Torelli Theorem for K3 surface, classic and derived
version

Referencias:
+ Lectures on K3 surfaces (Huybrechts). Page 22-24.

+ The Fourier-Mukai transform in Algebraic geometry (Huybrechts) Chapter 10.1-10.2.

1 Torelli theorem for K3 surfaces

1.1 Ample cone of a K3 surface

The ample cone of X is the cone in NS(X )g = NS(X) ® R generated by ample classes:
Amp X = {Z a;L; : L € Pic X is ample and a; > 0} )
Since NS(X) has signature (1, p(X) — 1), the set
Px = {w € NS(X)g : w* > 0}

has two connected components. We denote by Cx the positive cone of X corresponding to the
connected component of Px containing the ample cone. Note that

Px =Cx U—Cx
We have the following result:
Proposition 1. Let X be a K3 surface, then
Amp X = {L£ € Cx : (L,C) > 0 for every curve C ~P' C X}
We start with the following short lemma:

Lemma 2. Let C' C X be an integral curve. Then (C')? > —2. IfC is a (—2)-curve, i.e., (C)? = —2,
then C' is a smooth rational curve and so isomorphic to P!



Proof. Recall the definition of the arithmetic genus:
pa(C) = 1= x(C,Oc).

From the exact sequence

0—-0(-C)—=0—=0c—0,

we obtain p,(C) = 1 4+ x(X, O(—C)) — x(X, Ox). By applying Riemann-Roch twice, we see
that
2p,(C) — 2 = (C)*.

Let v : C' — C be the normalization. From the exact sequence
0— OC — V*Oé — V*Oé/OC —0

we obtain

pa(C) = g(C) + h*(1.0a/Oc).

From this we see that p,(C) > 0 and so (C)? > —2.If (C)? = —2, then h°(v,O0p/O¢) = 0 and
so C'is a smooth rational curve. [

Proof. (Proposition 1) Let £ be a line bundle in Cx. By Nakai-Moishezon-Kleiman criterion, it is
enough to prove that (£,C) > 0 for every integral curve C' C X. By the previous Lemma and
the hypthesis, it is enough to prove it for the case when (C)? > 0.
Assume that (C')? > 0. Then

CePx=CxU—Cx

and so C is either in the closure Cx or —_CX. Now we show that C' ¢ —Cx. Let V € Amp(X).
Then we have (C,V) > 0. Now if C' € —C, from the fact that V € Cx, we may findat € (0, 1)
such that ((1 — t)C' + tV)? = 0, but this is impossible since

(1=t)C+tV)? = (1 —1t)*(C)* +2t(1 —t)(C, V) + t*(V)* > 0.

Therefore C' € Cx. Now consider an element M # 0 in the boundary of Cx. Then M? = 0. If
(L, M) < 0, from the equation

(1 —=t)M +tL)? =2t(1 —t)(L, M) +t*(L)?,

we can see that by choosing ¢ > 0 small enough, we have ((1 — ¢)M + t£)* < 0, but this is
impossible since (1 — t)M + tL € Cx fort € (0,1). Thus (£, M) > 0. Moreover, from the fact
that M+ = {v € NS(X)g : (M,v) = 0} is a plane (the pairing in non-degenerated) and £ € Cx,
we have that (£, M) > 0. Indeed, if (£, M) = 0, then M+ would divide the cone Cx in two
non-empty parts, one where the intersection with M is positive and one where it is negative, but
this is impossible as (L', M) > 0 for every L' € Cx (just as we proved for £). Finally, since very
element in Cx is a positive linear combination of elements M in the boundary of Cx, we conclude

that (£, C) > 0. O



1.2 Torelli Theorem for K3 surfaces
Let X be a K3 surface. As we saw last week, the abelian group
H(X,Z)
endowed with cup product is a lattice abstractly isomorphic to
E? e U
where U is the hyperbolic lattice. The complex structure of X induces a Hodge-structure on
H?(X,Z) via the standard Hodge-decomposition on H?(X, C):
H*(X,7Z)®C = H*(X,C) = H**(X)® H"'(X) ® H”*(X)
where we have isomorphisms H?%(X) ~ H9(X,Q9), and H»?(X) and H”9 (X) are orthogonal
if (p,q) # (p',¢'). Let X, Y be two K3 surfaces (or two compact complex surfaces). A Hodge-

isometry ¢ : H*(X,Z) — H?*(Y,Z) is an isometry of lattices such that its linear extension
oc : HX(X,C) — H*(Y,C) satisfies:

pe(HP(X)) = HM(Y),

The following theorem says that the lattice H?(X,Z) and its Hodge-structure determines the K3
surface.

Theorem 3 (Torelli theorem for K3 surfaces). Let X,Y be two K3 surfaces. Then X is isomorphic
toY iff there is a Hodge-isometry ¢ : H*(X,Z) — H*(Y,Z).

Remarks:
(i) When X =Y, there is a natural group morphism
Aut X — {p: H*(X,Z) = H*(X,Z) : ¢ is Hodge-isometry}, e f.

This map is not surjective, i.e, not every Hodge isometry is of the form f,. One important
example is the following: let C' C X be a (—2)-curve, ie, its class 6 = ¢;(C) satisfies
§? = —2 (for example, X could be a Kummer surface and C one of the exceptional divisors).
The linear map

ss: H*(X,7) — H*(X,Z), ss(v) =v+ (v,6)-9

corresponding to the orthogonal reflection along the plane H; = ¢~ is a Hodge isometry.
Indeed, it is an isometry:

(55(v), s5(w)) = (v + (v,0)5, w + (w,6)8) = (v,w) + 2(v,w) + (v, w)d* = (v,w).

It respects the Hodge-structure: its C-linear extension acts as the identity on H*°(X') and
H%%(X), and preserves H"' (X, Z).

If f. = ¢ for some f € Aut(X). For an ample line bundle £ € Pic(X) we have
(s5(c1(£)),0) = =(c1(£),0) = —deg L|o < 0

but ss5(c;1 (L)) is also the class of an ample line bundle and so it is positive which is impos-

sible.

These isometries are called Lefschetz-Hodge reflections:
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(ii) The condition that ¢ sends an ample class to an ample class in order to be of the from f.
for some isomorphism f : X — Y is actually sufficient.

Theorem 4. A Hodge-isometry o : H*(X,Z) — H?(Y,Z) lifts to an isomorphism iff its
R-linear extension @y preserves the ample cone.".

Using Proposition 1, we can prove that every Hodge isometry ¢ is of the form
@ = %85 0...0085, 0 fu

for some isomorphism f : X — Y and a sequence of L-H reflections {s;, };. The basic idea
is the following. Let ¢ = ¢;(L) be the class of an ample line bundle £ € Pic(X). Since ¢
fixes Py, then either after multiplying by —1 if necessary, we may assume that p(c) € Cx.
If p(c) is not in the ample cone, then Proposition 1 would imply that there is a curve C' ~ P!
such that (¢(c), C) < 0. The L-H reflection associated Ss to C' then change the sign of the
intersection. We can find a sequence of such smooth rational curves (', ..., C} such that
the class
=+ +s50...00s5 0p(c)

has positive intersection with each P!. Proposition 1 then implies that ¢’ is the class of an
ample line bundle and the Theorem above implies that the desired form for (.

2 Derived categories and Derived Torelli Theorem

The derived category D(X) of a variety X was initially created as a formal object to define derived
functors and compute cohomology of sheaves on X. But since the work of Bondal and Orlov ,
the derived category has turned out to be a very interesting variety specially in the context of
moduli spaces.

Two smooth varieties X, Y are called derived equivalent if D(X) ~ D(Y). In general
D(X) ~ D(Y) doesn’t imply that X ~ Y, but it stills a very interesting question to relate
XandY.

The derived Torelli Theorem, due to Mukai and Orlov, gives sufficient and necessary condi-
tions for two K3 surfaces to be derived equivalent in terms of the Mukai lattice:

H*(X,Z) = (H'(X,Z),{,))
where the bilinear product is given by
((r,c,d) - (r',d,d)) =cd —rd —1r'd,
for (r,c,d), (r',d,d") € H*(X,Z) ® H*(X,Z) ® H*(X,Z) It has a Hodge-structure of weight 2
given by
H*(X,2)*° = H**(X), H*(X,2)**=H"*(X), H*(X,Z)"' = HX,C)aH"(X)®H*(X,C)

As in the classic setting, we say that an isometry between the Mukai lattice of two K3 surfaces is
a Hodge-isometry if it respects this Hodge-structure.

Theorem 5. Let X, Y be two K3 surfaces. Then D(X) ~ D(Y) iff there is a Hodge-isometry
H*(X,Z) ~ H*(Y,Z).

'When X is not projective, we require that g preserves the Khaler cone
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