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On intrinsic negative curves
Projective toric varieties

Definition. Let ∆ ⊆ Rn be a lattice polytope, that is the convex
hull of finitely many lattice points of Rn. The projective toric
variety X∆ is the closure of the image of the map

x 7→ [xp : p ∈ ∆ ∩ Zn],

where x = (x1, . . . , xn). Observe that dimX∆ = dim ∆.
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On intrinsic negative curves
Expected intrinsic negative curves

Definition. Let f ∈ C[x±1, y±1] be a irreducible Laurent poly-
nomial whose partial derivatives of order ≤ m−1 vanish at (1, 1)
and let ∆ be its Newton polygon.

I One says that f defines an intrinsic negative curve if

2Area(∆)−m2 < 0.

This curve is the strict transform of the closure of V (f) ⊆
(C∗)2 in the blowing-up X̃∆ of X∆ at (1, 1).

I The intrinsic negative curve is expected if

|∆ ∩ Z2| >
(
m+ 1

2

)
.
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On intrinsic negative curves
Expected intrinsic negative curves

There are only a finite number of intrinsic negative curves of
bounded volume because the number of non-equivalent polygons
is bounded. All the non-equivalent polygons for intrinsic negative
curves of multiplicity ≤ 4 are the following.

m ∆

1

2

3

4

The above intrinsic curves are expected. In each case |∂∆∩Z2| =
m+ 1 so that by Pick’s theorem |∆ ∩ Z2| =

(
m+1

2

)
+ 1.
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On intrinsic negative curves
Unexpected intrinsic negative curves

Example. The smallest value of m for an unexpected intrinsic
negative curve is 5. The lattice polygon ∆ is the following

One has |∂∆ ∩ Z2| = m− 1 and |∂∆ ∩ Z2| =
(
m+1

2

)
which imply

that the corresponding curve has arithmetic genus 1. The curve
is defined by the Laurent polynomial

1 − 8xy + 3xy2 + 6x2y4 − x2y5 + 3x2y + 20x2y2

−18x2y3 − 18x3y2 + 8x3y3 + 6x4y2 − x4y4 − x5y2

which is the unique one whose Newton polygon is contained in
∆ and has multiplicity 5 at (1, 1). Its strict transform in X̃∆ is
smooth of genus 1 and self-intersection −1.
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On intrinsic negative curves
Negative curves on X(9, 10, 13)

Observation. If C is a negative curve with Newton polygon ∆,
and ∆ ⊆ ∆′ with 2Area(∆′)−m2 < 0, then C is negative also in
X̃∆′ .

Theorem ([2]). The surface X(9, 10, 13) does not contain ex-
pected negative curves.
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On intrinsic negative curves
Negative curves on X(9, 10, 13)

Idea of proof. Let ∆ be the triangle defined by the ample gener-
ator of P(a, b, c) and let ∆n := n∆.

I The curve C ∼ dH −mE is negative if d/m <
√
abc and it

is expected if |∆d ∩ Z2| >
(
m+1

2

)
.

I Let d = abc q + r with 0 ≤ r < abc. The above inequalities
and the fact that p(n) := |∆n ∩ Z2| is a Ehrhart quasi-
polynomial imply the following inequality:

q <
2|∆r ∩ Z2|√

abc− (a+ b+ c)
.

I Since q and r are bounded a computer search in the case
(a, b, c) = (9, 10, 13) allows one to conclude that there are no
expected negative curves.
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On intrinsic negative curves
Two families of expected intrinsic curves

Definition. Let a, b ≥ 0, k ≥ 3 be integers satisfying the equation

(a+ b)2 = kab+ 1. (1)

To each such triple associate an integral triangle IT(a, b) and a
rational triangle RT(a, b) with vertices:

IT(a, b) : (0, 0), (a+ b, kb), (a, 0),

RT(a, b) : (0, 0), (a, a+ b),
(
a− a+b

k , 0
)
.
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On intrinsic negative curves
Two families of expected intrinsic curves

Theorem ([1]).

1. Each of these triangles supports a negative curve of multi-
plicity m at (1, 1), with m = a + b in the integral case and
m = a in the rational case.

2. The negative curves corresponding to IT (a, b) for a ≥ b > 0
and RT (a, b) for a > b > 1 are pairwise non-isomorphic.
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On intrinsic negative curves
Idea of proof of 1.

Idea of proof of 1.

I Each such triangle ∆ defines a Laurent polynomial f(x, y)
of multiplicity ≥ m at (1, 1) because the expected dimension
is non-negative. One has to show that f(x, y) is irreducible.

I Each such polygon ∆ has a side ∆0 which is a lattice segment
of length one. One shows that ∆0 is contained in the Newton
polygon ∆f of f(x, y). Then f(x, y) is irreducible because its
Newton polygon cannot be sum of two non-trivial polygons.

I To prove the inclusion ∆0 ⊆ ∆f one makes use of the fol-
lowing lemma.
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On intrinsic negative curves
Idea of proof of 1.

Lemma. Let S be a set of
(
m+1

2

)
lattice points on the plane.

Then, S supports a Laurent polynomial vanishing to order m at
e = (1, 1) if and only if there is a degree m−1 curve interpolating
all points in S.

Idea of proof. When the number of monomials is the same as
the number of conditions given by (logaritmic) derivatives, then
a nontrivial solution f(x, y) exists if and only if some logarith-
mic partial derivative p vanishes on all monomials in S when
evaluated at e. Now

p(x∂x, y∂y)(x
ayb)|(x,y)=(1,1) = p(a, b).

This p is a polynomial of degree at most m− 1 that vanishes at
all lattice points in S.
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On intrinsic negative curves
Idea of proof of 1.

I The lattice points of ∆ are distributed along vertical seg-
ments of cardinality 1, 1, 2, 3 . . .m, where the two single points
correspond to the two vertices of ∆0. In the following picture
we display three such polygons with k = 4.

IT (2, 1) IT (3, 2) IT (4, 3)

If ∆f would not contain one of the two vertices of ∆0, then
its set of lattice points would satisfy the hypotheses of the
previous lemma. By repeated use of Bezout’s theorem there
cannot be a plane curve of degree m− 1 passing through all
the lattice points of ∆ minus a vertex of ∆0.
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On intrinsic negative curves
Idea of proof of 2.

Idea of proof of 2.

I Let ξinta,b and ξrata,b be the irreducible polynomials defined by

IT (a, b) and RT (a, b), respectively and let εinta,b and εrata,b be

their leading constants. Let τ : Z2 → Z2 be the linear map
(a, b) 7→ (b, (k−1)b−(a+b)). The above polynomials satisfy
the following relations

ξinta,b = ξrata,b ξ
rat
τ(a,b) − ε

rat
a,bx

a(y − 1)a+b,(
ξratτ(a,b)

)k
= ξinta,b ξ

int
τ(a,b) − ε

int
a,bx

a+b(y − 1)kb.

The first equality holds when a > 0 and the second when
b > 0.
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On intrinsic negative curves
Idea of proof of 2.

I Let ∆ := RT (a, b). In the toric variety X̃∆ the polynomial
ξrata,b defines a negative curve C and there is a divisor D with
C ·D = 0 such that

ξinta,b , x
a(1− y)a+b ∈ H0(X̃∆, D).

I Thus the two polynomials must be constant multiples of each
other modulo ξrata,b . Write

ξinta,b = ξrata,b g − εrata,bx
a(y − 1)a+b

for some g with constant term 1, supported in RT (τ(a, b))
and vanishing to order at least b at e. There is only one such
polynomial, g = ξratτ(a,b). The second relation is proved in a
similar way.
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On intrinsic negative curves
Idea of proof of 2.

I The Newton polygon of ξinta,b is IT (a, b). We already showed
that the polygon must contain ∆0, so it remains to prove
that

xa is a monomial of ξinta,b .

This is a direct consequence of the fact that the Minkowski
sum RT (a, b) + RT (τ(a, b)) does not contain (a, 0), so that
the statement follows from

ξinta,b = ξrata,b ξ
rat
τ(a,b) − ε

rat
a,bx

a(y − 1)a+b.

I Similar arguments allows one to describe the Newton poly-
gon of ξrata,b and thus the statement follows from this descrip-
tion of the Newton polygons.
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On intrinsic negative curves
Characterization of the two families

Theorem. Conversely, if a negative expected curve of multiplic-
ity m > 0 is supported in a triangle ∆ such that ∆ has

I two integral vertices (0, 0) and (m,h) where m and h are
relatively prime,

I a possibly non-integral vertex (r, s) with 0 < r < m,

then the negative curve is isomorphic to one defined in the pre-
vious theorem.
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