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1 Introduction

This short lecture series given at PUC Chile is mainly based on [PS08].

1.1 Pure Hodge structures

Definition 1. A Hodge structure of weight k in a Q-vector space H is a decreasing filtration
F pHC, on the complexified vector space HC := H ⊗Q C, such that

F p ⊕ F q = HC, ∀p+ q = k + 1.

It induces a Hodge decomposition

HC =
⊕
p+q=k

Hp,q, Hp,q := F p ∩ F q.

In particular F p = Hp,q ⊕Hp+1,q−1 ⊕ · · · ⊕Hk,0 and Hp,q = Hq,p. We denote

GrpFHC := F p/F p+1 ' Hp,q.

Theorem 1 (Hodge decomposition). Let X be a compact Kähler manifold of dimension n,
then for every 0 ≤ k ≤ 2n, the k-th Betti cohomology (or singular cohomology) Hk(X,Q) has
a Hodge structure of weight k, induced by the decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X) , Hp,q(X) :=
{closed (p, q)-forms}
{exact (p, q)-forms}

' Hp,q

∂
(X) ' Hq(X,Ωp

X).

This decomposition is compatible with the cup products with the polarization θ ∈ H1,1(X) ∩
H2(X,Z), and so it also induces a Hodge structure of weight k on Hk(X,Q)prim.

Example 1. More examples of Hodge structures in the cohomology of varieties:

1. Let f : Y → X be a surjective holomorphic map between compact complex manifolds. If
Y is Kähler, then f ∗ : Hk(X,Q) ↪→ Hk(Y,Q) induces a Hodge structure of weight k on
Hk(X,Q).

2. Let X be a compact complex manifold bimeromorphic to a compact Kähler manifold
Y . If f : Z → X is the morphism obtained by resolving the indeterminacy of the
bimeromorphism, then Z is compact Kähler (since it is a blow-up of Y ) and so Hk(X,Q)
has a Hodge structure of weight k. In this case and in the previous one

GrpFH
k(X,C) ' Hq(X,Ωp

X).

3. An almost Kähler orbifold is an orbifold (or V -manifold, i.e. whose singularities
are quotient of the unit ball by a finite subrgroup of GLn(C)) X for which there exists a
manifold Y bimeromorphic to a Kähler manifold and a proper modification (i.e. proper
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holomorphic map biholomorphic outside a nowhere dense analytic subset) f : Y → X
which is surjective. If X is a compact almost Kähler orbifold, then Hk(X,Q) has a Hodge
structure of weight k. In this case

GrpFH
k(X,C) ' Hq(X, Ω̃p

X) = Hq(Xns,Ωp
Xns).

Definition 2. A morphism of Hodge structures of weight k, α : (H,F ) → (H ′, F ′), is a
Q-linear map α : H → H ′ respecting the filtrations, i.e. αC(F p) ⊆ F ′p.

Remark. All maps in cohomology coming from geometry are morphisms of Hodge structures
(when both cohomology groups have Hodge structures), e.g. pull-back maps, push-forward
maps, cup products, Gysin (or Thom) maps, etc. But usually they do not respect the Hodge
filtration, for instance if X is compact Kähler with polarization θ ∈ H1,1(X) ∩ H2(X,Z) and
Y ⊆ X is a smooth hypersurface, the Gysin map

α : Hk(Y,Q)
∪θ−→ Hk+2(X,Q)

do not respect the Hodge filtrations since they have different weights. In fact, it satisfies

α(F pHk(Y,C)) ⊆ F p+1Hk+2(X,C) or equivalently α(Hp,q(Y )) ⊆ Hp+1,q+1(X)

for this reason we say it is a morphism of Hodge structures of type (1, 1).

1.2 Mixed Hodge structures

Definition 3. A mixed Hodge structure in a Q-vector space H is given by an increasing
filtrationWkH called the weight filtration, and a decreasing filtration F pHC called the Hodge
filtration, such that the induced Hodge filtration on each

GrWk H := Wk/Wk−1

is a Hodge structure of weight k.

Example 2. Mixed Hodge structures on varieties arise when one consider non-compact va-
rieties. This structure encodes cohomological information coming from the compactifications,
but at the same time is canonical (i.e. independent of the chosen compactification):

1. Every (pure) Hodge structure of weight k on H determines a mixed Hodge structure given
by

WkH := H , WmH := 0 for m < k.

2. Let X be a smooth complete intersection and Y ⊆ X be a smooth very ample divisor.
Then Hk(U,Q) has a mixed Hodge structure, where U := X \ Y . In fact

Wk+1H
k(U,Q) = Hk(U,Q) , WmH

k(U,Q) = 0 for m < k,

GrWk H
k(U,Q) ' Hk(X,Q)prim , GrWk+1H

k(U,Q) ' Hk−1(Y,Q)prim.
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3. Let X be a smooth complete intersection in PN , Y, Z ⊆ X be two smooth very ample
divisors s.t. Y ∩ Z is also smooth (transversal). Then U := X \ (Y ∪ Z) has a mixed
Hodge structure of the form

Wk+2H
k(U,Q) = Hk(U,Q) , WmH

k(U,Q) = 0 for m < k,

GrWk H
k(U,Q) ' Hk(X,Q)prim , GrWk+1H

k(U,Q) ' Hk−1(Y,Q)prim ⊕Hk−1(Z,Q)prim,

GrWk+2H
k(U,Q) ' Hk−2(Y ∩ Z,Q)prim.

4. In general for any smooth algebraic variety U , we can induce a mixed Hodge structure
on it once we find a smooth compactification U ↪→ X with Y = X \ U a normal crossing
divisor. Moreover, for any algebraic variety X, Hk(X,Q) has a mixed Hodge structure,
also there are mixed Hodge structures in other cohomology groups such as Hk

c (U,Q),
Hk(X, Y,Q), also in homotopy groups and other topological invariants.

Remark. As in the case of pure Hodge structures, all cohomology maps coming from geometry
are morphisms of mixed Hodge structures in some sense. This is the case for instance of the
residue map

res : Hk(X \ Y,Q)→ Hk−1(Y,Q),

which is a morphism of mixed Hodge structures of type (−1,−1).

1.3 Main theorem

Theorem 2 (Deligne). Every morphism of mixed Hodge structures

α : (H,W,F )→ (H ′,W ′, F ′)

is strict in the following sense

Im(α) ∩W ′
mH

′ = α(WmH),

Im(α) ∩ F ′PH ′C = α(F pHC).

Corollary 1. Every morphism of mixed Hodge structures which is an isomorphism of Q-vector
spaces is an isomorphism of mixed Hodge structures.

Corollary 2. If U is a smooth algebraic variety with smooth compactifications U ↪→ X, U ↪→ Y
with boundary a normal crossing divisor, then both compactifications induce the same mixed
Hodge structure on U .

Proof Taking Z a resolution of ∆U ⊆ X × Y such that U ' ∆U ↪→ Z has a normal crossing
divisor in the boundary, we get the isomorphisms of mixed Hodge structures

(Hk(U,Q),W (X), F (X)) (Hk(U,Q),W (Y ), F (Y )).

(Hk(U,Q),W (Z), F (Z))

pr∗1 pr∗2
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The following corollary is very useful for computations.

Corollary 3. Mixed Hodge structures respect exact sequences.

Example 3. Using the above corollary we can obtain a lot of information of the mixed Hodge
structure of a cohomology group once we put it inside an exact sequence.

1. Let X be a compact Kähler manifold and Y ⊆ X be a smooth hypersurface. Then the
Leray-Thom-Gysin sequence

· · · → Hk(X,Q)→ Hk(U,Q)
res−→ Hk−1(Y,Q)

∪θ−→ Hk+1(X,Q)→ · · ·

gives us WmH
k(U,Q) = 0 for m < k, also GrWr H

k(U,Q) = 0 for r > k + 1, and

0→ GrWk+1H
k(U,Q)

res−→ Hk−1(Y,Q)
∪θ−→ Hk+1(X,Q)→ GrWk+1H

k+1(U,Q)→ 0.

This sequence also exists in the context of orbifolds.

2. Similar computations can be done using Mayer-Vietoris sequences (usual one and with
compact support), the long exact sequence of a pair (X, Y ), etc.

1.4 Spectral sequences

Up to now we have not explained how mixed Hodge structures are constructed. It turns out
that to construct the mixed Hodge structures mentioned before on the cohomology of a variety
X, what we really do is to construct a mixed Hodge complex of sheaves

K• = (K•,W, (K•C,W, F ), β)

where K• is a complex of Q-vector spaces such that

Hk(X,K•) ' Hk(X,Q)

(or the respective cohomology group where the mixed Hodge structure will be defined), W is
an increasing filtration on the complex K• which induces the weight filtration by

WmH
k(X,Q) ' WmHk(X,K•) := Im(Hk(X,Wm−kK•)→ Hk(X,K•)),

(K•C,W, F ) is a bifiltered complex of sheaves such that

Hk(X,K•C) ' Hk(X,C)

induces a bifiltered C-vector space (Hk(X,C),W, F ), and

β : (K• ⊗ C,W ) 99K (K•C,W )

is a pseudo-isomorphism inducing an isomorphism of filtered C-vector spaces

(Hk(X,K•),W )⊗ C ' (Hk(X,K•C),W ),

such that the resulting filtrations on (Hk(X,Q),W, F ) form a mixed Hodge structure.
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Remark. In practice, we do not need to know K• in order to compute the mixed Hodge
structure, it is enough to know its existence and to use (K•C,W, F ) to compute it.

Example 4. For U a smooth variety, X a smooth compactification such that Y := X \ U is a
normal crossing divisor, the mixed Hodge structure on U is induced the mixed Hodge complex
of sheaves

(Ω•X(log Y ),W, F )

where

WmΩ•X(log Y ) := Ω•−mX ∧ Ωm
X(log Y ) and F pΩ•X(log Y ) := Ω•≥pX (log Y ).

Note that

GrWm Ω•X(log Y ) ' Ω•−mY (m) and GrpFΩ•X(log Y ) = Ωp
X(log Y )[−p],

where Y (m) is the disjoint union of all subvarieties of Y given locally as the intersection of m

local components of Y . The same holds for orbifolds replacing Ω by Ω̃ and the normal crossing
divisor by a V -normal crossing divisor.

In order to compute the mixed Hodge structure we need to know what is the relation
between the grading induced by the weight and Hodge filtrations onHk(X,C) and the respective
gradings at the level of complexes of sheaves (which are usually simple to describe). This
information is encoded in their associated spectral sequences whose behavior is described as
follows.

Theorem 3 (Deligne). For a mixed Hodge structure induced on Hk(X,Q) by a mixed Hodge
complex of sheaves K•, the spectral sequence associated to the weight filtration is given by

E−m,m+k
1 = Hk(X,GrWmK•)

and degenerates at E2. This means that

GrWm+kH
k(X,Q) ' E−m,m+k

2 = H(E−m−1,m+k
1

d1−→ E−m,m+k
1

d1−→ E−m+1,m+k
1 ).

And the spectral sequence associated to the Hodge filtration degenerates at E1 and is given by

Ep,q
1 = Hp+q(X,GrpFK

•
C) ' GrpFH

k(X,C).

Example 5. In our previous example the spectral sequence of the weight filtration corresponds
to

E−m,m+k
1 = Hk(X,Ω•−mY (m)) ' Hk−m(Y (m),Q),

the map d1 : Hk−m(Y (m),Q)→ Hk−m+2(Y (m− 1),Q) is induced by the Gysin morphisms in
each component. And the spectral sequence of the Hodge filtration corresponds to

Ep,q
1 = Hp+q(X,Ωp

X(log Y )[−p]) = Hq(X,Ωp
X(log Y )).
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2 Applications

2.1 Vanishing theorems

One of the applications of Deligne’s theorem is the proof of vanishing theorems. The idea is to
use the degeneration of the spectral sequence associated to the Hodge filtration

Ep,q
1 = Hq(X,Ωp

X(log Y ))⇒ Hp+q(X \ Y,C)

to derive analytic vanishing results from topological vanishing results. This idea is mainly due
to Kollár and Esnault-Viehweg. We will just sketch some classical applications, for further
reading we refer the reader to [EV92].

Consider first the following situation: Let X be a smooth projective variety of dimension n
and L be an ample line bundle with a section vanishing along a normal crossing divisor Y ⊆ X.
It follows from Deligne’s theorem that

Hk(X \ Y,C) =
⊕
p+q=k

Hq(X,Ωp
X(log Y ))

and so (by Atiyah–Hodge theorem Hk(X \ Y,C) = Hk(Γ(Ω•X\Y ), d), or by Andreotti–Fraenkel

theorem) we conclude
Hq(X,Ωp

X(log Y )) = 0 for p+ q > n.

In particular we obtain a weaker version of Kodaira vanishing theorem

Hq(X,Ωn
X ⊗ L) = 0 for q > 0.

In order to obtain the stronger version for any ample line bundle L we can consider a power LN

such that it has a section vanishing along a smooth divisor H ⊆ X and then take the N -cyclic
covering

f : Z → X

ramified along H. It is not hard to see that Z and D := (f ∗H)red are smooth. Moreover

f∗OZ =
N−1⊕
i=0

L−i.

Again since Z \D is affine we obtain the vanishing for p+ q > n

0 = Hq(Z,Ωp
Z(logD)) = Hq(X, f∗Ω

p
Z(logD)) =

N−1⊕
i=0

Hq(X,Ωp
X(logH)⊗ L−i)

in particular we get the desired result

Hq(X,Ωn
X ⊗ LN−i) = 0 for q > 0.

This strategy to obtain vanishing results from Deligne’s theorem has been exploited by Esnault-
Viehweg by means of logarithmic connections. For instance it is possible to show the following
logarithmic vanishing result.
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Theorem 4 ([EV92] §6.2). Hq(X,Ωp
X(logH)⊗ L−1) = 0 for p+ q 6= n.

From the above result we can go further, and use the Poincaré residue sequence

0→ Ωp
X → Ωp

X(logH)
Res−−→ Ωp−1

H → 0

to obtain inductively the Akizuki-Nakano vanishing theorem

Hq(X,Ωp
X ⊗ L) = 0 for p+ q > n.

There are several vanishing results which can be reobtained and extended to more general
situations (e.g. to positive characteristic) using these methods. Another example which has
been largely extended to singular varieties by Guillen–Navarro Aznar– Pascual-Gainza–Puerta
using filtered De Rham complexes (see [PS08, Theorem 7.29]) is the following:

Theorem 5 (Grauert–Riemenschneider). Let X be a smooth compact complex algebraic va-
riety of dimension n, π : Y → X be a proper modification with Y smooth and L an ample line
bundle on X. Then

(a) Hq(Y,Ωn
Y ⊗ π∗L) = 0 for q > 0,

(b) Rqπ∗Ω
n
Y = 0 for q > 0.

Remark. Given f : X → Y and F a sheaf over X we can use Leray’s spectral sequence to
translate global vanishing theorems into local vanishing results of the form

Rqf∗F = 0.

This kind of local vanishing results is useful in deformation theory. In fact, we encounter situ-
ations where the obstruction to globalize a local deformation is encoded by cohomology
groups of the form

Hk(Y, f∗F).

Leray’s spectral sequence gives us

Ep,q
2 = Hp(Y,Rqf∗F)⇒ Hp+q(X,F).

Therefore the local vanishing Rqf∗F = 0 for all q > 0 reduces the local-to-global obstruction to
global vanishing results on the family (which usually translates into an analytic or topological
condition on X)

Hk(Y, f∗F) = Hk(X,F) = 0.

Theorem 6 (Global-To-Local principle). Suppose that f : X → Y is a morphism between
projective varieties, q a natural number and F a coherent sheaf on X with the property that

Hq(X,F ⊗ f ∗L) = 0

for all ample line bundles L on Y . Then

Rqf∗F = 0.

Proof Take L sufficiently ample such that Rqf∗F ⊗L is globally generated and Rjf∗F ⊗L is
acyclic for all j = 0, 1, . . .. Then the Leray spectral sequence

Ei,j
2 = H i(Y,Rjf∗F ⊗ L)⇒ H i+j(X,F ⊗ f ∗L)

degenerates at E2 and so H0(Y,Rqf∗F ⊗ L) = Hq(X,F ⊗ f ∗L) = 0. Hence Rqf∗F = 0.
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2.2 Basis theorems

As we illustrated before, it is possible to obtain vanishing theorems such as Akizuki–Nakano

Hq(X,Ωp
X ⊗ L) = 0 for p+ q > n

from the vanishing of the cohomology group Hk(X \Y,C) = 0 for k > n. A natural question is
to ask ourselves if is it possible to go the other way around, and by this we mean the following:

Question. In the case Hk(X \ Y,C) is not trivial, can we have a better understanding of it if
we know well the groups Hq(X,Ωp

X ⊗ L) for p+ q = k?

In some nice cases the answer to previous question is affirmative, and it turns out to be
enough to have a stronger vanishing result due to Bott.

Definition 4. We say a complex compact algebraic variety X satisfies the Bott vanishing
theorem if for every ample line bundle L

Hq(X,Ωp
X ⊗ L) = 0 for all p ≥ 0, q > 0.

Example 6. Satisfying the Bott vanishing is a very special property. Some know examples are
the following:

1. Bott’s original vanishing theorem (1957) states it for Pn.

2. Steenbrink (1977) extended it to weighted projective spaces.

3. Danilov (1978), Batyrev–Cox (1993) proved it for complete simplicial toric varieties.

4. Totaro (2019) proved it for the quintic Del Pezzo surface, and characterized K3 surfaces
with Picard number 1 satisfying Bott vanishing as those of degree 20 or ≥ 24. For higher
Picard number, K3 surfaces satisfying the Bott vanishing do not contain elliptic curves
of low degree nor are hyperplane sections of Fano 3-folds.

5. Torres (2020) proved it for stable GIT quotients of (P1)n by the action of PGL2.

To link the Bott vanishing with the mixed Hodge structure of X \ Y we need to change the
usual Hodge filtration on Ω•X(log Y ) by another filtration.

Proposition 1. Let X be a compact algebraic variety (smooth or orbifold) and Y ⊆ X be an
ample normal crossing divisor (or V -normal crossing respectively). There is a natural filtered
quasi-isomorphism of filtered complexes

Ω≥pX (log Y ) ↪→ P pΩ•X(∗Y )

and so we can compute

F pHk(X \ Y,C) ' Hk(X,P pΩ•X(∗Y )))

where P •Ω•X(∗Y ) is the pole order filtration given by
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P n+2 = 0

...

∪
P k :

...

∪
P 2 :

∪
P 1 :

∪
P 0 :

∪
P−1 :

...

0

0

0

OX(Y )

OX(2Y )

· · ·

0

Ω1
X(Y )

Ω1
X(2Y )

Ω1
X(3Y )

0

Ω2
X(Y )

Ω2
X(2Y )

Ω2
X(3Y )

Ω2
X(4Y )

Ωk
X(Y )

· · ·

· · ·

· · ·

· · ·

· · ·

Ωn+1
X (nY )

Ωn+1
X ((n+ 1)Y )

Ωn+1
X ((n+ 2)Y )

Ωn+1
X ((n+ 3)Y )

0

0

0

0

0

In particular if X satisfies the Bott vanishing theorem, then

F pHk(X \ Y,C) ' Hk(Γ(X,P pΩ•X(∗Y )))

and consequently

Hk−p(X,Ωp
X(log Y )) = GrpFH

k(X \ Y,C) ' H0(X,Ωk,closed
X ((k − p+ 1)Y ))

dH0(X,Ωk−1
X ((k − p)Y )) +H0(X,Ωk

X((k − p)Y ))
.

Corollary 4. In the case Y ⊆ X is a smooth hypersurface (or quasi-smooth when X is an
orbifold) and Hk(X,Q)prim = 0, then the mixed Hodge structure of Hk(X \ Y,C) is pure of
weight k + 1, i.e. GrWmH

k(X \ Y,Q) = 0 for m 6= k + 1 and

GrWk+1H
k(X \ Y,Q)

∼−−→
Res

Hk−1(Y,Q)prim.

In particular, when X = Pn and Y = {F = 0} with degF = d, we get for p+ q = n− 1 that

Hp,q(Y )prim ' Hq(Pn,Ωp+1
Pn (log Y )) ' H0(Pn,Ωn

Pn((n− p)Y ))

dH0(Pn,Ωn−1
Pn ((n− p− 1)Y )) +H0(Pn,Ωn

Pn((n− p− 1)Y ))
.

Identifying

H0(Pn,Ωn
Pn((n− p)Y )) =

Ω

F n−p · C[x0, . . . , xn]d(n−p)−n−1

we get Griffiths basis theorem

Hp,q(Y )prim '

(
C[x0, . . . , xn]

〈 ∂F
∂x0
, . . . , ∂F

∂xn
〉

)
d(n−p)−n−1

= RF
d(n−p)−n−1.

Remark. Similar basis theorems due to Steenbrink and Batyrev–Cox can be obtained for
weighted hypersurfaces and quasi-smooth hypersurfaces of complete simplicial toric varieties.
In those cases the Jacobian ring must be replaced by a graded Jacobian ring where in the
weighted case, each variable has its grade given by the weight, while in the toric case the
grading is given by the Class group Cl(XΣ) and so RF = S/Jac(F ) is a quotient of the Cox
ring S = C[z1, . . . , zk] where deg(zi) = Di ∈ Cl(XΣ).

Remark. When X has non-trivial primitive cohomology and/or the divisor Y has more com-
ponents, it is possible to obtain similar basis results, but now we will obtain a basis compatible
with the weight filtration also. Hence the basis will be given as a package of basis for each pure
Hodge structure on the graded parts of the weight filtration (see for example [Ste77]).
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3 Variations of Hodge Structures and Degenerations

3.1 Local systems and connections

Definition 5. Let X be a complex manifold. A local system over X is a locally constant
sheaf V defined over X.

Example 7. 1. Let G be an abelian group (e.g. Z, Q, R, C). Every constant sheaf G is a
local system.

2. Another natural way to produce locally constant sheaves is as follows: Let f : X → Y
be a map such that all the fibers have the same homotopy type, then the sheaf Rkf∗G is
a local system on Y . In fact, at every y ∈ Y its fiber corresponds to Hk(Xy, G), where
Xy = f−1(y).

Remark. In the case VZ is a local system of finitely generated abelian groups on a complex
manifold X, then V := VZ ⊗Z OX is a holomorphic vector bundle on X. For instance if
VZ = Rkf∗Z for some f : X → Y proper and smooth, then V corresponds to the vector bundle
on Y with fibers

Vy = Hk(Xy,C) ' Hk
dR(Xy).

In fact V ' Rkf∗Ω
•
X/Y =: H k

dR(X/Y ) is the De Rham cohomology bundle.

Definition 6. A holomorphic connection on a holomorphic vector bundle V is a map

∇ : V → Ω1
X ⊗ V

satisfying the Leibniz rule on local sections

∇(f · s) = df ⊗ s+ f∇(s),

for every holomorphic function f on X and s a section of V .

Remark. Given a connection on V we can naturally extend it to a connection on Ωp
X ⊗ V by

letting
∇(ω ⊗ s) := dω ⊗ s+ (−1)pω ⊗∇(s).

We say the connection ∇ if flat or integrable if ∇ ◦ ∇ = 0. In such a case it induces a De
Rham complex

Ω•X(V) := [0→ V ∇−→ Ω1
X ⊗ V

∇−→ Ω2
X ⊗ V

∇−→ · · · ].

Example 8. If V is a local system of finite C-vector spaces on X, then V = V⊗C OX admits
a natural flat connection defined as follows: Consider s1, . . . , sk be a local set of generators of
V, then every local section of V is a combination s = f1 · s1 + · · ·+ fk · sk where f1, . . . , fk are
holomorphic functions on X. We define the Gauss–Manin connection on V as

∇(s) := df1 ⊗ s1 + · · ·+ dfk ⊗ sk.

In particular ∇(V) = 0. Conversely given any flat connection ∇ on a holomorphic vector
bundle V we can define a local system V := ker(∇) such that ∇ is the associated Gauss–Manin
connection on V⊗C OX = V .
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Definition 7. A variation of Hodge structure of weight k on a complex manifold X
consists of the following data:

1. a local system VZ of finitely generated abelian groups on X,

2. a finite decreasing filtration Fp on V = VZ⊗ZOX by holomorphic subbundles (the Hodge
filtration).

These data should satisfy the following conditions:

1. for each x ∈ X, the Hodge filtration Fp(x) of V(x) = Vx ⊗Z C defines a pure Hodge
structure of weight k on the finitely generated abelian group Vx,

2. the Gauss–Manin connection ∇ on V satisfies the Griffiths transversality condition

∇(Fp) ⊆ Ω1
X ⊗Fp−1.

Theorem 7 (Griffiths). If f : X → Y is a smooth proper family of Kähler manifolds, then
VZ = Rkf∗Z and Fp = Rkf∗Ω

•≥p
X/Y constitute a variation of Hodge structure of weight k on Y .

Moreover the spectral sequence associated to the Hodge filtration degenerates at E1

Ep,q
1 = Rqf∗Ω

p
X/Y ⇒ Rp+qf∗Ω

•
X/Y = H p+q

dR (X/Y ).

3.2 Logarithmic connections

Definition 8. Let X be a complex manifold and Y ⊆ X be a simple normal crossing divisor
and U := X \ Y . Let V be a holomorphic vector bundle on X and let ∆ be a holomorphic
connection on V|U . We say ∆ has logarithmic poles along Y if it extends to a morphism

∇ : V → Ω1
X(log Y )⊗ V

which satisfies the Leibniz rule. If Yk is an irreducible component of Y , the residue map

ResYk : Ω1
X(log Y )→ OYk

induces a map

V ∇−→ Ω1
X(log Y )⊗ V

ResYk⊗id−−−−−→ OYk ⊗ V
which by Leibniz rule factors through OX(−Yk)⊗V , giving us the residue of the connection
along Yk

resYk(∇) ∈ End(OYk ⊗ V).

In case Yk is compact, the characteristic polynomial of resYk(∆) has constant coefficients.

Theorem 8 (Riemann–Hilbert correspondence). Let X be a complex manifold and Y be a
normal crossing divisor, then the assignment

(Ṽ ,∇) 7→ (V ,∇)|X\Y

gives an equivalence
regular meromorphic extensions to X
of vector bundles on X \ Y equipped

with a flat logarithmic connection

←→


vector bundles on X \ Y
equipped with a flat

connection


11



3.3 Variations of Hodge structures over a punctured disc

Consider the special case where X is the unit disc ∆ ⊆ C and Y = 0 is the origin. Consider V
a holomorphic vector bundle on ∆ and a connection ∇ with logarithmic poles along 0. We let
∆∗ = ∆ \ {0} and let T be the monodromy automorphism of V := ker(∇|∆∗) determined
by a counter-clockwise loop around 0.

Proposition 2. T can be extended to an automorphism of V whose restriction T0 to V(0) is
given by

T0 = exp(−2πires0(∇)).

On the other hand, for every bundle V on ∆∗ equipped with a flat connection ∇, there exists
a logarithmic connection extending it over ∆. Let us sketch the construction of this extension
and explain how to describe T0 in terms of T . Let

H := {τ ∈ C : Im(τ) > 0}

be the upper half plane, which is the universal covering of ∆∗ via the map

ε : τ ∈ H 7→ e2πiτ ∈ ∆∗.

We define the canonical fibre
V∞ := H0(H, ε∗V)

the C-vector space of multivalued sections of V. Assume by the moment that the monodromy
T is unipotent (i.e. T − I is nilpotent) and let

N := − 1

2πi
log T =

1

2πi

∑
k>0

(I − T )k

k
.

For any holomorphic section s of ε∗V we define a new holomorphic section ϕ(s) by the rule

ϕ(s)(u) := [exp(2πiuN)]s(u) =
∑
k≥0

(2πi)k

k!
ukNks(u).

If s ∈ V∞ it transforms through the rule

s(u+ 1) = Ts(u),

so ϕ(s) is invariant under u 7→ u+ 1, hence descends to a section of V|∆∗ . So with j : ∆∗ ↪→ ∆
the inclusion, ϕ(V∞) ⊆ H0(∆, j∗V) and we set

Ṽ := ϕ(V∞)⊗C O∆ ⊆ j∗V .

We have

∇(ϕ(s)u) = 2πiN [ϕ(s)]⊗ du = 2πiN [ϕ(s)]⊗ ε∗
(
dt

t

)
,

and so we obtain a logarithmic connection ∇̃ on Ṽ with residue N at 0. This is called the
canonical extension of (V ,∇), and it gives us

ϕ : V∞
∼−→ Ṽ(0).
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Remark. In the general case, the monodromy operator T is quasi-unipotent (at least for a
polarized variation od Hodge structure), i.e. T = TsTu has a Jordan decomposition with Tu
unipotent and Ts semisimple. And a similar analysis applies for N = −1

2πi
log Tu.

Example 9. In the geometric case, f : X → ∆ a proper map, smooth over ∆∗ with E = f−1(0)
a reduced simple normal crossing divisor, the monodromy T on V = Rk(f |X\E)∗C is unipotent.

Definition 9. Given a nilpotent endomorphism N of a finite dimensional vector space V , the
weight filtration of N centered at k is the unique increasing filtration W = W (N, k) of V
with the properties

1. N(Wi) ⊆ Wi−2, i ≥ 2,

2. the map
N l : GrWk+lV → GrWk−lV

is an isomorphism for all l ≥ 0.

Theorem 9 (Schmid). The Hodge bundles Fp of a variation of Hodge structure V = V⊗O∆∗

of weight k, extend to holomorphic subbundles F̃p of Ṽ , and the triple

VHdg
∞ := (Ṽ(0)Z,W•(N, k), F̃•(0))

is a mixed Hodge structure.

Theorem 10. Let f : X → ∆ be a proper map, smooth over ∆∗ with E = f−1(0) a reduced
simple normal crossing divisor with all its irreducible components Kähler. The canonical fibre
is

X∞ := X ×∆∗ H.
For V = Rk(f |X\E)∗Z, VHdg

∞ is a mixed Hodge structure on Ṽ(0)Z = Hk(X∞,Z). The mon-
odromy weight spectral sequence

E−r,q+r1 =
⊕
k

Hq−r−2k(E(2k + r + 1),Q)⇒ Hq(X∞,Q)

degenerates at E2. And the Hodge spectral sequence

Ep,q
1 = Hq(E,Ωp

X/∆(logE)⊗OE)⇒ Hp+q(X∞,C)

degenerates at E1.

Corollary 5. Under the same hypotheses, if ε > 0 is small enough, then for all t ∈ ∆∗ with
|t| < ε the Hodge spectral sequence

Ep,q
1 = Hq(Xt,Ω

p
Xt

)⇒ Hp+q(Xt,C)

degenerates at E1. Moreover dimF pHk(X∞) = dimF pHk(Xt).

Remark. The canonical fibre X∞ is homotopic to any fibre Xt. The total space X can be
retracted to E. Hence the inclusion composed with the retraction Xt ↪→ X → E can be seen
as a specialization map. The map induced in cohomology

sp : Hk(E)→ Hk(Xt) ' Hk(X∞)

called also the specialization map is a morphism of mixed Hodge structures.

Theorem 11 (Local invariant cycle theorem). Let X → ∆ be a Kähler degeneration cen-
tered at 0. Then we have the exact sequence

Hk(E,Q)
sp−→ Hk(X∞,Q)

T−I−−→ Hk(X∞,Q).
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