
Gieseker stability and moduli spaces

1 Gieseker stability
Consider a projective variety X and let O(1) be an ample line bundle with Chern class h =
c1(O(1)) ∈ NS(X). Gieseker stability allows to extend the notion of slope stability (orµ-stability)
for sheaves that are not necessarily torsion free. Let E ∈ CohX . The dimension of E is the
dimension of its support:

dimE = dimSuppE = dim{x ∈ X : Ex ̸= 0}.

Definition: A sheaf E ∈ CohX is called pure dimensional if for all non-zero subsheaf K ⊂ E,
we have dimF = dimE.
Examples:

(i) Torsion free sheaves are pure dimensional sheaf of maximal dimension.

(ii) Let i : Y ↪→ X be a integral closed subscheme and G ∈ CohY . Then F = i∗G is pure
dimensional iff G is torsion free sheaf.

Recall the Hilbert polynomial of E ∈ CohX with respect to the class h:

P (E,m) = χ(E ⊗O(m)) =
∑
i

αi(E)
mi

i!
∈ Q[m]

The degree d of P (E,m) coincides with the dimension of E and αd(E) is always positive.
Definition: Let E ∈ CohX be a coherent sheaf of dimension d. The reduced Hilbert polynomial
p(E) of E is defined by

p(E) = p(E,m) :=
P (E,m)

αd(E)
.

IfE is pure dimensional, thenE is called h-Gieseker stable (or just stable) if for all proper subsheaf
F ⊂ E, we have

p(F,m) < p(E,m) m >> 0.

If E satisfies the weaker inequality p(F,m) ≤ p(E,m), then E is called semistable.
Note that the order in polynomials p ≤ q iff p(m) ≤ q(m) for m >> is just the usual

lexicographic order of polynomials.
The reduced Hilbert polynomial can be computed using H-R-R:

χ(E(m)) =

∫
Ch(E ⊗O(m)) TodX.
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When X is K3 surface, we can use the Mukai pairing from last week to obtain p(E) as follows:
Consider a sheaf E ∈ CohX with Mukai vector

v(E) = (r, c, d) ∈ H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) = H∗(X,Z).

Then we have

χ(E(m)) = −⟨O(−m), v(E)⟩ = −⟨(1,−mh,m2h2/2+1), (r, c, d)⟩ = m2h2

2
r+m(h, c)+d+ r

and so

p(E,m) =


m2

2
+m (h,c)

h2r
+ d+r

h2r
if r ̸= 0

m+ d
(h,c)

if r = 0, c ̸= 0

1 if r = c = 0.

Thus if E torsion free, then E is Gieseker-semistable iff for all non-zero proper F ⊊ E with
Mukai vector v(F ) = (r′, c′, d′) we have

µh(F ) < µh(E) or µh(F ) = µ(E) and
d′

r′
<

d

r
.

Proposition 1. Let E ∈ CohX be a torsion free sheaf. Then

E is µ-stable =⇒ E is (Gieseker)-stable =⇒ E (Gieseker)-semistable =⇒ E is µ-semistable

Proof. The only non trivial implication is from µ-stable to Gieseker-stable.
Consider a µ-stable sheaf E. Let F ⊂ E be a non-trivial proper subsheaf. Let F̃ be its saturation.
Then there is an exact sequence

0 → K → K̃ → K̃/K → 0

where rank K̃ = rankK and E/K̃ is either zero or torsion free. Then

p(F̃ ,m) = p(F,m) + χ(K̃/K(m)) ≥ p(F,m), m >> 0.

and the Gieseker-stability follows from µ-stability applied to the subsheaf F̃ ⊂ E.

The following proposition tell us that semistable sheaves are the building blocks to construct
pure-dimensional sheaves:

Proposition 2. Every pure-dimensional coherent sheaf E has a unique Harder-Narasimham (H-N)
filtration, i.e, there is a filtration

0 = E0 ⊊ E1 ⊊ E2 ⊊ . . . ⊊ En = E

such that each factor Fi = Ei/Ei−1 is semistable and they satisfies

p(F1) > p(F2) > . . . > p(Fn).

This filtration is unique and the factors Fi are called the H-N factors of E.
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When E is semistable sheaf we have a further filtration:

Proposition 3. Let E be a semistable coherent sheaf. Then E has a Jordan-Holder (J-H) filtration,
i.e, there is a filtration

0 = E0 ⊊ E1 ⊊ . . . ⊊ En = E

such that each factor Fi = Ei/Ei−1 is stable with reduced Hilbert polynomial p(E). Moreover, the
factors Fi are unique up to order and so the sheaf

gr(E) =
⊕
i

Fi

doesn’t depends on the filtration for E.

A J-H filtration is not necessarily unique, i.e, consider E = E1 ⊕ E2 where E1, E2 are two
stable sheaves with the same reduced Hilbert but E1 ̸≃ E2.

Using the this proposition, we obtain the following notion which appears naturally in the
context of moduli spaces.
Definition Two semistable sheaf E,E ′ are called S-equivalent if gr(E) = gr(E ′).

2 Moduli space
Now we are ready to define moduli space of sheaves on a K3 surface X . We start with the def-
inition of the Moduli functor: Let v ∈ H∗(X,Z) and h ∈ NS(X) be the class of an ample line
bundle. We define the functor

Mh(v) : (Sch /C)o → (Sets)

to be the functor sending an scheme S ∈ (Sch /C) to the set

Mh(v)(S) =


E ∈ Coh(X × S) : flat over S, such that
∀s ∈ S close point, Es := E|X×{t} is semistable
with Mukai vector v.


A course moduli space for the functorMh(v) is a schemeM ∈ (Sch /C) and a natural transfor-
mation of functors:

η : Mh(v) → Hom(·,M)

such that the map
ηC : Mh(v)(Spec(C)) → M(C) = Hom(C,M)

induces a bijection between S-equivalences classes of semistable sheaves andC-points ofM . We
will write M = Mh(v) and refer to M as a moduli space of h-Gieseker-semistable sheaves with
Mukai v on X .

The following proposition tell us that identification of S-equivalents elements is necessary, at
least if we want the course moduli space to be separated.
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Proposition 4. LetM be a separated scheme over C and consider a natural transformation

η : M → Hom(·,M)

Let E,F ∈ Mh(v)(C) be two sheaves S-equivalents. Then

ηC(E) = ηC(F ).

Proof. For simplicity lets assume that E has two J-H stable factors E1, E2 and that F = E1⊕E2.
Then E fits in a exact sequence

0 → E1 → E → E2 → 0.

We claim that there is a flat family E ∈ Coh(X × A) such that

(i) Et ≃ E for t ̸= 0

(ii) E0 ≃ E1 ⊕ E2 = F

If such family exists, then the associated morphism f = ηA(E) : A → M satisfies for all t ̸= 0

f(t) = ηC(Et) = ηC(E).

SinceM is separated, then ηC(E0) = f(0) = ηC(F ).
Let p : X×A → X be the projection intoX and i : X = X×{0} ↪→ X×A be the inclusion.

Define E to be the kernel of the surjective map p∗E → i∗E2 given by the composition

p∗E → p∗E2 → i∗i
∗(p∗E2) = i∗E2.

We claim that E satisfies the condition (i) and (ii). By definition, E fits into a short exact sequence
in Coh(X × A):

0 → E → p∗E → i∗E2 → 0

Since i∗E2 is supported in X × {0}, part (i) is clear. Now to compute E0 = i∗E, we apply the
derived functor Li∗ to obtain the long exact sequence

0 → L1i∗(i∗E2) → i∗E → E → i∗i∗E2 → 0.

Here we used that Lki∗(p∗E) = 0 is zero if k > 0 since p∗E is flat over S. Now we have that
L1i∗(i∗E2) = E2 and E2 = i∗i∗E2. To see this use the resolution for C[t]/(t) in CohA:

0 → C[t] ·t→ C[t] → C[t]/(t) → 0

Then

L1i∗(i∗E2) = Ker(C[t]⊗ E2

·t⊗idE2→ C[t]⊗ E2), i∗i∗E2 = Coker(C[t]⊗ E2

·t⊗idE2→ C[t]⊗ E2),

but t · E2 = 0. Therefore E|0 fits into an exact sequence

0 → E2 → E|0 → E1 → 0

which splits and so E0 = E1 ⊕ E2. Finally, the fact that E is a flat sheaf over S follows from
the fact that its restriction to X × (A − {0}) is flat and Lki∗(E) = 0 for k > 0 (see the proof of
Lemma [Huy06, Lemma 3.31]).
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The existence of a course Moduli space (under the assumption thatMh(v)(C) is non-empty)
was proven by Gieseker, Maruyama and Simpson and its holds for any projective variety, not
necessary for a projective K3 surface. We refer to [HL97, Chapter 4] for the proof of this statement
who use GIT.

Proposition 5. Mh(v) has always a coarse moduli spaceM = Mh(v)which is a projective variety.

Example(Hilbert scheme) Consider the Mukai vector v = (1, 0, 1− n). Then

Mh(v) = Hilbn(X).

Indeed, let T ∈ CohX be semistable with Mukai vector v(T ) = (1, 0, 1−n). Then T is a torsion
free sheaf and we have an exact sequence

0 → T ∗ → T ∗∗ → Q → 0,

whereQ has dimension zero and T ∗∗ is a line bundle. Since c1(T ∗∗) = c1(T ) = 0, we obtain T ∗∗ ≃
OX and Q has length n and so T is the ideal sheaf of a subscheme Z of length n. Conversely, for
every such subscheme Z , its ideal sheaf IZ is stable (it has rank 1 and so is µ-stable) and it has
Mukai vector (1, 0, 1 − n). Therefore Mh(v) parametrizes ideal sheaves IZ where Z ⊂ X has
length n but this is just the Hilbert-scheme.

References
[HL97] Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of sheaves. 1997.

[Huy06] Daniel Huybrechts. Fourier-mukai transforms in algebraic geometry. 2006.

5


	Gieseker stability
	Moduli space

