Gieseker stability and moduli spaces

1 Gieseker stability

Consider a projective variety X and let O(1) be an ample line bundle with Chern class h =
c1(O(1)) € NS(X). Gieseker stability allows to extend the notion of slope stability (or y-stability)
for sheaves that are not necessarily torsion free. Let £ € Coh X. The dimension of FE is the
dimension of its support:

dim E = dim Supp £ = dim{x € X : E, # 0}.

Definition: A sheaf ¥ € Coh X is called pure dimensional if for all non-zero subsheaf X' C F,
we have dim F' = dim F.
Examples:

(i) Torsion free sheaves are pure dimensional sheaf of maximal dimension.

(ii) Let 7 : Y — X be a integral closed subscheme and G € CohY. Then F' = i,G is pure
dimensional iff G is torsion free sheaf.

Recall the Hilbert polynomial of & € Coh X with respect to the class h:
me
P(E,m) = x(E®O(m)) = Zai(E)7 € Q[m]

The degree d of P(E, m) coincides with the dimension of £ and ay(F) is always positive.
Definition: Let £ € Coh X be a coherent sheaf of dimension d. The reduced Hilbert polynomial

p(F) of E is defined by
B ) P(E,m)

If F is pure dimensional, then F is called h-Gieseker stable (or just stable) if for all proper subsheaf
F C E, we have
p(F,m) < p(E,m) m >> 0.

If F satisfies the weaker inequality p(F, m) < p(E, m), then E is called semistable.

Note that the order in polynomials p < ¢ iff p(m) < ¢(m) for m >> is just the usual
lexicographic order of polynomials.

The reduced Hilbert polynomial can be computed using H-R-R:

X(E(m)) = /Ch(E® O(m)) Tod X.
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When X is K3 surface, we can use the Mukai pairing from last week to obtain p(FE') as follows:
Consider a sheaf £ € Coh X with Mukai vector

v(E) = (r,c,d) € H(X,7Z) ® H*(X,Z) ® H*(X,Z) = H*(X, 7).

Then we have

2h2
X(E(m)) = _<O(_m)>U(E)> = _<(17 _mh7m2h2/2+ 1)7 (7“, C, d)> = T+m<hac) —|—d—|—7’
and so ,
mE ol i e
p(E,m) = m+ﬁ ifr=0,c#£0
1 ifr=c=0.

Thus if F torsion free, then E is Gieseker-semistable iff for all non-zero proper /' C F with
Mukai vector v(F') = (', ¢, d') we have

d d
pn(F) < pp(E) or up(F) = p(E) and pr < ot

Proposition 1. Let £ € Coh X be a torsion free sheaf. Then

E is u-stable — FE is (Gieseker)-stable —> FE (Gieseker)-semistable —> FE is u-semistable

Proof. The only non trivial implication is from p-stable to Gieseker-stable.
Consider a pi-stable sheaf E. Let ' C E be a non-trivial proper subsheaf. Let [ be its saturation.
Then there is an exact sequence

0-K—-K—K/K—0
where rank K = rank K and E/K is either zero or torsion free. Then
p(F,m) = p(F,m) + x(K/K(m)) > p(F,m),  m >> 0.
and the Gieseker-stability follows from fi-stability applied to the subsheaf F' C F. [

The following proposition tell us that semistable sheaves are the building blocks to construct
pure-dimensional sheaves:

Proposition 2. Every pure-dimensional coherent sheaf E has a unique Harder-Narasimham (H-N)
filtration, i.e, there is a filtration

such that each factor F; = E;/E;_; is semistable and they satisfies
p(F1) > p(F2) > ... > p(Fy).

This filtration is unique and the factors F; are called the H-N factors of E.
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When F is semistable sheaf we have a further filtration:

Proposition 3. Let I/ be a semistable coherent sheaf. Then I/ has a Jordan-Holder (j-H) filtration,
i.e, there is a filtration

0=ECE C...CE,=F
such that each factor F; = E;/FE;_; is stable with reduced Hilbert polynomial p(E). Moreover, the
factors F;; are unique up to order and so the sheaf

gr(E) = @Fz

doesn’t depends on the filtration for E.

A J-H filtration is not necessarily unique, i.e, consider ¥ = E; & E5 where E;, E5 are two
stable sheaves with the same reduced Hilbert but F; 2 FE.

Using the this proposition, we obtain the following notion which appears naturally in the
context of moduli spaces.
Definition Two semistable sheaf F| E” are called S-equivalent if gr(F) = gr(E').

2 Moduli space

Now we are ready to define moduli space of sheaves on a K3 surface X. We start with the def-
inition of the Moduli functor: Let v € H*(X,Z) and h € NS(X) be the class of an ample line
bundle. We define the functor

M, (v) : (Sch /C)° — (Sets)
to be the functor sending an scheme S € (Sch /C) to the set

€ € Coh(X x S) : flat over S, such that
M, (v)(S) =4 Vs € S close point, & = | x4 is semistable
with Mukai vector v.

A course moduli space for the functor M (v) is a scheme M € (Sch /C) and a natural transfor-
mation of functors:

n: Mp(v) — Hom(-, M)

such that the map
ne : My (v)(Spec(C)) — M(C) = Hom(C, M)

induces a bijection between S-equivalences classes of semistable sheaves and C-points of M. We
will write M = M},(v) and refer to M as a moduli space of h-Gieseker-semistable sheaves with
Mukai v on X.

The following proposition tell us that identification of S-equivalents elements is necessary, at
least if we want the course moduli space to be separated.



Proposition 4. Let M be a separated scheme over C and consider a natural transformation
n: M — Hom(-, M)
Let E, F € My(v)(C) be two sheaves S-equivalents. Then
ne(E) = ne(F).

Proof. For simplicity lets assume that & has two J-H stable factors £y, F); and that /' = E; @ Es.
Then FE fits in a exact sequence

0—>FE - FEF— Ey— 0.
We claim that there is a flat family £ € Coh(X x A) such that
(i) & ~ Efort#0
(i) s~ FE1® Ey=F
If such family exists, then the associated morphism f = 1, (£) : A — M satisfies for all £ # 0
£(t) = ne(€) = ne(E).

Since M is separated, then nc (&) = f(0) = ne(F).
Letp : X x A — X be the projection into X andi : X = X x {0} < X x A be the inclusion.
Define £ to be the kernel of the surjective map p*E — i, Fs given by the composition

p'E = p'Ey — i,4"(p"Ey) = 1, Es.

We claim that £ satisfies the condition (i) and (77). By definition, & fits into a short exact sequence
in Coh(X x A):
0—=>E&—p'E—i,Fy—0

Since i, F is supported in X x {0}, part (4) is clear. Now to compute FEy = i*E, we apply the
derived functor Li* to obtain the long exact sequence

0 — L'i*(i,Fy) = i* — E — i*i,Ey — 0.

Here we used that L*i*(p*E) = 0 is zero if k > 0 since p*F is flat over S. Now we have that
L'i* (i, Ey) = Ey and By = i*i, F,. To see this use the resolution for C[¢]/(¢) in Coh A:

0 — C[t] -5 C[t] — C[{]/(t) — 0
Then

L' (i) = Ker(Cl] ® By 5™ Clt] @ By), 1. By = Coker(Cl] ® By 5™ Clt] @ Ey),

but t - Fy = 0. Therefore &|, fits into an exact sequence
0 FEy,—&lo— FE1—0

which splits and so & = E; @ FE,. Finally, the fact that £ is a flat sheaf over S follows from
the fact that its restriction to X x (A — {0}) is flat and L*i,(£) = 0 for k > 0 (see the proof of
Lemma [Huy06, Lemma 3.31]). O



The existence of a course Moduli space (under the assumption that M,(v)(C) is non-empty)
was proven by Gieseker, Maruyama and Simpson and its holds for any projective variety, not
necessary for a projective K3 surface. We refer to [HL97, Chapter 4] for the proof of this statement
who use GIT.

Proposition 5. M, (v) has always a coarse moduli space M = M), (v) which is a projective variety.
Example(Hilbert scheme) Consider the Mukai vector v = (1,0,1 — n). Then
My, (v) = Hilb"(X).

Indeed, let 7" € Coh X be semistable with Mukai vector v(7") = (1,0,1 —n). Then 7 is a torsion
free sheaf and we have an exact sequence

0—=>T"—=T" = Q —0,

where () has dimension zero and 7** is a line bundle. Since ¢; (T**) = ¢;(T") = 0, we obtain 7" ~
Ox and () has length n and so 7' is the ideal sheaf of a subscheme Z of length n. Conversely, for
every such subscheme 7, its ideal sheaf 7, is stable (it has rank 1 and so is p-stable) and it has
Mukai vector (1,0,1 — n). Therefore M}, (v) parametrizes ideal sheaves Z; where Z C X has
length n but this is just the Hilbert-scheme.
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