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Facultad de Matemáticas
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1 Introduction

The goal of today is to kill cohomology classes in an specific setting.

The general question is very simple; if one has a cohomology class α ∈ Hn(S,G) where S is a scheme and G
is a sheaf, is there a morphism π : S′ → S such that α|S′ := π∗α = 0? in which case we say that α is “killed”
by π. For example, it is straightforward to see that cohomology classes are locally trivial (in the respective
site). But what if we put restrictions on π, like finite or proper? In this line, we have the following two
theorems:

Theorem 1.1 (Bhargav Bhatt, 2011). Let S be a noetherian excellent scheme, and let G be a finite flat
commutative group scheme over S. Then classes in Hn

fppf(S,G) can be killed by finite surjective maps to S
for n > 0.

Theorem 1.2 (Bhargav Bhatt, 2011). Let S be a noetherian excellent scheme, and let A be an abelian
scheme over S. The classes in Hn

fppf(S,A) can be killed by proper surjective maps to S for n > 0. Moreover,
there exists an example of a normal affine scheme S that is essentially of finite type over C, and an abelian
scheme A → S with a class in H1

fppf(S,A) that cannot be killed by finite surjective maps to S.

The goal for today will be to prove Theorem 1.1. The informal idea of the proof is as follows: we take a
class α ∈ Hn(S,G), we find a étale cover over which α trivializes. We then reduce to the case of Zariski
covers owing to an idea of Gabber and then we finally solve the problem by hand using spectral sequences
and Zariski cohomology.

2 Preliminaries

Theorem 2.1 (Raynaud). Let S be any scheme andG a commutative finite, flat, locally of finite presentation
group scheme over S. Then there exists an abelian S-scheme A and an S-closed immersion G → A.

Proof. [BBM, Théorème 3.1.1].

2.1 Cohomology

Theorem 2.2 (Fppf and étale cohomology). Let X be a scheme and G a smooth commutative group scheme
over X. Then

H i
ét(X,G) ∼= H i

fppf(X,G)

for all i ≥ 0.

Proof. [G2, Théorème 11.7]
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3 Simplification of covers

In this section, we state some results about covers. The first one helps us “globalize” finite surjective covers
while the second, due to Gabber, allows us to pass from étale covers to Zariski ones.

Lemma 3.1 (Extending covers). Fix a noetherian scheme X. Given an open dense subscheme U ↪→ X and
a finite surjective morphism f : V → U , there exists a finite surjective morphism f : V → X such that fU is
isomorphic to f . Given a Zariski open cover U = {ji : Ui → X} by a finite amount of dense opens Ui ⊂ X,
and finite surjective morphisms fi : Vi → Ui for each i, there exists a finite surjective morphism f : Z → X
such that fUi factors through fi. The same claims hold if “finite surjective” is replaced “proper surjective”
everywhere.

Proof. We first explain how to deal with the claims for finite morphisms. The morphism V → U → X is
quasi-finite and separated as V → U and U → X are. Since X is quasi-compact and quasi-separated we can
apply Zariski’s Main Theorem to V → X and find a commutative diagram

V U

T X

f

j

π

where j is a quasi-compact open immersion and π is finite. Taking the schematic closure of V in T (whose
underlying set is the closure of V in T since j is quasi-compact) we get the following commutative diagram:

V U

V T X

f

j

i π

The morphism π ◦ i = f : V → X is finite since i is closed immersion and π is finite.

The surjectivity is straightforward. The fact that fU is f is more delicate and won’t be proven.

For the second part, we may extend each fi ◦ ji as in the first part to obtain finite surjective morphisms
fi : Vi → X that restrict to ji over Ui ⊆ X. Setting W to be the fiber product of all the Vi over X solves the
problem (finite surjective is preserved by base change).

The statements replacing “finite” by “proper” follows using the exact same argument and using Nagata’s
compactification instead of Zariski’s Main Theorem.

Lemma 3.2 (Gabber). Let f : U → X be a surjective étale morphism of schemes. Then there exists a finite
surjective map g : X ′ → X, and a Zariski open cover {Ui ↪→ X ′} such that the natural map ⨿iUi → X
factors through U → X.

Proof. Gabber proved this in the affine case with the advantage that the resulting g : X ′ → X is also flat.
He did this by constructing an specific (spectrum of a) ring and a cover of it.

The next result assures that we can kill our cohomology classes étale-locally.

Proposition 3.3. Let S be the spectrum of a strictly henselian local ring, and let G be a finite flat
commutative group scheme over S. Then H i

fppf(S,G) = 0 for i > 1.
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Proof. By Theorem 2.1, there exists an abelian S-scheme A (proper, smooth with geometrically connected
fibres) and an S-closed immersion G → A. Let A/G denote the quotient sheaf for the fppf topology, and
it happens that this is an abelian scheme over S. This is not obvious at all but we will take it for granted.
Thus, we have a short exact sequence

0 −→ G −→ A −→ A/G −→ 0

of abelian sheaves on the fppf site of S. This gives rise to a long exact sequence

· · · −→ Hn−1
fppf (S,A/G) −→ Hn

fppf(S,G) −→ Hn
fppf(S,A) −→ · · ·

Since A and A/G are smooth, we can apply Theorem 2.2 to conclude

Hn−1
fppf (S,A/G) = Hn

fppf(S,A) = 0

for n ≥ 2 and hence Hn
fppf(S,G) = 0 for n ≥ 2 as we wanted (here we use the fact that the étale cohomology

of an strictly local spectrum vanishes for n ≥ 1).

Next, we explain how to deal with Zariski cohomology with coefficients in a finite flat group scheme.

Proposition 3.4. Let S be a normal noetherian scheme, and let G → S be a finite flat commutative group
scheme. Then Hn

Zar(S,G) = 0 for n > 0.

Proof. We may assume that S is connected (and hence integral). As constant sheaves on irreducible topo-
logical spaces are acyclic, it will suffice to show that G restricts to a constant sheaf on the small Zariski
site of S, i.e, that the restriction maps G(S) → G(U) are bijective for any non-empty open subset U ↪→ S
(here we use the fact that S is final in the category of S-schemes). Since S is integral, it is reduced and U is
dense in S. Also, as G is separated over S, the S-version of the reduced-to-separated theorem implies that
G(S) → G(U) is injective.

For the surjectivity, take a section f : U → G. The scheme theoretic image of U in G yields an integral closed
subscheme S′ ↪→ G. Indeed, since U is reduced, its scheme theoretic image is the closed subscheme f(U) → G
with its reduced structure. Since U is irreducible, so is f(U) and its closure. Thus, the map S′ → S is a finite
map that restricts to an isomorphism over U . Since a finite birational morphism from an integral scheme to
an (integral) normal scheme is an isomorphism, we conclude S′ ∼= S. The map S ∼= S′ → G is the desired
extension.

Now we come to the proof of Theorem 1.1.

Proof. We prove this by induction. For n = 1, classes α ∈ H1
fppf(S,G) are represented by fppf G-torsors T

over S. Since finite flat is stable under base change and descends for fppf morphisms, it is local in the fppf
topology. Since T and G are isomorphic locally in this topology, T → S is also finite flat. Thus, we can take
our S′ → S to be T → S. Indeed, it is finite flat, and T ×S T → T is the trivial T torsor (it has section).
Thus α|T = 0.

We now fix n > 1 and a cohomology class α ∈ Hn
fppf(S,G). By Proposition 3.3 we have that α is trivial at

étale stalks at all points of S. Since étale cohomology commutes with projective limits of schemes, we can
show that α is trivial around an étale neighbourhood of every point, and hence there is an étale cover of S
over which α trivializes. Using Lemma 3.1, after replacing S by a finite cover, we may assume that there
exists a Zariski cover U = {Ui ↪→ S} over which α trivializes.

The Cech to cohomology spectral sequence for this cover is

Ep,q
2 = Ȟp(U , Hq(G)) =⇒ Hp+q

fppf (S,G)

where Hq(G) is the cohomology presheaf. What this imply, is two things:

3



• There is a filtration of Hn
fppf(S,G) by objects

0 = F 0 ⊂ F 1 ⊂ F 2 ⊂ · · · ⊂ Fn−1 ⊂ Fn = Hn
fppf(S,G)

where
F i/F i−1 ∼= En−i,i

∞

for 0 ≤ i ≤ n.

• For any n,

Ep,q
n+1

∼=
ker dp,qn

im dp−n,q+n−1
.

In particular, an element of Ep,q
n+1 “comes” from an element in Ep,q

n . Repeating this process, we get
that any element of Ep,q

∞ “comes” from one in

Ep,q
2 = Ȟp(U , Hq(G)).

In particular, we have surjections F i → En−i,i
∞ and every element on the right comes from an element

Ȟn−i(U , H i(G)).

Since α ∈ Hn(S,G). We want to prove that α comes from Fn−1 or, what is equivalent, 0 = α ∈ E0,n
∞ . Now,

this class comes from an element α′ ∈ Ȟ0(U , Hn(G)). It is the case that this α′ is just the image of α under
the canonical map

Hn(S,G) → Ȟ0(U , Hn(G))

so α′ = 0 since α|Ui = 0 for any i.

We now replace our Cech-to-cohomology spectral sequence by its base change along S′ → S.

Then, α ∈ Fn−1 (base change) and we want to prove that it lies on Fn−2. The class of α ∈ E1,n−1
∞ comes

from an element in α′ ∈ Ȟ1(U , Hn−1(G)). This is the (n − 1)-th cohomology group of the standard Cech
complex ∏

i

Hn−1(Ui, G) →
∏
i,j

Hn−1(Uij , G) → · · ·

By induction, every term of this complex can be annihilated by a finite surjective morphisms to the cor-
responding schemes. By Lemma 3.2, we can a find a global finite surjective morphism S′ → S such that
α′|′S = 0.

After replacing S with S′, the (again base changed) Cech spectral sequence then implies that α comes from
Ȟ2(U , Hn−2(G)) and we can repeat our process. Proceeding this way we can reduce the second index q all
the way down to 0, i.e, assume that the class α lies in the image of of the map

Ȟn(U , G) → Hn
fppf(S,G) (⋆)

Now, we take the normalization S′ → S (which is a finite morphism since S is excellent!) and do base change
(noch mal). Thus we may assume that S is normal and we position ourselves in the same situation, α lies
on the image of (⋆). If we prove that Ȟn(U , G) = 0 we are finally done. Using again, the Cech-to-derived
spectral sequence, but in the Zariski site, one can manage prove using Proposition 3.4 that in fact

Ȟn(U , G) ∼= Hn
Zar(S,G)

and we are done.
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4 Theorem 2

It was essential for the proof of Theorem 1.1 to show that G was a Zariski constant sheaf. In the same
manner we have the following lemma, which is beautiful on its own, and we state without proof:

Lemma 4.1. Let S be a regular connected excellent noetherian scheme, and let f : A → S be an abelian
scheme. For any non-empty U ⊂ S, the restriction map A(S) → A(U) is bijective.

The regularity assumption cannot be weakened to much as we will see in the next example.

Example 4.2. Let k be a field. Let (E, e) ⊂ P2
k be an elliptic curve, and let S be the affine cone on E with

origin s. We can see S is normal since it is a hypersurface singularity of dimension 2, hence Cohen-Macaulay,
and it has 0-dimensional singular locus, so regular in codimension 1.

Consider A = S×E the constant abelian scheme on E over S and set U = S/{s}. The projection p : U → E
yields a non-constant morphism p × idU : U → A. On the other hand, all sections S → A are constant.
Indeed, every point of S lies on an A1

k containing s. If we can prove that every map A1
k → E is constant, the

claim follows.

Let A1
k → E be a non-constant map. By properness, we may extend this to a non-constant morphism

f : P1
k → E. Since P1

k is proper and f is non-constant, it follows that f is finite and K(E) ⊂ k(P1) is a finite
field extension.

Assume first that k(E) ⊂ k(P1
k) is separable. Then, by [H, IV. 2.1] we would have that the map

H0(P1
k, f

∗ΩE/k) → H0(P1,ΩP1
k/k

) = H0(P1,OP1
k
(−2)) = 0

is injective. But ΩE/k is a free sheaf! Thus f∗ΩE/k is a free sheaf on P1 and, it particular, it has sections.
This is a contradiction.

If the field extension is not separable we split it as k(E) ⊂ k(E)sep ⊂ k(P1) by a separable extension and
purely inseparable one. By the equivalence of categories of curves and function fields ([H, I.§6] we have a
non-singular projective curve C and a factorization of f as follows

P1
k E

C

f

F f ′

By [H, IV. 2.5], C ∼= P1 (because of purely inseparability of the corresponding field extensions). If f is
non-constant, then so is f ′. Since f ′ is separable, this cannot happen as we have already seen.

To finish, we mention that the proof of Theorem 1.2 is somehow analogous to the proof of Theorem 1.1.
Instead of using normalization in the final step of the proof, de Jong’s alterations [dJ] are used together with
an argument by noetherian approximation.
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