Gieseker stability and moduli spaces

1 Gieseker stability

Consider a projective variety X and let $\mathcal{O}(1)$ be an ample line bundle with Chern class $h =$ $c_1(\mathcal{O}(1)) \in \text{NS}(X)$. Gieseker stability allows to extend the notion of slope stability (or μ -stability) for sheaves that are not necessarily torsion free. Let $E \in \text{Coh } X$. The dimension of E is the dimension of its support:

$$
\dim E = \dim \operatorname{Supp} E = \dim \{x \in X : E_x \neq 0\}.
$$

Definition: A sheaf $E \in \text{Coh } X$ is called pure dimensional if for all non-zero subsheaf $K \subset E$, we have dim $F = \dim E$.

Examples:

- (i) Torsion free sheaves are pure dimensional sheaf of maximal dimension.
- (ii) Let $i: Y \hookrightarrow X$ be a integral closed subscheme and $G \in \text{Coh }Y$. Then $F = i_*G$ is pure dimensional iff G is torsion free sheaf.

Recall the Hilbert polynomial of $E \in \text{Coh } X$ with respect to the class h:

$$
P(E, m) = \chi(E \otimes \mathcal{O}(m)) = \sum_{i} \alpha_i(E) \frac{m^i}{i!} \in \mathbb{Q}[m]
$$

The degree d of $P(E, m)$ coincides with the dimension of E and $\alpha_d(E)$ is always positive. **Definition**: Let $E \in \text{Coh } X$ be a coherent sheaf of dimension d. The reduced Hilbert polynomial $p(E)$ of E is defined by

$$
p(E) = p(E, m) := \frac{P(E, m)}{\alpha_d(E)}.
$$

If E is pure dimensional, then E is called h-Gieseker stable (or just stable) if for all proper subsheaf $F \subset E$, we have

$$
p(F, m) < p(E, m) \qquad m >> 0.
$$

If E satisfies the weaker inequality $p(F, m) \leq p(E, m)$, then E is called semistable.

Note that the order in polynomials $p \leq q$ iff $p(m) \leq q(m)$ for $m >>$ is just the usual lexicographic order of polynomials.

The reduced Hilbert polynomial can be computed using H-R-R:

$$
\chi(E(m)) = \int Ch(E \otimes \mathcal{O}(m)) \operatorname{Tot} X.
$$

When X is K3 surface, we can use the Mukai pairing from last week to obtain $p(E)$ as follows: Consider a sheaf $E \in \text{Coh } X$ with Mukai vector

$$
v(E) = (r, c, d) \in H^0(X, \mathbb{Z}) \oplus H^2(X, \mathbb{Z}) \oplus H^4(X, \mathbb{Z}) = H^*(X, \mathbb{Z}).
$$

Then we have

$$
\chi(E(m)) = -\langle \mathcal{O}(-m), v(E) \rangle = -\langle (1, -mh, m^2h^2/2 + 1), (r, c, d) \rangle = \frac{m^2h^2}{2}r + m(h, c) + d + r
$$

and so

$$
p(E,m) = \begin{cases} \frac{m^2}{2} + m \frac{(h,c)}{h^2 r} + \frac{d+r}{h^2 r} & \text{if } r \neq 0\\ m + \frac{d}{(h,c)} & \text{if } r = 0, c \neq 0\\ 1 & \text{if } r = c = 0. \end{cases}
$$

Thus if E torsion free, then E is Gieseker-semistable iff for all non-zero proper $F \subsetneq E$ with Mukai vector $v(F) = (r', c', d')$ we have

$$
\mu_h(F) < \mu_h(E)
$$
 or $\mu_h(F) = \mu(E)$ and $\frac{d'}{r'} < \frac{d}{r}$.

Proposition 1. Let $E \in \text{Coh } X$ be a torsion free sheaf. Then

E is μ -stable \implies E is (Gieseker)-stable \implies E (Gieseker)-semistable \implies E is μ -semistable

Proof. The only non trivial implication is from μ -stable to Gieseker-stable. Consider a μ -stable sheaf E. Let $F \subset E$ be a non-trivial proper subsheaf. Let \tilde{F} be its saturation. Then there is an exact sequence

$$
0 \to K \to \tilde{K} \to \tilde{K}/K \to 0
$$

where $\operatorname{rank} \tilde{K} = \operatorname{rank} K$ and E/\tilde{K} is either zero or torsion free. Then

$$
p(\tilde{F}, m) = p(F, m) + \chi(\tilde{K}/K(m)) \ge p(F, m), \qquad m >> 0.
$$

 \Box

and the Gieseker-stability follows from μ -stability applied to the subsheaf $\tilde{F} \subset E$.

The following proposition tell us that semistable sheaves are the building blocks to construct pure-dimensional sheaves:

Proposition 2. Every pure-dimensional coherent sheaf E has a unique Harder-Narasimham (H-N) filtration, i.e, there is a filtration

$$
0 = E_0 \subsetneq E_1 \subsetneq E_2 \subsetneq \ldots \subsetneq E_n = E
$$

such that each factor $F_i = E_i/E_{i-1}$ is semistable and they satisfies

$$
p(F_1) > p(F_2) > \ldots > p(F_n).
$$

This filtration is unique and the factors F_i are called the H-N factors of E.

When E is semistable sheaf we have a further filtration:

Proposition 3. Let E be a semistable coherent sheaf. Then E has a Jordan-Holder (J-H) filtration, i.e, there is a filtration

$$
0 = E_0 \subsetneq E_1 \subsetneq \ldots \subsetneq E_n = E
$$

such that each factor $F_i = E_i/E_{i-1}$ is stable with reduced Hilbert polynomial $p(E)$. Moreover, the factors F_i are unique up to order and so the sheaf

$$
gr(E) = \bigoplus_i F_i
$$

doesn't depends on the filtration for E.

A J-H filtration is not necessarily unique, i.e, consider $E=E_1\oplus E_2$ where E_1,E_2 are two stable sheaves with the same reduced Hilbert but $E_1 \not\cong E_2$.

Using the this proposition, we obtain the following notion which appears naturally in the context of moduli spaces.

Definition Two semistable sheaf E, E' are called S-equivalent if $gr(E) = gr(E').$

2 Moduli space

Now we are ready to define moduli space of sheaves on a K3 surface X . We start with the definition of the Moduli functor: Let $v \in H^*(X,\mathbb{Z})$ and $h \in \operatorname{NS}(X)$ be the class of an ample line bundle. We define the functor

$$
\mathcal{M}_h(v):(\mathrm{Sch}/\mathbb{C})^o\to(\mathrm{Sets})
$$

to be the functor sending an scheme $S \in (\text{Sch } / \mathbb{C})$ to the set

$$
\mathcal{M}_h(v)(S) = \left\{ \begin{array}{l} \mathcal{E} \in \mathrm{Coh}(X \times S) : \text{flat over } S \text{, such that} \\ \forall s \in S \text{ close point, } \mathcal{E}_s := \mathcal{E}|_{X \times \{t\}} \text{ is semistable} \\ \text{with Mukai vector } v. \end{array} \right\}
$$

A course moduli space for the functor $\mathcal{M}_h(v)$ is a scheme $M \in (\text{Sch }/\mathbb{C})$ and a natural transformation of functors:

$$
\eta: \mathcal{M}_h(v) \to \text{Hom}(\cdot, M)
$$

such that the map

$$
\eta_{\mathbb{C}} : \mathcal{M}_h(v)(\mathrm{Spec}(\mathbb{C})) \to M(\mathbb{C}) = \mathrm{Hom}(\mathbb{C}, M)
$$

induces a bijection between S -equivalences classes of semistable sheaves and $\mathbb C$ -points of M . We will write $M = M_h(v)$ and refer to M as a moduli space of h-Gieseker-semistable sheaves with Mukai v on X .

The following proposition tell us that identification of S -equivalents elements is necessary, at least if we want the course moduli space to be separated.

Proposition 4. Let M be a separated scheme over $\mathbb C$ and consider a natural transformation

$$
\eta: \mathcal{M} \to \text{Hom}(\cdot, M)
$$

Let $E, F \in \mathcal{M}_h(v)(\mathbb{C})$ be two sheaves S-equivalents. Then

$$
\eta_{\mathbb{C}}(E) = \eta_{\mathbb{C}}(F).
$$

Proof. For simplicity lets assume that E has two J-H stable factors E_1, E_2 and that $F = E_1 \oplus E_2$. Then E fits in a exact sequence

$$
0 \to E_1 \to E \to E_2 \to 0.
$$

We claim that there is a flat family $\mathcal{E} \in \text{Coh}(X \times \mathbb{A})$ such that

- (i) $\mathcal{E}_t \simeq E$ for $t \neq 0$
- (ii) $\mathcal{E}_0 \simeq E_1 \oplus E_2 = F$

If such family exists, then the associated morphism $f = \eta_{A}(\mathcal{E}) : A \to M$ satisfies for all $t \neq 0$

$$
f(t) = \eta_{\mathbb{C}}(\mathcal{E}_t) = \eta_{\mathbb{C}}(E).
$$

Since M is separated, then $\eta_{\mathbb{C}}(\mathcal{E}_0) = f(0) = \eta_{\mathbb{C}}(F)$.

Let $p: X \times A \to X$ be the projection into X and $i: X = X \times \{0\} \hookrightarrow X \times A$ be the inclusion. Define ${\cal E}$ to be the kernel of the surjective map $p^*E\to i_*E_2$ given by the composition

$$
p^*E \to p^*E_2 \to i_*i^*(p^*E_2) = i_*E_2.
$$

We claim that $\mathcal E$ satisfies the condition (i) and (ii). By definition, $\mathcal E$ fits into a short exact sequence in $\mathrm{Coh}(X \times \mathbb{A})$:

$$
0 \to \mathcal{E} \to p^*E \to i_*E_2 \to 0
$$

Since i_*E_2 is supported in $X \times \{0\}$, part (i) is clear. Now to compute $E_0 = i^*E$, we apply the derived functor Li^* to obtain the long exact sequence

$$
0 \to L^1 i^* (i_* E_2) \to i^* \mathcal{E} \to E \to i^* i_* E_2 \to 0.
$$

Here we used that $L^k i^*(p^*E) = 0$ is zero if $k > 0$ since p^*E is flat over S . Now we have that $L^1i^*(i_*E_2) = E_2$ and $E_2 = i^*i_*E_2$. To see this use the resolution for $\mathbb{C}[t]/(t)$ in Coh A:

$$
0 \to \mathbb{C}[t] \stackrel{\cdot t}{\to} \mathbb{C}[t] \to \mathbb{C}[t]/(t) \to 0
$$

Then

$$
L^1i^*(i_*E_2) = \text{Ker}(\mathbb{C}[t] \otimes E_2 \stackrel{\cdot t \otimes \text{id}_{E_2}}{\to} \mathbb{C}[t] \otimes E_2), \quad i^*i_*E_2 = \text{Coker}(\mathbb{C}[t] \otimes E_2 \stackrel{\cdot t \otimes \text{id}_{E_2}}{\to} \mathbb{C}[t] \otimes E_2),
$$

but $t \cdot E_2 = 0$. Therefore $\mathcal{E}|_0$ fits into an exact sequence

$$
0 \to E_2 \to \mathcal{E}|_0 \to E_1 \to 0
$$

which splits and so $\mathcal{E}_0 = E_1 \oplus E_2$. Finally, the fact that $\mathcal E$ is a flat sheaf over S follows from the fact that its restriction to $X\times(\mathbb{A}-\{0\})$ is flat and $L^ki_*(\mathcal{E})=0$ for $k>0$ (see the proof of Lemma [\[Huy06,](#page-4-0) Lemma 3.31]). \Box

The existence of a course Moduli space (under the assumption that $\mathcal{M}_h(v)(\mathbb{C})$ is non-empty) was proven by Gieseker, Maruyama and Simpson and its holds for any projective variety, not necessary for a projective K3 surface. We refer to [\[HL97,](#page-4-1) Chapter 4] for the proof of this statement who use GIT.

Proposition 5. $\mathcal{M}_h(v)$ has always a coarse moduli space $M = M_h(v)$ which is a projective variety.

Example(Hilbert scheme) Consider the Mukai vector $v = (1, 0, 1 - n)$. Then

$$
M_h(v) = \text{Hilb}^n(X).
$$

Indeed, let *T* ∈ Coh *X* be semistable with Mukai vector $v(T) = (1, 0, 1 - n)$. Then *T* is a torsion free sheaf and we have an exact sequence

$$
0 \to T^* \to T^{**} \to Q \to 0,
$$

where Q has dimension zero and T^{**} is a line bundle. Since $c_1(T^{**})=c_1(T)=0,$ we obtain $T^{**}\simeq 0$ \mathcal{O}_X and Q has length n and so T is the ideal sheaf of a subscheme Z of length n. Conversely, for every such subscheme Z, its ideal sheaf \mathcal{I}_Z is stable (it has rank 1 and so is μ -stable) and it has Mukai vector $(1, 0, 1 - n)$. Therefore $M_h(v)$ parametrizes ideal sheaves \mathcal{I}_Z where $Z \subset X$ has length n but this is just the Hilbert-scheme.

References

[HL97] Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of sheaves. 1997.

[Huy06] Daniel Huybrechts. Fourier-mukai transforms in algebraic geometry. 2006.