Mukai vector and slope stability

Anibal Aravena

1 The Mukai vector

When X is a K3 surface, it is convenient to use the Mukai vector in order to described the Chern classes of sheaves $E \in \text{Coh } X$.

Definition: Let $E \in \text{Coh}(X)$, the Mukai vector of E is the vector

$$
v(E) = (r, c, s) \in H^0(X, \mathbb{Z}) \oplus H^2(X, \mathbb{Z}) \oplus H^4(X, \mathbb{Z}) = H^*(X, \mathbb{Z})
$$

given by the formula:

$$
v(E) = \operatorname{ch}(E)\sqrt{\operatorname{td}(X)} = (\operatorname{rank}(E), c_1(E), \operatorname{ch}_2(E) + \operatorname{rank}(E)).
$$

Recall that for a general sheaf $E \in \text{Coh } X$, their Chern classes are computed via resolution of vector bundles, i.e., for an exact sequence

$$
0 \to V^r \to \ldots \to V^0 \to E \to 0
$$

with V^k vector bundles, we have $\ch{E} \coloneqq \sum_k (-1)^k \ch(V^k)$. Remark:

The Mukai vector is additive in short exact sequence, i.e., for all exact sequence of sheaves:

$$
0 \to K \to E \to Q \to 0
$$

we have $v(E) = v(Q)+v(K)$. Thus the Mukai vector induces a group morphism $v: K(\text{Coh }X) \to$ $H^*(X, Z)$ whose image is

$$
H^0(X,\mathbb{Z})\oplus \mathrm{NS}(X)\oplus H^4(X,\mathbb{Z})
$$

Examples

1. $\mathcal{L} \in \text{Pic } X$, then

$$
v(\mathcal{L}) = (1, c_1(\mathcal{L}), c_1(\mathcal{L})^2/2 + 1)
$$

- 2. Let $Z \subset \mathcal{O}_X$ be a subscheme of length ℓ , then $v(\mathcal{O}_Z) = (0, 0, \ell)$.
- 3. Let $C \subset X$ be a smooth curve. By the exact sequence

$$
0 \to \mathcal{O}_X(-C) \to \mathcal{O}_X \to \mathcal{O}_C \to 0
$$

we obtain

$$
v(\mathcal{O}_C) = v(\mathcal{O}_X) - v(\mathcal{O}_X(-C)) = (0, c_1(\mathcal{O}_X(C)), -(C)^2/2).
$$

4. More general consider a coherent sheaf of the form $F = i_*G$ where $i : C \to X$ is the inclusion of a smooth curve. Then the Chern classes of F can be computed by using Grothendieck-Riemann-Roch

$$
ch(f_!G) \mathrm{td} X = f_*(ch F \mathrm{td} X)
$$

Here we consider $f = i$ and the equation becomes

$$
ch(F) \mathrm{td}\, X = i_*(ch\, G \mathrm{td}\, C)
$$

Using the td $X = (1,0,2)^1$ $X = (1,0,2)^1$ $X = (1,0,2)^1$ and that td $C = (1, c_1(T_C)/2)$, we obtain

$$
(\text{ch}_0(F), \text{ch}_1(F), \text{ch}_2(F)) \cdot (1, 0, 2) = i_* ((\text{ch}_0(G), \text{ch}_1(G)) \cdot (1, c_1(T_C)))
$$

\n
$$
(\text{ch}_0(F), \text{ch}_1(F), \text{ch}_2(F) + \text{ch}_0(F)) = i_* (\text{ch}_0(G), \text{ch}_1(G) + c_1(T_C))
$$
\n(1)

Why we use the Mukai pairing? One reason is his relation with the Euler pairing. Recall the definition of the Euler characteristic

$$
\chi(F) = \sum_{i} (-1)^{i} H^{i}(X, F).
$$

We can generalize this expression as a quadratic form called the Euler pairing as follows: for $E, F \in \text{Coh } X$, define the Euler pairing:

$$
\chi(E, F) = \sum_{i} (-1)^{i} \dim \operatorname{Ext}^{i}(E, F)
$$

From last week, we have the Mukai lattice

$$
\tilde{H}(X,\mathbb{Z}) = (H^*(X,\mathbb{Z}), \langle, \rangle)
$$

where the pairing \langle, \rangle is defined as:

$$
\langle (r,c,s), (r',c',s') \rangle = cc' - rs' - r's \tag{2}
$$

Proposition 1.

$$
\chi(E_1, E_2) = -\langle v(E_1), v(E_2) \rangle
$$

Proof. For a locally free sheaves E, we have $\chi(E, F) = \chi(E^* \otimes F)$ and by Riemann roch we obtain

$$
\chi(E, F) = \int \mathrm{ch}(E^* \otimes F) \,\mathrm{td}\, X = \int \mathrm{ch}(E^*) \sqrt{\mathrm{td}\, X} \,\mathrm{ch}(F) \sqrt{\mathrm{td}\, X}
$$

But $\mathrm{ch}(E)^* = (-1)^i \mathrm{ch}_i(E)$ and from [\(2\)](#page-1-1) the formula of the Proposition follows. For a general sheaf E , we resolve E by a complex of vector bundles vector bundle and then use the additive property of the Euler characteristic and the Mukai vector. \Box

¹Here we assume that X is a K3

2 Stability

In this section, we will focus on the case when X is a smooth projective surface but the definitions and results can be generalized to any dimension. The notion of stability can be defined for vector bundles on X , but in order to have more flexibility with computations, we will work with the more general notion of torsion free sheaf.

Definition A non-zero coherent sheaf $E \in \text{Coh } X$ is called torsion free sheaf if for every point $p \in X E_p$ torsion free $(\mathcal{O}_X)_p$ -module.

Examples. Vector bundles Any sub-sheaf of a vector bundle (or a torsion free sheaf)

Every torsion free sheaf on a smooth curve is a vector bundle. For smooth surfaces, we have the following result:

Proposition 2. Assume that X is a smooth surface. Let $E \in \text{Coh } X$ be a torsion free sheaf and E^{**} be its double dual. Then E^{**} is a vector bundle and there is an exact sequence

$$
0 \to E \to E^{**} \to Q \to 0
$$

where Q is a sheaf supported in dimension zero.

Let $\mathcal{L} \in \text{Pic } X$ be an ample line bundle and $h = c_1(\mathcal{L})$ be its class in NS(X). The slope (with respect to h) of a torsion free sheaf E is given by the formula

$$
\mu(E) = \mu_h(E) \coloneqq \frac{(h, c_1(E))}{\operatorname{rank} E}
$$

A torsion free sheaf E is called stable if for all non-zero sub sheaf $K \subset E$ with rank $K < \text{rank } E$, we have

$$
\mu(K) < \mu(E)
$$

If E satisfied the weaker inequality $\mu(K) \leq \mu(E)$, then E is called semistable. The following proposition is clear.

Proposition 3. For a short exact sequence

$$
0\to F\to E\to G\to 0
$$

we have that

$$
\mu(F) < \mu(E) \iff \mu(E) < \mu(G)
$$

The slope stability condition allows to prove result on Hom's in a ease way

- **Proposition 4.** (i) Consider two semistable objects F and E such that $\mu(F) > \mu(E)$. Then $\text{Hom}(F, E) = 0.$
	- (ii) If E, F are stable with $\mu(E) = \mu(F)$, then

either
$$
F \simeq E
$$
 or $\text{Hom}(F, E) = 0$

(iii) If E is stable, then $\text{Hom}(E, E) = \mathbb{C}$

We start with a useful lemma concerning quotient of torsion free sheaves:

Lemma 5. Let E be a torsion-free sheaf a consider a non-zero subsheaf $K \subset E$, then there is subsheaf $F \subset \tilde{K} \subset E$ such that E/\tilde{K} is either zero is torsion free, and it satisfies

$$
\mu(\tilde{K}) \ge \mu(K).
$$

Proof. For simplicity let's assume that X has dimension 2. For every sheaf $F \in \text{Coh } X$, there is a decomposition

$$
0 \to F_1 \to F \to F_2 \to 0
$$

where F_1 is torsion part of F and F_2 is torsion free. By applying this decomposition to E/K , we may find a sheaf K containing K such that K/K is isomorphic to the torsion part of E/K . It is then clear that rank $\tilde{K} = \text{rank } K$ and that E/\tilde{K} is torsion free. Now consider the exact sequence

$$
0 \to K \to \tilde{K} \to \tilde{K}/K \to 0
$$

Since \tilde{K}/K is torsion, then it is supported in dimension zero or 1

Case 1: \tilde{K}/K is supported in dimension 0:

Then $c_1(K/K) = 0$ and $\mu(K) = \mu(K)$.

Case 2:: K/K is supported in dimension 1:

Write $Y = \text{Supp }\tilde{K}/K$, endowed with the annihilator subscheme structure. Write $i: Y \to X$ the inclusion. Then

$$
i_*i^*\tilde K/K\simeq \tilde K/K
$$

and compute $c_1(\tilde{K}/K)$ via Grothendieck-Riemann-Roch. For simplicity, let us assume that Y is a smooth curve smooth. From [\(1\)](#page-1-2), we see that

$$
c_1(\tilde{K}/K) = \text{rank}(i^*(\tilde{K}/K))c_1(\mathcal{O}(C))
$$

and so

 $(h, c_1(K) > (h, c_1(K)))$

which implies the inequality for the slope.

It is not hard to see that this \tilde{K} is unique and it is called the saturation of K in E.

Proof. (Proposition [4\)](#page-2-0)

(i) Assume that there is a non-zero morphism $\varphi : F \to E$. Consider the exact sequence

$$
0 \to \text{Ker } \varphi \to F \to \text{Im } \varphi \to 0
$$

Note Im φ is torsion free and so rank Ker φ < rank F. Thus semi stability of F we have

$$
\mu(\text{Ker }\varphi) \le \mu(F) \implies \mu(\text{Im }\varphi) \ge \mu(F)
$$

By the previous Lemma, we may find sheaf $K \subset E$ with $\mu(K) \geq \mu(\text{Im }\varphi)$ such that E/K is torsion free (and so positive rank) or zero. Since $\mu(K) \geq \mu(F) > \mu(E)$, these two cases are impossible.

 \Box

(ii) Assume that there is a non-zero morphism $\varphi : F \to E$. We need to show that $F \simeq E$. Let's see first that it is injective. Assume that $\text{Ker } \varphi \neq 0$ and consider the exact sequence

$$
0 \to \text{Ker } \varphi \to F \to \text{Im } \varphi \to 0
$$

If rank $\varphi = \text{rank } F$ then Im φ zero which is impossible. Thus since Ker $\varphi \neq 0$, we may apply stability and obtain that

$$
\mu(\text{Ker}\,\varphi) < \mu(F) \implies \mu(F) < \mu(\text{Im}\,\varphi).
$$

An by a similar argument as before, we obtain a contradiction. The proof that φ is surjective is analogous.

(iii) Let $\varphi : E \to E$ a non-zero morphism. Consider a point $x \in X$ and the induced map on fibers $\varphi_x : E|_x \to E|_x$. Let $\lambda \in \mathbb{C}$ be an eigen-value of φ_x . Then the map $\varphi - \lambda \cdot id_E : E \to E$ is not-injective and so it must be zero by part (*ii*). Thus $Hom(E, E) = \mathbb{C}$

Examples:

- 1. Any line bundle is stable.
- 2. A direct sum of stable sheaf $E_1 \oplus E_2$ is never stable. It is semisstable iff $\mu(E_1) = \mu(E_2)$.
- 3. Consider two line bundles E_1, E_2 such that $\mu(E_1) = 0$ and $\mu(E_2) = 1$. Assume furthermore that $\mathrm{Ext} ^{1}(E_{1},E_{2})\neq 0$ and consider a non-split exact sequence

$$
0 \to E_1 \to E \to E_2 \to 0
$$

Then E is stable. Indeed, assume that there is a subsheaf $F \subset E$ such that $0 < \text{rank } F <$ rank $E = 2$ (and so of rank 1) such that $\mu(F) \ge \mu(E) = 1/2$. Note that F is stable. Consider the composition

$$
F \subset E \to E_2.
$$

If it is zero, then $F \subset E$ factorize through a map $F \to E_1$ which is non-zero and so $\mu(F) \leq \mu(E_1) = 0$ by part (i) of Proposition [4](#page-2-0) which is impossible. Thus $F \to E_2$ is nonzero and so $\mu(F) \leq \mu(E_2) = 1$. The only possibility is that $\mu(F) = 1$ but this would imply that $F \to E_2$ is an isomorphism which is impossible since the exact sequence defining E doesn't split.

Bogomolov-Gieseker inequality Let $E \in \text{Coh } X$ be a stable coherent sheaf. We have that $\dim \operatorname{Hom}(E,E) = 1.$ By duality, we obtain that $\dim \operatorname{Ext}^2(E,E) = 1$ and so

$$
\langle v(E), v(E) \rangle + 1 = \dim \operatorname{Ext}^1(E, E) \ge 0
$$

Expanding the Righ-hand side we obtain the inequality

$$
\Delta(E) = 2 \operatorname{rank} E c_2(E) - (\operatorname{rank} E - 1)c_1^2(E) \ge 2((\operatorname{rank} E)^2 - 1).
$$

This is the the Bogomolov-Gieseker inequality. We will use this inequality for the construction of Bridgleand stability conditions.

 \Box