. This feature makes it non trivial to construct a useful
function theory on k. For instance, a naive definition of “analytic function” f : k → k would be
to ask f to admit an expansion as a convergent power series around every point. The function
f(x) = 1 if x ∈ R and f(x) = 0 if x /∈ R satisfies the naive definition but it’s clearly pointless
to call such a function analytic.

There are at least two, interrelated, solutions to this dilemma. Both solutions allow, more
generally, to build a theory of analytic geometry over non-arquimedean complete fields. We
may vaguely summarize them as follows:

1Closed and open
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• Put a coarser topology on k, such that the naive definition does not include functions
as the example above (Tate’s approach)
• Embed R in a bigger space which is locally connected (Berkovich’s approach)

The Tate algebra in n variables is

Tn(k) := {f(X) =
∑

J∈(Z≥0)n

aJX
J : aJ ∈ k, |aJ | → 0, |J | → ∞},

where for the multiindex J = (j1, . . . , jn) and X = (x1, . . . , xn) we define XJ :=
∏n
i=1 x

ji
i and

|J | := j1 + . . .+ jn. We will write Tn instead of Tn(k) if the underlying field is specified by the
context. Elements of Tn can be though of as convergent power series on the polydisk Rn. We
define the Gauss norm ‖ · ‖ : Tn → R≥0 by ‖f(X)‖ := max |aJ |. It is not difficult to check that
the Gauss norm is an ultrametric norm that endows Tn with a structure of complete k-vector
space.

Roughly speaking, the analytic functions we wish to consider are the elements of (a quotient
of) some Tate algebra, in analogy with the fact that regular functions of algebraic varieties are
elements of (a quotient of) some polynomial ring. In both approaches above the base space is
constructed from knowledge of the regular functions on it. Thus, it is not a surprise that in
both cases the spaces in question are constructed using ideas of Grothendieck.

This note is a complement to section 1 of the notes by B. Conrad [Con]. We provide proofs
for Theorem 1.1.5. and Theorem 1.2.6. of loc. cit. We have taken most of these proofs from
the book [BGR84].

This text is divided in two parts. In the first part we establish the basic ring theoretic prop-
erties of Tn (noetherianess, Jacobsoness and regularity, properties also enjoyed by polynomial
rings k[x1, . . . , xn]). Moreover, we will show that all ideals are closed, which allows the Gauss
norm to induce a Banach structure on quotients of Tn. The overall strategy to establish these
properties is to use induction on n. The device that will make this possible is the theory of
Weierstrass polynomials, based on the Weierstrass division theorem and the Weierstrass prepa-
ration theorem. Of course, the theory of Weierstrass polynomials was first established over the
complex numbers. The ring of holomorphic functions on a complex polydisk enjoys the same
ring-theoretic properties as Tn, and this fact can be proved following the same argument that
we will give below. Thus, the only difference between the ultrametric and arquimedean setting
is in the construction of the Weierstrass theory. In the complex setting this is classically done
using the Cauchy formula and Rouche’s theorem. For us, the main tool will be the reduction
morphism k → k̃.

The second part concerns the study of quotients of the Tate algebras, the so-called affinoid
algebras. These form a category analogous to the category of finite algebras over a field. In
particular, they satisfy a version of the Noether normalization lemma. On the other hand,
affinoid algebras are Banach spaces. Their analytic theory turns out to be quite simple. For
instance, all morphisms are continuous (implying that all complete norms are equivalent). There
is also a canonical seminorm | · |sup associated with any given affinoid algebra, that generalizes
the Gauss norm, satisfies a maximum principle and can be used to characterize power-bounded
elements.

In order to establish these properties of affinoid algebras, we need to combine tools from
dimension theory of commutative rings and notions such as the spectral norm and weakly
stable fields.

2. Basic theory of Tn

2.1. Properties of the Gauss norm. It is easy to check that ‖fg‖ ≤ ‖f‖‖g‖. In particular,

the set T 0
n := {‖f‖ ≤ 1} is a subring of Tn and the canonical morphism k → k̃ induces a

surjective ring homomorphism

(2.1) T 0
n → k̃[x1, . . . , xn]

which to a given f =
∑
aJX

J assigns the polynomial f̃ =
∑
ãJX

J .

Proposition 2.1. (1) For all f, g ∈ Tn, we have that ‖fg‖ = ‖f‖‖g‖.
(2) Let B = {(x1, . . . , xn) such that xi ∈ k̄ and |xi| ≤ 1}. Then we have that

(2.2) ‖f‖ = sup
X∈B

|f(X)|.

2



Proof : (1) By scaling with an appropiate element in k, we may assume ‖f‖ = ‖g‖ = 1. This

means that f̃ and g̃ are nonzero polynomials, whence f̃ g̃ is a nonzero polynomial, implying that
‖fg‖ = 1.

(2) Again we may suppose ‖f‖ = 1. Then we most exhibit some A ∈ B with |f(A)| = 1. We
have that

|f(X)| < 1 ⇐⇒ f̃(X̃) = 0.

Since f̃ is a nonzero polynomial and k̃ = k̃ is algebraically closed, there is some element a ∈ (k̃)n

such that f̃(a) 6= 0 (e.g. by Hilbert’s Nullstellensatz). Hence, we can take A to be any lifting
of a�

Remarks 2.1. (1) When the base field is not algebraically closed, the function induced by
a nonzero polynomial can be the zero function. Because of this, property (2) of the
Gauss norm is not true if k is not algebraically closed and we put k instead of k̄ in the
definition of B. For example, take k = Qp and f = xp − x.

(2) The proof shows that the supremum in (2.2) is actually a maximum and is reached at

the “boundary” {|xi| = 1, i = 1, . . . , n}. Moreover, since the subset of ˜̄k where f̃ does
not vanish is Zariski open, the set where |f | attains the maximum is quite big. For
example, if n = 1 and k̄ = k, we have that

R =
⊔
A

D0(A, 1),

where A runs trough a set of representatives of k̃ and D0(A, 1) = {x ∈ k : |x−A| < 1}.
Then the proof shows in this case that |f | is a constant, equal to the maximum, at all
but a finite number of the disks D0(A, 1). This can be used to give another proof of (1).

(3) Let I ⊂ Tn be an ideal. We will show in section 2.6 that I is closed. Hence, there is a
complete residue norm on K := Tn/I, given by

|f̄ |K := inf
h∈I
‖f + h‖.

The function |·|K is a submultiplicative norm such that the restriction to k is the original
norm | · |. However, | · |K need not be multiplicative, even if I is maximal. Here is an
example: let a ∈ k such that |a| < 1 and consider the ideal I = (x2 − a) ⊂ T1. Since
for all q ∈ T1, we have that ‖x+ (x2− a)q‖ = max{‖x‖, ‖x2− a‖‖q‖} (cf. Theorem 2.1,
(2)), we conclude |x̄|K = 1. However, we have that |x̄2|K < 1. Indeed, we have that

‖x2 − (x2 − a)‖ = |a| < 1.

2.2. Units in Tn.

Proposition 2.2. Let f ∈ T 0
n . The following assertions are equivalent:

(1) f ∈ T ∗n
(2) f̃ is a nonzero constant
(3) |f(0)| = 1 and ‖f − f(0)‖ < 1

Proof : (2) ⇐⇒ (3) is clear.

(1) ⇒ (2) : fg = 1 implies f̃ g̃ = 1, so f̃ ∈ k̃[x1, . . . , xn]∗ = k∗.
(2) ⇒ (1) : there exists g ∈ T 0

n s.t. fg = 1 + u, where ‖u‖ < 1. But then the series∑
n≥0(−u)n is convergent and furnishes the inverse of 1 + u, showing that f is invertible �

Remark 2.1. It follows from the last part of the proof that T ∗n is open.

Lemma 2.1. Suppose ‖f‖ = 1. Then there exists c ∈ k with |c| = 1 s.t. f + c is not a unit.

Proof : take c = 1 if |f(0)| < 1 and c = f(0) otherwise �

Proposition 2.3.

∩mm = (0),

where m runs through the set of maximal ideals of Tn.

Proof : if not, then there is some f in the intersection with ‖f‖ = 1. The lemma gives us c ∈ k∗
s.t. f + c is not a unit. Hence, there is a maximal ideal m with f + c ∈ m. But then c ∈ m,
which is a contradiction �
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2.3. Weierstrass division theorem.

Definition 2.1. An element g ∈ Tn, g =
∑∞

t=0 gt(x1, . . . , xn−1)xtn is called xn-distinguished
of degree s if the following conditions hold

(1) gs ∈ T ∗n−1

(2) ‖gs‖ = ‖g‖ and ‖gs‖ > ‖gt‖, for all t > s.

Remark 2.2. If ‖g‖ = 1, then g is xn-distinguished of degree s if and only if g̃ is an unitary

polynomial of degree s in (k̃[x1, . . . , xn−1])[xn].

Theorem 2.1. (WDT) Let g ∈ Tn be xn-distinguished of degree s. Then

(1) for all f ∈ Tn, there exists an unique q ∈ Tn and an unique r ∈ Tn−1[xn] with deg r < s
such that

f = qg + r.

(2) We have that ‖f‖ = max{‖qg‖, ‖r‖}.
(3) If f, g ∈ Tn−1[xn], then q ∈ Tn−1[xn].

Proof : Assume the existence part of (1). We first prove (2). We may suppose that ‖g‖ = 1.
Having done this, we may further suppose that

(2.3) max{‖qg‖, ‖r‖} = 1.

We proceed by contradiction. Assume ‖f‖ < 1. Then we have that

0 = q̃g̃ + r̃.

Since deg g̃ = s > deg r ≥ deg r̃, we conclude g̃ = r̃ = 0, which is in contradiction with (2.3).
Now we prove uniqueness in (1). From 0 = qg + r and part (2), we conclude q = r = 0.
To prove part (3), apply euclidean division in Tn−1[Xn] and use the uniqueness in (1).
Now we will prove the existence of the representation in (1). We begin with an intermediate

result.

Lemma 2.2. Let B ⊂ Tn be an additive subgroup. Let 0 < ε < 1 be such that for all f ∈ Tn,
there exists b ∈ B such that ‖f + b‖ ≤ ε‖f‖. Then B is dense in Tn.

Proof : if not, then there exists f ∈ Tn such that

δ := dist(f,B) > 0.

Let b1 ∈ B such that ‖f − b1‖ < δ/ε. Then we can choose b2 ∈ B such that

‖(f − b1) + b2‖ ≤ ε‖f − b1‖ < δ.

Since the leftmost term is ≥ δ, this is a contradiction �
Now we finish the proof of the existence. We are still supposing ‖g‖ = 1. Let

B := {qg + r : q ∈ Tn, r ∈ Tn−1[xn], deg r < s}.

Using part (2), it is easy to show that B is a closed additive subgroup of Tn. Let 0 < ε < 1 be
given by

ε := max
{

max
t>s
‖gt‖, 1/2

}
.

Let kε := {x ∈ k : |x| ≤ ε}. This is an ideal of R. Consider the ring k̃ε = R/kε. Let

τ : T 0
n −→ k̃ε[x1, . . . , xn]

be the natural epimorphism. The polynomial τ(g) is unitary, so for a given f ∈ T 0
n , we can

perform euclidean division in k̃ε[x1, . . . , xn] to obtain q ∈ T 0
n and r ∈ Tn−1[xn] with deg r < s

such that

τ(f) = τ(q)τ(g) + τ(r).

This means that ‖f − (qg + r)‖ ≤ ε. We have proved that for an arbitrary f ∈ Tn, there is a
b ∈ B such that ‖f − b‖ ≤ ε‖f‖. Lemma 2.2 tells us that B is dense, finishing the proof �
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2.4. Weierstrass polynomials.

Definition 2.2. A Weierstrass polynomial is an element w ∈ Tn−1[xn] which is monic and such
that ‖w‖ = 1. We denote by W the set of all Weierstrass polynomials.

In order to stablish ring theoretic properties of Tn (e.g. Noetheriness, Jacobsoness) it will
be useful to use that an ideal either contains a Weierstrass polynomial (Theorem 2.2) or that
this holds up to an automorphism (Theorem 2.3). Then we will use Theorem 2.4 to pass from
a situation in Tn to a situation in Tn−1.

Theorem 2.2. (WPT) Let g ∈ Tn be xn-distinguished of degree s Then

(1) There exists a unique w ∈W and a unique e ∈ T ∗n such that g = we.
(2) If g ∈ Tn−1[xn], then e ∈ Tn−1[xn].

Proof : by the WDT, there exists q ∈ Tn and r ∈ Tn−1[xn] with deg r < s such that

xsn = qg + r.

Moreover, we have that

(2.4) 1 = max{‖qg‖, ‖r‖}.
Define w := xsn− r. Then w is a monic polynomial in Tn−1[xn], impliying ‖w‖ ≥ 1, and since

(2.4) implies ‖w‖ ≤ 1, we actually have ‖w‖ = 1. Hence, w ∈W .
Now we may suppose ‖g‖ = 1. Then we have that ‖q‖ ≤ 1 and w̃ = q̃g̃. Since w̃ and g̃ are

unitary polynomials of the same degree, we conclude that q̃ is a nonzero constant, i.e. q is a
unit.

The unicity assertion is a consequence of the unicity of the representation

xsn = q−1g + w − xsn,
coming from the unicity part of the WDT.

The second assertion of the WPT follows from the analogous assertion in the WDT �

Theorem 2.3. Let f ∈ Tn − {0}. Then there exists an automorphism σ : Tn → Tn such that
σ(f) is xn-distinguished.

Proof : We may suppose ‖f‖ = 1. Let t be the total degree of f̃ and write f =
∑
aJX

J .
Let m = (m1, . . . ,mn) := max{J : |aJ | = 1}, where we take the lexicographical order on
multiindexes.

We define positive integers c1, . . . , cn by

cn−j = (1 + t)j , j = 1, . . . , n.

We put s :=
∑n

i=1mici.
We will show that the automorphism defined by

σ(xn) = xn, σ(xi) = xi + xcin , i = 1, . . . , n− 1

turns f into an xn-distinguished element of degree s. We prove first the following
Claim: Let J = (j1, . . . , jn) 6= m be such that |aJ | = 1. Then

∑n
i=1 jici < s.

Indeed, we have that there exists 1 ≤ p ≤ n such that mi = ji for i = 1, . . . , p − 1 and
mp > jp. Then we have that

n∑
i=1

jici ≤
p−1∑
i=1

mici + (mp − 1)cp + t
n∑

i=p+1

ci︸ ︷︷ ︸
cp−1

=

p∑
i=1

mici − 1

< s,

finishing the proof of the claim. Now we have that

σ̃(f) =
∑
J

ãJ
∑

0≤k1≤j1
...

0≤kn−1≤jn−1

(
k1

j1

)
· · ·
(
kn−1

jn−1

)
xj1−k11 · · ·xjn−1−kn−1

n−1 xc1k1+...+cn−1kn−1+jn
n .
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If J 6= m and ãJ 6= 0, the claim ensures that the degree in xn of the corresponding mono-
mials is strictly less that s. Moreover, the degree in xn will be equal to s only if J = m and

ki = mi = ji, showing that σ̃(f) is an unitary polynomial of degree s, justifying that σ(f) is
xn-distinguished of degree s�

If I ⊂ Tn is a principal ideal, it is a simple check to verify that it is closed. Hence, the
quotient space Tn/I ca be endowed with the residue norm. The same remark holds for principal
ideals in Tn−1[xn]. On the other hand, we endowe a space of the form Tmd with the norm
‖(t0, . . . , tm−1)‖ := max{‖ti‖}.

Theorem 2.4. Let w ∈W have degree s. We define j : T sn−1 → Tn−1[xn] by

j(t0, . . . , ts−1) =
s−1∑
l=0

tlx
l
n.

Then we have isometric isomorphisms

T sn−1
j̄// Tn−1[xn]/wTn−1[xn]

ī // Tn/wTn,

where j̄ (resp. ī) is the natural map induced by j (resp. the inclusion).
In particular, the natural morphism Tn−1 → Tn/wTn is finite (i.e. the Tn−1-module is finitely

generated).

Proof : we clearly have that

‖j(t0, . . . , ts−1)‖ ≤ ‖
s−1∑
l=0

tlx
l
n‖ = max ‖tl‖.

Suppose that j̄ is not an isometry, i.e. there exists ~t ∈ T sn−1 and q ∈ Tn−1[xn] with

‖
s−1∑
l=0

tlx
l
n + qw‖ < max ‖tl‖.

Then this contradicts (2) in the WDT. Since j̄ is an isometry, it is injective. To check the
surjectivity, take f ∈ Tn−1[xn] and perform euclidean division to obtain f = qw + r, where

q ∈ Tn−1[xn] and r has the form r =
∑s−1

l=0 tlx
s
n. Then clearly j̄(t0, . . . , tl−1) = f̄ .

The morphism ī is an isometry because wTn−1[xn] is dense in wTn. The surjectivity is a
consequence of the WDT �

2.5. Tn is noetherian. We will prove this by induction on n. We have that T0 = k is a field,
hence noetherian. Suppose that Tn−1 is noetherian. Let I ⊂ Tn be a nonzero ideal. We will
show that it is finitely generated. The latter property is preserved by automorphisms, hence by
combining Theorems 2.3 and 2.2, we may suppose that there is a Weierstrass polynomial w ∈ I.

For any noetherian ring A, we have that A[x] is also noetherian. Hence, using the induction
hypothesis, Tn−1[xn] is noetherian. Then by Theorem 2.4 the ideal Ī ⊂ Tn/wTn is finitely
generated, say by ᾱ1, . . . , ᾱr. Then a generating set for I is {α1, . . . , αr, w}

2.6. All ideals of Tn are closed. Let I ⊂ Tn be an ideal. Since T ∗n is an open set, the closure
Ī is a proper ideal of Tn. We know that Tn is noetherian, so we can write Ī = (α1, . . . , αt).
Consider the linear function

π : T tn → Ī

given by π(u1, . . . , ut) =
∑t

i=1 uiαi. This is a continuous function because of the way the
norms are defined. Hence, the Banach open mapping theorem ensures that π is an open map.
In particular, if we define T 00

n := {f ∈ Tn : ‖f‖ < 1}, the set π
(
(T 00
n )t

)
=
∑t

i=1 T
00
n αi is a

neighborhood of 0. This shows that

(2.5) Ī = I +
t∑
i=1

T 00
n αi.

Indeed, it is clear that the right hand side is contained in Ī. On the other hand, since I is

dense in Ī, we have that for any y ∈ Ī there is an x ∈ I ∩
(
y +

∑t
i=1 T

00
n αi

)
, justifying (2.5).
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Equality 2.5 implies that we can write

αi = fi +
t∑

j=1

ai,jαj , fi ∈ I, ‖ai,j‖ < 1.

In matrix notation, we have (Id − A)~α = ~f . We need to show that Id − A is an invertible
matrix. But this is a consequence of the fact that the determinant det(Id − A) has the form
1 + c, with ‖c‖ < 1, hence is a unit. This shows that Ī = I.

Remark 2.3. The last part of the proof is an incarnation of ”Nakayama’s lemma”.

2.7. Tn is Jacobson. Again we proceed by induction. Since any field is Jacobson, we have
that T0 has this property. Assume that Tn−1 is Jacobson. Let a ⊂ Tn be an ideal. We have
to show that the intersection of all maximal ideals containing a equals the intersection of all
prime ideals containing a. We may suppose that a is a prime ideal. We introduce the following
notation: for every ring R, we put

j(R) := ∩m,
where m runs through the maximal ideals of R. Then what we need to show is

(2.6) j
(
Tn/a) = 0.

The case a = 0 has been settled in Proposition 2.3, so we may suppose a 6= 0. Property (2.6)
is preserved by automorphisms, so by combining Theorems 2.3 and 2.2, we may assume that
there is a w ∈ W ∩ a. Let a := a ∩ Tn−1. Since Theorem 2.4 ensures that Tn−1 → Tn/wTn is a
finite morphism, we have that Tn−1/a→ Tn/a is also a finite morphism (take the same system
of generators). Suppose (2.6) is not true, i.e. there is a nonzero element x ∈ j

(
Tn/a). Then the

finiteness implies that there is an integral equation, that we take of minimal degree,

xs + bs−1x
s−1 + . . .+ b1x+ b0 = 0, bi ∈ Tn−1/a.

Then b0 ∈ j
(
Tn/a) ∩ Tn−1/a. But this set is contained in j

(
Tn−1/a

)
(which is zero by the

induction hypothesis). Indeed, any maximal ideal of Tn−1/a lifts to a maximal ideal of Tn/a.
Hence, b0 = 0, contradicting the minimality of s.

2.8. Noether normalization Lemma for k-affinoid algebras.

Definition 2.3. A k-algebra A is called k-affinoid if there exists an ideal I ⊂ Tn and an
isomorphism of k-algebras A ' Tn/I.

Example 2.1. Let

A = {
∞∑

i=−∞
aix

i, ai ∈ k, |ai| → 0 if |i| → ∞}.

The k-morphism determined by x1 7→ x and x2 7→ x−1 induces an isomorphism

A ' T2/(x1x1 − 1),

with the inverse map given by
∑
aix

i 7→
∑

i≥0 aix
i
1 +

∑
i<0 aix

−i
2 .

Theorem 2.5. (NNL)

(1) For every k-affinoid algebra A 6= 0, there is an injective finite morphism Td → A for
some d ≥ 0.

(2) For every finite morphism α : Tn → A, there is a morphism τ : Td → Tn with d ≤ n
such that α ◦ τ : Td → A is injective.

Proof : The first assertion is a consequence of the second assertion (take the natural map
α : Tn → Tn/I ' A). We will prove the second assertion by induction on n. If n = 0, since T0

is a field, α is injective. Now suppose the assertion is proven for n− 1.
We may assume kerα 6= 0 (since otherwise there is nothing to prove). Then by Theorems 2.2

and 2.3, there is an automorphism σ : Tn → Tn and w ∈ W ∩ σ(kerα). Thus replacing α by
α ◦ σ−1, we may suppose that there is a Weierstrass polynomial w ∈ kerα. Then we have that
the induced morphism

ᾱ : Tn/wTn → A

is finite. But Theorem 2.4 ensures that the natural map β : Tn−1 → Tn/wTn is finite, hence the
map β ◦ ᾱ : Tn−1 → A is also finite. We conclude by applying the induction hypothesis to this
last map �
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2.9. Maximal ideals of Tn. We begin by recalling the following elementary result from com-
mutative algebra.

Lemma 2.3. Let A,B be integral domains such that there is a finite injective morphism A ↪→ B.
Then

(1) if A is a field, then B is a field
(2) if B is a field, then A is a field.

Proof : assume A is a field. Let x ∈ B−{0}. Then x is integral over A, i.e. there is an equation

xn + an−1x
n−1 + . . . a1x+ a0 = 0, ai ∈ A, a0 6= 0.

Then we have that −a−1
0 (xn−1 +an−1x

n−2 + . . .+a1) ∈ B is an inverse for x. Then B is a field.
To prove part (2), take x ∈ A−{0}, use that x−1 ∈ B is integral over A and argue as before

�

Proposition 2.4. Let m ⊂ Tn be a maximal ideal. Then Tn/m is a finite extension of k.

Proof : by the NNL, we have that there is a finite injective morphism Td ↪→ Tn/m. By part (2)
of Lemma 2.3, we have that Td is a field. But then d = 0 and T0 = k�

Corollary 2.1. Let f : A → B be a morphism of k-affinoid algebras and let m ⊂ B be a
maximal ideal. Then f−1(m) is a maximal ideal in A.

Proof : Proposition 2.4 implies that B/m is a k-vector space of finite dimension. Since m is
prime, the ideal f−1(m) is also prime. Then A/f−1(m)→ B/m is an injective morphism between
integral k-algebras. Hence, A/f−1(m) is also a k-vector space of finite dimension. Lemma 2.3,
(2.3) then ensures that A/f−1(m) is a field, i.e. f−1(m) is maximal �

Remark 2.4. The preceding corollary is true if we replace ”k-affinoid algebras” by ”k-algebras
of finite type” (e.g. coordinate rings of algebraic varieties). It is not true if we just ask for
”k-algebras”.

For a k-affinoid algebra A, we denote Specmax(A) the set of its maximal ideals.
Let

Bn := {a = (a1, . . . , an) ∈ k̄n : |ai| ≤ 1}
be the unit polydisk. For a ∈ Bn, we define

τ(a) := {f ∈ Tn : f(a) = 0}.

Proposition 2.5. The preceding rule defines a surjective function τ : Bn → Specmax(Tn).

Before proving this proposition, we establish a technical lemma.

Lemma 2.4. Let I ⊂ Tn be an ideal. We endow L := Tn/I with the residue norm that we
denote by | · |L. Then

(1) For all y ∈ k, we have that |y| = |ȳ|L.
(2) Assume that I is maximal. Let K be a finite extension of k, that we endow with the

induced multiplicative norm from k. Let ϕ : L→ K be a morphism of k-algebras. Then
ϕ is continuous and we have that

|ϕ(f̄)| ≤ |f̄ |L, for all f ∈ Tn.

Proof : supose y 6= 0 and suppose that there is f ∈ I such that ‖y + f‖ < |y|. In particular,
|y + f(0)| < |y|, implying |f(0)| = |y|. Moreover, we must have ‖f − f(0)‖ < |y| = |f(0)|.
But then Proposition 2.2 implies that f/f(0) is a unit, i.e. f is a unit. But then I = Tn, a
contradiction. This proves the first part of the assertion.

Now we prove the second part. Note that the continuity of ϕ is automatic because by
Proposition 2.4, L is also a k-vector space of finite dimension and ϕ is k-linear. Then we have
that there exists C > 0 such that |ϕ(f̄)| ≤ C|f̄ |L. Applying this inequality to fn, with n a
positive integer, we have that |ϕ(f̄n)| ≤ C|f̄n|L. Using that | · | is multiplicative and that | · |L
is submultiplicative, we obtain

|ϕ(f̄)|n ≤ C|f̄n|L ≤ C|f̄ |nL,
implying that |ϕ(f̄)| ≤ C1/n|f̄ |L. We conclude by letting n→∞�
Proof of Proposition 2.5 : for a ∈ Bn, consider the ”evaluation morphism” ea : Tn →
k(a1, . . . , an) given by ea(f) := f(a). This map is surjective, inducing an isomorphism Tn/τ(a) '
k(a1, . . . , an). Hence, τ(a) is maximal.
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Let m ∈Specmax(Tn). We consider Tn/m as a normed k-vector space with the residue norm.
Proposition 2.4 implies that there is an embedding ι : Tn/m ↪→ k̄. By Lemma 2.4, ι is continuous
and if we put ai := ι(x̄i), we have that |ai| ≤ 1. Hence a = (a1, . . . , an) ∈ Bn.

On the other hand, the canonical map l : Tn → Tn/m is also continuous. The maps ι ◦ ea and
ι ◦ l are continuous and coincide on (x1, . . . , xn), hence they are equal. We conclude τ(a) = m�

Proposition 2.6. Let m ∈ Specmax (Tn) and let m′ := m∩k[x1, . . . , xn]. Then m′ is a maximal
ideal in k[x1, . . . , xn], we have that m = m′Tn and k[x1, . . . , xn]/m′ ' Tn/m.

Proof : using Proposition 2.5, write m = τ(a) with a ∈ Bn. Then ha : k[x1, . . . , xn] → k(a) '
Tn/m given by ha(f) := f(a) induces an isomorphism h̄a : k[x1, . . . , xn]/m′ ' Tn/m, showing
that m′ is maximal.

We have a commutative diagram

k[x1, . . . , xn]/m′

h̄a
��

ι // Tn/m
′Tn

π
vvnnnnnnnnnnnn

Tn/m

Since h̄a is bijective, we have that π is surjective and ι is injective. Then L := ι
(
k[x1, . . . , xn]/m′

)
is a field of finite dimension over k. Hence, it is complete, implying that it is closed in Tn/m

′Tn.
On the other hand, L is dense because k[x1, . . . , xn] is dense in Tn. Hence, L = Tn/m

′Tn, i.e. ι
is surjective. This implies that π is injective, showing that m = m′Tn�

Corollary 2.2. Let m ∈ Specmax(Tn). Then there exist n polynomials pi ∈ k[x1, . . . , xi], monic
in xi, such that

(1) m = (p1, . . . , pn)Tn and m′ = (p1, . . . , pn)k[x1,...,xn].
(2) if we represent m = τ(a), then k[x1, . . . , xi]/(p1, . . . , pi) ' k(a1, . . . , ai).

Proof : use Proposition 2.6 to reduce the problem to the known case of maximal ideals of
polynomial algebras �

2.10. Tn is a regular ring. We begin by recalling some facts about dimension theory of rings.
Let R be a ring and p a prime ideal. We define the height of p by

ht(p) := sup{n : there exists a chain of prime ideals p0 ( p1 ( . . . ( pn = p}.

We define the dimension of R by dim(R) := sup{ht(p) : p ⊂ R is a prime ideal}.
Let A be a local ring with maximal ideal m. We have that dimA = ht(m). The set m/m2 is

a vector space over the residue field A/m.

Proposition 2.7. ([AM69], Corollary 11.15) If A is noetherian, then dimA ≤ dimA/mm/m2.

Lemma 2.5. We have that dimR = sup{dimRm : m is a maximal ideal of R}.

Proof : if the biggest ideal in a chain of prime ideals is not maximal, then the chain can be
extended by adding a maximal ideal �

Definition 2.4. • A local ring A is called regular if dimA = dimA/mm/m2.
• A ring R is called regular if for all prime ideals p ⊂ R, the local ring Rp is regular.

Remarks 2.2. (1) Let X be a smooth manifold and let P ∈ X. Let A be the ring of germs
at P . Then A is a local ring with maximal ideal m consisting of germs of functions
vanishing at P . The residue field is R. The ideal m2 consists of germs of functions
vanishing to order 2 at P . By looking at Taylor expansions, we see that the R-vector
space m/m2 can be identified with the space of derivations at P , hence its dimension
equals the dimension of X. On the other hand, if P were a singular point, then the
space of derivations would have bigger dimension that dimX. Hence, A being regular
encodes the fact that X is smooth at P .

(2) If p is a prime ideal of a regular local ring A, then Ap is regular ([Mat80], p. 139).
Hence, to verify that a given ring R is regular, it is enough to check the definition only
for maximal ideals. Indeed, if m is a maximal ideal and p ( m is a prime ideal, we
have that Rp '

(
Rm

)
p
. In the preceding interpretation, this amounts to say that if the

subvarieties of dimension 0 of the mainfold X are smooth, then all subvarieties of X are
smooth.
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Proposition 2.8. For every maximal ideal m ⊂ Tn, we have that (Tn)m is a regular ring of
dimension n.

Proof : consider the polynomials p1, . . . , pn given by Corollary 2.2. Since m can be generated
by n elements, we have 2 that dimTn/mm/m2 ≤ n. On the other hand, the n ideals mi :=
(p1, . . . , pi) for i = 1, . . . , n are prime. Indeed, evaluation at (a1, . . . , ai) shows that Tn/mi '
Tn−i

(
k(a1, . . . , ai)

)
, which is an integral domain. Hence, ht(m) ≥ n. We conclude that

n ≤ dim(Tn)m ≤ dimTn/mm/m2 ≤ n,

proving the assertion �

Corollary 2.3. We have that dimTn = n.

Proof : the chain of prime ideals 0 ( (x1) ( (x1, x2) ( . . . ( (x1, . . . , xn) shows that dimTn ≥
n. The combination of Lemma 2.5 and Proposition 2.8 implies dimTn ≤ n�

3. Basic theory of affinoid algebras

It is a consequence of section 2.5 that affinoid algebras are Noetherian. Let A be a k-affinoid
algebra. We denote by M(A ) the set of maximal ideals of A . Because of Proposition 2.4, we
have that for any m ∈M(A ), the field A/m is a finite extension of k. Hence, we can choose an
embedding ι : A/m ↪→ k̄. For f ∈ A , we define

|f(m)| := |ι(f + m)|.

The unicity of the norm on k̄ implies that |f(m)| does not depend on the choice of the embedding.

Definition 3.1. (1) A k-Banach space is a k-vector space V toghether with a function
‖ · ‖ : V → R≥0 such that
• ‖v‖ = 0⇔ v = 0
• ‖v + v′‖ ≤ max{‖v‖, ‖v′‖} for all v, v′ ∈ V
• ‖cv‖ = |c|‖v‖ for all c ∈ k and v ∈ V
• (V, ‖ · ‖) is complete

(2) A k-Banach algebra is a k-algebra A toghether with a function ‖ · ‖ such that (A , ‖ · ‖)
is a k-Banach space and such that ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A .

Remarks 3.1. • As a consequence of section 2.6, we have that a k-affinoid algebra A '
Tn/I, toghether with the residue norm induced by the Gauss norm on Tn, is a k-Banach
algebra.
• A k-linear map between k-Banach spaces L : V → V ′ is continuous if and only if there

exists C > 0 such that ‖L(v)‖′ ≤ C‖v‖ for all v ∈ V . The proof of this statement is
the same as in the case of real Banach spaces. This proof depends on the possibility of
scalling a vector v ∈ V to put it inside an arbitrarily small ball. Hence, the proof does
not work if the norm on k is trivial.

3.1. All morphisms are continuous.

Theorem 3.1. Let A be a k-affinoid algebra, endowed with the k-Banach algebra structure
induced by the Gauss norm. Let B be a k-affinoid algebra endowed with a k-Banach algebra
structure. Let ϕ : A → B be a k-algebra morphism. Then ϕ is continuous.

Remark 3.1. To derive further consequences, it is important not impose on B the k-Banach
structure induced by a Tate algebra and work instead with an arbitrary structure.

A proof of this theorem will be given by the end of this section. First, we recall Krull’s ideal
theorem, which is an algebraic version of the fact that an analytic function such that all of its
derivatives vanish at a point, must be zero in a neighborhood of the point (cf. Remark 2.2, (1)).

Theorem 3.2. (Krull) Let A be a noetherian local ring with maximal ideal m. Then we have
that

∩l≥1m
l = (0).

Lemma 3.1. We have that

∩m∈M(B) ∩l≥1 m
l = (0).

2For a maximal ideal m of a ring R, we have that Rm/mRm ' R/m.
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Proof : Let f be an element in the intersection. Fix m ∈M(B). By Krull’s theorem, we have
that

f = 0 in Bm,

i.e. there exists t /∈ m such that tf = 0.
The set Ann(f) := {b ∈ B : bf = 0} is an ideal in B, and we have proved that it is not

contained in any maximal ideal. Then 1 ∈ Ann(f), i.e. f = 0�

Remark 3.2. Since Tn is a Jacobson ring, the preceding result is new only if B ' Tn/I with
I a non prime ideal.

Lemma 3.2. Let m ∈ M(B) ant let l be a positive integer. Then B/ml is a k-vector space of
finite dimension.

Proof : by Noether’s normalization lemma, we have that there is a finite injective morphism
ι′ : Td ↪→ B/ml. We compose this morphism with the canonical map B/ml → B/m to obtain
a morphism ι : Td → B/m. We have that ι is also finite (take the same generators as for ι′)
and injective (use that Td has no nilpotent elements). We conclude by Lemma 2.3 that Td is a
field, i.e. d = 0 and T0 = k�
Proof of Theorem 3.1: We will use the closed graph theorem. Let (an) ⊂ A be a sequence
such that lim an = 0 and limϕ(an) = b ∈ B. Consider the commutative diagram

A
ϕ //

ϕ̄

%%KKKKKKKKKK

ν
��

B

µ
��

A / kerϕ
ϕ̃ // B/ml

The construction of the residue norm shows that the canonical map ν is 1-Lipschitz, hence
continuous. The map ϕ̃ is injective, so by Lemma 3.2 we conclude that A / kerϕ is a k-vector
space of finite dimension. Hence, ϕ̃ is continuous. This implies that ϕ̄ is continuous.

We have that lim ϕ̄(an) = 0 = µ(b), that is b ∈ ml. But then b = 0 because of Lemma 3.1 �

Corollary 3.1. Let A be a k-affinoid algebra. Then any two k-Banach algebra structures ‖ · ‖
and ‖ · ‖′ are equivalent, that is there exist c1, c2 > 0 such that

‖v‖ ≤ c1‖v‖′ ≤ c2‖v‖ for all v ∈ A .

Proof : it is enough to show that any k-Banach algebra structure is equivalent to the structure
induced by the Gauss norm on Tn. This can be proved by applying Theorem 3.1 to the identity
map �

3.2. Finite algebras over an affinoid algebra are affinoid. The goal of this section is to
prove the following

Theorem 3.3. Let A be a k-affinoid algebra and let B be a A -algebra such that the structure
morphism ϕ : A → B turns B into a finitely generated A -module. Then B is k-affinoid.

Remark 3.3. As an example, the above theorem shows that powers of the form T rn , with the
algebra structure given by component wise multiplication, are affinoid. Moreover, this particular
case of the Theorem implies the general case.

The analogous of Theorem 3.3 for an algebra A of finite type over a field K and a A-algebra
A′ such that the structural morphism ψ : A → A′ turns A′ into a finitely generated A-module
is usually proved as follows: take generators {a1, . . . , ar} of A′ as an A-module. Then

(1) consider a surjective morphism of K-algebras ν : K[y1, . . . , ys]→ A
(2) use that there is a unique morphism of K-algebras

ψ̃ : (K[y1, . . . , ys])[x1, . . . , xr]→ A′

such that ψ̃|K[y1,...,ys] = ψ ◦ ν and ψ̃(xi) = ai.

(3) ψ̃ is surjective by assumption.

To prove Theorem 3.3 we will follow analogous steps, replacing polynomial algebras by Tate
algebras. However, the analogous to step (2) is not straightforward. Since we are dealing with
series rather than polynomials, in order to extend ϕ to a morphism defined by its value on the
indeterminates, we need a topology in B such that the map ϕ is continuous. This is provided
by the following
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Theorem 3.4. Assume the hypothesis of Theorem 3.3 and suppose A = Tn. Then there exists a
norm |·|B on B such that (B, |·|B) is a k-Banach algebra, ϕ is continuous and |ϕ(f)b|B ≤ ‖f‖|b|B
for all f ∈ Tn and b ∈ B (i.e. ϕ is 1-Lipschitz).

Proof of Theorem 3.3: taking an epimorphism ν : Tn → A and replacing ϕ by ϕ ◦ ν we
reduce the problem to the case A = Tn. Consider the norm | · |B given by Theorem 3.4. Let
{b1, . . . , br} be a set of generators of B as a Tn-module. We may assume |bi|B ≤ 1 for all
i = 1, . . . , r. We extend ϕ to a k-algebra morphism ϕ̃ : T ′ := Tn[y1, . . . , yr]→ B by ϕ̃(yi) = bi.
Then we have that ϕ̃ is continuous with respect to the topology on T ′ inherited from Tn+r.
Indeed, take f =

∑
|J |≤m fJY

J ∈ T ′. Then we have that

|ϕ̃(f)|B = |
∑
|J |≤m

ϕ(fJ)bJ |B

≤ max
|J |≤m

|ϕ(fJ)bJ |B

≤ max
|J |≤m

|ϕ(fJ)|B |bJ |B︸ ︷︷ ︸
≤1

≤ max
|J |≤m

‖fJ‖

= ‖
∑
|J |≤m

fJY
J‖.

Since ϕ̃ is continuous and T ′ is dense in Tn+r, then there is a unique extension ϕ̃ : Tn+r → B.
This map is surjective, thus showing that B is k-affinoid �

Now we will prove some intermediate results leading to a proof of Theorem 3.4.

Lemma 3.3. For every positive integer r, we endow T := T rn with the product topology and
with the algebra structure given by component wise multiplication. Then T is Noetherian, the
group of invertible elements T ∗ is open and all ideals of T are closed.

Proof : the Tn-module T is finitely generated, hence noetherian. We have that T ∗ = (T ∗n)r is a
product of open sets, hence open. Then, the argument given in section 2.6 applies to show that
all ideals of T are closed �

Lemma 3.4. Assume the hypothesis of Theorem 3.3 and suppose A = Tn. Then there exists a
norm | · |′ on B such that (B, | · |′) is a Banach space, ϕ is continuous and there exists K > 0
such that

|xy|′ ≤ K|x|′|y|′

for all x, y ∈ B. Moreover, we have that |ϕ(f)x|′ ≤ ‖f‖|x|′ for all f ∈ Tn and x ∈ B.

Proof : we have a surjective k-algebra morphism T rn → B over ϕ for some r ≥ 0. Then we
endow B with the quotient topology. Consider on T rn the norm ‖(t1, . . . , tr)‖ := max ‖ti‖. Then
we define | · |′ as the corresponding residue norm on B. More explicitely, let x ∈ B and take a
representation

(3.7) x =

r∑
i=1

ϕ(αi)bi, αi ∈ Tn.

Then

(3.8) |x|′ = inf
ϕ(t)=0

r
max
i=1
‖αi + ti‖.

We have that |ϕ(f)x|′ ≤ ‖f‖|x|′ for all f ∈ Tn (in particular, ϕ is continuous). Indeed,

|ϕ(f)x|′ = inf
ϕ(t)=0

r
max
i=1
‖fαi + ti‖

≤ inf
ϕ(t)=0

r
max
i=1
‖fαi + fti‖

= ‖f‖|x|′.
A representation of the form (3.7) will be called admissible if max ‖αi‖ ≤ 2|x|′. From (3.8),

it is easy to see that an admissible representation for a given x ∈ B always exists.
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Let x1, x2 ∈ B. We choose admissible representations xk =
∑r

i=1 ϕ(αi,k)bi for k = 1, 2. Let
C := maxri,j=1 |bibj |′. Then we have that

|x1x2|′ = |
r∑

i,j=1

ϕ(αi,1αj,2)bibj |′

≤ r
max
i,j=1

|ϕ(αi,1αj,2)bibj |′

≤ r
max
i,j=1

‖αi,1αj,2‖|bibj |′

≤ C max ‖αi,1‖‖αj,2‖
≤ C max ‖αi,1‖max ‖αj,2‖
≤ 4C|x1|′|x2|′ �

Proof of Theorem 3.4: using the preceeding lemma, we define

|x|B = sup
y 6=0

|xy|′

|y|′
, x ∈ B.

It is easy to check that | · |B is a k-Banach algebra norm on B that is equivalent to | · |′ and
satisfies the required properties �

3.3. The sup norm. Let A be a k-affinoid algebra. We define

|f |sup := sup
x∈M(A )

|f(x)|, f ∈ A .

This function does not always define a norm on A , for a nilpotent element is sent to zero. We
summarize the properties we want to establish.

Theorem 3.5. (1) (Maximum principle) We have that

|f |sup = max
x∈M(A )

|f(x)| <∞.

(2) | · |sup is submultiplicative. Moreover, |fn|sup = |f |nsup for all positive integers n
(3) | · |sup is a norm if and only if A is reduced. In this case, (A , | · |sup) is a k-Banach

algebra
(4) We have that {f : (fn)n≥0 is bounded } = {f : |f |sup ≤ 1}.

Remark 3.4. If A is reduced, Theorem 3.5 shows that | · |sup induces the canonical topology
on A . Thus, we may regard | · |sup as a canonical norm, independent of the choice of an
epimorphism Tn → A .

The basic idea to prove the maximum principle for A is to reduce the problem to the
corresponding statement for Tate algebras with the Gauss norm via a finite injective morphism

(3.9) Td → A ,

given by NLL. To carry this idea on, we need to relate the sup norm on A with the Gauss norm
on Td.

Let (K, | · |) be a valued field3 and let K → A be a K-algebra which is integral over K. In this
situation, there exists a spectral norm on A (cf. section 3.3.2), which is a real valued function on
A, canonically attached to | · | and that turns out to be a norm if A is reduced. Hence, a natural
idea is to relate the spectral norm to the sup norm in the situation (3.9) above. Since Td is not
a field, and since we do not want to assume A reduced, we will relate the sup norm on A with
the sup norm on the k-algebra (A /y)red, where y ∈ M(A ) and (·)red is the biggest reduced
quotient of (·). The key result to make useful the relation between these norms is Theorem 3.7
: the norms are equal when A is both k-affinoid and reduced, integral over k. The proof of the
maximum principle is achieved in 3.3.3.

To prove the completeness of | · |sup stated in part (3), we wish to use in (3.9) the fact that Td
is complete and the morphism is finite. However, we need to show that the product topology
induced on A is the same as the topology induced by | · |sup. Note that this is nontrivial
because the field Q(Td) is not complete, implying that inequivalent norms on AQ(Td) may exist!
However, since Q(Td) is the quotient field of a complete ring, a form of completeness still
survives. This notion is called weak stability (cf. section 3.3.4) and turns out to be enough to

3i.e. | · | is a multiplicative ultrametric norm on K.
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show the completeness of A , as shown in section 3.3.6. Again, a fundamental role is played by
the spectral norm.

Recall that for a set S ⊂ A being bounded means that for any complete norm | · |A on A
there exists CA > 0 such that |f |A ≤ CA for all f ∈ S. Assuming that A is reduced and part
(3), the proof of part (4) bowls down to take | · |A = | · |sup and using the fact that the sup
norm is power multiplicative. Hence, a non trivial argument is necessary only when A is not
assumed to be reduced. Such an argument is given in section 3.3.7 and it is a consequence of a
closer study of the spectral norm.

3.3.1. Sup norm and minimal prime ideals. Since A is noetherian, there are only a finite number
of minimal prime ideals {p1, . . . , pr}4. We denote by πi : A → A /pi the canonical morphism.

We denote by Ared := A /j(A ), where j(A ) = {f ∈ A : f is nilpotent } and we denote by
red: A → Ared the canonical morphism.

Lemma 3.5. (1) For all f ∈ A , we have that

|f |sup =
r

max
i=1
|πif |sup

(2) we have that |f |sup = |red(f)|sup.

Proof : take a sequence (xn) ⊂ M(A ) such that |f(xn)| → |f |sup. There exists i such that
pi ⊆ xn for an infinity of n. Taking a subsequence, we may assume that this happens for all n.
Then we have that

|πi(f)(xn/pi)| =
∣∣∣πi(f)

∣∣∣
(A /pi)/(xn/pi)

= |f |A /xn

= |f(xn)|
→ |f |sup.

This proves the first assertion. The second assertion is a consequence of the canonical iden-
tification M(A ) = M(Ared) given by the fact that j(A ) = ∩x∈M(A )x�

Remark 3.5. The first assertion allows us to reduce the proof of Theorem 3.5, (1), to the case
where A is a domain.

3.3.2. Spectral value and spectral norm. Let (A, | · |) be a ring, together with a nontrivial,
submultiplicative, ultrametric norm. Let

p(x) = xn + a1x
n−1 + . . .+ an ∈ A[x].

We define the spectral value of p by

σ(p) :=
n

max
i=1
|ai|1/i.

Proposition 3.1. (1) Suppose that | · | is multiplicative. Then we have that σ(pq) =
max{σ(p), σ(q)} for all p, q ∈ A[x]. In particular, σ(pn) = σ(p) for all positive integers
n

(2) Let K be a valued field. Suppose that A is a normed K-algebra and that | · | is power
multiplicative (i.e. |an| = |a|n for all a ∈ A and n ≥ 0). Suppose that we can write
p(x) =

∏n
i=1(x− αi), with αi ∈ A. Then

σ(p) = max |αi|.

Proof : write q(x) = xm+ b1x
m−1 + . . .+ bm and pq(x) = xm+n+ c1x

m+n−1 + . . .+ cm+n, where
ck =

∑
i+j=k aibj (with conventions a0 = b0 = 1, etc.). Suppose σ(p) ≤ σ(q). Then

|ck| ≤ max
i+j=k

|ai||bj | ≤ max
i+j=k

σ(p)iσ(q)j ≤ σ(q)k.

This shows that σ(pq) ≤ σ(q).
Suppose that σ(p) = σ(q). Let i0 = min{l ≥ 1 : |al| = σ(p)l}, j0 = min{l ≥ 1 : |bl| = σ(q)l}.

Let k0 = i0 + j0. Then we have that

ck0 = ai0bj0 + terms of strictly lower absolute value ,

4 Suppose that there is a countable collection of minimal prime ideals (pi)
∞
i=1. Then In := ∩i≥npi defines a

strictly increasing sequence of proper ideals, contradicting the noetherian property.
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implying |ck0 | = σ(q)k0 (here’s where we use the multiplicativity). Hence, σ(pq) ≥ σ(q).
Suppose that σ(p) < σ(q). Choose k0 such that |bk0 | = σ(q)k0 . Then we have that

ck0 = bk0 + terms of strictly lower absolute value ,

implying |ck0 | = σ(q)k0 . Hence, σ(pq) ≥ σ(q). This proves the first assertion.
To prove the second assertion, note that the coefficient ak is a sum of terms of the form

±αj1αj2 · · ·αjk . Hence, |ak| ≤ (max |αi|)k, implying σ(p) ≤ max |αi|.
Suppose σ(p) < max |αi|, i.e. there exists α = αi s.t. |α|k > |ak| for all k. Then we have that

|α|n = |αn| ≤ max{|ak||α|n−k} < |α|n,

a contradiction �

Let (K, | · |) be a valued field and let (A, | · |) be a K-algebra which is reduced and integral
over K. For an element a ∈ A, consider an integral equation of minimal degree

q(a) = 0, q(x) = xn + t1x
n−1 + . . .+ tn−1x+ tn.

The polynomial q is uniquely determined by a. We define the spectral norm

|a|sp := σ(q).

Lemma 3.6. Let A,K be as above. For every prime ideal p ⊂ A, we denote by πp : A → A/p
the canonical morphism. Then we have that

|a|sp = max
p∈Spec(A)

|πp(a)|sp.

In particular, | · |sp is a submultiplicative and power multiplicative norm on A.

Proof : let Ia = {f ∈ K[x] : f(a) = 0}. We have that Ia is a proper ideal of K[x]. Since K[x]
is a PID, there exists a unique monic polynomial q ∈ K[x] such that Ia = (q) 5. Similarly, we
have that Iπp(a) = (qp) for a unique monic qp ∈ K[x]. Furthermore, since A/p is a domain, qp is
irreducible.

Since q
(
πp(a)

)
= πp

(
q(a)

)
= 0, we have that qp divides q. In particular, there are only a

finite number of pairwise different q′ps, say qp1 , . . . , qpr . Let q′ :=
∏r
i=1 qpi . We have that

f ∈ K[x], f(a) = 0⇔ ∀p, πp
(
f(a)

)
= 0⇔ ∀p, f

(
πp(a)

)
= 0⇔ ∀p, qp|f ⇔ q′|f.

This implies that Ia = (q′). Hence, q′ = q. Now we have that

|a|sp = σ(q)

= max
i
σ(qpi)

= max
p
σ(qp)

= max
p
|πp(a)|sp�

Theorem 3.6. Let K be a finite extension of k. Let | · | be the norm on K induced by the norm
on k.

• We have that |a|sp = |a| for all a ∈ K. In particular, | · |sp is a norm and we have that

|a|sp = |tn|1/n.
• Let | · |1 be a submultiplicative norm on K, extending the norm on k. Then

(3.10) |a| = inf
i≥1
|ai|1/i1 = lim

i→∞
|ai|1/i1 , ∀a ∈ K.

Proof : let p ∈ k[x] be the minimal polynomial of a over k. Let K ′ be its splitting field, endowed
with the induced norm from k. Let a1 = a, a2, . . . , an be the roots of p. Since k is complete, we
have that |ai| = |aj | for all i, j. Moreover, | · | is power multiplicative, hence Proposition 3.1,
(2) implies |a|sp = |a|, justifying the first assertion.

5We remark that q may be reducible if A is not a domain.
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To prove the second assertion, first note that the limit in (3.10) exists and equals the inf
because for fixed a ∈ K, the sequence i 7→ |ai|1 is submultiplicative (cf. [BGR84], section

1.3.2.). Let |a|2 := limi→∞ |ai|1/i1 . We will argue that | · |2 = | · |.
The function | · |2 is an ultrametric, submultiplicative norm (the triangle inequality is elemen-

tary, but tricky, and we refer to [BGR84], Proposition 1.3.2.1). From the inf formula we deduce
| · |2 ≤ | · |. From the limit formula it is easy to see that | · |2 is also power multiplicative. Let
K ′ be the normal closure of K. Since K ′ is a finite extension of K, all norms can be extended
to K ′ while keeping the multiplicativy or power multiplicativity properties. Let σ : K ′ → K ′

be a k-automorphism. The we have that the restriction to K of | · |2 ◦ σ is another power
multiplicative norm. Since k is complete, these norms must be equivalent. In particular, there
exists Cσ > 0 such that

|σ(a)|2 ≤ Cσ|a|2 ∀a ∈ K.

This implies that for all positive integers n, we have that |σ(a)|2 ≤ C
1/n
σ |a|2. Hence, we can

take Cσ = 1.
Applying Proposition 3.1, (2) to | · |2, we obtain

|a| ≤ |a|2, ∀a ∈ K,

finishing the proof �

Theorem 3.7. Let A be a k-affinoid algebra which is reduced and integral over k. Then we
have that

|a|sp = |a|sup for all a ∈ A .

Proof : for every non zero prime ideal p ⊂ A , the domain A /p is a finite extension of k. Hence,
it is a field. Let a ∈ A . Using the notations of Lemma 3.6, we have that

|a|sp = max
p
|πp(a)|sp (Lemma 3.6)

= max
p
|πp(a)| (Theorem 3.6)

= max
p
|a(p)|

= max
p
|πp(a)|sup

= |a|sup(Lemma 3.5, (1))�

Lemma 3.7. Let A be a k-affinoid algebra which is a domain and let Td ↪→ A be a finite
monomorphism given by NNL. Let y ∈M(Td) and let α ∈ A . We denote by

αy := image of α in A /yA .

ᾱy := image of α in (A /yA )red.

Then we have that

|α|sup = sup
y∈M(Td)

|ᾱy|sup.

Proof : since A is integral over Td, the Cohen-Seidenberg theorem ensures that every maximal
ideal in Td lifts to a maximal ideal of A . We have that

|α|sup = sup
y∈M(Td)

sup
x∈M(A ):x∩Td=y

|α(x)|

= sup
y∈M(Td)

sup
x∈M(A /yA )

|α(x)|

= sup
y∈M(Td)

|αy|sup.

We conclude by the second assertion in Lemma 3.5 �
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3.3.3. Maximum principle. Proof of Theorem 3.5, (1): we assume A is a domain (cf. Remark
3.5). We use the notations of the previous lemma.
Claim 1: for y ∈M(Td), the set Ey = {x ∈M(A ) : x ∩ Td = y} is finite.

Indeed, let x ∈ Ey and let yA ⊆ p ⊆ x be a prime ideal of A . Then we have that
p∩Td = y. Since the extension Td ↪→ A is integral, the Cohen-Seidenberg theorem ensures that
p is maximal, that is p = x. Hence, the set Ey injects into the set F of minimal prime ideals of
A /yA . This ring being noetherian, the set is F finite.
Claim 2: for y ∈M(Td), the ring (A /yA )red is integral over k.

Indeed, we have an injection

(A /yA )red ↪→
∏
x∈Ey

A /x

taking a+ yA to (a+ xA )x∈Ey . Since every field in this finite product is a finite extension of
k, this proves Claim 2.

Let
αn + f1α

n−1 + . . .+ fn−1α+ fn = 0, fi ∈ Td
be the monic integral equation of minimal degree for α over Td (cf. Claim 2).

We have that

|α|sup = sup
y∈M(Td)

|ᾱy|sup (Lemma 3.7)

= sup
y∈M(Td)

|ᾱy|sp (Theorem 3.7)

= sup
y∈M(Td)

n
max
i=1
|fi(y)|1/i.

Since the maximum principle holds for Td, there exists y0 ∈M(Td) such that

|α|sup =
n

max
i=1
|fi(y0)|1/i = |ᾱy0 |sp = |ᾱy0 |sup.

Claim 1 implies that there exists x0 ∈ M(A ) such that x0 ∩ Td = y0 and |α(x0)| = |ᾱy0 |sup,
finishing the proof �

3.3.4. Weak stability. Let (A, | · |) be a valued ring (i.e. | · | is a nontrivial ultrametric multiplica-
tive norm). Let (M, | · |) be a normed A-module (i.e. |am| = |a||m| for all a ∈ A and m ∈M).
The module M is said to be b-separable if for all m ∈M −{0}, there exists a bounded A-linear
map λ : M → A such that λ(m) 6= 0.

Let (K, | · |) be a valued field and let V be a vector space over K. Let

F (V ) = {U ⊆ V : U is a finite dimensional vector space over K}.

Theorem 3.8. The following statements are equivalent

(1) For all U ∈ F (V ), there exists a linear homeomorphism U → Kn for n = dimK U ,
where we endow Kn with the product topology

(2) Every U ∈ F (V ) is closed
(3) Every U ∈ F (V ) is b-separable

Proof : Exercice

Definition 3.2. • V is said to be weakly cartesian if the conditions of the preceeding
theorem are fullfilled
• K is said to be weakly stable if for all finite field extensions L/K, we have that (L, | · |sp)

is weakly cartesian (in other words, we are asking that (K̄, | · |sp) is weakly cartesian).

Theorem 3.9. Let K be a valued field which is perfect. Then K is weakly stable. In particular,
all valued fields of characteristic 0 are stable.

Proof : let L/K be a finite extension. Let u ∈ L∗. Since L/K is separable, the trace form
TL/K : L × L → K is non degenerate. Then there exists v ∈ L s.t. TL/K(uv) 6= 0. Define
λ : L→ K by λ(x) = TL/K(xv). Then λ is a K-linear function with λ(u) 6= 0.

Let p(t) ∈ K[t] be the characteristic polynomial of the K-linear map l : L → L given by
l(y) = yvx. Let p1(t) ∈ K[t] be the minimal polynomial of vx. We have that p(t) = p1(t)m for
some positive integer m. Writing p(t) = tn + a1t

n−1 + . . .+ an we have that

|λ(x)| = | − a1| ≤ σ(p) = σ(p1) = |xv|sp ≤ |x|sp|v|sp,
17



showing that λ is continuous. This shows that (L, | · |sp) is weakly cartesian �

As the previous theorem suggest, there are (non-perfect) fields in characteristic p which are
not weakly stable. There is such an example in appendix A.

Theorem 3.10. Suppose char K = p > 0. Let K1 := {x ∈ K̄ : xp ∈ K}. Then K is weakly
stable if and only if (K1, | · |sp) is weakly cartesian.

To prove this Theorem we will use the following

Lemma 3.8. ([BGR84], section 2.3.3., Propositions 1 and 2)

(1) If V1, V2 are weakly cartesian, then V1 × V2 is weakly cartesian
(2) Let K ′/K be an algebraic extension such that K ′ is K-weakly cartesian. Let V a K ′-

vector space which is K ′-weakly cartesian. Then V , seen as a K vector space, is weakly
cartesian.

Proof of Theorem 3.10: we begin by proving that Kn := {x ∈ K̄ : xp
n ∈ K} is K-weakly

cartesian, for all n ≥ 1.
We proceed by induction. The case n = 1 is the hypothesis. Suppose the assertion is true for

n. Using Lemma 3.8, (2), we reduce the problem to show that every U ∈ FKn(Kn+1) is closed
in Kn+1. Consider the Frobenius morphism

Fr : Kn+1 → K1

defined by Fr(x) = xp
n
. This morphism is a field isomorphism. Hence, Fr(U) ∈ FK(K1).

Moreover, Fr is continuous. Indeed, since the spectral norm is power multiplicative, we have

that |Fr(x)|sp = |x|p
n

sp . This proves that a null sequence is taken into a null sequence, i.e. Fr is
continuous at 0. A similar argument shows that the inverse of Fr is also continuous, so Fr is
an homeomorphism. Since Fr(U) is closed in K1, we have that U is closed.

Now let K∞ = ∪∞n=1Kn. The above assertion implies that K∞ is K-weakly cartesian. On
the other hand, since K∞ is perfect, we have that K̄ is K∞-weakly cartesian. Using Lemma
3.8, (2) we conclude that K̄ is K-weakly cartesian �

Corollary 3.2. Let A be a valued k-algebra which is a domain and such that char p > 0. Let
K = Q(A) be the quotient field and let A1 := {x ∈ K1 : xp ∈ A}. Suppose that every finitely
generated A-submodule of A1 is b-separable. Then K is weakly stable.

Proof : we begin by showing that

(3.11) K1 = {x
a

: x ∈ A1, a ∈ A− 0}.

The inclusion “ ⊇” is clear. To prove the opposite inclusion, take z ∈ K1. Since zp belongs to
K, we can write zp = b/a with b, a ∈ A and a 6= 0. Let x := az. We have that xp = ap−1bp ∈ A,
hence, x ∈ A1.

Let U ∈ F (K1) and let {v1, . . . , vn} be a basis. Because of (3.11), we can assume that
vi ∈ A1. The finitely generated module A-module N := ⊕Avi is contained in A1, hence, it is
b-separable.

Let u ∈ U − {0}. Then there exists c ∈ k such that cu ∈ N . Let λ′ : N → A be a bounded
A-linear map such that λ′(cu) 6= 0. But then there is a unique bounded K-linear extension
λ : U → K and we have that λ(u) 6= 0�

Proposition 3.2. Let (V, | · |) be a normed k-vector space of countable dimension6. Then V is
b-separable.

The proof of the Proposition is a consequence of the following ”Gram-Schmidt algorithm”:

Lemma 3.9. Let {vi} be a basis of V . For all α, ρ > 1, there exists a basis Y = {yi} such that

(1) 1 ≤ |yi| ≤ ρ, for all i
(2) define Un := <v1, . . . , vn>k. Then Un = <y1, . . . , yn>k
(3) Y is α-cartesian, i.e. for all n0 ∈ N and a1, . . . , an0 ∈ k, we have that

max
n≤n0

|anyn| ≤ α
∣∣∣ n0∑
n=1

anyn

∣∣∣.
6That is, there is a countable l.i. set such that the vector space it spans is dense in V . Such a set is called a

basis of V .
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Proof : Step 1. Let α1 = 1 < α2 < · · · be a strictly increasing sequence such that αn → α. Let
Y = {yi} be a basis of V such that for all n ≥ 1, we have property Pn defined by

(3.12) (Pn) : αn max{|u|, |ayn+1|} ≤ αn+1|u+ ayn+1|, for all a ∈ k, u ∈ Un.

Then Y satisfies condition (3) of Lemma 3.9.
Indeed, it is easily seen by induction that in this case we have that

max
m≤n
|amyn| ≤ αn

∣∣∣ ∑
m≤n

amym

∣∣∣
for all n. Since αn ≤ α, this justifies the claim.

Step 2. Let U ⊂ V be a k-vector space and let x ∈ V \Ū . Then for all β > 1, there exists

y ∈ U ′ := U + kx such that

• U ′ = U + ky
• max{|u|, |ay|} ≤ β|u+ ay|, for all u ∈ U and a ∈ k.

Indeed, let u0 ∈ U such that |x+u0| ≤ βd(x, U). Then y := x+u0 satisfies the first required
property. If |y| 6= |ay|, then clearly the second property is also satisfied. Suppose |y| = |ay|.
Then we need to show that

|ay| ≤ β|u+ ay|.

But this is clear from the definition of u0.
Step 3. Suppose that we have found {y1, . . . , yn} satisfying properties (1) and (2) in Lemma

3.9 and property Pn−1 in (3.12).
Since k is complete, V is weakly cartesian, so Un is closed. Hence, vn+1 /∈ Un = Un. Using step

2 with β = αn+1/αn, we have that there exists y′n+1 ∈ Un+1 such that Un+1 = Un + ky′n+1 and
satisfying property Pn. Then we choose c ∈ k such that yn+1 := cy′n+1 satisfies 1 ≤ |yn+1| ≤ ρ.
It is easily checked that this choice satisfies property Pn and (2) in Lemma 3.9. Hence, using
this procedure we can obtain a basis Y with the required properties �
Proof of Proposition 3.2: choose any α, ρ > 1 and the basis Y given by the preceding lemma.
Let V ′ be the vector space spanned by Y . Then for all i, the k-linear map Fi : V ′ → k given by
Fi(
∑

j ajyj) = ai is continuous. Indeed, putting u =
∑

j ajyj ∈ V ′, we have that

|Fi(u)| = |ai|
≤ |aiyi|
≤ max

j
|ajyj |

≤ α|
∑
j

ajyj |

= α|u|.

Since k is complete, we conclude that Fi extends to a bounded k-linear map Fi : V → k with
operator norm bounded by α. In particular, the bound does not depend on i.

Let u ∈ V . Suppose that Fi(u) = 0 for all i. Take a sequence (un) ⊂ V ′ that converges to u.
Let ai,n := Fi(un). Since Fi is continuous, we have that

lim
n→∞

ai,n = Fi(u) = 0.

Let ε > 0. Since un is a Cauchy sequence, we have that |un − um| ≤ ε/α for all n,m ≥ m0.
This implies that for all i and n,m ≥ m0 we have that |ai,n− ai,m| = |Fi(un−um)| ≤ ε. Hence,

|ai,n| = lim
m→∞

|ai,n − ai,m| ≤ ε, for all i and for all n ≥ m0.

Writing un =
∑

j aj,nyj we see that |un| ≤ ρε for all n ≥ m0. We conclude that un → 0, i.e.
u = 0. This shows that V is b-separable �

3.3.5. Weak stability of Q(Tn). Suppose char k = p > 0. We will prove the weak stability of
Q(Tn) using Corollary 3.2. We need to show that every finitely generated Tn-module M ⊂ Tn,1
is b-separable.
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Write Tn = k<X>, with X = (x1, . . . , xn). Then the natural embedding Tn → Tn,1 can be
described as

k<X> // k1<Y >

xi // ypi .

Indeed, the p-power of any element in k1<Y > lies in k<X> and every element in k<X> has
a p-th root in k1<Y >.

On the other hand, the field k1 is complete. To see this, take a Cauchy sequence (an) ⊂ k1.
Then (apn) ⊂ k is also Cauchy, because |apn − apm| = |an − am|p. Then there is b ∈ k such that

apn converges to b. Let a be a p-th root of b. Then we have that |an − a| = |apn − b|1/p, implying
that an converges to a.

We conclude that Tn,1 is also a Tate algebra.
Let {m1, . . . ,mr} ⊂M be a maximal l.i. set. Write

mi =
∑
J

ci,JY
J .

We denote by k′ the completion of the field k
(

(ci,J) i=1,...,r,
J⊂Zn

)
. Since k′ is a k-vector space of

countable dimension, Proposition 3.2 ensures that k′ is b-separable.
Claim 1: k′<Y > is b-separable as a k<Y >-module. Take a nonzero series

∑
J aJY

J ∈ k′<Y >.

Choose J such that aJ 6= 0. Let λ : k′ → k be a continuous k-linear map such that λ(aJ) 6= 0.
Then this maps extends to a continuous map λ′ : k′<Y >→ k<Y > by the rule

λ′
(∑

J

bJY
J
)

=
∑
J

λ(bJ)Y J .

This k<Y >-linear map is continuous. Indeed, we have that ‖λ′(
∑

J bJY
J)‖ ≤ ‖λ‖‖

∑
J bJY

J‖.
Claim 2: k<Y > is b-separable as a k<X>-module. We have a direct sum decomposition

k<Y > =
⊕

J=(j1,...,jn)
0≤ji<p

k<X>Y J .

If we put the max norm on the right hand side, this decomposition is an isometry. Since every
k<X>Y J is b-separable as a k<X>-module, this justifies the claim.

Claim 3: k′<Y > is b-separable as a k<X>-module. Since the composition of bounded lin-
ear maps is bounded, the claims follows by putting together Claim 1 and 2.

Claim 4: M ⊂ k′<Y >. Since for all m ∈ M we have that mp ∈ k<X>, we have that M is
integral over k<X>. On the other hand,

M ⊂ k′<Y >⊗k<X> Q(k<X>) ⊆ Q(k′<Y >).

Since k′<Y > is a Tate algebra, it is integrally closed, i.e.

Q(k′<Y >) ∩ k′<Y > = k′<Y >.

This justifies the claim.
Since k′<Y > is b-separable as a k<X>-module, the same is true for M , finishing the proof

�

3.3.6. Completeness of the sup norm. The goal of this section is to prove part (3) of Theorem
3.5. Suppose first that A is a domain. Let Td → A by an injective finite morphism given by
NNL. Then we have a finite extension Q(Td)→ Q(A ). Since Q(Td) is weakly stable, the spectral
norm on Q(A ) induces the product topology. On the other hand, we have that | · |sp = | · |sup

(Theorem 3.7).
Let {a1, . . . , an} be a basis of the extension. By the paragraph above,

(
Q(A ), | · |sup

)
is

weakly cartesian, i.e. there exists α > 0 such that

(3.13)
n

max
i=1
{‖aiti‖} ≤ α|

n∑
i=1

aiti|sup, for all ti ∈ Q(Td).

On the other hand, there exists a nonzero t ∈ Td s.t.

A ⊂
n⊕
i=1

Td
ai
t

=: A ′.
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Since Td is complete, the module A ′, together with the max norm, is complete. Using (3.13),
we conclude that (A ′, | · |sup) is complete. Since A is a submodule of A ′, it is closed (same
proof as in section 2.6), hence complete.

Now we treat the general case where A is supposed to be a reduced k-algebra. Let p1, . . . pr
be the collection of minimal prime ideals (which is finite because A is noetherian). Then we
have an injection

A ↪→
r⊕
i=1

A /pi =: A ′.

Because of the special case just proved, we have that (A /pi, | · |sup) is complete for all i. Then
A ′, endowed with the max norm, is complete. Using Lemma 3.5, (1), we conclude that the
max norm induces the | · |sup norm on A . Since A is a submodule, it must be closed, hence
complete �

3.3.7. Power bounded elements. The goal of this section is to prove Theorem 3.5, (4).

Lemma 3.10. Let Td → A be a finite injective morphism and let α ∈ A . Then there exists a
monic polynomial q ∈ Td[x] such that q(α) = 0 and |α|sup = σ(q).

Proof : Suppose first that A is a domain. Without lost of generality, we may suppose A =
Td[α]. Let q ∈ Td[x] be the unique monic polynomial such that q(α) = 0 and of minimal degree
(i.e. q is the minimal polynomial of α).
Claim. We have that A ∼= Td[x]/(q).

The field extension Q(Td) → Q(A ) being finite, we denote by t ∈ Q(Td)[x] the minimal
polynomial of α (it is monic). We have that Q(A ) ∼= Q(Td)[x]/(t). Moreover, t has coefficients
in Td. Indeed, since α is integral over Td, all the conjugates of α are integral as well. Since
the coefficients of t are symmetric functions of these conjugates, they are integral too. But Td,
being a unique factorization domain ([BGR84], Theorem 5.6.2.1), is integrally closed in Q(Td).
Hence, t ∈ Td[x]. We conclude that t = q, justifying the claim.

We have that

|α|sup = sup
y∈M(Td)

|ᾱy|sup

= sup
y∈M(Td)

|ᾱy|sp.

We denote by qy the image of q in (Td/y)[x] and we write qy = qn1
1 · · · qnr

r where the qi’s are
pairwise distinct irreducible polynomials in (Td/y)[x]. Using the Claim, we have that

A /yA ∼=
r⊕
i=1

(Td/y)[x]/(qni
i )

(A /yA )red ∼=
r⊕
i=1

(Td/y)[x]/(qi).

Then we have that

|ᾱy|sp =
r

max
i=1
|ᾱy,i|sp

=
r

max
i=1

σ(qi)

= σ(q1 · · · qr)
= σ(qy).

Finally

|α|sp = sup
y∈M(Td)

σ(qy)

= σ(q).

This finishes the proof in the case where A is an integral domain. Now we prove the general
case. Let p1, . . . , pr be the minimal prime ideals of A . Let πi : A → A /pi be the canonical
morphism. Let qi ∈ Td[x] be the minimal polynomial of πi(α) (note that Td → A /pi is finite).
Let q̃ := q1 · · · qr.
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Since πi
(
q̃(α)

)
= 0 for all i, we have that q̃(α) is a nilpotent element. Let e be an integer

such that q̃(α)e = 0 and set q := q̃e. Then we have that

|α|sup = max
i
|πi(α)|sup = max

i
σ(qi) = σ(q̃) = σ(q) �

Lemma 3.11. Let | · |A be a k-Banach algebra norm on A . Then we have that

|f |sup ≤ |f |A , ∀f ∈ A .

Proof : let x ∈M(A ). Let | · |r be the residue norm induced by | · |A on A /x. Since this norm
is submultiplicative, we can apply Theorem 3.6 to it to obtain

|f(x)| = inf
i≥1
|f(x)i|1/ir ≤ |f(x)|r ≤ |f |A .

Since x is arbitrary, this implies |f |sup ≤ |f |A �

Proof of Theorem 3.5, (4): Let f ∈ A such that |f |sup ≤ 1. Let ι : Td → A be a finite
injective morphism given by NNL. Let q(x) = xn + t1x

n−1 + · · · + tn ∈ Td[x] be polynomial
given by Lemma 3.10 applied to f . Then we have that ‖ti‖ ≤ 1 for all i = 1, . . . , n. Hence, fn

lives in the bounded set fn−1ι(B1) + · · ·+ ι(B1), where B1 = {t ∈ Td : ‖t‖ ≤ 1}. It follows by
induction that for all positive integers k the powers fn+k are bounded as well.

Suppose now that f is power bounded. That is, if | · |A is a k-Banach algebra norm on A ,
then there exists C > 0 such that |fn|A ≤ C for all integers n ≥ 1. Using Lemma 3.11, we have
that

|f |nsup = |fn|sup ≤ |fn|A ≤ C.

Hence, |f |sup ≤ C1/n for all n, implying |f |sup ≤ 1 �

Appendix A. An example of a non weakly cartesian field

Lemma A.1. (1) Let K be a valued field and let f, g ∈ K[x] be monic polynomials of degree
n. Let α ∈ K̄ be such that f(α) = 0. Then |g(α)|sp ≤ ‖f − g‖‖f‖n−1.

(2) Suppose K is complete. Then there exists β ∈ K̄ s.t. g(β) = 0 and

|α− β|sp ≤ ‖f − g‖1/n‖f‖.

Proof : let q be the minimal polynomial of α. Then we have a factorization f = qr with
r ∈ K[x]. Since f is monic, ‖f‖ ≥ σ(f). On the other hand, σ(f) ≥ σ(q) = |α|sp. We conclude
that |α|sp ≤ ‖f‖.

Now write

f = xn +

n∑
j=1

fjx
n−j , g = xn +

n∑
j=1

gjx
n−j .

Then g(α) = g(α)− f(α) =
∑n

j=1(gj − fj)αn−j implies

|g(α)|sp ≤ ‖g − f‖
n

max
j=1
|α|n−jsp ≤ ‖g − f‖ n

max
j=1
‖f‖n−j ≤ ‖g − f‖‖f‖n−1,

since ‖f‖ ≥ 1. This proves part (1).
Suppose that assertion (2) does not hold. Write g =

∏n
i=1(x − βi). Then |α − βi|sp >

‖f − g‖1/n‖f‖, for all i = 1, . . . , n (we use the completeness here to ensure that the spectral
norm is multiplicative). Then we have that

|g(α)|sp =
n∏
i=1

|x− βi|sp > ‖f − g‖‖f‖n.

Since ‖f‖ ≥ 1, this contradicts part (1). �

Theorem A.1. Let K be a complete valued field and let Ksep be the separable closure of K.
Then Ksep is dense in K̄.

Proof : let α ∈ K̄ and let n = [K(α) : K]. Let f(x) = xn +
∑n

j=1 fjx
n−j be the minimal

polynomial of α. Let ε > 0 and let δ := (ε/‖f‖)n. We will show that there exists a monic
separable polynomial g ∈ K[x] such that ‖f−g‖ < δ. Using Lemma A.1, (1), this will complete
the proof.

22



Write gz = xn + z1x
n−1 + . . .+ zn−1x+ zn, where z = (z1, . . . , zn) ∈ Kn is to be defined. Let

r1, . . . , rn be the roots of gz (possibly repeated). Define

∆(z) :=
∏
i 6=j

(ri − rj)2.

We have that ∆(z) 6= 0 if and only if gz is separable. Since ∆(z) is symmetric in (r1, . . . , rj), we
have that ∆(z) is a polynomial in the elementary symmetric functions of (r1, . . . , rj), i.e. ∆(z)
is a polynomial in z.

The maximum principle (Proposition 2.1, (2)) shows that the zero set of ∆ is nowhere dense
in Kn. In particular, there exists z̃ ∈ D

(
(f1, . . . , fn), δ

)
such that ∆(z̃) 6= 0. Putting g := gz̃

we obtain a polynomial with the required properties �

Corollary A.1. There exists non-weakly cartesian valued fields.

Proof : let K be a non-perfect complete valued field. For example, consider Fp[x] with the

valuation |q(x)| := 2deg q and let K be the completion of Q(Fp[x]) w.r.t. this valuation. Let

y ∈ K̄ such that yp = x. Then |y| = |x|1/p = 21/p. Since the value group does not change after
completion, this implies that y /∈ K. Hence, K is non-perfect.

The field Ksep, which is properly contained in K̄, is not weakly stable because the Theorem
ensures that it is dense in K̄. Hence, it does not satisfy condition (2) in Theorem 3.8 �
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