
Torelli Theorem for K3 surface, classic and derived
version
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• Lectures on K3 surfaces (Huybrechts). Page 22-24.

• The Fourier-Mukai transform in Algebraic geometry (Huybrechts) Chapter 10.1-10.2.

1 Torelli theorem for K3 surfaces

1.1 Ample cone of a K3 surface
The ample cone of X is the cone in NS(X)R = NS(X)⊗ R generated by ample classes:

AmpX =

{∑
i

aiLi : L ∈ PicX is ample and ai ≥ 0

}
.

Since NS(X) has signature (1, ρ(X)− 1), the set

PX := {w ∈ NS(X)R : w2 > 0}

has two connected components. We denote by CX the positive cone of X corresponding to the
connected component of PX containing the ample cone. Note that

PX = CX ⊔ −CX

We have the following result:

Proposition 1. Let X be a K3 surface, then

AmpX = {L ∈ CX : (L, C) > 0 for every curve C ≃ P1 ⊂ X}

We start with the following short lemma:

Lemma 2. LetC ⊂ X be an integral curve. Then (C)2 ≥ −2. IfC is a (−2)-curve, i.e., (C)2 = −2,
then C is a smooth rational curve and so isomorphic to P1
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Proof. Recall the definition of the arithmetic genus:

ρa(C) = 1− χ(C,OC).

From the exact sequence
0 → O(−C) → O → OC → 0,

we obtain ρa(C) = 1 + χ(X,O(−C)) − χ(X,OX). By applying Riemann-Roch twice, we see
that

2ρa(C)− 2 = (C)2.

Let ν : C̃ → C be the normalization. From the exact sequence

0 → OC → ν∗OC̃ → ν∗OC̃/OC → 0

we obtain
ρa(C) = g(C̃) + h0(ν∗OC̃/OC).

From this we see that ρa(C) ≥ 0 and so (C)2 ≥ −2. If (C)2 = −2, then h0(ν∗OC̃/OC) = 0 and
so C is a smooth rational curve.

Proof. (Proposition 1) Let L be a line bundle in CX . By Nakai-Moishezon-Kleiman criterion, it is
enough to prove that (L, C) > 0 for every integral curve C ⊂ X . By the previous Lemma and
the hypthesis, it is enough to prove it for the case when (C)2 ≥ 0.
Assume that (C)2 ≥ 0. Then

C ∈ PX = CX ∪ −CX
and so C is either in the closure CX or −CX . Now we show that C ̸∈ −CX . Let V ∈ Amp(X).
Then we have (C,V) > 0. Now if C ∈ −C, from the fact that V ∈ CX , we may find a t ∈ (0, 1)
such that ((1− t)C + tV)2 = 0, but this is impossible since

((1− t)C + tV)2 = (1− t)2(C)2 + 2t(1− t)(C,V) + t2(V)2 > 0.

Therefore C ∈ CX . Now consider an element M ̸= 0 in the boundary of CX . Then M2 = 0. If
(L,M) < 0, from the equation

((1− t)M + tL)2 = 2t(1− t)(L,M) + t2(L)2,

we can see that by choosing t > 0 small enough, we have ((1 − t)M + tL)2 < 0, but this is
impossible since (1 − t)M + tL ∈ CX for t ∈ (0, 1). Thus (L,M) ≥ 0. Moreover, from the fact
thatM⊥ = {v ∈ NS(X)R : (M, v) = 0} is a plane (the pairing in non-degenerated) and L ∈ CX ,
we have that (L,M) > 0. Indeed, if (L,M) = 0, then M⊥ would divide the cone CX in two
non-empty parts, one where the intersection withM is positive and one where it is negative, but
this is impossible as (L′,M) ≥ 0 for every L′ ∈ CX (just as we proved for L). Finally, since very
element in CX is a positive linear combination of elementsM in the boundary of CX , we conclude
that (L, C) > 0.
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1.2 Torelli Theorem for K3 surfaces
Let X be a K3 surface. As we saw last week, the abelian group

H2(X,Z)

endowed with cup product is a lattice abstractly isomorphic to

E⊕2
8 ⊕ U⊕3

where U is the hyperbolic lattice. The complex structure of X induces a Hodge-structure on
H2(X,Z) via the standard Hodge-decomposition on H2(X,C):

H2(X,Z)⊗ C = H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X)

where we have isomorphismsHp,q(X) ≃ Hq(X,Ωq), andHp,q(X) andHp′,q′(X) are orthogonal
if (p, q) ̸= (p′, q′). Let X, Y be two K3 surfaces (or two compact complex surfaces). A Hodge-
isometry φ : H2(X,Z) → H2(Y,Z) is an isometry of lattices such that its linear extension
φC : H2(X,C) → H2(Y,C) satisfies:

φC(H
p,q(X)) = Hp,q(Y ).

The following theorem says that the latticeH2(X,Z) and its Hodge-structure determines the K3
surface.
Theorem 3 (Torelli theorem for K3 surfaces). Let X, Y be two K3 surfaces. Then X is isomorphic
to Y iff there is a Hodge-isometry φ : H2(X,Z) → H2(Y,Z).

Remarks:
(i) When X = Y , there is a natural group morphism

AutX → {φ : H2(X,Z) ∼→ H2(X,Z) : φ is Hodge-isometry}, f 7→ f∗.

This map is not surjective, i.e, not every Hodge isometry is of the form f∗. One important
example is the following: let C ⊂ X be a (−2)-curve, i,e, its class δ = c1(C) satisfies
δ2 = −2 (for example,X could be a Kummer surface andC one of the exceptional divisors).
The linear map

sδ : H
2(X,Z) → H2(X,Z), sδ(v) = v + (v, δ) · δ

corresponding to the orthogonal reflection along the plane Hδ = δ⊥ is a Hodge isometry.
Indeed, it is an isometry:

(sδ(v), sδ(w)) = (v + (v, δ)δ, w + (w, δ)δ) = (v, w) + 2(v, w) + (v, w)δ2 = (v, w).

It respects the Hodge-structure: its C-linear extension acts as the identity onH2,0(X) and
H0,2(X), and preserves H1,1(X,Z).
If f∗ = φ for some f ∈ Aut(X). For an ample line bundle L ∈ Pic(X) we have

(sδ(c1(L)), δ) = −(c1(L), δ) = − degL|C < 0

but sδ(c1(L)) is also the class of an ample line bundle and so it is positive which is impos-
sible.
These isometries are called Lefschetz-Hodge reflections:
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(ii) The condition that φ sends an ample class to an ample class in order to be of the from f∗
for some isomorphism f : X → Y is actually sufficient.
Theorem 4. A Hodge-isometry φ : H2(X,Z) → H2(Y,Z) lifts to an isomorphism iff its
R-linear extension φR preserves the ample cone.1.

Using Proposition 1, we can prove that every Hodge isometry φ is of the form
φ = ±sδ1 ◦ . . . ◦ δsδk ◦ f∗

for some isomorphism f : X → Y and a sequence of L-H reflections {sδi}i. The basic idea
is the following. Let c = c1(L) be the class of an ample line bundle L ∈ Pic(X). Since φ
fixes PX , then either after multiplying by−1 if necessary, we may assume that φ(c) ∈ CX .
Ifφ(c) is not in the ample cone, then Proposition 1 would imply that there is a curveC ≃ P1

such that (φ(c), C) < 0. The L-H reflection associated Sδ to C then change the sign of the
intersection. We can find a sequence of such smooth rational curves C1, . . . , Ck such that
the class

c′ = ±± sδ1 ◦ . . . ◦ δsδk ◦ φ(c)
has positive intersection with each P1. Proposition 1 then implies that c′ is the class of an
ample line bundle and the Theorem above implies that the desired form for φ.

2 Derived categories and Derived Torelli Theorem
Thederived categoryD(X) of a varietyX was initially created as a formal object to define derived
functors and compute cohomology of sheaves on X . But since the work of Bondal and Orlov ,
the derived category has turned out to be a very interesting variety specially in the context of
moduli spaces.

Two smooth varieties X, Y are called derived equivalent if D(X) ≃ D(Y ). In general
D(X) ≃ D(Y ) doesn’t imply that X ≃ Y , but it stills a very interesting question to relate
X and Y .

The derived Torelli Theorem, due to Mukai and Orlov, gives sufficient and necessary condi-
tions for two K3 surfaces to be derived equivalent in terms of the Mukai lattice:

H̃∗(X,Z) = (H∗(X,Z), ⟨, ⟩)

where the bilinear product is given by
⟨(r, c, d) · (r′, c′, d′)⟩ = cc′ − rd′ − r′d,

for (r, c, d), (r′, c′, d′) ∈ H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) It has a Hodge-structure of weight 2
given by
H̃∗(X,Z)2,0 = H2,0(X), H̃∗(X,Z)0,2 = H0,2(X), H̃∗(X,Z)1,1 = H0(X,C)⊕H1,1(X)⊕H4(X,C)

As in the classic setting, we say that an isometry between the Mukai lattice of two K3 surfaces is
a Hodge-isometry if it respects this Hodge-structure.
Theorem 5. Let X, Y be two K3 surfaces. Then D(X) ≃ D(Y ) iff there is a Hodge-isometry
H∗(X,Z) ≃ H∗(Y,Z).

1When X is not projective, we require that φR preserves the Khaler cone

4


	Torelli theorem for K3 surfaces
	Ample cone of a K3 surface
	Torelli Theorem for K3 surfaces

	Derived categories and Derived Torelli Theorem

