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1 Derived categories
Let X be a smooth projective variety. The bounded derived category D(X) of X is a category
whose objects are finite complexes:

ObjD(X) =

{
(E•, d) : E• =

⊕
k∈ZE

k : such that Ek ∈ CohX and Ek = 0 for |k| >> 0,
degree 1 map d : E• → E• with d2 = 0

}
Commonly, we represent an object (E, d) ∈ ObjD(X) as a complex

E : . . .
d→ E−1 d→ E0 d→ E1 d→ . . .

Morphism in D(X) are constructed in such a way that for every that quasi-isomorphism1 be-
comes an isomorphism in D(X). In particular, the complex associated to any resolution of a
sheaf is identified with the sheaf itself. As an example, consider a codimension 1 subvariety
Y ⊂ X and its standard sequence:

0 → OX(−Y ) → OY → OC → 0.

Then it induces an isomorphism in D(X):

(OX(−Y ) → OX)
∼→ OY .

The derived category is not an abelian category since kernel and cokernel doesn’t in general exist
but it has the structure of triangulated category. Here we list some of the properties I will use.

(i) D(X) has a shift functor [1] : D(X) → D(X):

degree k part of E[1] = degree k + 1 part of E

(ii) It has a collection of exact triangles

A → B → C

which replaces the notion of exact sequence for an abelian category. There is fully faithful
embedding CohX ↪→ D(X) by sending a sheaf E to the complex E• = E concentrated in
degree zero. This embedding sends s an exact sequence

0 → A → B → C → 0

to the exact triangle
A → B → C.

1i.e., a morphism of complexes inducing isomorphisms in cohomology.
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(iii) Every morphism A → B fits into an exact triangle

A → B → C.

The complex C is usually called the cone of the morphism A → B and we write C =
cone(A → B)

1.1 bounded t-structure and hearts
The concept of filtration is in the core of the definition of a Bridgeland stability condition. The
notion of a bounded t-structure allows to filtrate any complex E• ∈ D(X) by elements in a
certain abelian category A ⊂ D(X) called the heart. The abelian category CohX ↪→ D(X)
is an example of the heart of a bounded t-structure and allows to filtrate any complex E• by
coherent sheaves.

As an example, for a two step complex E : (A−1 f→ A0), then E fits in an exact triangle

H−1(E)[1] → E → H0(E). (1)

which can be seen as a filtration for E 2 factors H−1(E)[1] and H0(E).
In general, every complex E ∈ D(X) has a (unique) filtration:

0 = E0 → E1 → E2 → . . . → En = E (2)

where cone(Ei−1 → Ei) = Fi[ki] for some sheaf Fi ∈ CohX and integers k1 > k2 > . . . kn. The
notion of bounded t-structure formalize this idea.
Definition: The heart of a bounded t-structure is an abelian full subcategory A ⊂ D(X) such
that:

(i) Every complex E• has a filtration:

0 = E0 → E1 → E2 → . . . → En = E (3)

where cone(Ei−1 → Ei) = Fi[ki] for some sheaf Fi ∈ A and integers k1 > k2 > . . . kn.

(ii) Hom(E[k1], F [k2]) = 0 for E,F ∈ A and k1 > k2.

Condition (ii) guaranties that the filtration (3) is unique.
One important property that we will use is the fact that that the embedding A ↪→ D(X) sends
exact sequences in A to exact triangles in D(X).

2 Bridgeland stability condition
A Bridgeland stability condition on X its a pair σ = (A, Z) where A ⊂ D(X) is the heart of a
t-bounded structure and Z is a linear map

Z : H∗
alg(X,Z) → C

called the central charge subject to the following conditions:

2



(i) (Positive property). For every non-zero E ∈ A, we have

Z(v(A)) ∈ R>0e
iπ·ϕ, ϕ ∈ (0, 1]

The number ϕ = ϕ(E) is called the phase of E.
An element E ∈ A is called σ-stable (or just stable) if for all F ⊊ E non-zero,

ϕ(F ) < ϕ(E).

If E satisfies the weaker inequality ϕ(F ) ≤ ϕ(E) then E is called semistable

(ii) (Harder-Narasimham filtration) Every element E ∈ A has a H-N filtration:

0 = E0 ⊊ E1 ⊊ . . . ⊊ En = E

such that Fi = Ei/Ei−1 ∈ A is σ-semistable with decreasing phase:

ϕ(F1) > ϕ(F2) > . . . > ϕ(Fn).

The elements Fi are called the H-N factors of E.

(iii) (Locally finite property) This is a technical condition whose definition we refer to Bridge-
land original paper [Bri08, Page 247]. In particular, this implies that every semistable ele-
ment E ∈ A has a J-H filtration:

0 = E0 ⊊ E1 ⊊ . . . ⊊ En = E

such that Fi = Ei/Ei−1 ∈ A is σ-stable and ϕ(Fi) = ϕ(E). The elements Fi are called the
J-H factors of E.

Stability allows to prove results for Hom’s just as in the slope stability case.

Proposition 1. (i) Let E,F be stable with ϕ(E) < ϕ(F ), then Hom(F,E) = 0

(ii) If E,F are stable with the same phase, then

E ≃ F or Hom(F,E).

(iii) If E is stable, then Hom(E,E) = C.

In our examples, we will study the stability of elements E that are non-trivial extension of
two stable elements E1, E2:

0 → E1 → E → E2 → 0

Its stability with respect toσ can be studied using by looking the image of the vectorsZ(E1), Z(E2) ∈
C. Let’s see some common situations:
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(i)
Then E is not σ-semistable and its H-N factors are E1 and E2.

(ii)
Here E is σ-semistable but not stable and E1, E2 are its J-H factors.

(iii)
Assume also that the interior of the parallelogram doesn’t contain points of Z(A). Then E
is σ-stable.
Indeed, suppose that E is not σ-stable and let K ⊊ E be a sub object with ϕ(K) ≥ ϕ(E).
We may assume that K is stable. Call φ : K → E2 the composition with E → E2. Let see
that φ is an isomorphism.
If φ = 0, then K → E factorizes through a map K → E1 which must be non-zero, but this
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is impossible since ϕ(K) > ϕ(E1). Then Imφ ̸= 0 and by stability of E2 and K , we have

ϕ(K) ≤ ϕ(Imφ) ≤ ϕ(E2)

Moreover, ℑZ(Imφ) ≤ ℑZ(E2). Since the interior of the parallelogram doesn’t contains
point of ImZ(A), then ϕ(Imφ) = ϕ(E2). By stability of E2 we obtain that Imφ = E2 and
so φ is surjective. To see that Kerφ = 0, we look the exact sequence

0 → Kerϕ → K → E2 → 0

If Kerφ ̸= 0, then similarly, we obtain that ϕ(Kerφ) = ϕ(E1) and so E1 ≃ Kerφ but then
Z(E) = Z(K) and so K = E which is impossible.
Therefore φ is an isomorphism but this contradicts the fact that the exact sequence

0 → E1 → E → E2 → 0

doesn’t split.

2.1 Examples of Bridgeland stability conditions
When X has dimension, then σ = (CohX,Z) given by

Z(E) = − degE + i rankE

is a Bridgeland stability condition and an objectE isσ-(semis)stable iffE is either a slope (semis)stable
vector bundle or E ≃ k(x).
If X has dimension at least 2, this example doesn’t work anymore since Z(E) = 0 when E is a
sheaf supported in dimension zero. In fact, when X has dimension 2, then there is no Bridgeland
stability condition σ = (A, Z) where A = CohX .

Now we restrict to the case when X is a projective K3 surface in order to construct explicit
stability conditions although similar construction can be made for any projective surface (see
[MS19, Section 6.2])

Let ω,B ∈ NSX with ω be an ample class and write β = (B,ω) ∈ R. We define the
Bridgeland stability condition σω,B = (Cohω,B, Zω,B) where

Z(E) = ⟨eB+iω, v(E)⟩ = −
∫

eB+iω Ch(E) TodX,

and CohXω,B is the category

A = {E• : E−1 → E0 : H−1(E•) ∈ Fω,β,H0(E•) ∈ T ω,β

where Fω,B and T ω,B are the subcategories of CohX generated by extension:

T ω,B = ⟨torsion sheaves and E µω-stable with slope µ(E) > β⟩
Fω,B = ⟨ E µ-stable with µ(E) > β ⟩

(4)

We have the following proposition
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Proposition 2. σω,β is an stability condition iffZω,B(δ) ̸∈ R≤0 for all δ ∈ H∗
alg(X,Z)with ⟨δ, δ⟩ =

−2

The fact that CohXω,B is the heart of a t-bounded structure is a consequence of the more
general fact on the construction of hearts via tilting (see [MS19, Section 6]).

The condition on the classes δ ∈ H∗
alg(X,Z) is only used to prove that σω,B satisfies the

positive property (see [Bri08, Lemma 6.2]).
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