
Mukai vector and slope stability

Anibal Aravena

1 The Mukai vector
WhenX is a K3 surface, it is convenient to use the Mukai vector in order to described the Chern
classes of sheaves E ∈ CohX .
Definition: Let E ∈ Coh(X), the Mukai vector of E is the vector

v(E) = (r, c, s) ∈ H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) = H∗(X,Z)

given by the formula:

v(E) = ch(E)
√

td(X) = (rank(E), c1(E), ch2(E) + rank(E)).

Recall that for a general sheaf E ∈ CohX , their Chern classes are computed via resolution of
vector bundles, i.e., for an exact sequence

0 → V r → . . . → V 0 → E → 0

with V k vector bundles, we have chE :=
∑

k(−1)k ch(V k).
Remark:
The Mukai vector is additive in short exact sequence, i.e., for all exact sequence of sheaves:

0 → K → E → Q → 0

wehave v(E) = v(Q)+v(K). Thus theMukai vector induces a groupmorphism v : K(CohX) →
H∗(X,Z) whose image is

H0(X,Z)⊕ NS(X)⊕H4(X,Z)

Examples

1. L ∈ PicX , then
v(L) = (1, c1(L), c1(L)2/2 + 1)

2. Let Z ⊂ OX be a subscheme of length ℓ, then v(OZ) = (0, 0, ℓ).

3. Let C ⊂ X be a smooth curve. By the exact sequence

0 → OX(−C) → OX → OC → 0

we obtain

v(OC) = v(OX)− v(OX(−C)) = (0, c1(OX(C)),−(C)2/2).
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4. More general consider a coherent sheaf of the form F = i∗G where i : C → X is the
inclusion of a smooth curve. Then the Chern classes of F can be computed by using
Grothendieck-Riemann-Roch

ch(f!G) tdX = f∗(chF tdX)

Here we consider f = i and the equation becomes

ch(F ) tdX = i∗(chG tdC)

Using the tdX = (1, 0, 2)1 and that tdC = (1, c1(TC)/2), we obtain

(ch0(F ), ch1(F ), ch2(F )).(1, 0, 2) = i∗ ((ch0(G), ch1(G)).(1, c1(TC)))

(ch0(F ), ch1(F ), ch2(F ) + ch0(F )) = i∗(ch0(G), ch1(G) + c1(TC))
(1)

Why we use the Mukai pairing? One reason is his relation with the Euler pairing. Recall the
definition of the Euler characteristic

χ(F ) =
∑
i

(−1)iH i(X,F ).

We can generalize this expression as a quadratic form called the Euler pairing as follows: for
E,F ∈ CohX , define the Euler pairing:

χ(E,F ) =
∑
i

(−1)i dimExti(E,F )

From last week, we have the Mukai lattice

H̃(X,Z) = (H∗(X,Z), ⟨, ⟩)

where the pairing ⟨, ⟩ is defined as:

⟨(r, c, s), (r′, c′, s′)⟩ = cc′ − rs′ − r′s (2)

Proposition 1.
χ(E1, E2) = −⟨v(E1), v(E2)⟩

Proof. For a locally free sheaves E, we have χ(E,F ) = χ(E∗ ⊗ F ) and by Riemann roch we
obtain

χ(E,F ) =

∫
ch(E∗ ⊗ F ) tdX =

∫
ch(E∗)

√
tdX ch(F )

√
tdX

But ch(E)∗ = (−1)i chi(E) and from (2) the formula of the Proposition follows. For a general
sheaf E, we resolve E by a complex of vector bundles vector bundle and then use the additive
property of the Euler characteristic and the Mukai vector.

1Here we assume that X is a K3
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2 Stability
In this section, we will focus on the case when X is a smooth projective surface but the defini-
tions and results can be generalized to any dimension. The notion of stability can be defined for
vector bundles onX , but in order to have more flexibility with computations, we will work with
the more general notion of torsion free sheaf.
Definition A non-zero coherent sheaf E ∈ CohX is called torsion free sheaf if for every point
p ∈ X Ep torsion free (OX)p-module.
Examples. Vector bundles Any sub-sheaf of a vector bundle (or a torsion free sheaf)

Every torsion free sheaf on a smooth curve is a vector bundle. For smooth surfaces, we have
the following result:

Proposition 2. Assume that X is a smooth surface. Let E ∈ CohX be a torsion free sheaf and
E∗∗ be its double dual. Then E∗∗ is a vector bundle and there is an exact sequence

0 → E → E∗∗ → Q → 0

where Q is a sheaf supported in dimension zero.

Let L ∈ PicX be an ample line bundle and h = c1(L) be its class in NS(X). The slope (with
respect to h) of a torsion free sheaf E is given by the formula

µ(E) = µh(E) :=
(h, c1(E))

rankE

A torsion free sheafE is called stable if for all non-zero sub sheafK ⊂ E with rankK < rankE,
we have

µ(K) < µ(E)

If E satisfied the weaker inequality µ(K) ≤ µ(E), then E is called semistable. The following
proposition is clear.

Proposition 3. For a short exact sequence

0 → F → E → G → 0

we have that
µ(F ) < µ(E) ⇐⇒ µ(E) < µ(G)

The slope stability condition allows to prove result on Hom’s in a ease way

Proposition 4. (i) Consider two semistable objects F and E such that µ(F ) > µ(E). Then
Hom(F,E) = 0.

(ii) If E,F are stable with µ(E) = µ(F ), then

either F ≃ E or Hom(F,E) = 0

(iii) If E is stable, then Hom(E,E) = C
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We start with a useful lemma concerning quotient of torsion free sheaves:

Lemma 5. Let E be a torsion-free sheaf a consider a non-zero subsheaf K ⊂ E, then there is
subsheaf F ⊂ K̃ ⊂ E such that E/K̃ is either zero is torsion free, and it satisfies

µ(K̃) ≥ µ(K).

Proof. For simplicity let’s assume that X has dimension 2. For every sheaf F ∈ CohX, there is
a decomposition

0 → F1 → F → F2 → 0

where F1 is torsion part of F and F2 is torsion free. By applying this decomposition to E/K , we
may find a sheaf K̃ containingK such that K̃/K is isomorphic to the torsion part of E/K . It is
then clear that rank K̃ = rankK and that E/K̃ is torsion free. Now consider the exact sequence

0 → K → K̃ → K̃/K → 0

Since K̃/K is torsion, then it is supported in dimension zero or 1
Case 1: K̃/K is supported in dimension 0:
Then c1(K̃/K) = 0 and µ(K) = µ(K̃).
Case 2:: K̃/K is supported in dimension 1:
Write Y = Supp K̃/K , endowed with the annihilator subscheme structure. Write i : Y → X
the inclusion. Then

i∗i
∗K̃/K ≃ K̃/K

and compute c1(K̃/K) via Grothendieck-Riemann-Roch. For simplicity, let us assume that Y is
a smooth curve smooth. From (1), we see that

c1(K̃/K) = rank(i∗(K̃/K))c1(O(C)

and so
(h, c1(K̃) > (h, c1(K))

which implies the inequality for the slope.

It is not hard to see that this K̃ is unique and it is called the saturation of K in E.

Proof. (Proposition 4)

(i) Assume that there is a non-zero morphism φ : F → E. Consider the exact sequence

0 → Kerφ → F → Imφ → 0

Note Imφ is torsion free and so rankKerφ < rankF . Thus semi stability of F we have

µ(Kerφ) ≤ µ(F ) =⇒ µ(Imφ) ≥ µ(F )

By the previous Lemma, we may find sheaf K ⊂ E with µ(K) ≥ µ(Imφ) such that E/K
is torsion free (and so positive rank) or zero. Since µ(K) ≥ µ(F ) > µ(E), these two cases
are impossible.
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(ii) Assume that there is a non-zero morphism φ : F → E. We need to show that F ≃ E.
Let’s see first that it is injective. Assume that Kerφ ̸= 0 and consider the exact sequence

0 → Kerφ → F → Imφ → 0

If rankφ = rankF then Imφ zero which is impossible. Thus since Kerφ ̸= 0, we may
apply stability and obtain that

µ(Kerφ) < µ(F ) =⇒ µ(F ) < µ(Imφ).

An by a similar argument as before, we obtain a contradiction. The proof thatφ is surjective
is analogous.

(iii) Let φ : E → E a non-zero morphism. Consider a point x ∈ X and the induced map on
fibersφx : E|x → E|x. Let λ ∈ C be an eigen-value ofφx. Then themapφ−λ·idE : E → E
is not-injective and so it must be zero by part (ii). Thus Hom(E,E) = C

Examples:

1. Any line bundle is stable.

2. A direct sum of stable sheaf E1 ⊕ E2 is never stable. It is semisstable iff µ(E1) = µ(E2).

3. Consider two line bundlesE1, E2 such that µ(E1) = 0 and µ(E2) = 1. Assume furthermore
that Ext1(E1, E2) ̸= 0 and consider a non-split exact sequence

0 → E1 → E → E2 → 0

Then E is stable. Indeed, assume that there is a subsheaf F ⊂ E such that 0 < rankF <
rankE = 2 (and so of rank 1) such that µ(F ) ≥ µ(E) = 1/2. Note that F is stable.
Consider the composition

F ⊂ E → E2.

If it is zero, then F ⊂ E factorize through a map F → E1 which is non-zero and so
µ(F ) ≤ µ(E1) = 0 by part (i) of Proposition 4 which is impossible. Thus F → E2 is non-
zero and so µ(F ) ≤ µ(E2) = 1. The only possibility is that µ(F ) = 1 but this would imply
that F → E2 is an isomorphism which is impossible since the exact sequence defining E
doesn’t split.

Bogomolov-Gieseker inequality Let E ∈ CohX be a stable coherent sheaf. We have that
dimHom(E,E) = 1. By duality, we obtain that dimExt2(E,E) = 1 and so

⟨v(E), v(E)⟩+ 1 = dimExt1(E,E) ≥ 0

Expanding the Righ-hand side we obtain the inequality

∆(E) = 2 rankEc2(E)− (rankE − 1)c21(E) ≥ 2((rankE)2 − 1).

This is the the Bogomolov-Gieseker inequality. We will use this inequality for the construction
of Bridgleand stability conditions.
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