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Chapter 1

Affine Algebraic Sets

MAMRS‘ Q,. cent / :
[xy =y-x ]

This section consists of a summaryof some notation and facts from commuta-
tive algebra. Anyone familiar with th€ italicized terms and the statements made here
about them should have sufficjent background to read the rest of the notes. . .

When we speak of a e shall always mean a commutative ring with a mul-
tiplicative identity. A ring homomorphism from one ring to another must t
multiplicative identity of the first ring to that of the second. A\domain) or integral

domain, is a ring (with at least two elements) in which the cancellation law holds. A
field is a domain in which every nonzero element is a unit, i.e., has a multiplicative az C ']R - d

Afverse. Z <
4 @zﬂl denote the domain of integers, whil%anill denote the ﬁelw
f,u/v(w/ K

rational, real, complex numbers, respectively. 2

Any domain R has a quotient ﬁelc@ which is a field containing R as a subring, /’ \ :‘3!
R’B and any elements in K may be written (not necessarily uniquely) as a ratio of two
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elements of R. Any one-to-one ring homomorphism from R to a field L extends c 5/ =
b bo R [ = tnerps”

uniquely to a ring homomorphism from K to L. Any ring homomorphism from a
field to a nonzero ring is one-to-one,

A -Q C; ) \ SN\O For any ring R, R[X] denotes the ring of polynomials with coefficients in R. The
g E Q&,‘) “ degree of a nonzero polynomial Y" a; X' is the largest integer d such that a, # 0; the
polynomial is monicif az = 1.
The ring of polynomials in 7 variables over R is written R[X,..., X,]. We often 421 P o ‘
write R[X, Y] or R[X, Y, Z] when n = 2 or 3. The monomials in R[Xj,..., X,] are the

polynomlals Xl1 Xlz Xon 0 j nonnegative integers; the degree of the monomlal is F 4
i1+ +ip. EveryF € R[Xj,..., X,] has a unique expression F = Y a;; XV, where the = 74 + X\/ 7
X are the monomials, ag) € R. We call F homogeneous, or a form, of degree d, if all

coefficients a(;) are zero except for monomials of degree d. Any polynomial F has a >\ F()g,\ ..,X v\) = r( >\X\} J>X‘/\>
unique expression F = Fy + F} +---+ F4, where F; is a form of degree i; if F; #0, d is ! N\
the degree of F, written deg(F). The terms Fy, F}, F>, ... are called the constant, lin- \H/

ear, quadratic, ...terms of F; F is constant if F = Fy. The-zero-pelyremialis-aowed W )
Oto  QyXt- +0uX0

F-F+Fh  +Fh+ . +5 (F) =4
ok T )
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totrave-any-dearee. If R is a domain/ deg(FG) = deg(F) + deg(G). The ring R is a sub- f(é
ring of R[Xj,..., X,], and R[X;,..., X,]is characterized by the following property: if "} 2
@ is a ring homomorphism from R to aring S, and s,..., s;\are elements in S, then %
there is a unique extension of ¢ to a ring homomorphism @\from R[X;,...,X,] to S
such that ¢(X;) = s;, for 1 < i < n.,The image of F under ¢ \s written F(sy,...,Sp).
The ring R[X;, ..., X,] is canonically isomorphicto R[ X}, ..., X\-11[X5],
An element a in a ring R is irreducible if it is not a unit or Zero, and for any fac-
torization a = bc, b, c € R, either b or c is a unit. A domain R is a §nique factorization
domain, written UFD, if every nonzero element in R can be factgred uniquely, up to
units and the ordering of the factors, into irreducible elemenys’
If R is a(UFDwith quotient field/K) then (by Gauss) apy’irreducible element F €
R[X] remains irreducible when considered in K[X];“1t follows that if F and G are
polynomials in R[X] with no common factors in R[X], they have no common factors
in K[X].
If R is a(UFD) then R[X] is also a@ Consequentlyl k[Xj,..., X,]|is or
any field k. The quotient field of k[ X, ..., X},] is written k(Xj,..., X},), and is called
the field of rational functions in n variables over k. g
If : R— Sis aring homomorphism, the set ¢! (0) of elements rhapped to zero
iy the kernel of ¢, written Ker((p) It is an ideal in R And ideal I irvaring R is proper

1deal is an ideal I such that whenever 1, eltherOE 1 or@i 1.
—— A set(S of elements of a ring/ R |generates an ideal I = {}_a;s; | s; € S,a; € R}. An
Q %‘Q) ideal is finitely generated if it is generated by a finite set S={fj, ..., f,,}; we then write W( =
I=(fi,..., fn)l Anidealis principal if it is generated by one element. A domain in
which every ideal is principal is called a principal ideal domain, written| PID| The /c R
ring of integers Z and the ring of polynomials k[X] in one variable over a field k are
examples of PID’s. Every PID is a UFD. A-principal ideal I = (a) in a UFD is prime 1f

and only if a is irreducible (orzero). jz
Let I be an idealin a ring R. The residue class ring of R modulo I is wrlttenm

it’is the set of equivalence classes of elements in R under the equivalence relation:
a;b if a—b € I. The equivalence class containing @ may be called the I-residue of a; Z DV\ZZ
it is often denoted by|a) The classes R/I form a ring in such a way that the mapping
m: R >3R/I taking each element to its I-residue is a ring homomorphism. The ring Z
"R/ T is characterized by the following property: if ¢ :/R)—(S is a ring homomorphism Vll
to aring S, and ¢(I))= 0, then there is a unique ring homomorphism ¢: R/I — S
such that ¢ = @ on, A proper ideal I in R is prime if and only if R/ is a domain, and 3
maximal if and only if R/I is a field. Every maximal ideal is prime. mm!ﬂ
— Let k be afield, I a proper ideal in k[Xj,..., X,]. The canonical homomorphism V\w&
7 from k[X;,...,X,] to k[Xy,...,X,]/I restricts to a ring homomorphism from k M.
to k[Xj,...,Xp]1/I. We thus regard k as a subring of k[Xj,..., X,]/I; in particular,
k(Xi,..., Xp]/1 is a vector space over k.
Let R be adomain. The characteristic of R, char(R), is the smallest integer p such
that1+---+1 (p times) =0, if such a p exists; otherwise char(R) =0. If ¢: Z — R is
the unique ring homomorphism from Z to R, then Ker(¢) = (p), so char(R) is a prime
number or zero.
IfRisafing, ac R, Fe R[X],and ais aofF, then F = (X — a)G for a updque
= A

Fled=04

V

— .
k & hLX\,\,Xn_L % dy30 =24 %=1
T AM _ /!) gQMQ - f = VM.DX
= k C ECK\:\‘;X‘D/I k 3 3<R2A = 24X Rz
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Ge R[X]. A ﬁel(@is algebraically closed if any non-constant F € k[X] has a root. 25
It follows that F = u[[(X — Ai@u, A; € k, where the A; are the distinct roots of F, 2 4_
and's the multiplicity of 1;. A polynomial of degree d has d roots in k, counting %OQ = &_,
multiplicities. The field C of complex numbers is an algebraically closed field. %{M

be any ring. The derwatw fa olynomial F =Y. a; X' € R[X] is defined to W
be and is written eithen & or/Fx| If F € R[X3,..., X;], %i = Fy, is defined -
b consideringFasapolynomlal1 w1 coefficientsin R[X3,..., X;-1, Xi+1,..., Xnl. TQ_ . (E - Q

he following rules are easily veriﬁed:

(DD (aF + bG)x = aFx + bGy, a,be R. Te>
FX 0 if F is a constant. W = ‘Pﬂ M OQQQQA’L

@(FG)X FxG+FGy, and (F") x & nF" 1 Fy. g _
4) If Gy1,...,G, € R[X],and F € R[ X3, »], then -
Igb » =
F(Gly---,Gn)X=ZFX,-(G1r---»Gn)(Gi)X- W :7 %llh,()—:—w
i=1
_p7% ~
(5) : where we have written FXin for (FXi)Xj. 00'1’? Wr S’
(6) (Euter’s Theorem) If F is a form of degree m in R[X;,..., X,], then )\QM Jv\,{j
—_— e
n
mF = ZXiFXL,. ) %(X) (X LD O(’o&\,)‘\'i
i=1 ms o NeAte) &
on bk =

l.l@) Let Rbe adomain. (a) If F, G are forms of degree r, srespectivelyin R[X;,..., X;],
show that FG is a form of degree r+s. (b) Show that any factor ofa form in R[ X}, ..., Xj]
is also a form.

1.2{.9 Let R be a UFD, K the quotient field of R. Show that every element z of K may
be written z = a/b, where a, b € R have no common factors; this representative is
unique up to units of R.

1.@ Let R be a PID, Let P be a nonzero, proper, prime ideal in R. (a) Show that P is
generated by an irreducible element. (b) Show that P is maximal.

1.@ Let k be an infinite field, F € k[X,..., X,]. Suppose F(ay,...,a,) = 0 for all
ai,...,a, € k. Show that F = 0. (Hint: Write F = ZF,-X,’;, F; € k[Xq,...,X,_1]. Use
induction on n, and the fact that F(ay, ..., a,;-1, X;;) has only a finite number of roots
ifany F;(ay,...,an-1) #0.)

1.59 Let(k be any field,| Show that there are an infinite number of irreducihle manic
polynomials in k[ X]. THint: Suppose Fi,..., F, were all of them, and factor F; --- F, + &—
1into irreducible factors.) -

l.(@ Show that any algebraically closed field is infinite. (Hint: The irreducible monic /
polynomials are X —a, a€ k.)

1.'@ Let k be afield, F € k[Xj,...,Xu], a1,...,a, € k. (a) Show that
F=Y ApXi—ap™...Xp—an)'", Ay ek.

(b) If F(ay,...,a,) =0, show that F = Z” 1 (X — ai)G; for some (not unique) G; in
k[le---an]

N .






