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On intrinsic negative curves

Projective toric varieties

Definition. Let A C R"™ be a lattice polytope, that is the convex
hull of finitely many lattice points of R™. The projective toric
variety Xa is the closure of the image of the map

x> [P pe ANZY,

where x = (z1,...,2,). Observe that dim X = dim A.
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On intrinsic negative curves

Expected intrinsic negative curves

Definition. Let f € Clz*!,y*!] be a irreducible Laurent poly-
nomial whose partial derivatives of order < m — 1 vanish at (1, 1)
and let A be its Newton polygon.

> One says that f defines an intrinsic negative curve if
2Area(A) —m? < 0.

This curve is the strict transform of the closure of V' (f) C
(C*)? in the blowing-up Xa of Xa at (1,1).
» The intrinsic negative curve is expected if

|IANZ% > <m;1>.
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Expected intrinsic negative curves

There are only a finite number of intrinsic negative curves of
bounded volume because the number of non-equivalent polygons
is bounded. All the non-equivalent polygons for intrinsic negative
curves of multiplicity < 4 are the following.

m | A

1]~

2 | £

s | B8

4 8 / / // / >

The above intrinsic curves are expected. In each case [DANZ?| =
m + 1 so that by Pick’s theorem |A NZ?| = (m;rl) + 1.
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Unexpected intrinsic negative curves

Example. The smallest value of m for an unexpected intrinsic
negative curve is 5. The lattice polygon A is the following

/

One has [0ANZ? =m — 1 and |[0ANZ? = (m;rl) which imply
that the corresponding curve has arithmetic genus 1. The curve
is defined by the Laurent polynomial
1—8xy+ 3:17y2 + 6:E2y4 - :r2y5 + 3x2y + 2Ox2y2
—18x2y3 o 18x3y2 + 8m3y3 + 6x4y2 . x4y4 o x5y2
which is the unique one whose Newton polygon is contained in

A and has multiplicity 5 at (1,1). Its strict transform in X is
smooth of genus 1 and self-intersection —1.
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On intrinsic negative curves
Negative curves on X (9,10, 13)

Observation. If C' is a negative curve with Newton polygon A,
and A C A’ with 2Area(A’) — m? < 0, then C is negative also in
Xar.

Theorem ([2]). The surface X(9,10,13) does not contain ex-
pected negative curves.
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On intrinsic negative curves
Negative curves on X (9,10, 13)
Idea of proof. Let A be the triangle defined by the ample gener-
ator of P(a, b, c) and let A, := nA.
» The curve C' ~ dH — mE is negative if d/m < vabc and it
is expected if |Ag N Z2| > (m;rl)
> Let d = abcq + r with 0 < r < abe. The above inequalities

and the fact that p(n) := |A, N Z?| is a Ehrhart quasi-
polynomial imply the following inequality:

2|A, NZ2
Vabe — (a+b+¢)

qg <

» Since ¢ and r are bounded a computer search in the case
(a,b,c) = (9,10, 13) allows one to conclude that there are no
expected negative curves.

O
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Two families of expected intrinsic curves

Definition. Let a,b > 0, k > 3 be integers satisfying the equation
(a4 b)? = kab + 1. (1)

To each such triple associate an integral triangle IT(a,b) and a
rational triangle RT(a,b) with vertices:

IT(a,b):  (0,0),(a+b,kb),(a,0),
RT(a,b) : (O,O),(a,a—kb),(a—“T*b,O).
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Two families of expected intrinsic curves

Theorem ([1]).
1. Each of these triangles supports a negative curve of multi-
plicity m at (1,1), with m = a + b in the integral case and
m = a in the rational case.
2. The negative curves corresponding to IT(a,b) for a > b >0
and RT'(a,b) for a > b > 1 are pairwise non-isomorphic.
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On intrinsic negative curves
Idea of proof of 1.

Idea of proof of 1.

» Each such triangle A defines a Laurent polynomial f(x,y)
of multiplicity > m at (1,1) because the expected dimension
is non-negative. One has to show that f(x,y) is irreducible.

» Each such polygon A has a side Ag which is a lattice segment
of length one. One shows that Ay is contained in the Newton
polygon Ay of f(x,y). Then f(z,y) is irreducible because its
Newton polygon cannot be sum of two non-trivial polygons.

» To prove the inclusion Ag € Ay one makes use of the fol-
lowing lemma.
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On intrinsic negative curves
Idea of proof of 1.

Lemma. Let S be a set of (")) lattice points on the plane.
Then, S supports a Laurent polynomial vanishing to order m at
e = (1,1) if and only if there is a degree m —1 curve interpolating
all points in S.

Idea of proof. When the number of monomials is the same as
the number of conditions given by (logaritmic) derivatives, then
a nontrivial solution f(z,y) exists if and only if some logarith-
mic partial derivative p vanishes on all monomials in S when
evaluated at e. Now

p(xaxy yay)(wayb) ’(a:,y):(l,l) = p(a, b)

This p is a polynomial of degree at most m — 1 that vanishes at
all lattice points in S. O
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Idea of proof of 1.

» The lattice points of A are distributed along vertical seg-
ments of cardinality 1,1,2,3...m, where the two single points
correspond to the two vertices of Ag. In the following picture
we display three such polygons with k = 4.

A
2 2%

/ /L L

IT(2,1) IT(3,2) IT(4,3)

If Ay would not contain one of the two vertices of Ag, then
its set of lattice points would satisfy the hypotheses of the
previous lemma. By repeated use of Bezout’s theorem there
cannot be a plane curve of degree m — 1 passing through all
the lattice points of A minus a vertex of Ag. O
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Idea of proof of 2.

Idea of proof of 2.

> Let f;” and f”‘t be the irreducible polynomials defined by
IT(a,b) and RT(a,b), respectively and let 5”” and eZ‘}f be
their leading constants. Let 7: Z2> — Z? be the linear map
(a,b) — (b, (k—=1)b—(a+0)). The above polynomials satisfy
the following relations

(ilng — ratgra;b _ ggagl,a(y _ 1)a+b,
( rat ) _ é-znt ;L_nz b) 67,nt a—i—b(y 1)kb.

The first equality holds when a > 0 and the second when
b > 0.
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Idea of proof of 2.

> Let A := RT(a,b). In the toric variety X the polynomial
£ defines a negative curve C' and there is a divisor D with
C - D = 0 such that

ip (1 —y)**" € H'(Xa, D).
» Thus the two polynomials must be constant multiples of each
other modulo 52:1;. Write

int __ ¢rat rat .a

ab — a,bg - Ea,bx (y - 1)a+b

for some g with constant term 1, supported in RT(7(a,b))
and vanishing to order at least b at e. There is only one such
polynomial, g = f:?é,b)' The second relation is proved in a
similar way.
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Idea of proof of 2.

» The Newton polygon of £ is IT(a,b). We already showed
that the polygon must contam Ay, so it remains to prove
that

% is a monomial of §mt

This is a direct consequence of the fact that the Minkowski
sum RT(a,b) + RT(7(a,b)) does not contain (a,0), so that
the statement follows from

mt Tatgrat rat,.a

(a,b) — eabx (y - 1)a+b.

» Similar arguments allows one to describe the Newton poly-

gon of €% and thus the statement follows from this descrip-
tion of the Newton polygons. O
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Characterization of the two families

Theorem. Conversely, if a negative expected curve of multiplic-
ity m > 0 is supported in a triangle A such that A has

» two integral vertices (0,0) and (m,h) where m and h are
relatively prime,

» a possibly non-integral vertex (r, s) with 0 < r < m,

then the negative curve is isomorphic to one defined in the pre-
vious theorem.
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