On intrinsic negative curves

Antonio Laface
Universidad de Concepción
Seminario de Geometría Algebraica - PUC

October 5, 2020

On intrinsic negative curves

Projective toric varieties

Definition. Let $\Delta \subseteq \mathbb{R}^{n}$ be a lattice polytope, that is the convex hull of finitely many lattice points of \mathbb{R}^{n}. The projective toric variety X_{Δ} is the closure of the image of the map

$$
x \mapsto\left[x^{p}: p \in \Delta \cap \mathbb{Z}^{n}\right]
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$. Observe that $\operatorname{dim} X_{\Delta}=\operatorname{dim} \Delta$.

On intrinsic negative curves

Expected intrinsic negative curves

Definition. Let $f \in \mathbb{C}\left[x^{ \pm 1}, y^{ \pm 1}\right]$ be a irreducible Laurent polynomial whose partial derivatives of order $\leq m-1$ vanish at $(1,1)$ and let Δ be its Newton polygon.

- One says that f defines an intrinsic negative curve if

$$
2 \operatorname{Area}(\Delta)-m^{2}<0
$$

This curve is the strict transform of the closure of $V(f) \subseteq$ $\left(\mathbb{C}^{*}\right)^{2}$ in the blowing-up \tilde{X}_{Δ} of X_{Δ} at $(1,1)$.

- The intrinsic negative curve is expected if

$$
\left|\Delta \cap \mathbb{Z}^{2}\right|>\binom{m+1}{2}
$$

On intrinsic negative curves

Expected intrinsic negative curves

There are only a finite number of intrinsic negative curves of bounded volume because the number of non-equivalent polygons is bounded. All the non-equivalent polygons for intrinsic negative curves of multiplicity ≤ 4 are the following.

The above intrinsic curves are expected. In each case $\left|\partial \Delta \cap \mathbb{Z}^{2}\right|=$ $m+1$ so that by Pick's theorem $\left|\Delta \cap \mathbb{Z}^{2}\right|=\binom{m+1}{2}+1$.

On intrinsic negative curves

Unexpected intrinsic negative curves

Example. The smallest value of m for an unexpected intrinsic negative curve is 5 . The lattice polygon Δ is the following

One has $\left|\partial \Delta \cap \mathbb{Z}^{2}\right|=m-1$ and $\left|\partial \Delta \cap \mathbb{Z}^{2}\right|=\binom{m+1}{2}$ which imply that the corresponding curve has arithmetic genus 1. The curve is defined by the Laurent polynomial

$$
\begin{array}{r}
1-8 x y+3 x y^{2}+6 x^{2} y^{4}-x^{2} y^{5}+3 x^{2} y+20 x^{2} y^{2} \\
-18 x^{2} y^{3}-18 x^{3} y^{2}+8 x^{3} y^{3}+6 x^{4} y^{2}-x^{4} y^{4}-x^{5} y^{2}
\end{array}
$$

which is the unique one whose Newton polygon is contained in Δ and has multiplicity 5 at $(1,1)$. Its strict transform in \tilde{X}_{Δ} is smooth of genus 1 and self-intersection -1 .

On intrinsic negative curves

Negative curves on $X(9,10,13)$

Observation. If C is a negative curve with Newton polygon Δ, and $\Delta \subseteq \Delta^{\prime}$ with $2 \operatorname{Area}\left(\Delta^{\prime}\right)-m^{2}<0$, then C is negative also in $\tilde{X}_{\Delta^{\prime}}$ 。

Theorem ([2]). The surface $X(9,10,13)$ does not contain expected negative curves.

On intrinsic negative curves

Negative curves on $X(9,10,13)$
Idea of proof. Let Δ be the triangle defined by the ample generator of $\mathbb{P}(a, b, c)$ and let $\Delta_{n}:=n \Delta$.

- The curve $C \sim d H-m E$ is negative if $d / m<\sqrt{a b c}$ and it is expected if $\left|\Delta_{d} \cap \mathbb{Z}^{2}\right|>\binom{m+1}{2}$.
- Let $d=a b c q+r$ with $0 \leq r<a b c$. The above inequalities and the fact that $p(n):=\left|\Delta_{n} \cap \mathbb{Z}^{2}\right|$ is a Ehrhart quasipolynomial imply the following inequality:

$$
q<\frac{2\left|\Delta_{r} \cap \mathbb{Z}^{2}\right|}{\sqrt{a b c}-(a+b+c)}
$$

- Since q and r are bounded a computer search in the case $(a, b, c)=(9,10,13)$ allows one to conclude that there are no expected negative curves.

On intrinsic negative curves

Two families of expected intrinsic curves

Definition. Let $a, b \geq 0, k \geq 3$ be integers satisfying the equation

$$
\begin{equation*}
(a+b)^{2}=k a b+1 \tag{1}
\end{equation*}
$$

To each such triple associate an integral triangle $\operatorname{IT}(a, b)$ and a rational triangle $\mathrm{RT}(a, b)$ with vertices:

$$
\begin{aligned}
\operatorname{IT}(a, b): & (0,0),(a+b, k b),(a, 0), \\
\operatorname{RT}(a, b): & (0,0),(a, a+b),\left(a-\frac{a+b}{k}, 0\right) .
\end{aligned}
$$

On intrinsic negative curves

Two families of expected intrinsic curves

Theorem ([1]).

1. Each of these triangles supports a negative curve of multiplicity m at $(1,1)$, with $m=a+b$ in the integral case and $m=a$ in the rational case.
2. The negative curves corresponding to $\operatorname{IT}(a, b)$ for $a \geq b>0$ and $R T(a, b)$ for $a>b>1$ are pairwise non-isomorphic.

On intrinsic negative curves

Idea of proof of 1 .

Idea of proof of 1.

- Each such triangle Δ defines a Laurent polynomial $f(x, y)$ of multiplicity $\geq m$ at $(1,1)$ because the expected dimension is non-negative. One has to show that $f(x, y)$ is irreducible.
- Each such polygon Δ has a side Δ_{0} which is a lattice segment of length one. One shows that Δ_{0} is contained in the Newton polygon Δ_{f} of $f(x, y)$. Then $f(x, y)$ is irreducible because its Newton polygon cannot be sum of two non-trivial polygons.
- To prove the inclusion $\Delta_{0} \subseteq \Delta_{f}$ one makes use of the following lemma.

On intrinsic negative curves

Idea of proof of 1 .

Lemma. Let S be a set of $\binom{m+1}{2}$ lattice points on the plane. Then, S supports a Laurent polynomial vanishing to order m at $e=(1,1)$ if and only if there is a degree $m-1$ curve interpolating all points in S.
Idea of proof. When the number of monomials is the same as the number of conditions given by (logaritmic) derivatives, then a nontrivial solution $f(x, y)$ exists if and only if some logarithmic partial derivative p vanishes on all monomials in S when evaluated at e. Now

$$
\left.p\left(x \partial_{x}, y \partial_{y}\right)\left(x^{a} y^{b}\right)\right|_{(x, y)=(1,1)}=p(a, b) .
$$

This p is a polynomial of degree at most $m-1$ that vanishes at all lattice points in S.

On intrinsic negative curves

Idea of proof of 1 .

- The lattice points of Δ are distributed along vertical segments of cardinality $1,1,2,3 \ldots m$, where the two single points correspond to the two vertices of Δ_{0}. In the following picture we display three such polygons with $k=4$.

If Δ_{f} would not contain one of the two vertices of Δ_{0}, then its set of lattice points would satisfy the hypotheses of the previous lemma. By repeated use of Bezout's theorem there cannot be a plane curve of degree $m-1$ passing through all the lattice points of Δ minus a vertex of Δ_{0}.

On intrinsic negative curves

Idea of proof of 2 .

Idea of proof of 2 .

- Let $\xi_{a, b}^{i n t}$ and $\xi_{a, b}^{r a t}$ be the irreducible polynomials defined by $I T(a, b)$ and $R T(a, b)$, respectively and let $\varepsilon_{a, b}^{i n t}$ and $\varepsilon_{a, b}^{r a t}$ be their leading constants. Let $\tau: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ be the linear map $(a, b) \mapsto(b,(k-1) b-(a+b))$. The above polynomials satisfy the following relations

$$
\begin{aligned}
\xi_{a, b}^{i n t} & =\xi_{a, b}^{r a t} \xi_{\tau(a, b)}^{r a t}-\varepsilon_{a, b}^{r a t} x^{a}(y-1)^{a+b} \\
\left(\xi_{\tau(a, b)}^{r a t}\right)^{k} & =\xi_{a, b}^{i n t} \xi_{\tau(a, b)}^{i n t}-\varepsilon_{a, b}^{i n t} x^{a+b}(y-1)^{k b}
\end{aligned}
$$

The first equality holds when $a>0$ and the second when $b>0$.

On intrinsic negative curves

Idea of proof of 2 .

- Let $\Delta:=R T(a, b)$. In the toric variety \tilde{X}_{Δ} the polynomial $\xi_{a, b}^{r a t}$ defines a negative curve C and there is a divisor D with $C \cdot D=0$ such that

$$
\xi_{a, b}^{i n t}, x^{a}(1-y)^{a+b} \in H^{0}\left(\tilde{X}_{\Delta}, D\right)
$$

- Thus the two polynomials must be constant multiples of each other modulo $\xi_{a, b}^{r a t}$. Write

$$
\xi_{a, b}^{i n t}=\xi_{a, b}^{r a t} g-\varepsilon_{a, b}^{r a t} x^{a}(y-1)^{a+b}
$$

for some g with constant term 1, supported in $R T(\tau(a, b))$ and vanishing to order at least b at e. There is only one such polynomial, $g=\xi_{\tau(a, b)}^{r a t}$. The second relation is proved in a similar way.

On intrinsic negative curves

Idea of proof of 2 .

- The Newton polygon of $\xi_{a, b}^{i n t}$ is $I T(a, b)$. We already showed that the polygon must contain Δ_{0}, so it remains to prove that

$$
x^{a} \text { is a monomial of } \xi_{a, b}^{i n t} .
$$

This is a direct consequence of the fact that the Minkowski sum $R T(a, b)+R T(\tau(a, b))$ does not contain $(a, 0)$, so that the statement follows from

$$
\xi_{a, b}^{i n t}=\xi_{a, b}^{r a t} \xi_{\tau(a, b)}^{r a t}-\varepsilon_{a, b}^{r a t} x^{a}(y-1)^{a+b}
$$

- Similar arguments allows one to describe the Newton polygon of $\xi_{a, b}^{r a t}$ and thus the statement follows from this description of the Newton polygons.

On intrinsic negative curves

Characterization of the two families

Theorem. Conversely, if a negative expected curve of multiplicity $m>0$ is supported in a triangle Δ such that Δ has

- two integral vertices $(0,0)$ and (m, h) where m and h are relatively prime,
- a possibly non-integral vertex (r, s) with $0<r<m$, then the negative curve is isomorphic to one defined in the previous theorem.

References

[1] Javier González-Anaya, José Luis González, and Kalle Karu. Curves generating extremal rays in blowups of weighted projective planes. arXiv:2002.07123.
[2] Kazuhiko Kurano and Naoyuki Matsuoka. On finite generation of symbolic Rees rings of space monomial curves and existence of negative curves. J. Algebra 322 (9):3268-3290, 2009.

