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INTRODUCTION

Our aim is to provide a guide in a single text about the theoretical framework regard-
ing specific degenerations of complex surfaces. We will be explicit about computations,
which are intricately governed by Hirzebruch-Jung continued fractions

e1 −
1

e2 − 1

. . .− 1
er

.

The exploration of these degenerations traces back to Jonathan Wahl [W1, W2], who
pioneered the study of singularities arising in the degenerated surfaces discussed in
this text (see also [LW]). Wahl [W1] focused on analyzing 2-dimensional normal singu-
larities that admit smoothings where the dual of the dualizing sheaf lifts. Cyclic quo-
tient singularities 1

n2 (1, na − 1) with gcd(n, a) = 1 are examples [W1, (2.7) Theorem],
we call them Wahl singularities. In the subsequent article [W2], Wahl studied smooth-
ings using their Milnor numbers, and showed [W2, Examples (5.9.1)] that the above
smoothings of Wahl singularities had Milnor number 0, hence the Milnor fiber had the
rational homology of a disk. A relevant property is that these smoothings preserve the
self-intersection of the canonical class [LW]; more generally, the cyclic quotient singu-
larities of type 1

dn2 (1, dna − 1), where gcd(n, a) = 1 [LW, Proposition 5.9], are the only
ones which are quotients of smoothings of Gorenstein singularities. These properties
are key in the deformations employed by Kollár and Shepherd-Barron [KSB] to com-
pactify the moduli space of surfaces of general type. These authors called the ADE
singularities and the above cyclic quotients T-singularities [KSB, Definition 3.7], and
proved that they were the only 2-dimensional quotients admitting such "Q-Gorenstein
smoothings". Among them, the most important for deformations are Wahl singular-
ities. These singularities were also considered by Kawamata [K3, Section 10] in the
context of surface degenerations (see also [K2]). Important applications were obtained
in the thesis work of Manetti (see for example [M1, M2]). Concurrently, Fintushel and
Stern [FS], and Park [P2] developed the rational blow-down construction. This con-
struction is the diffeomorphic analogue of degenerations involving Wahl singularities
[SSW], and had a great impact on the construction of exotic 4-manifolds. Hacking’s
thesis work [H1] develops more on this theory of KSB deformations, and applies this to
the moduli of plane curves [H2]. Then we have the paper [LP1] by Lee and Park with
the construction of simply-connected Campedelli surfaces via singular rational sur-
faces with only T-singularities. This opened the door to many applications and further
development of the underlying theory of Q-Gorenstein smoothings. To exemplify, we
have [H5], [H4], [HP], [PPS1], [PPS2], [LN], [PSU1], [U4], [U3], [SU1], [RTU], [PPSU],
[ES], [RU1], [UV], [RU2], [DRU], [RU3], [TU], [EU], [FRU], [UZ1], [UZ2]. Behind the
KSB moduli space, we have Mori theory [KM1]. Continuing the study of semistable
extremal neighborhoods by Mori, Kollár, and Prokhorov [M4], [KM2], [M3], [MP] (see
also Kawamata [K3]) we have [HTU] which gives a way to explicitly run the minimal
model program to degenerations of surfaces with only log terminal singularities. Part
of the consequences mentioned above use this as a main tool. Pending is an explicit
birational theory for nonnormal degenerations with orbifold normal crossing singular-
ities [H3].

Degenerations with only Wahl singularities are related to various open problems,
for example:
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(1) Markov’s uniqueness conjecture (see [A1] as the main reference, [UZ1] with the con-
nections to Algebraic Geometry together with the Exercises §1.2 (7), (8), (9)). Markov
numbers are final outputs of the birational geometry of these degenerations, just as the
projective plane is for the classical birational geometry of algebraic surfaces.

(2) Horikawa’s famous problem (see [E] [MNU]). Horikawa [H9] provided a complete
classification of nonsingular projective surfaces with K2 = 2pg − 4. We also know the
topological and diffeomorphism type, except for each of the families with K2 = 16t. In
this case, there are two connected components for the moduli space that parametrize
homeomorphic surfaces, but it is unknown if they are diffeomorphic (see the end of the
introduction in [H9]). One strategy is to construct a common degeneration with only
Wahl singularities as in [M2], which would prove that they are diffeomorphic. There is
only one degeneration in the literature [LP2] for one of the families. The problem was
recently studied in [MNU] from that point of view, showing that it cannot be addressed
through T-degenerations. A similar Horikawa problem is stated in [CP, Section 8] for
surfaces with K2 = 2pg − 3 and pg = 4t+ 1.

(3) Exotic blow-ups of CP2 at few points (see for example [RU3] and Exercise §2.3(6)).
Given a closed smooth 4-manifold N , a closed smooth 4-manifold is exotic if it is
homeomorphic but not diffeomorphic to N . This phenomenon does not appear in
dimensions ≤ 3, it is controlled in dimensions ≥ 5, but is wild in dimension 4. Famous
examples are the spheres of dimension n and the corresponding work of Kervaire-
Milnor. There are exotic blow-ups of CP2 at n points for any n ≥ 2. For n = 1 is
an open question. For n = 8, 7, 6, 5, 4 they can be constructed from singular surfaces,
where n = 4 has very few examples [RU3]. It depends on the existence of very special
configurations of rational curves.

(4) Kollár conjecture (see [K2], [dJ] and Remark 3.10). Kollár–Shepherd-Barron [KSB]
classified deformations of quotient singularities by means of P-resolutions. This is a
result that involves birational geometry. It is believed that a similar statement should
work for any rational singularity, although the new P-resolutions may not only have
T-singularities, and may not be normal. See [PS1, JS] for sandwiched singularities.

(5) Optimal bounds for T-singularities for rational surfaces (see [RU1, FRU] and Exercise
§2.3 (7)). By Alexeev’s boundedness [A2], there is a finite list of T-singularities for
all surfaces W with log-canonical singularities, big and nef canonical class, and K2

W

smaller than a fixed constant. There are optimal bounds in [RU1, FRU] when the sur-
face is not rational. The rational case is open. See the bound in [RU1] for a rational
surface, which depends on the degree of configurations of rational curves.

(6) Existence of simply-connected pg = 0 surfaces of general type with K2 ≥ 5 (see [LP1,
RU3]). In [LP1, PPS1, PPS2] and other papers, the key to have complex smoothings is
not to have local-to-global obstructions to deform. When pg = 0, this implies K2 ≤ 4.
Therefore, we need to deal with obstructions if K2 ≥ 5. In [RU3] there are candidates
for K2 = 5.

(7) Wahl conjecture (see [W3], [W4]). The claim is that a 2-dimensional normal surface
singularity that admits a smoothing with Milnor number equal to 0 must be in the list
of weighted homogeneous singularities [BS] (see also [SSW]). See the attempt in the
pre-print [PSS], and the recent pre-print [B2].
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(8) Classification of Uroburos (see §1.3 and Exercises (10) and (11)). This is related to the
wormhole conjecture [UV].

(9) Problems on semi-orthogonal decompositions of derived categories of pg = 0 surfaces (see
[TU] and §6). As an example, check the beautiful [LT, Conjecture 1.9].

(10) Coble-Mukai lattice for pg ̸= 0 (see [U2]; Theorem 4.4). Although it works for any
pg = 0 surface, the challenge is to describe it and find geometric applications in the
case of pg ̸= 0.

In the exercises: ⋆ means challenge, ⋆⋆ means open question.

Acknowledgments. The author thanks Marcos Canedo, Sebastián Flores, César Lozano
Huerta, Javier Reyes and Juan Pablo Zúñiga for useful comments. This manuscript was
born during the Seminario de Geometría Algebraica at UC Chile during the second
semester of 2022 SGA-UC. Those notes improved in 2023 during an academic stay at
the Freiburg Institute for Advanced Studies FRIAS. The resulting manuscript was used
to guide the author’s mini-course at V ELGA, Cabo Frio, Brazil, during August 2024 V
ELGA.
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1. HIRZEBRUCH-JUNG CONTINUED FRACTIONS

The negative continued fractions in this section appeared in the work of Jung [J] on
resolutions of two-dimensional cyclic quotient singularities. This was rediscovered by
Hirzebruch in [H8]. Negative continued fractions are, as we will see, closely related to
classical Dedekind sums. A nice account of this is [M6], with references as old as the
1895 paper [V1]. A beautiful book on Dedekind sums and geometry is [HZ].

1.1. Basics.

Definition 1.1. Let {e1, . . . , er} be positive integers. We say that it admits a Hirzebruch-
Jung continued fraction (HJ continued fraction)

[e1, . . . , er] := e1 −
1

e2 − 1

. . .− 1
er

,

if [ei, . . . , er] > 0 for all i ≥ 2, and [e1, . . . , er] ≥ 0. Its value is the rational number
[e1, . . . , er], and its length is r.

For example, {2, 1, 1, 2} does not admit an HJ continued fraction since [1, 1, 2] <
0. Neither {1, 1, 2}, but {1, 2} does. The sequence {2, 1, 3, 2} admits and its value is
[2, 1, 3, 2] = 1

3
. The positive requirement on partial fractions allows us to operate with

blow-downs and blow-ups. These operations are defined and proved to be well defined
in the following lemma.

Lemma 1.2. Given an HJ continued fraction [. . . , u, 1, v, . . .] that is not [1, 1] or [1], we have
the blow-down HJ continued fraction [. . . , u− 1, v − 1, . . .], and conversely, given an HJ con-
tinued fraction [. . . , u, v, . . .], the blow-up [. . . , u+1, 1, v+1, . . .] is an HJ continued fraction.
(This includes the cases [1, v, . . .] and [. . . , u, 1].) Moreover, we have equality on values

[. . . , u, 1, v, . . .] = [. . . , u− 1, v − 1, . . .]

when the blow-down 1 is not in the first position.

Proof. Let [e1, . . . , er] be an HJ continued fraction with ei = 1. Say i = 1. Then, by
definition, e2 > 1 and [e2, . . . , er] ≥ 1. Then [e2−1, e3, . . . , er] is an HJ continued fraction.
The cases i > 1 will follow from [. . . , u, 1, v, . . .] = [. . . , u − 1, v − 1, . . .], and this last
property is a consequence of the identity

u− 1

v
= u+ 1− 1

1− 1
v+1

.

□

A sequence {e1, . . . , er} with ei ≥ 2 for all i gives an HJ continued fraction whose
value is a rational number [e1, . . . , er] > 1. For example [7] = 7, [3, 2, 4] = 17

7
, [2, . . . , 2] =

m+1
m

where m is the number of 2s. In fact, this gives a one-to-one correspondence be-
tween [e1, . . . , er] with ei ≥ 2 and rational numbers greater than 1. In this way, for any
coprime integers 0 < q < m we can associate a unique HJ continued fraction

m

q
= [e1, . . . , er]

with ei ≥ 2 for all i.
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Definition 1.3. An HJ continued fraction is said to be minimal if it is equal to [1, 1], [1],
or [e1, . . . , er] with ei ≥ 2 for all i.

Lemma 1.4. Any HJ continued fraction can be reduced via blow-downs into a unique minimal
HJ continued fraction.

Proof. Exercise §1.1(2). □

We note that for minimal HJ continued fractions, the possible values correspond to
[1, 1] = 0, [1] = 1, and Q>1.

Remark 1.5. As an algebraic geometer reader might have guessed already, this is di-
rectly related with the Castelnuovo theorem in two-dimensional birational geometry:
[1] = 1 represents a (−1)-curve (or a nonsingular point after contracting), [1, 1] = 0
represents a fiber in a P1-fibration, and Q>1 represents the so-called two-dimensional
cyclic quotient singularities. All of this will be central in the next sections.

Definition 1.6. Let 0 < q < m be coprime integers and m
q
= [x1, . . . , xr] with xi ≥ 2 for

all i. Its dual is
m

m− q
= [y1, . . . , ys]

with yi ≥ 2 for all i.

Proposition 1.7. Let 0 < q < m be coprime integers. Consider m
q
= [x1, . . . , xr] and its dual

m
m−q

= [y1, . . . , ys]. Then [x1, . . . , xr, 1, ys, . . . , y1] = 0.

Proof. Exercise §1.1 (3). □

Proposition 1.8. Let 0 < q < m be coprime integers, and consider m
q
= [e1, . . . , er]. Then,[

m −q−1

q 1−qq−1

m

]
=

[
e1 −1
1 0

]
· · ·

[
er −1
1 0

]
,

where 0 < q−1 < m is the integer that satisfies qq−1 ≡ 1(mod m).

Proof. Exercise §1.1 (4). □

Remark 1.9. Let 0 < q < m be coprime integers. The (classical) Dedekind sum1 associ-
ated to (q,m) is

s(q,m) :=
m−1∑
i=1

(( i

m

))(( iq
m

))
where ((x)) = x − [x] − 1

2
for any rational number x. (The symbol [x] is the integral

part of x.) There is a well-known relation (see for example [M6]) with HJ continued
fractions. If m

q
= [e1, . . . , er], then

12s(q,m) =
r∑

i=1

(ei − 3) +
q + q−1

m
.

This can also be proved using the Noether’s formula 12χ(OS) = K2
S + χtop(S) on a

suitable algebraic surface S [U1, Section 3]. Various identities between Dedekind sums

1Richard Dedekind (1831–1916) was the mathematician who introduced Dedekind sums to express
the functional equation of the Dedekind eta function.
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can be deduced via geometry. For example, the reciprocity law of Rademacher is implied
by the rationality of weighted projective planes P(a, b, c), or we have the formula [U5]

s(q,m) = s(q + 1,m) + s(q−1 + 1,m) +
m− 1

m
,

which is also a consequence of rationality of a surface. The values of these Dedekind
sums have been studied by various authors, among them Girstmair [G1, G2]. He
proved a peculiar large-scale behavior that has been used in [U5, U1]. For a partic-
ular use of Dedekind sums and computations on surfaces, see [RU4], [U6], [UY].

Exercises.
(1) Show that HJ continued fractions [e1, . . . , er] with ei ≥ 2 for all i are in one-to-one

correspondence with Q>1 through their values.
(2) Prove that any HJ continued fraction can be reduced using blow-downs to a unique

minimal HJ continued fraction (Lemma 1.4).
(3) Let 0 < q < m be coprime integers. Consider m

q
= [x1, . . . , xr] and its dual m

m−q
=

[y1, . . . , ys]. Prove [x1, . . . , xr, 1, ys, . . . , y1] = 0 (Proposition 1.7). (Hint: Use blow-
downs.) This defines the dots diagrams of Riemenschneider [R2]: For m

q
= [x1, . . . , xr]

we draw rows of xi− 1 points, such that we draw the first point of a row below the
last point of the previous row. Then by adding the dots in the columns we obtain
yi − 1 for m

m−q
= [y1, . . . , ys]. For example, the dots diagram for 19

7
= [3, 4, 2] is

• •
• • •

•
and so 19

12
= [2, 3, 2, 3]. Therefore, we always have

∑r
i=1 xi −

∑s
i=1 yi = r − s. In fact,

if we write
m

q
= [2, . . . , 2︸ ︷︷ ︸

a1

, b1, 2, . . . , 2︸ ︷︷ ︸
a2

, b2, . . . , 2, . . . , 2︸ ︷︷ ︸
ae−1

, be−1, 2, . . . , 2︸ ︷︷ ︸
ae

],

where ai ≥ 0 and bi ≥ 3 for all i, then
m

m− q
= [a1 + 2, 2, . . . , 2︸ ︷︷ ︸

b1−3

, a2 + 3, 2, . . . , 2︸ ︷︷ ︸
b2−3

, a3 + 3, . . . , ae−1 + 3, 2, . . . , 2︸ ︷︷ ︸
be−1−3

, ae + 2].

(4) Let 0 < q < m be coprime integers, and consider m
q
= [e1, . . . , er]. Show that[

m −q−1

q 1−qq−1

m

]
=

[
e1 −1
1 0

]
· · ·

[
er −1
1 0

]
,

where 0 < q−1 < m is the inverse of q mod m (Proposition 1.8).
(5) Let 0 < q < m be coprime integers, and consider m

q
= [e1, . . . , er]. Show that

m
q−1 = [er, . . . , e1].

(6) Let 0 < q < m be coprime integers. Consider m
q
= [x1, . . . , xr] and its dual m

m−q
=

[y1, . . . , ys]. Show that m2

mq−1
= [x1, . . . , xr + ys, . . . , y1], and

m2

m(m− q) + 1
= [y1, . . . , ys, 2, xr, . . . , x1].
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(7) Let 0 < q < m be coprime integers, and consider m
q
= [e1, . . . , er]. Define the matrix

Mi :=


−ei 1
1 −ei+1 1

1 −ei+2

. . . 1
1 −er

 .

Show that m = (−1)rdet(M1) and q = (−1)r−1det(M2). In fact, we have− det(Mi)
det(Mi+1)

=

[ei, . . . , er] for all i = 1, . . . , r − 1.

1.2. Wahl chains.
We now focus on special HJ continued fractions: Wahl chains. The word "chain" puts

an emphasis on the sequence of numbers whose negatives will be the self-intersections
of a chain of P1s. This will be seen when we study resolution of singularities.

Definition 1.10. Let d, n, a be positive integers that satisfy d ≥ 1, n ≥ 1, and 0 < a ≤ n

with gcd(n, a) = 1. A T-chain is the sequence {e1, . . . , er} in dn2

dna−1
= [e1, . . . , er]. A Wahl

chain is a T-chain with d = 1. For d > 1, an Ad−1 chain is a T-chain with n = 1.

Remark 1.11. T-chains are the numerical data for the minimal resolution of T-singularities,
introduced by Kollár–Shepherd-Barron [KSB, Definition 3.7] (we are ignoring Du Val
singularities of type D and E). For example, T-singularities are used in [KSB] to un-
derstand all deformations of two-dimensional quotient singularities. As we shall see,
T-singularities are naturally dominated by Wahl singularities.

T-chains are well understood. When n = 1 they are [1], [2], [2, 2], ..., [2, . . . , 2] = d
d−1

,
where we have d − 1 2s. For n > 1, we have the following algorithmic description for
all T-chains [KSB, Proposition 3.11], originally due to Wahl.

Proposition 1.12. The T-chains with n > 1 are
(i) either [4] (d = 1), or 4d

2d−1
= [3, 2, . . . , 2, 3] where 2 appears d− 2 times (d > 1),

(ii) or, it is obtained by starting with one of the singularities in (i) and iterating the operations
[2, e1, . . . , er−1, er + 1] or [e1 + 1, e2, . . . , er, 2] many times.

Proof. Exercise §1.2(1). □

In Figure 1, we represent this algorithm for Wahl chains. If dn2

dna−1
= [e1, . . . , er], then

dn2

dn(n−a)−1
= [er, . . . , e1], and so we think of them as the same T-chain.

Corollary 1.13. If dn2

dna−1
= [e1, . . . , er] and n > 1, then r − d+ 2 =

∑r
i=1(ei − 2).

Proof. Exercise §1.2(3). □

We will later talk about Markov’s uniqueness conjecture, whose "geometry" is very
much related to our purposes (see [UZ1]). A Markov triple is a positive integer solution
(a, b, c) of the Markov equation

x2 + y2 + z2 = 3xyz.
8



(1
,
1
,9)

·.(2 , 5,29)
(2, 29, 169)
I ·.V5⑨

↳I
[7

,
2
,
2
, 2]

56 ,2 ,2] [2 , 6 , 2,3] ...

[4] [5,2]
[2 , 5 ,3]

[2, 2, 5,4]

[3 ,5 , 3,2]

FIGURE 1. The Wahl tree.

The coordinates are called Markov numbers. These solutions appear in various places
in mathematics, see the book [A1]. Note that permutations of coordinates in a Markov
triple is a Markov triple. Also the mutation

(a, b, c) 7→ (a, b, 3ab− c)

sends Markov triples into Markov triples. It turns out that symmetries and mutations
generate all Markov triples starting from (1, 1, 1), and define the Markov tree in Fig-
ure 2. The 111 years old and famous Markov conjecture (known also as the Frobenius
Uniqueness Conjecture [F1]) states that in a Markov triple (a, b, c) where a, b < c the
integer c determines the integers a, b. Markov conjecture has been checked for Markov
numbers up to 1015000 [P4]. In the exercises you can read about 3 equivalences.

(1
,
1
,9)

·.(2 , 5,29)
(2, 29, 169)
I ·.V5⑨

↳I
[7

,
2
,
2
, 2]

56 ,2 ,2] [2 , 6 , 2,3] ...

[4] [5,2]
[2 , 5 ,3]

[2, 2, 5,4]

[3 ,5 , 3,2]

FIGURE 2. The Markov tree.
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Exercises.
(1) Prove Proposition 1.12.
(2) Show that dn2

dna−1
= [e1, . . . , er] implies dn2

dn(n−a)−1
= [er, . . . , e1].

(3) Prove that if dn2

dna−1
= [e1, . . . , er] and n > 1, then r − d+ 2 =

∑r
i=1(ei − 2) (Corollary

1.13).
(4) Show that the ns of the Wahl chains [4], [5, 2], [2, 5, 3], [3, 5, 3, 2], [2, 3, 5, 3, 3], ... are

precisely the Fibonacci numbers.
(5) Consider a T-chain for some (d, n, a) of length r. Show that

n ≤ Fr−d

where Fi is the ith Fibonacci number defined by the recursion F−2 = 1, F−1 = 1, and

Fi = Fi−1 + Fi−2

for i ≥ 0. Find a characterization for equality.
(6) Define Wahl-2 chains by the same algorithm as in (ii) Proposition 1.12 but starting

with [2]. Examples: [3, 2], [2, 4, 2, 3], [3, 2, 2, 4, 2, 5, 2]. Show that an HJ continued
fraction m

q
= [e1, . . . , er] is a Wahl-2 chain if and only if q2 ≡ −1(modm). In this

way, for Wahl-2 chains, we have [e1, . . . , er, 1, e1, . . . , er] = 0. These Wahl-2 chains
are relevant for weights of Markov numbers [UZ1, §3].

(7) ⋆⋆ (Markov’s uniqueness conjecture) Given an integer m, there are at most two
0 < q < m coprime such that

m

q
=

[
m0

q0
, 4,

m1

q1

]
where m

q
, m0

q0
and m1

q1
are the fractions of Wahl-2 chains. 2

(8) ⋆⋆ (Markov’s uniqueness conjecture) Given an integer m, there are at most two
0 < q < m coprime such that

m2

mq − 1
= [W∨0 , 10, W

∨
1 ]

for some Wahl chains Wi, where W∨i is the corresponding Wahl dual.
(9) ⋆⋆ (Markov’s uniqueness conjecture) Given an integer m, then there are at most two

0 < q < m coprime such that[
5,

m

q
, 2,

m

m− q−1
, 5

]
= [W0, 2, W1]

for some Wahl chains W0 and W1, where 0 < q−1 < m and qq−1 ≡ 1 (mod m).
(10) Show that (a, b, c) is a Markov triple if and only if

s(a−1b, c) = s(b−1c, a) = s(c−1a, b) = 0

where s(x, y) is the classical Dedekind sum for (x, y) (see Remark 1.9), and for
(x−1y, z) we mean x−1 inverse of x mod z. See more in [HZ, p.160].

2There is an abuse of notation: [mq , . . .] means [e1, . . . , er, . . .] where m
q = [e1, . . . , er].
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1.3. Zero continued fractions.
HJ continued fractions with value equal to 0 will be called zero continued fractions.

They are key to work with deformations of cyclic quotient singularities and with the
birational geometry of the degenerations that we are going to study in these notes.

By Lemma 1.4, we find all zero continued fractions through blowing-up starting
with [1, 1], and so the list begins:
[1, 1],
[1, 2, 1], [2, 1, 2],
[1, 2, 2, 1], [2, 1, 3, 1], [1, 3, 1, 2], [3, 1, 2, 2], [2, 2, 1, 3],
etc...
There is a well-known one-to-one correspondence between zero continued fractions

and triangulations of polygons [C2, S9, HTU]. A triangulation of a convex polygon P0

P1 · · · Pr is given by drawing some non intersecting diagonals on it which divide the
polygon into triangles. For a fixed triangulation, vi is defined as the number of triangles
that have Pi as one of its vertices. Note that

v0 + v1 + . . .+ vr = 3(r − 1).

Using an easy induction on r, one can show that [k1, . . . , kr] is a zero continued frac-
tion if and only if there exists a triangulation of P0 P1 · · · Pr such that vi = ki for every
1 ≤ i ≤ r. In this way, the number of zero continued fractions of length r is the Catalan
number

1

r

(
2(r − 1)

r − 1

)
.

r 2 3 4 5 6 7 8 9 10
Number of zero continued

fractions of lenght r 1 2 5 14 42 132 429 1430 4862

3 1 Z 1 2
· ⑳ ⑳ & ⑧

1
↑
2 32 13 21 2

22 2 1 1 312 3 1

FIGURE 3. All the triangulations of a pentagon and the vi’s.

We will see that to know about the components of the deformation space of a cyclic
quotient singularity, we need to know about the zero continued fractions that its dual
HJ continue fraction admits.

Definition 1.14. We say that [e1, . . . , er] with ei ≥ 2 admits a zero continued fraction of
weight λ if there are indices i1 < i2 < . . . < iu for some u ≥ 1 and integers dik ≥ 1 such
that

[. . . , ei1 − di1 , . . . , ei2 − di2 , . . . , eiu − diu , . . .] = 0,

and λ+ 1 =
∑u

k=1 dik .
11



Example 1.15. We have that 19
12

= [2, 3, 2, 3] admits exactly 3 zero continued fractions:
• d1 = 1, d2 = 1, d4 = 2 and so [2− 1, 3− 1, 2, 3− 2] = [1, 2, 2, 1] = 0.
• d1 = 1, d3 = 1, d4 = 1 and so [2− 1, 3, 2− 1, 3− 1] = [1, 3, 1, 2] = 0.
• d2 = 1, d3 = 1 and so [2, 3− 1, 2− 1, 3] = [2, 2, 1, 3] = 0.

Example 1.16. Each m
q

= [e1, . . . , er] admits at least one zero continued fraction of
weight λ =

∑r
i=1(ei − 2) − 1. This is because we can subtract to obtain [1, 2, . . . , 2, 1].

Sometimes, this is the only one. For example, for every fraction m
m−1

, except for 4
3
=

[2, 2, 2] which admits two: [1, 2, 1] and [2, 1, 2].

Remark 1.17. The set of admissible zero continued fractions of [e1, . . . , er] is a subset of
all zero continued fractions of length r. Hence, if ei ≥ r − 1 for all i, then the number
of admissible zero continued fractions is the corresponding Catalan number 1

r

(
2(r−1)
r−1

)
.

Proposition 1.18. The HJ continued fraction [e1, . . . , er] admits a zero continued fraction of
weight 0 if and only if [e1, . . . , er] is the dual of a T-chain.

Proof. This follows from Proposition 1.7 and Exercise §1.1(6). □

We now analyze HJ continued fractions that admit zero continued fractions of weight
1. It turns out that they are central to the birational geometry of degenerations.

Proposition 1.19. Let 0 < q < m be coprime integers. If m
m−q

= [b1, . . . , bs] admits a zero
continued fraction of weight 1, then the HJ continued fraction of m

q
is a T-chain with d = 2 and

n > 1, or
m

q
= [W0, c, W1]

where c ≥ 1 and Wi are Wahl chains (including one or both empty).

Proof. Exercise §1.3(4). □

After we interpret this geometrically, this last proposition can be a sufficient and nec-
essary characterization when the weight is 1 under a positive condition on the canoni-
cal class. (This will correspond to extremal P-resolutions.) It would not be true without
that positive condition. Also, there may be infinitely many ways to write m

q
= [W0, c, W1],

but there is only one that is "positive", in the sense of birational geometry. This will be
a flip.

Definition 1.20. Given a m
q
= [e1, . . . , er] that admits a zero continued fraction of weight

1 for indices i1 < i2 (and so di1 = di2 = 1), we define δ = 1 if i2 = i1 + 1, or
δ

ϵ
= [ei1+1, . . . , ei2−1].

This is, δ is the numerator of this "intermediate" HJ continued fraction.

In principle δ depends on i1 < i2 and m
q

, but soon we will see that it only depends
on m

q
.

As we saw above, a zero continued fraction of length r defines a triangulation of
a polygon with r + 1 sides. Say that m

q
admits the zero continued fraction [. . . , ei1 −

1, . . . , ei2 − 1, . . .] = 0. For the corresponding triangulation, we have vi = ei except for
vi1 = ei1 − 1, vi2 = ei2 − 1, and

v0 = 3r − 3−
r∑

i=1

ei + 2 =
r∑

i=1

(3− ei)− 1 ≥ 1.

12



(Hence, we must have
∑r

i=1 ei ≤ 3r − 2.) We have two types:

(non-minimal type) v0 = 1: In this case, we must have v1, vr ≥ 2 unless the polygon
is a triangle (i.e. r = 2). Therefore, if r > 2, then i1, i2 cannot be 1, r since one of the
vik must be equal to 1. Choose the vertex P from P1, Pr that does not correspond to
i1, i2. We now remove the triangle Pr, P0, P1, and in this new polygon, we choose as
new P0 the vertex P . We have a new triangulation and a new continued fraction of
length r − 1 that admits a zero continued fraction of weight 1. We continue with this
algorithm until we reach a triangulation with v0 > 1.

(minimal type) v0 > 1: In this case vi1 = 1 = vi2 . They are the only vk = 1.

In this way, any m
q

that admits a zero continued fraction of weight 1 can be con-
structed from a minimal type fraction.

Is it possible that a fraction m
q

admits more than one zero continued fraction of weight 1?

Theorem 1.21. Let 0 < q < m be coprime integers. Then m
q

admits at most two zero continued
fractions of weight 1. If it admits two, then the corresponding δs are equal.

Proof. See Theorems 4.3 and 4.4 in [HTU]. See also [UV, Section 2]. □

Example 1.22. We have that 16
7

admits two, as 16
7
= [3, 2, 2, 3] and so the indices 1 < 3

and 2 < 4 are two pairs. Similarly with 40
31

= [2, 2, 2, 4, 2, 2, 2] and the pairs 1 < 5, 3 < 7

work. The situation can also be non symmetric. For example, 36
23

= [2, 3, 2, 2, 4] works
for 2 < 4 and 3 < 5.

Definition 1.23. A fraction m
q

that admits two zero continued fractions of weights 1 is
called wormhole fraction. 3

Proposition 1.24. (Crossing property) A wormhole fraction whose pairs of indices are i1 < j1
and i2 < j2 satisfies i2 < i1 < j2 < j1 or i1 < i2 < j1 < j2.

Proof. See [V3, §3.4]. □

In particular, there are no wormholes with δ = 1.
A wormhole fraction m

q
can be reduced to a minimal wormhole fraction. First we

note that the corresponding v0 are equal for both zero continued fractions. So, if it is
equal to 1, then we reduce it to a wormhole fraction with v0 > 1. Therefore, minimal
wormhole fractions are the main blocks to construct any wormhole fraction. They are
peculiar; we name them as Uroboros 4 since one can express them with pictures that
look like Uroboros.

Picture of an uroboro: Consider a wormhole fraction m
q
= [e1, . . . , er] with indices

i1 < i2 < j1 < j2 and corresponding v0 > 1. Let e0 := v0. (Recall that we must have
ei1 = ei2 = ej1 = ej2 = 2.) We now draw in a circular way the consecutive numbers
ei > 2, and for chains of ej = 2 we draw an arc label by the numbers of 2s. If it
is just one 2, then we draw 2. Finally, we draw four dots indicating the positions of
ei1 = ei2 = ej1 = ej2 = 2, and we join by a segment the dots of i1 < j1 and the dots of
i2 < j2.

3The reason for the name can be found in [UV, V3].
4The name and pictures were created by Jonny Evans.
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n- 1

- 5
N N ·E · ·3- o5-
n- 1

n -1 =n -1=
2n+2 = S- s

n-2ne 4
5

252
5

3(. ·- 4( 33 ·
5

" 3262 25/2L

8=350 8 = 327

FIGURE 4. Examples of uroboros.

In Figure 4 we have uroboros corresponding to: For n > 2,

[2, . . . , 2, n, 2, . . . , 2]

(n−1 2s both sides; v0 = n), [4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 4] (v0 = 2), and [2, 2, 5, 2, 2, 2, 2, 5, 2, 2]
(v0 = 3). Of course, these uroboros are also uroboros for other HJ continued fractions,
just by choosing another v0 in the circle (not for the distinguished indices). The corre-
sponding δs are n2 − 2n + 2, 58, and 30. There are also less symmetric uroboros, as in
Figure 5.

n- 1

- 5
N ·E ·n ·3- a

5-
n- 1

n -1
3

n2:E
=-=En un

252
5· ·8=350 · 4( 8 = 327· 3
5

" 3262 2 5/2

FIGURE 5. Less symmetric uroboro with δ = 350. There are 3 distinct
uroboros for δ = 350.

We note that for some δ, there may be more than one uroboro. The first δ with this
property is 130, where there are two. For δ = 4930 there are 8 distinct uroboros. Using
a computer, one can show that the list of δs less than or equal to 1000 is:

5 10 13 17 26 30 34 37 50 53 58 65 68 82 89
101 122 130 145 170 178 185 197
219 222 226 233 257 290
317 325 327 338 350 362
401 442 457 466 485
520 530 577 578
610 626 677
730 738 785
842 853
901 962 964 986 997.

14



Exercises.
(1) Confirm that there is a bijection between zero continued fractions and triangula-

tions of polygons.
(2) Let 0 < q < m coprime integers, and m

q
= [e1, . . . , er] with r ≥ 2 and ei ≥ r − 1.

Show that m
q

admits 1
r

(
2(r−1)
r−1

)
zero continued fractions.

(3) Prove Proposition 1.18.
(4) ⋆ Let 0 < q < m be coprime integers. If m

q
admits a zero continued fraction of

weight 1 and indices i1 < i2, then
m

q
= [W0, c, W1]

where c ≥ 1 and Wi are Wahl chains (including one or both empty) (Proposition
1.19). Show that if n2

i

niai−1
= Wi, then

m = n2
0 + n2

1 ± δn0n1.

(5) ⋆ Assume that m
q

admits a zero continued fraction of weight 1 and indices i1 < i2,

and so m
q
= [W0, c, W1], where n2

i

niai−1
= Wi are Wahl chains, and c ≥ 1. Show that

δ = |(c− 1)n0n1 + n1a0 − n0a1|.
(6) ⋆ Let {e1, . . . , er} be integers with ek ≥ 2. Prove that there are at most two pairs of

indices i < j such that

[. . . , ei − 1, . . . , ej − 1, . . .] = 0.

This shows that m
q

admits at most two zero continued fractions of weight 1.
(7) Prove that a wormhole fraction whose pairs of indices are i1 < j1 and i2 < j2

satisfies either i2 < i1 < j2 < j1 or i1 < i2 < j1 < j2 (Proposition 1.24).
(8) Use Figure 6 to classify all wormhole fractions with δ = 2.

Emplo : =2 sin moboco pero
..

+1
· a - b

& b
1
. -

/ -
A
-

1.
a+ 1
I

L

2 1

[..., a, 2, 1 , bH, ...] [..., a+1 , 1 , 2gb ,
... ]

↳ ↓
-

2
,
b+

g
... ] = -I...,a+1, 2) - A-&

T() 8 = 3 no se puede amano ↑
vienen de

*.. / 3
-= I --2

FIGURE 6. Wormholes for δ = 2.

(9) Show that δ = 3 is not possible for wormholes. Same for δ = 4, 6, 7, 8, 9.
(10) ⋆⋆ Find a classification for Uroboros.
(11) ⋆⋆ Find a classification for the deltas of wormhole fractions. What can be said about

the denominator ϵ? (See Definition 1.20.)
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This is Exercise §1.2 9 about the Markov conjecture when m = 29.
We list q, and m/q, m/(m− q−1) between 5 2 5.

1 5 [29] 2 [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] 5
2 5 [15, 2] 2 [3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] 5
3 5 [10, 3] 2 [2, 3, 2, 2, 2, 2, 2, 2, 2, 2] 5
4 5 [8, 2, 2, 2] 2 [5, 2, 2, 2, 2, 2, 2] 5
5 5 [6, 5] 2 [2, 2, 2, 3, 2, 2, 2, 2] 5
6 5 [5, 6] 2 [2, 2, 2, 2, 3, 2, 2, 2] 5
7 5 [5, 2, 2, 2, 2, 2, 2] 2 [8, 2, 2, 2] 5
8 5 [4, 3, 3] 2 [2, 3, 3, 2, 2] 5
9 5 [4, 2, 2, 2, 3] 2 [2, 6, 2, 2] 5

10 5 [3, 10] 2 [2, 2, 2, 2, 2, 2, 2, 2, 3, 2] 5
11 5 [3, 3, 4] 2 [2, 2, 3, 3, 2] 5
12 5 [3, 2, 4, 2] 2 [3, 2, 4, 2] 5
13 5 [3, 2, 2, 2, 4] 2 [2, 2, 6, 2] 5
14 5 [3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] 2 [15, 2] 5
15 5 [2, 15] 2 [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3] 5
16 5 [2, 6, 2, 2] 2 [4, 2, 2, 2, 3] 5
17 5 [2, 4, 2, 3] 2 [2, 4, 2, 3] 5
18 5 [2, 3, 3, 2, 2] 2 [4, 3, 3] 5
19 5 [2, 3, 2, 2, 2, 2, 2, 2, 2, 2] 2 [10, 3] 5
20 5 [2, 2, 6, 2] 2 [3, 2, 2, 2, 4] 5
21 5 [2, 2, 3, 3, 2] 2 [3, 3, 4] 5
22 5 [2, 2, 2, 8] 2 [2, 2, 2, 2, 2, 2, 5] 5
23 5 [2, 2, 2, 3, 2, 2, 2, 2] 2 [6, 5] 5
24 5 [2, 2, 2, 2, 3, 2, 2, 2] 2 [5, 6] 5
25 5 [2, 2, 2, 2, 2, 2, 5] 2 [2, 2, 2, 8] 5
26 5 [2, 2, 2, 2, 2, 2, 2, 2, 3, 2] 2 [3, 10] 5
27 5 [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3] 2 [2, 15] 5
28 5 [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] 2 [29] 5
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2. SINGULAR AND NONSINGULAR ALGEBRAIC SURFACES

In this section, we collect all the definitions and basic properties for working with
singular and nonsingular algebraic surfaces. In particular, we introduce the main sin-
gularities for this text. A standard book for learning the basics of nonsingular complex
surfaces is [B1].

2.1. Generalities on surfaces and singularities.
Our ground field is C. A surface is a normal irreducible variety of dimension 2.

Sometimes projective, sometimes quasi-projective, sometimes an analytic germ using
the induced complex topology.

If the surface X is locally defined in Cn by its ideal (f1, . . . , fr), then x ∈ X is non-
singular if and only if the rank of the matrix (∂fi/∂xj)i,j at x is equal to n − 2. As we
require that X is normal, we have that singular points are finitely many.

Let OX be the structure sheaf of X (or sheaf of regular functions on X). Then we
have local rings OX,x for each point x ∈ X , and let mx be their maximal ideals. The
Zariski cotangent space is mx/m

2
x (over C) (the tangent space is its dual). This is a C-

vector space of dimension greater than or equal to 2, and we have equality if and only
if x is a nonsingular point, which is equivalent to OX,x being a regular local ring. The
multiplicity of x ∈ X is the multiplicity of mx in OX,x.

Example 2.1. Let n > 1 be an integer. The affine surface X = {zn = xy} ⊂ C3 is
singular only at x = (0, 0, 0). It has multiplicity 2. It is called An−1, and is part of the
Du Val singularities. In the following, we elaborate more on these singularities.

By definition, two singularities are isomorphic if the completion of their local rings
are. By [A3, Corollary 1.6], we know that this is equivalent to the existence of analyti-
cally isomorphic neighborhoods (as stated in Artin’s paper [A3], for our case this was
known by Hironaka and Rossi 1964).

Remark 2.2. Let (x ∈ X) be a singularity. The embedding dimension of (x ∈ X) is the
smallest dimension of any higher dimensional smooth germ (z ∈ Z) such that we have
embedding of germs (x ∈ X) ⊂ (z ∈ Z). We have that the dimension of (z ∈ Z) is
greater than or equal to 3. The embedded dimension is the dimension of the tangent
space of (x ∈ X).

A germ of a surface singularity will be denoted by (x ∈ X̄). Let

π : X → X̄

be a proper birational morphism which is a resolution of (x ∈ X̄), and so X is nonsingu-
lar and outside of Exc(π) := π−1(x) the morphism is an isomorphism. It is a minimal
resolution if there are no (−1)-curves in Exc(π) (they always exist and are unique).

The singularity (x ∈ X̄) is said to be rational if R1π∗OX = 0 (One can prove that it
does not depend on the chosen resolution). Hence X and X̄ share the same irregularity
and geometric genus.

Remark 2.3. Let X̄ be projective. In general, the geometric genus of the singularity is
defined as

pg(x ∈ X̄) := dimC H
0(X̄, (R1π∗OX)x).

We have π∗OX = OX̄ since X̄ is normal, and so we have from the five term Leray
spectral sequence

0→ H1(X̄,OX̄)→ H1(X,OX)→ H0(X̄, R1π∗OX)→ H2(X̄,OX̄)→ H2(X,OX)→ 0.
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In this way, we have

χ(OX̄) = χ(OX) +
∑
x∈X

pg(x ∈ X).

For the proof, it is used the seven-term Leray spectral sequence and that

H0(R2π∗OX) = H1(R1π∗OX) = 0,

as R1π∗OX is supported only at points (the singular points). In [A4, Lemma 2.2], it is
shown that for any positive cycle Z =

∑
x∈X̄ Zx supported on the exceptional divisor

we have
χ(OX̄)− χ(OX) =

∑
x∈X

pg(x ∈ X) ≥
∑
x∈X

pa(Zx),

where pa(Zx) = 1− χ(Zx) is the arithmetic genus of Zx.

Remark 2.4. (Intersection theory on surfaces) For a smooth projective surface X , we
have an intersection theory; cf. [B1]. Mumford [M5, p.6] showed that the intersection
matrix of Exc(π) is negative definite over any singularity. Mumford also worked out
in [M5] an intersection theory for Weil divisors on a normal projective surface. All of
this will be used throughout this text. A curve C on a nonsingular surface such that
C2 = −m and C ≃ P1 is called a (−m)-curve.

Artin [A5] studies equivalent conditions to be a rational singularity in terms of
Exc(π) =

∑
i Ei. He studies the cohomology of the schemes Z :=

∑
i riEi (where

ri ≥ 0), showing that rationality holds if and only if pa(Z) ≤ 0 for all such Z. (This
uses lim←−(r)→∞H1(Exc(π),OZ(r)

) = R1π∗OX .) He goes further to define the fundamental
cycle.

Definition 2.5. The fundamental cycle Z =
∑

i riEi is the unique smallest effective Z
such that Z · Ei ≤ 0 for all i.

In the case of a singularity and to make it unique with respect to the singularity, we
choose the fundamental cycle of the unique minimal resolution, i.e. the resolution where
no Ei is a (−1)-curve.

Proposition 2.6. Let Z be the fundamental cycle of (x ∈ X̄).
• We have pa(Z) ≥ 0, and pa(Z) = 0 if and only if (x ∈ X̄) is rational.
• If (x ∈ X̄) is rational, then Exc(π) is a tree of smooth rational curves, −Z2 is the multi-

plicity, and −Z2 + 1 is the dimension of the tangent space at x.
• The determinant of (Ei · Ej) is the torsion group of H1(L,Z), where L is the link of the

singularity (x ∈ X̄) (see [M5]).

Proposition 2.7 (Artin contractibily theorem). [A4, Theorem 2.3] Let Exc :=
∑

iEi be a
connected collection of curves in a normal surface X . The following are equivalent:
(a) Exc is contractible and if π : X → X̄ is the contraction then χ(OX̄) = χ(OX).
(b) – The intersection matrix of Exc is negative definite.

– For every cycle Z > 0 with support in Exc we have pa(Z) ≤ 0.
(c) – The intersection matrix of Exc is negative definite.

– The fundamental cycle Z satisfies pa(Z) = 0 (see [A5, Theorem 3]).
Moreover, if X is projective and (a) holds, then X̄ is also projective.
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Remark 2.8. In [H6, Example 5.7.3] an example is shown (due to Hironaka) starting
with a smooth plane cubic and 10 linearly independent points in its group law. Blow
them up to obtain an uncontractible smooth curve of self-intersection −1. It can not
be contracted to an algebraic surface, but it can be contracted to an analytic singular
surface.

Example 2.9. Let {E1, . . . , Er} be a negative definite chain of nonsingular rational
curves in X . Let us assume that it is minimal, that is, Ei = −ei ≤ −2. Then, the
associate fundamental cycle is Z =

∑
i Ei. One can check that h1(OZ) = 0, and so

pa(Z) = 0. The intersection matrix
−e1 1
1 −e2 1

1 −e3
. . . 1
1 −er

 (2.1)

which is indeed negative definite (induction on principal minors). Hence we can con-
tract this chain into a rational singularity. We have that its multiplicity is −Z2 =∑r

i=1(ei − 2) + 2, and its embedded dimension is −Z2 + 1 =
∑r

i=1(ei − 2) + 3. We
will see later that this singularity is isomorphic to a cyclic quotient singularity (which
is the same as toric singularity in dimension 2), and the resolution can be constructed
using toric methods. The order of the quotient is the absolute value of the determinant
of the intersection matrix.

A very relevant equation is the relation of the canonical classes in the minimal reso-
lution π : (

∑
i Ei ⊂ X)→ (x ∈ X̄), namely

KX ≡ π∗(KX̄) +
∑
i

diEi,

where the di = di(Ei) are the discrepancies of Exc(π). They are uniquely determined. As
it is minimal, we have di ≤ 0 for all i (see [KM1, Corollary 4.2]).
• If di = 0 for all i, then x ∈ X̄ is called canonical. Important in canonical models of

surfaces of general type.
• If −1 < di ≤ 0, then x ∈ X̄ is called log terminal. They are all quotient singularities

by Kawamata, that is, there is a finite group G acting on C2 such that (x ∈ X̄) is
isomorphic to the quotient C2/G at (0, 0).
• If −1 < di ≤ 0, then x ∈ X̄ is called log canonical. Important for singularities in

Kollár–Shepherd-Barron–Alexeev surfaces which compactify the moduli space of
surfaces of general type [KSB].

Example 2.10. A Du Val singularity (also known as rational double points or ADE sin-
gularities) is a rational singularity (x ∈ X̄) which has multiplicity 2. Thus we have
−Z2 = 2 and pa(Z) = 0, where Z is the fundamental cycle. Thus KX ·Z = −Z2− 2 = 0
and so 0 = (

∑
i diEi) · Z. On the other hand, since the Ei are smooth rational curves,

we have KX · Ei = ei − 2 ≥ 0. Therefore, di = 0 for all i, and the Ei are (−2)-curves.
One can classify the minimal resolution diagrams as the Dynkin diagrams An (this is
a chain as above), Dn, E6, E7, and E8. This and rational triple points are described
in [A5], see Figure 7. Du Val singularities are also called Kleinian singularities (from
quotients of the 2-sphere S2 by finite groups (equivalently finite groups of Aut(P1

C))),
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and also canonical surface singularities (just get the above by assuming di = 0 for all
i). Local models in (0 ∈ C3) for ADE singularities are:

An (n ≥ 1) : z2 + x2 + yn+1 = 0 Dn (n ≥ 4) : z2 + y(x2 + yn−2) = 0

E6 : z
2 + x3 + y4 = 0 E7 : z

2 + x(x2 + y3) = 0 E8 : z
2 + x3 + y5 = 0.

In particular, any Du Val singularity can be seen as a branched double cover and as
a quotient singularity.

ISOLATED RATIONAL SINGULARITIES OF SURFACES. 135 

COROLLARY6. If P has a rational singularity then the multiplicity of 
A is - (Z2) where Z is the fundamental cycle, and the dimension of the' 
Zariski tangent space of A is - (Z2)+1. 

This follows immediately from the definition of multiplicity. I n  fact, 
the Hilbert polynomial P ( n )  for the pair (A,m) is 

P (x) =+m(x2-x) +x. 

The fact stated in the introduction that the configurations listed by 
DuVal (figure) arise only from double points can now be verified easily. 

Rational double points. (02=-2 )  

Rational triple points. (02 =-2, x2 =-3) 

Combining (3) and (6)  with the criterion of contractability of ([I], 
( 2 . 7 ) )  one obtains the generalization to reducible curves of Castelnuovo's 
criterion [2] : 

COROLLARY7. Let X =U Xi, i =1,. . a ,  n, be a connected complete 
curve on a nonsingular surface S over k. Then X is an exceptional curve 
of the first kind if and only if 11 ( X i . X j )/ /  is negative definite and the fundu- 
mental cycle Z =XriXi of  X satisfies 

p(Z) =0 and (Z2)=-1 

FIGURE 7. Classification of double and triple rational points via their
resolution graphs (from Artin’s article [A5]). See Remark 2.13.

Exercises.
(1) You can resolve each Du Val singularity by blowing up over the singularity of the

branched plane curve and then taking the double cover. For example, for An we
blow-up over the singularity of {x2 + yn+1 = 0} and their pull-backs, until its pull-
back has only disjoint curves with odd multiplicities. Then take the double cover
branched along these odd curves, and obtain a resolution for An. Do this for as
many Du Val singularities as you can.

(2) Consider the surface of cuboids, related to the famous perfect cuboid problem, de-
fined in P6

C by the equations x2
3 = x2

0 + x2
1 + x2

2, x2
4 = x2

0 + x2
1, x2

5 = x2
0 + x2

2, and
x2
6 = x2

1 + x2
2. Show that it has 48 singularities, and each of them is of type A1.

(3) Verify that the fundamental cycle Z in Example 2.9 is indeed
∑r

i=1Ei. Then use
Proposition 2.7 to show that it is contractible to a singularity. Then use Proposition
2.6 in the formulas for multiplicity and embedded dimension.

(4) As you know, a finitely generated C-algebra A corresponds to an affine variety. In-
deed, it is defined by the zero set of the corresponding kernel of the surjective mor-
phism C[x1, . . . , xm] → A. Given a finite group G acting on Cm by isomorphisms
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fixing (0, 0), you can consider the C-algebra C[x1, . . . , xm]
G of polynomials invari-

ants by G. Show that it is finitely generated and normal. The corresponding vari-
ety is, by definition, Cm/G. (It could be nonsingular too.) For example, show that
(x, y) 7→ (−x−y) is a Z/2 action on C2 such that C2/(Z/2) = {x2+y2+z2 = 0} ⊂ C3.

(5) Any Du Val singularity is a quotient singularity. Find all finite actions on P1 (two
times two invertible matrices), and quotient C2 by them. Those are the Du Val
singularities. Compute some.

(6) Find an action on C2 by the dihedral group such that the quotient is again C2.

2.2. Cyclic quotient singularities.

Definition 2.11. Let m > 1 be an integer and let µ be an mth primitive unit of 1. Let
ai > 0 be integers coprime to m. Consider the action Cd → Cd of Z/m given by

T (x1, . . . , xd) = (µa1x1, . . . , µ
adxd).

A cyclic quotient singularity (c.q.s.) is a singularity isomorphic to the germ at zero of
Cd/⟨T ⟩ for some m and ais. See Exercise §2.14. The notation will be 1

m
(a1, . . . , ad).

If d = 1, then quotients are nonsingular. If d = 2, then we can restrict ourselves
to 1/m(1, q) where 0 < q < m is coprime to m. These are called Hirzebruch-Jung sin-
gularities [BHPVdV, III.5]. For d ≥ 3 these singularities are rigid, which is a result of
Schlesinger [S3] 5. Therefore, only in dimension two we may have nonrigid quotient
singularities. In fact they are non rigid and their nontrivial deformation theory is key
for what follows.

Let 0 < q < m be coprime integers. The action (x, y) 7→ (µx, µqy) on C2 induces
an action on C[x, y], and by definition, the c.q.s. is defined as the germ corresponding
to the variety associated with C[x, y]Z/m. We have the inclusions of finitely generated
C-algebras

C[xm, ym] ⊂ C[xm, ym, xm−qy] ⊂ C[x, y]Z/m ⊂ C[x, y],
which translates into the diagram in Figure 8, where u = xm, v = ym, w = xm−qy.

Figure 8 also includes the minimal resolution ϕ : X → X̄ := 1
m
(1, q), which can

be done through standard toric methods (subdivision of the cone corresponding to
C[x, y]Z/m as in Figure 8). It turns out that the exceptional divisors Ei are (−ei)-curves
forming a chain, where the ei are computed through the Hirzebruch-Jung continued
fraction m

q
= [e1, . . . , er]. This is the connection with the previous section!

Definition 2.12. The continued fraction m
q
= [e1, . . . , er] defines the sequence of integers

0 = βr+1 < 1 = βr < . . . < q = β1 < m = β0

where βi+1 = eiβi−βi−1. In this way, βi−1

βi
= [ei, . . . , er]. Partial fractions αi

γi
= [e1, . . . , ei−1]

are computed through the sequences

0 = α0 < 1 = α1 < . . . < q−1 = αr < m = αr+1,

5More precisely: If a finite group G acts on an affine scheme Y , smooth over a field k, with a single
fixed point y ∈ Y , then the quotient scheme X = Y/G has an isolated singularity at the point x ∈ X
under y, and this singularity is rigid, provided dim(Y ) ≥ 3 and the order of G is not divisible by the
characteristic of k.
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FIGURE 8. The trilogy: quotient, covering, minimal resolution.

where αi+1 = eiαi − αi−1, and γ0 = −1, γ1 = 0, γi+1 = eiγi − γi−1. We have αi+1γi −
αiγi+1 = −1, and βi = qαi −mγi.

These numbers appear in the pull-back formulas

ϕ∗((ȳ = 0)
)
≡

r+1∑
i=0

βi

m
Ei, ϕ∗((x̄ = 0)

)
≡

r+1∑
i=0

αi

m
Ei,

and

KX ≡ ϕ∗(KX̄) +
r∑

i=1

(
− 1 +

βi + αi

m

)
Ei.

Here E0 and Er+1 are the proper transforms of (ȳ = 0) and (x̄ = 0) respectively.

Remark 2.13. It turns out that a singularity whose resolution is a chain of P1 can be
characterized by the information of its dual graph. In general, given a minimal res-
olution with simple normal crossings, the weighted dual graph of Exc(π) is the graph
whose vertices represent the curves Ei, the edges represent the intersections between
curves, and for each vertex we associate the genus and the self-intersection of the cor-
responding Ei. If the genus is 0, then we do not write it. A singularity (x ∈ X̄) is
said to be taut if given a singularity (x′ ∈ X̄ ′) with the same weighted dual graph we
have (x ∈ X̄) ≃ (x′ ∈ X̄ ′) (see [L1], [L2]). Particularly see [L1, Theorem 6.20]. Laufer
[L2] classifies taut singularities, in particular c.q.s. are taut and so they depend only on
their HJ continued fraction.
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The equations for X̄ can be described by means of the extended Riemenschneider
2× 2 minors. For that, we need to use the dual H-J continued fraction

m

m− q
= [b1, . . . , bs].

One can give the following presentation to the C-algebra of C2/(Z/m):

C[z0, z1, . . . , zs, zs+1]/(zizj − zj−1z
bj−1−2
j−1 · · · zbi+1−2

i+1 zi+1 : for 0 ≤ i < j − 1 ≤ s).

Therefore the embedded dimension of 1/m(1, q) is ≤ s + 2, but one can easily show
that it is s+ 2 because by the Riemenschneider’s dot diagram we have

r∑
i=1

(ei − 2) + 3 = s+ 2.

Note that the multiplicity of C2/(Z/m) is then s+ 1.

Example 2.14. Say q = 1, and so m
1
= [m] and m

m−1
= [2, . . . , 2︸ ︷︷ ︸

m−1

]. Then the C-algebra is

C[z0, . . . , zm]/(zizj − zj−1zi+1)

for 0 ≤ i < j−1 ≤ m−1. Thus, this is the cone over the rational normal curve of degree
m (Veronese embeddings of P1!). For example, for m = 1 this is {z0z2 = z21} ⊂ C3. On
the other extreme, if q = m − 1, then the dual fraction is m

1
= [m], and so we obtain as

C-algebra
C[z0, z1, z2]/(z0z2 − zm1 ),

and these are the Am−1 Du Val singularities.

Definition 2.15. Let (x ∈ X̄) be a normal surface singularity. Assume that KX̄ is Q-
Cartier. The index of (x ∈ X̄) is the smallest integer n such that nKX̄ is a line bundle.

Lemma 2.16. The index of (x ∈ X̄) = 1
m
(1, q) is m

gcd(m,q+1)
.

Proof. Consider the minimal resolution π : X → X̄ . We have

KX ≡ π∗(KX̄) +
r∑

i=1

(
− 1 +

βi + αi

m

)
Ei

with the notation above. For a fixed i, one sees (from the recursion formulas for βi and
αi) that gcd(m,αi + βi) divides αj + βj for all j. Set i = 1. (Precisely when q = m − 1
the discrepancies are zero, so the index of X̄ is one.) □

Exercises.
(1) Let µ be an mth primitive root of 1, and let a, b be integers coprime to m. We have

the action T (x, y) = (µax, µby) on C2. Show that there is 0 < q < m such that
1
m
(a, b) := C2/⟨T ⟩ is isomorphic to 1

m
(1, q).

(2) Let µ be an mth primitive root of 1, and consider the action T (x, y) = (µx, µqy) on
C2 where gcd(q,m) = d. Find 0 < q′ < m′ such that 1

m′ (1, q
′) = C2/⟨T ⟩.

(3) Let a, b, c be positive integers and pairwise coprime. Show that the weighted pro-
jective plane P(a, b, c) has precisely 3 singularities: 1

c
(a, b), 1

a
(b, c) and 1

b
(c, a).
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(4) Evaluate Figure 8 for m = 19 and q = 7, finding in particular the subdivision that
resolves the singularity, and the αi, βi and discrepancies.

(5) Show that 1
19
(1, 7) is isomorphic to 1

19
(1, 11), but is not isomorphic to 1

19
(1, 12).

(6) Show that indeed 1
m
(1, q) is the normalization of {wm = um−qv} ⊂ C3 (Figure 8).

(7) Consider the surfaces

S1 = {(x, y, z) ∈ C3 : zm = xayb} and S2 = {(x, y, z) ∈ C3 : zm = xm−qy}
with the condition a+ bq ≡ 0(modm) and a, b coprime to m. Show that the normal-
izations of S1 and S2 are isomorphic.

(8) Let 0 < q < m be coprime integers. Consider the minimal resolution X of the
normalization X̄ of the mth cyclic cover of P2 branched along {xyqzm−q−1 = 0}.
(a) Show that X is the Hirzebruch surface Fm when q = m− 1.
(b) Find the singularities of X̄ for any fixed pair q,m.
(c) Show that X is a rational surface.
(d) Thus, we have χ(OX) = 1. Compute in another way χ(OX) and use that to find

some equation which involves the Dedekind sum s(q,m) (see Remark 1.9).

2.3. T-singularities.
Something bizarre as a presentation (see Exercise §1.1(6)).

Lemma 2.17. Let 0 < a < n be integers with gcd(a, n) = 1. Let

n/(n− a) = [x1, . . . , xp] and n/a = [y1, . . . , yq].

Then for any d ≥ 1, we have dn2

dn2−(dna−1)
= [x1, . . . , xp, 1 + d, yq, . . . , y1]. Moreover its dual is

dn2

dna− 1
= [y1, . . . , yq−1, yq + 1, 2, . . . , 2, xp + 1, xp−1, . . . , x1],

for d > 1, where we have d−2 2s in the middle, or n2

na−1
= [y1, . . . , yq−1, yq +xp, xp−1, . . . , x1].

Proof. See [HP, Lemma 8.5] or [PSU2, Corollary 2.1 and 2.2] or prove it yourself using
Section 1. □

The c.q.s. 1
dn2 (1, dna − 1) with 0 < a < n and gcd(a, n) = 1 together with Du Val

singularities form the important class of T-singularities.
They were first introduced by Kollár–Shepherd-Barron as the quotient singulari-

ties that admit a Q-Gorenstein one-parameter smoothing [KSB, Definition 3.7]. These
smoothings will be discussed later, but this roughly means the existence of a 3-fold
germ over a disk, so that one fiber is the T-singularity, all other fibers are smooth, and
the canonical class of the 3-fold is Q-Cartier. An example is the node A1 = 1/2(1, 1)
taking the 3-fold {x2 + y2 + z2 = t} ⊂ C3 × D with the projection into the disk
D := {t ∈ C : |t| < 1}. (We do not care about the radius here, our disks will always be
just analytic germs of nonsingular curves.)

Among T-singularities, we have the key Wahl singularities, which are the 1/n2(1, na−
1) with 0 < a < n and gcd(a, n) = 1.

Lemma 2.18. Let (x ∈ X̄) = 1
m
(1, q) be a cyclic quotient singularity. The following are

equivalent
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(1) m = dn2 and q = dna− 1 with gcd(n, a) = 1.
(2) K2

X̄
is an integer.

(3) m
gcd(m,q+1)

divides gcd(m, 1 + q).

Proof. If π : X → X̄ is the minimal resolution, then we have

(KX − π∗KX̄)
2 =

r∑
i=1

(2− ei)−
q + q′ + 2

m
+ 2

so q + q′ + 2 ≡ 0(mod m), where 0 < q′ < m and qq′ ≡ 1(mod m). This gives (1) if and
only if (2). (1) if and only if (3) is trivial. □

The c.q.s. that are T-singularities can also be characterized by their ADE graphs or
the T-chains, which were studied in Section 1.2 via the Wahl algorithm ([KSB, Proposi-
tion 3.11]).

Corollary 2.19. If dn2

dna−1
= [e1, . . . , er], then

r − d+ 2 =
r∑

i=1

(ei − 2).

If π : X → X̄ is the minimal resolution, then K2
X + r − d+ 1 = K2

X̄
.

As we saw before, Wahl singularities are key for working with T-singularities. If
n2

na−1
= [e1, . . . , er], then

dn2

dna− 1
= [e1, . . . , er, 1, e1, . . . , er, 1, . . . , 1, e1, . . . , er]

where the numbers of 1s is d − 1. Hence any non-Du Val T-singularity has a partial
resolution consisting of d−1 Wahl singularities of the same type joined by d−1 rational
curves whose intersection with canonical class is trivial. This is called M-resolution
[BC2]. We will elaborate more on them later.

Let [e1, . . . , er] be a Wahl chain. We define integers δ1, . . . , δr in the following induc-
tive way. If r = 1 then δ1 := 1. If we already defined δ1, . . . , δr for [a1, . . . , ar], then we
assign

δ1, . . . , δr, δ1 + δr to [e1 + 1, . . . , er, 2]

δ1 + δr, δ1, . . . , δr to [2, e1, . . . , er + 1].

These numbers compute the discrepancies. If n2

na−1
= [e1, . . . , er] has numbers δ1, . . . , δr,

then

KX ≡ π∗KX̄ +
r∑

i=1

(
−1 + δi

δ1 + δr

)
Ei. (2.2)

We note that δ1 = a and δ1+δr = n. We have a similar description for any T-singularity.
The index of the T-singularity 1

dn2 (1, dna− 1) is n, and it satisfies (see Exercise §1.2 5)

n ≤ Fr−d

where Fi is the ith Fibonacci number defined by the recursion F−2 = 1, F−1 = 1, and

Fi = Fi−1 + Fi−2
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for i ≥ 0. We have equality (Fibonacci T-singularity) if and only if the Hirzebruch-Jung
continued fraction has the form

[3, . . . , 3, 2, . . . , 2, 4, 3, . . . , 3, 2] or [3, . . . , 3, 5, 3, . . . , 3, 2].

A projective surface X̄ with only T-singularities satisfies the Noether’s formula

K2
X̄ + χtop(X̄) +

∑
x∈Sing(X̄)

µx = 12χ(OX̄),

where µp is the Milnor number of (a Q-Gorenstein smoothing of) x (see [HP, p. 172]).
We have the Milnor numbers:
• If x is rational double point of type Ad, Dd, or Ed, then µx = d.
• If x is of type 1

dn2 (1, dna− 1), then µx = d− 1.
One can find a better bound for the index n via some bound for r − d. For example,

if X̄ is a nonrational projective surface with one T-singularity and KX̄ is ample, then
we have the following theorem [RU1] (see also [ES]).

Theorem 2.20. Let S be the minimal model of X (resolution of X̄), and let κ(S) be the Kodaira
dimension of S.
1. If κ(S) = 0, then r − d ≤ 4K2

X̄
.

2. If κ(S) = 1, then r − d ≤ 4K2
X̄
− 2.

3. If κ(S) = 2, then
r − d ≤ 4(K2

X̄ −K2
S)− 4

when K2
X̄
−K2

S > 1, r − d ≤ 1 otherwise.

Those inequalities are optimal, and equality can be classified. The integer d can be
bounded using the log BMY inequality, and so we are really bounding r. See details in
[RU1]. For two or more singularities see the recent pre-print [FRU]. In that work, we
have that X̄ has l singularities 1

djn2
j
(1, djnjaj − 1) with ample canonical class, X → X̄

is the minimal resolution with C equals the exceptional divisor, and π : X → S is the
composition of blow-downs into a minimal model S. Then either we have

l∑
j=1

(rj − dj) ≤ 2(K2
X̄ −K2

S)−KS · π(C),

or there are particular configurations Ei that are exceptional for π such that Ei · C = 1.
We classify all of these special Ei. It is given a bound when X̄ is not rational. The paper
of Rana-Urzúa [RU1] bounds the case of one T-singularity in a rational surface, but it
involves a degree that could be artificially arbitrarily large. We know by Alexeev’s
boundedness that the rational surface’s case is bounded after we fix K2, but it remains
open to find an optimal bound. Based only on examples, an optimal bound could be
close to 4K2 + 6.

There are many examples of X̄ with only T-singularities. Just via blow-ups on ap-
propriate configurations of rational curves. In general, they will have KX̄ not even
big. To have a big and nef canonical class is more subtle, but again there are plenty of
examples. This was started with the rational blowdown technique [FS]. We compute
one in the next example.
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Example 2.21. On the left of Figure 9 we have a K3 surface S with a configuration of six
(−2)-curves that intersect transversally as shown. On the right, we have a particular
composition of six blow-ups X . We find in this way two Wahl chains [2, 2, 4, 5, 3, 2, 4]
and [4]. We contract them ϕ : X → X̄ by Artin’s theorem. One can show that KX̄ is
ample for a general choice of such S. We compute K2

X̄
= 2.
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FIGURE 9. An example of a surface X̄ with KX̄ is ample [RU2].

Exercises.
(1) Let (a, b, c) be a Markov triple. Show that P(a2, b2, c2) has three Wahl singularities.
(2) Show that a projective surface X̄ with only T-singularities satisfies the Noether’s

formula
K2

X̄ + χtop(X̄) +
∑

x∈Sing(X̄)

µx = 12χ(OX̄),

where µp is the Milnor number of a Q-Gorenstein smoothing of x.
(3) Show that in Example 2.21 we obtain KX̄ big and nef, just by comparing the canon-

ical class of KX with KX̄ . Compute that K2
X̄
= 2.

(4) Show that there are infinitely many T-singulatities on surfaces X̄ when KX̄ is only
big but not nef. (This has to do with the birational geometry of the next sections.)

(5) ⋆ In [LP1] there are various examples of X̄ with KX̄ big and nef, starting with a
rational elliptic surface with sections. See also [PPS1], [PPS2], [SU1], [RU3]. Find
your own example with K2

X̄
= 1.

(6) ⋆⋆ It turns out that the construction of singular surfaces X̄ with only T-singularities
and KX̄ big and nef has to do directly with constructions of exotic blow-ups of P2

at few points (see [RU3]). We must have 0 < K2
X̄

< 9, and the number of points
blown-up is 9 −K2

X̄
. There are known examples for K2

X̄
= 1, 2, 3, 4, 5 (see previous

exercise), and there are very few for K2
X̄
= 5 (the first ones are in [RU3]). Construct

examples for K2
X̄
≥ 6. By other geometric means, there are exotic blow-ups of P2 at

3 and 2 points (very few examples! [AP1], [AP2]), but there is no example at all of
an exotic blow-up of P2 at one point.

(7) ⋆⋆ As discussed in this section, by Alexeev’s boundedness there is a finite list of
T-singularities for projective surface X̄ with KX̄ big and nef and fixed K2

X̄
. The

results described in [RU1, FRU] give optimal ways to bound singularities when X̄
is not rational. Find similar bounds in the case of rational surfaces.
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The table shows results of computer searches by the program ComputerSearch [R1].
It is done for surfaces X̄ with two Wahl singularities and K2

X̄
= 4, starting with the

rational elliptic fibration with sections that has singular fibers I9 +3I1. Each line is one
example. The (n, a) corresponds to a Wahl singularity, length is the length of the Wahl
chain. GCD is gcd(n1, n2) for the ni in the example.

(n, a) Length (n, a) Length GCD Nef Q-ef Obstruction 0 WH Index
(j; 0, 0, 0; 8) 5 (40, 17) 9 8 YES YES YES – 1127
(j; 0, 1, 0; 10) 6 (27, 11) 8 1 YES YES YES – 1128

1.8 2 chains, K2 = 4

2 chains, K2 = 4
(n, a) Length (n, a) Length GCD Nef Q-ef Obstruction 0 WH Index

(25, 11) 7 (25, 11) 7 25 YES YES YES – 1129
(31, 14) 8 (31, 13) 7 31 YES YES YES – 1130
(36, 11) 8 (31, 14) 8 1 YES YES YES – 1131
(39, 11) 9 (16, 3) 7 1 YES YES NO(2) – 1132
(39, 11) 9 (16, 3) 7 1 YES YES NO(2) NO 1133
(39, 11) 9 (27, 5) 8 3 YES YES YES – 1134
(39, 11) 9 (27, 5) 8 3 YES YES YES NO 1135
(41, 15) 8 (29, 13) 8 1 YES YES YES – 1136
(41, 15) 8 (39, 11) 9 1 YES YES YES NO 1137
(49, 22) 9 (28, 11) 8 7 YES YES YES NO 1138
(61, 16) 10 (29, 11) 7 1 YES YES YES NO 1139
(65, 18) 9 (17, 8) 9 1 YES YES YES NO 1140
(65, 18) 9 (52, 15) 11 13 YES YES YES NO 1141
(73, 21) 14 (22, 3) 9 1 YES YES YES – 1142
(76, 31) 10 (11, 4) 5 1 YES YES YES – 1143
(76, 29) 9 (17, 8) 9 1 YES YES YES NO 1144
(79, 24) 10 (18, 7) 6 1 YES YES NO(2) NO 1145
(89, 39) 11 (9, 2) 5 1 YES YES YES – 1146
(89, 39) 11 (11, 2) 6 1 YES YES YES NO 1147
(94, 41) 10 (37, 10) 8 1 YES YES YES – 1148
(96, 17) 12 (26, 5) 9 2 YES YES YES – 1149
(98, 19) 13 (19, 5) 7 1 YES YES YES – 1150
(103, 27) 11 (14, 5) 6 1 YES YES YES NO 1151
(107, 38) 11 (18, 7) 6 1 YES YES NO(2) NO 1152
(109, 16) 13 (23, 6) 8 1 YES YES YES – 1153
(113, 17) 13 (109, 16) 13 1 YES YES YES NO 1154
(117, 41) 13 (13, 2) 7 13 YES YES YES NO 1155
(117, 31) 11 (49, 15) 9 1 YES YES YES NO 1156
(128, 37) 12 (32, 9) 8 32 YES YES YES NO 1157
(128, 37) 12 (73, 21) 14 1 YES YES YES NO 1158
(145, 42) 12 (23, 7) 7 1 YES YES NO(2) NO 1159
(151, 45) 12 (11, 4) 5 1 YES YES YES NO 1160
(153, 40) 12 (5, 1) 4 1 YES YES YES – 1161
(157, 58) 11 (11, 5) 6 1 YES YES YES NO 1162
(157, 28) 13 (41, 7) 11 1 YES YES YES NO 1163
(163, 64) 13 (74, 29) 10 1 YES YES YES NO 1164
(164, 61) 12 (4, 1) 3 4 YES YES NO(2) – 1165
(169, 70) 11 (23, 7) 7 1 YES YES YES – 1166
(175, 67) 11 (2, 1) 1 1 YES YES NO(2) – 1167
(183, 67) 11 (7, 2) 4 1 YES YES NO(2) NO 1168
(183, 38) 13 (9, 4) 5 3 YES YES YES NO 1169
(187, 79) 11 (3, 1) 2 1 YES YES NO(2) – 1170
(187, 79) 11 (3, 1) 2 1 YES YES NO(2) NO 1171
(191, 75) 14 (4, 1) 3 1 YES YES YES – 1172
(193, 53) 12 (4, 1) 3 1 YES YES YES – 1173
(208, 37) 13 (41, 7) 11 1 YES YES YES NO 1174

28FIGURE 10. 46 examples for K2 = 4, there are much more!
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3. DEFORMATIONS

A good way to get into deformations of varieties is the book by Hartshorne [H7],
and the papers [S1, S3, S2], [P1], and [BW]. I will restrict the references to these papers.
For Q-Gorenstein smoothings and deformations in the KSBA moduli of surfaces, our
main references are [H2] and [H5].

3.1. General basic theory for affine and proper varieties.
A deformation of a scheme X over Y is a flat morphism X → Y [H6, III.9]. Locally

speaking, if A is a commutative ring and M is an A-module, then M is flat if for any
exact sequence of A-modules 0→ N → P we have 0→ N ⊗M → P ⊗M is exact. For
example, consider a field k and the ring inclusion A = k[x]→ k[x, y]/(xy) = M , and so
M can be considered as A-module. Then (x)⊗M → A⊗M is not injective, and so it is
not flat. Geometrically, this means that the projection of {xy = 0} into the x-axis is not
a deformation. The same happens for the blow-up at a nonsingular point.

By definition, let f : X → Y be a morphism of schemes, and let F be an OX-module.
We say that F is flat over Y at x ∈ X if Fx is a flat OY,y-module, where f(x) = y and
we are using the natural map f# : OY,y → OX,x. We say that X is flat over Y if OX

is flat for all x ∈ X . In that case f is called a deformation (or a flat family, sometimes
even just a family). In the following, we state some few properties from [H6, III.9]. We
restrict ourselves to varieties. Deformations preserve the dimension of the fibers (and
so blow-ups are not deformations). In the case of projective morphisms, flatness is the
same as constant Hilbert polynomial for the fibers, in particular, the arithmetic genus
is constant. Here is a useful theorem for us (see [H6, Proposition 9.7]): If f : X → Y is a
morphisms between varieties (both reduced and irreducible), and Y is nonsingular of
dimension 1, then f is flat. Hence any fibration of a surface over a nonsingular curve
is flat. Let f ∈ C[x1, . . . , xm] irreducible, then the projection

{f = t} ⊂ Cm × C→ C

is a deformation. We can write down many examples. Below we have larger families
(with respect to the base) of deformations of all the ADE singularities:

An (n ≥ 1) : z2 + x2 + yn+1 + t1y
n−1 + . . .+ tn−1y + tn = 0

Dn (n ≥ 4) : z2 + y(x2 + yn−2) + t1y
n−2 + . . .+ tn−1 + tnx = 0

E6 : z
2 + x3 + y4 + t1y

2 + t2y + t3 + x(t4y
4 + t5y + t6) = 0

E7 : z
2 + x(x2 + y3) + x(t1y + t2) + t3y

4 + . . .+ t6y + t7 = 0
E8 : z

2 + x3 + y5 + x(t1y
3 + . . .+ t4) + t5y

3 + . . .+ t8 = 0

They actually represent all possible deformations of Du Val singularities. A devel-
opment of deformation theory is not possible here, so we will take the path directly to
some key points, to make sense of the deformation space of a surface and computa-
tions.

Fix a complex normal variety X . We follow [BW], see much more in [O1]. An infini-
tesimal deformation of X is the existence of a commutative diagram

X

��

// X ′

��

Spec(C) // Spec(A)
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where A is an Artin local C-algebra (thus Spec(A) is one point), the map X ′ → Spec(A)
is flat, and

X ≃ Spec(C)×Spec(A) X
′.

Let D(A) be the set of deformation classes of X . In particular D(C[t]/(t2)) are the first
order deformations of X , and "represents" the tangent space T1

X of the hypothetical de-
formation space of X . It turns out that this tangent space has a structure of C-module.
If X is a local isolated singularity, then T1

X = Ext1(Ω1
X ,OX) [S2, p.150] and it is finite di-

mensional. When X is compact, then T1
X is finite dimensional too. When X is compact

and nonsingular, then T1
X = H1(X,TX). We recall that Ω1

X is the sheaf of differentials
on X [H6, II.8]. Its dual

HomOX
(Ω1

X ,OX)

is the tangent sheaf TX of X [H6, II.8]. Therefore, if X is nonsingular, then we have
that Ω1

X and TX are both locally free of rank 2, and so

Ext1(Ω1
X ,OX) ≃ H1(X,TX).

Example 3.1. If X is a nonsingular projective curve, then Ω1
X = KX and TX = −KX

(both represented by the canonical divisor class), and so if g(X) > 1 we obtain

h1(X,TX) = 3g − 3

by Riemann-Roch’s theorem. This is the dimension of the moduli space of curves of
genus g.

This is literal from [BW]. If T1
X is finite dimensional (in our case we have it for iso-

lated singularities or proper X), then we have, by the theory of Schlessinger [S1], that
the functor D is formally versal. That is, we have a complete local C-algebra R and a
morphism

ϕ : hR = Hom(R, )→ D

of functors (in the category of Artin local C-algebras) such that
(i) ϕ(C[t]/(t2)) is a bijection, and

(ii) ϕ is smooth, i.e., if A′ → A is onto, then any

X̄

��

// X̄ ′

��

Spec(A) // Spec(A′)

comes from compatible images of hR.
This means that all the deformations of X are encoded in the ring R. The functor D

is said to be universal if in (ii) we have bijections. If T0
X := H0(X,TX) = 0, then it is

universal (if X is affine, then this vector space is infinite dimensional; if X is of general
type, then this is zero). Thus this group T0

X is an obstruction to obtain an universal
functor, and it represents the infinitesimal automorphism group of X .

For germs (x ∈ X̄), we have existence of versal deformation (analytic) spaces Def(x ∈
X̄) by Grauert, and so every deformation of (x ∈ X̄) is encoded by Def(x ∈ X̄), and
they are determined at the first infinitesimal level. The tangent space at the point in
Def(x ∈ X̄) representing X is T1

X . The versal deformation spaces of ADE singularities
appeared above. Versal deformation spaces can be arbitrarily singular in general.

For compact complex spaces X we do have versal deformation spaces Def(X) and a
corresponding familyX → Def(X). Here a deformation is a flat and proper morphism.
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• [K1] For X nonsingular, there exists a complex analytic set (0 ∈ S) which is the ver-
sal deformation space of X . If H0(X,TX) = 0 and S is reduced, then it is universal.
The space (0 ∈ S) is the Kuranishi family. For more information see [C1].
• [D2], [G4], [P1] For any X , there exists a complex analytic set (0 ∈ S) which is the

versal deformation space of X .
Hence, in any case we have a versal deformation space. Hard questions are: How

does it look like? How many components? reduced? dimensions?

The obstructions to "integrate" an infinitesimal deformation in T1
X lie in a vector

space T2
X . There is a general map

T1
X → T2

X

whose vanishing describes all the actual deformations. When X is local complex an-
alytic variety, then T2

X is Ext2(Ω1
X ,OX) [S2]. When X is non-singular we have that

T2
X = H2(X,TX), and the map T1

X → T2
X is known as the Kuranishi map (see [C1, The-

orem 8]). We will coon be interested in Q-Gorenstein deformations, where we can
understand "very well" the trilogy Ti

X , i.e. the Ti
QG,X . This will be explained in the

next section. To finish, we give some useful things about the deformation theory of
surfaces.

Let C be a (−1)-curve inside a nonsingular surface X . Then any deformation Xt of
X carries a deformation Ct of C. This is not the case for other (−m)-curves, m > 1.
The infinitesimal deformations of the pair (X,C) are encoded in H0(C,NC|X), and the
obstructions are in H1(C,NC|X). But for a (−1)-curve both are zero, and so C is rigid
and unobstructed, so any deformation Xt of X carries a deformation Ct of C. We can
then blow-down the "(−1)-divisor" in the deformation, and so compatible with the
(Castelnuovo) blow-down at each fiber. See [BHPVdV, IV.4] for more. On the other
hand, let σ : X̃ → X be the blow-up at a smooth point in X , and let E be the (−1)-
curve. Then we have

0→ σ∗(Ω1
X)→ Ω1

X̃
→ Ω1

E → 0,

and by ⊗Ω2
X , Serre duality and projection, we obtain

0→ H0(TX̃)→ H0(TX)→ H0(E,OE(1))→ H1(TX̃)→ H1(TX)→ 0,

and H2(TX̃) = H2(TX). Hence we have the same obstruction, and if H0(TX) = 0 then

0→ C2 → H1(TX̃)→ H1(TX)→ 0,

and so blowups add two dimensions to infinitesimal deformations. When X is of gen-
eral type, then H0(TX) = 0. There is also a residue sequence

0→ TX(− logC)→ TX → NC|X → 0

that can be used to understand deformations that preserve C.

If H1(X,TX) = 0 then X is rigid and KX ample (see [BW]). A nonsingular projective
surface with H1(X,TX) = 0 is obviously rigid as there is no T1

X = 0. (We may also have
that its deformation space is a nonreduced point, so this is only a sufficient condition
to be rigid.) A (−2)-curve produces an infinitesimal deformation that may not give any
effective deformation [BW].

Rigid complex surfaces are very special. They could only be: del Pezzo surfaces
(i.e. surfaces with −K ample), Inoue surfaces, and minimal surfaces of general type
[BC1, Theorem 1.3]. For surfaces of general type there are not many examples, and
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their geography is unknown. At the level of Chern slopes, if a minimal surface of
general type X is rigid, then

c21(X)/c2(X) ∈ [5/7, 3].

This is implied from an estimate on the dimension of the deformation space using the
Kuranishi map and Riemann-Roch. Hence between 1/5 and 5/7 we do have deforma-
tions for any surface! There is a lot more in [BC1]. Surfaces X with c21(X)/c2(X) = 3 are
ball quotients, and so they are rigid. The first examples of rigid but not infinitesimally
rigid varieties were worked out recently here [BP]. In [SU2], we have the first examples
of rigid surfaces whose Chern slopes are arbitrarily close to the BMY-bound 3. There
are other limit points for rigid surfaces in [5/7, 3], but any density result or any further
restriction is unknown. What could be a strategy to produce infinite families of rigid
surfaces whose Chern slope sweeps a large part of [5/7, 3]?

Exercises.

(1) We saw that the deformation space for the Du Val singularity An is

{z2 + x2 + yn+1 + t1y
n−1 + . . .+ tn−1y + tn = 0} ⊂ C3

(x,y,z) × Cn
(t1,...,tn)

.

Show that in the fibers we can find only Am singularities. In fact, show that for any
partition d1 + . . .+ ds = n we have a fiber with Ad1−1, . . . , Ads−1 singularities.

(2) Show that P2 is rigid. Which del Pezzo surfaces are rigid?
(3) Let Fn be the Hirzebruch surface with a section of self-intersection−n. For example

F0 = P1×P1 and F1 is the blow-up of P2 at one point. Show that F0 and F1 are rigid.
(4) Show that for n > 0 a Hirzebruch surface can be explicitly presented as

Fn = {xn
0y1 = xn

1y2} ⊂ P1
[x0,x1]

× P2
[y0,y1,y2]

.

Find the P1 fibration on Fn and the negative section. For n > 1, consider now the
family

Fn :=
{
xn
0y1 − xn

1y0 + (t1x
n−1
0 x1 + t2x

n−2
0 x2

1 + · · ·+ tn−1x0x
n−1
1 )y2 = 0

}
in P1

[x0,x1]
× P2

[y0,y1,y2]
× Cn−1

(t1,...,tn−1)
. This gives all possible deformations of Fn. Show

that all fibers over (t1, . . . , tn−1) ∈ Cn−1 \ {0} a Hirzebruch surfaces Fm with m ≡
n(mod 2) and m < n. Can you find the negative section? Can you see its degenera-
tion into some curves in Fn?

(5) Take P1 × P1. Consider the divisor D formed by 3 horizontal fibers and 3 vertical
fibers. Let f : X → P1 × P1 be the triple cyclic cover branch along D. It has 9 A2 Du
Val singularities. Show that the minimal resolution S is a K3 surface. Compute that
h0(TS) = h2(TS) = 0 and h1(TS) = 20. So we have a 20-dimensional unobstructed
deformation space for S.

(6) ⋆ Find your own examples of rigid minimal surfaces of general type.
(7) ⋆⋆ What is the exact region for Chern slopes of rigid surfaces in the allowed interval

[5/7, 3]? We only know some families of examples, and some limit points. However,
no dense region of rigid surfaces is known (see [SU2]).
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3.2. Q-Gorenstein deformations.
Our main references to understand Q-Gorenstein deformations are [H1], [H2], and

[H5]. This is how the Kollár–Shepherd-Barron moduli space of surfaces of general type
locally looks like, and so its origins are in [KSB] (see also [K2, Section 6]). Behind this
we have Mori’s theory on families of surfaces.

The canonical cover of the T-singularity 1
dn2 (1, dna−1) is the cyclic quotient 1

dn
(1, dn−

1)→ 1
dn2 (1, dna−1) which is explicitly explained in Figure 11. It gives a concrete model

of the T-singularity, and it will be used to describe all Q-Gorenstein deformations.

A

An (22((x,7) te (MX,Mana-1y)
(x,y) 13/Mx,uy) da M = di-primitivean

u= y dn i
. root of I

di
v= Y
w= XY

r
: 1

↓

CYAY] < CA]
/

unen II

(wan= un3 < 432/ WaM-dy Sweur
11
,
1)WiManaw

FIGURE 11. Canonical cover of a T-singularity

In fact, for any log-canonical (l.c.) singularity we can define its canonical cover as the
cyclic cover induced by the index of the canonical class (the index of the singularity)
[H2, 3.1]. It is étale in codimension 1, and it has a Gorenstein singularity.

Definition 3.2. [H2, Definition 3.1] Let (x ∈ X̄) be a l.c. surface singularity, and let
(X̄ ⊂ X̄ ) → (0 ∈ S) be a deformation of X̄ . Let n be the index of (x ∈ X̄). We say that
it is a Q-Gorenstein deformation if it is the quotient of a Z/n-equivariant deformation of
its canonical cover.

Kollár–Shepherd-Barron [KSB] adopted another definition. When X is normal and
S is nonsingular, this was just the condition KX Q-Cartier. If moreover the base is a
(nonsingular) curve and the general fiber of X → S is canonical, then both definitions
coincide [H2, Lemma 3.4] (compare with [K2, 6.2.3]). We say that it is a Q-Gorenstein
smoothing if the general fiber is nonsingular. Typically our deformations will happen
over a nonsingular curve germ D, and so X → D is a Q-Gorenstein smoothing if and
only if all other fibers are nonsingular and KX̄ is Q-Cartier.

If W is a normal projective surface with only l.c. singularities, then a deformation
(W ⊂ W) → (0 ∈ S) is Q-Gorenstein if locally induces Q-Gorenstein deformations at
every germ in W . IfW is normal, the general fibers have only canonical singularities,
and KW is Q-Cartier, thenW → D is a Q-Gorenstein deformation [H2, Lemma 3.4].

Next we have the precise picture for Q-Gorenstein deformations of a T-singularity
[HP, (2.2)] (We already reviewed the versal deformation space of ADE singularities).
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Theorem 3.3. A Q-Gorenstein versal deformation space of the T-singularity 1
dn2 (1, dna− 1),

denoted by DefQG, is given by

{xy = zdn + td−1z
(d−1)n + . . .+ t1z

n + t0} ⊂
1

n
(1,−1, a)× Cd,

via the projection (x, y, z, td−1, . . . , t1, t0) 7→ (td−1, . . . , t1, t0). In particular DefQG has dimen-
sion d. Moreover, the possible singularities of a fiber are either Ae1−1, . . . , Aes−1, or 1

e1n2 (1, e1na−
1), Ae2−1, . . . , Aes−1, where e1 + . . .+ es = d.

Let us fix a normal projective surface W with only T-singularities. We want to ana-
lyze the new trilogy:

T0
QG,W : Vector space of infinitesimal automorphisms of W ,

T1
QG,W : Vector space of Q-Gorenstein first order deformations of W , and

T2
QG,W : Vector space of obstructions for Q-Gorenstein deformations.

We want to understand the versal Q-Gorenstein deformation space DefQG(W ) of W ;
See [H5, Section 3].

First, it is a general theorem for automorphisms groups of proper schemes over a
field k that Aut(W ) is a group scheme locally of finite type over k. Moreover, its tangent
space at the identity is H0(W,TW ) (see for example [D1, Prop.2.4]). As we work over
k = C, Aut(W ) is reduced. Therefore, if Aut(W ) is finite, then H0(W,TW ) = 0. But
indeed Aut(W ) is finite when KW is big by a well-known theorem of Iitaka [I, Section
11.1 for definitions, Theorem 11.12 for the result]. On the other hand, it is shown in
[H1] (see [H2, Lemma 3.8]) that

T0
QG,W = H0(W,TW )

as we have an isomorphism of sheaves TW ≃ T 0
QG,W . (This is true for other singularities,

not only T-singularities.)

For the analysis of the other two vector spaces, we first consider the minimal reso-
lution of singularities π : X → W . We have π∗TX = TW (see [BW, Proposition 1.2]).
By the Leray spectral sequence in low degree terms, we have the exact sequence (see
[NSW, Lemma (2.1.3)], and [H5, Section 3])

0→ H1(W,TW )→ T1
QG,W → H0(W, T 1

QG,W )→ H2(W,TW )→ T2
QG,W → 0.

This happens because T i
QG,W is supported on the isolated singularities of W for i > 0,

and T 2
QG,W = 0 as the local canonical covers of W are complete intersections (see

[H2, p.227]). The general set-up is described in [H5, Section 3]. The vector space
H0(W, T 1

QG,W ) is a direct sum of the tangent spaces of the Q-Gorenstein deformations
of each T-singularity. We have that if T2

QG,W = 0 then DefQG(W ) is nonsingular (for ex-
ample, this happens when H2(W,TW ) = 0). The vector space H1(W,TW ) parametrizes
equisingular deformations of W .

If KW is big, then by Riemann-Roch we can compute

dimCT1
QG,W = 10χ(OW )− 2K2

W + dimCT2
QG,W , (3.1)

and so
h2(TW ) = h0(T 1

QG) + h1(TW ) + 2K2
W − 10χ(OW ), (3.2)

where h0(T 1
QG) =

∑
i di and di is the d corresponding to each T-singularity in W .
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If dimCH
2(W,TW ) = 0, then DefQG(W ) is nonsingular and any local deformations of

the singularities in W may be glued to obtain a global deformation of W . We say in
this case that there are no local-to-global obstructions to deform W .

Remark 3.4. In positive characteristic we do not have necessarily the construction of
DefQG(W ), and so arguments for the existence of global Q-Gorenstein smoothings re-
quire pg = 0, as they need to apply Grothendieck’s effectiveness of the associated for-
mal construction (and the Artin’s algebraization of formal moduli). It is not enough to
have just H2(TW ) = 0 (in principle). See more details in [LN]. For example, would it
be possible to prove existence of the surfaces in [RU2] in positive characteristic?

We end with an application due to the pioneering work of Lee and Park [LP1]. (This
is after the construction of several exotic 4-manifolds using the rational blowdown
technique of Fintushel-Stern [FS], [P2]. The point is: that construction is the diffeo ana-
logue of Q-Gorenstein smoothing [SSW].) They prove existence of a family of (nonsin-
gular, minimal, projective) surfaces of general type with pg = 0, K2 = 2, and π1 = {1}.
This was the first example of a simply-connected Campedelli surface.

Lee and Park start with a particular pencil of plane cubics: Take a nonsingular conic
A, and line B, and another line L. Consider the pencil {νAB+µL3 = 0}. After blowing
up 9 times, we obtain a relatively minimal elliptic fibration Y → P1, whose singular
fibers are of Kodaira type IV ∗, 2I1, I2 (see Figure 12). In these fibrations we have a
Mordell-Weil group of rank 1 with no torsion, but as shown in Figure 12 we will use
only 3 sections in the construction. (In [P5], Persson produces the list of all possible
configurations of singular fibers in rational elliptic fibrations with sections, and the
corresponding rank and torsion of the Mordell-Weil group.)

490 Y. Lee, J. Park

is one I2-singular fiber (two rational (−2)-curves meeting two points) on
g : Y → P1 which consists of the proper transforms of the line A and
the conic B. Furthermore, the proper choice of curves A, B and L guar-
antees two more nodal singular fibers on g : Y → P1. For example, the
pencil λ(xy − z2)z + µ(x − y)3 works. This pencil has singular fibers at
[λ : µ] = [1 : 0], [0 : 1], [36 : √

3i] and [−36 : √
3i]. Hence the fibration

g : Y → P1 has one Ẽ6-singular fiber, one reducible I2-singular fiber, and
two nodal singular fibers (see Fig. 1 below). Notice that there are three sec-
tions e′′

1, e′′
2, e′′

3 in Y , so that two sections e′′
1, e′′

2 meet the proper transform
of the conic B and the third section e′′

3 meets the proper transform of the
line A.

Fig. 1. A rational surface Y

Remark 3. The existence of an elliptic fibration with fibres I1 , I1, I2 and IV ∗
is known [15,35]. And, by the result in [30], this elliptic fibration has three
sections which satisfy the configuration in Fig. 1: Let C1, C2, C3 be three
ends of IV ∗ and D1, D2 the two component of I2. We number as the zero
section O passes C1 and D1. By the height formula, the generator P of
the Mordell Weil group passes C2 (after changing C2 and C3 if necessary)
and D2. Then the section corresponding to 2P passes C3 and D1. Thus
O, 2P and P satisfy the configuration [29].

Main construction. Let Z := Y�2P
2

be the surface obtained by blowing
up at two singular points of two nodal fibers on Y , and denote this map by τ .
Then there are two fibers such that each consists of two P1s, say Ei and Fi ,
satisfying E2

i = −1, F2
i = −4 and Ei · Fi = 2 for i = 1, 2. Note that

each Ei is an exceptional curve and Fi is the proper transform of a nodal
fiber. Then the surface Z has four special fibers; one Ẽ6-singular fiber, one
I2-singular fiber consisting of Ã and B̃ which are the proper transforms
of A and of B, and two more singular fibers which are the union of Ei
and Fi for i = 1, 2. We denote the three sections e′′

1, e′′
2, e′′

3 by S1, S2, S3
respectively. First, we blow up six times at the intersection points between
two sections S1, S2 and F1, F2, B̃. It makes the self-intersection number of
the proper transforms of S1, S2 and B̃ to be −4. We also blow up twice at

FIGURE 12. Elliptic fibration used in the first K2 = 2 example of [LP1].

Consider the blow-up X → Y indicated in Figure 13 (Lee-Park [LP1] Z̃ is our X). We
note that it is the composition of 18 consecutive blow-ups at particular points over the
configuration (including infinitely near points of course). Hence K2

X = −18. We also
note that X contains five Wahl chains: [2, 10, 2, 2, 2, 2, 2, 3], [2, 7, 2, 2, 3], [7, 2, 2, 2], [5, 2],
and [4]. Let W be the contraction of these five chains. We have by Corollary 2.19

K2
W = −18 + 8 + 5 + 4 + 2 + 1 = 2.

Moreover we can prove that KW is big and nef.
If we can prove that W has Q-Gorenstein smoothings, then we would have families

of surfaces of general type with K2 = 2, pg = q = 0. Using the Seifert-Van Kampen
theorem, one can show that they all would also be simply-connected. To show the
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A simply connected surface of general type with pg = 0 and K2 = 2 491

the intersection points between the third section S3 and F1, F2, so that the
self-intersection number of the proper transform of S3 is −3.

Next, we blow up three times successively at the intersection point
between the proper transform of S2 and the exceptional curve in the total

transform of F1. It makes a chain of P1,
−7◦ − −2◦ − −2◦ − −2◦ , lying in the total

transform of F1. We also blow up three times successively at the intersection
point between the proper transform of S2 and the exceptional curve in the

total transform of F2, so that a chain of P1,
−7◦ − −2◦ − −2◦ − −2◦ , lies in the

total transform of F2. We note that the self-intersection numbers of the
proper transforms of F1 and F2 are −7. Then we blow up at the intersection
point between the proper transform of S1 and the exceptional (−1)-curve
intersecting the proper transform of F2, so that it produces a chain of P1,
−2◦ − −7◦ − −2◦ − −2◦ − −2◦ , lying in the total transform of F2. Then we blow
up again at the intersection point between the exceptional (−1)-curve and
the rational (−2)-curve which is the right end of the above chain of P1, so

that it produces a chain of P1,
−2◦ − −7◦ − −2◦ − −2◦ − −3◦ − −1◦ − −2◦ . We note

that the self-intersection numbers of the proper transforms of S1 and S2 go
to −5 and −10 respectively.

Next, we have a rational surface Z̃ := Y�18P
2

which contains five dis-
joint linear chains of P1:

−2◦ − −10◦ − −2◦ − −2◦ − −2◦ − −2◦ − −2◦ − −3◦ (which
contains the proper transforms of two sections S2, S3 and the five rational

(−2)-curves in Ẽ6-singular fiber),
−7◦ −−2◦ −−2◦ −−2◦ ,

−2◦ −−7◦ −−2◦ −−2◦ −−3◦ ,
−4◦ and

−5◦ − −2◦ (which contains the proper transforms of the section S1 and
the one rational (−2)-curve in Ẽ6-singular fiber) (Fig. 2).

Fig. 2. A rational surface Z̃

Finally, we contract these five disjoint chains of P1 from Z̃. Since it
satisfies the Artin’s criterion, it produces a projective surface with five
singularities of class T [2, §2]. We denote this surface by X. In Sect. 4 we will

FIGURE 13. The suitable blow-ups Figure 12.

existence of Q-Gorenstein smoothings the strategy is to prove that there are no local-
to-global obstructions via the computation: H2(TW ) = 0.

The following is a general strategy. As in [LP1], we have Riπ∗TX(− logE) = 0 for
i = 1, 2 (and π∗TX = TW ), where E is the exceptional (reduced) divisor of π.As we have
that KW is big, then H0(TW ) = 0. Hence, by the residue sequence

0→ TX(− logE)→ TX → ⊕C∈ENC|X → 0,

we have H0(TX(− logE)) = H0(TX) ≃ H0(TW ) = 0. We also have

H2(TX(− logE)) ≃ H2(TW ),

and by Serre’s duality we have H0(Ω1
X(logE)⊗ Ω2

X) ≃ H2(TX(− logE)).

Let S → P1 be a relatively minimal rational elliptic fibration with sections. Then
KS ∼ −F , where F is the class of a fiber. Let F1, F2 two fibers of Kodaira type Im for
some ms. Then one can prove that (see for example the beginning of [PSU1, proof of
Theorem 2.1])

H2(TS(− log(F1 + F2))) = 0. (3.3)
After that we can use the following two principles to add and erase curves keeping
obstruction H2(T (− logD)).

(-1) We can add or erase (−1)-curves which are transversal (SNC) to the original con-
figuration. This includes adding the (−1)-curve from the blow-up at a node of the
original configuration (see for example [PSU1, Proposition 4.2 and 4.3]).

(-2) We can add or erase ADE configurations of (−2)-curves that are disjoint to the orig-
inal configuration [PSU1, Theorem 4.4].

Let us come back to our example. Starting with Y → P1 and F1 and F2 (its two nodal
I1 fibers), we obtain H2(TX(− logE)) = 0 by applying these principles several times
at the consecutive blow-ups. Therefore, T2

QG,W = 0, and so DefQG(W ) is smooth of
dimension 10−2K2 = 6, and each of the 5 singularities contribute with one dimension.
We have that h1(TW ) = 1.

Remark 3.5. I think one can degenerate further by just degenerating the conic into two
lines. This would explain the extra dimension from h1(TW ) = 1. What degeneration
do we get as a KSBA surface? Do we acquire an extra Wahl singularity?

Later Park, Park, Shin were able to find the analogue surfaces for K2 = 3 [PPS1], and
K2 = 4 [PPS2]. For this last case, these examples are the only available surfaces in the
literature (two examples), in reality there are hundreds of them (see 46 in Table 10).
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Note that a restriction to use this method is

10χ− 2K2 > 0,

and so for pg = q = 0 we can do it only for K2 = 1, 2, 3, 4. For more pg = 0 examples in
general see for example [SU1, RU3], where we also use other singularities.

Exercises.
(1) Verify Equations 3.1 and 3.2 (see [RU3, Theorem 4.1]).
(2) Show that for any d ≥ 1 there is a d : 1 cover of the Wahl singularity 1

n2 (na−1) given

by 1
dn2 (1, dna

′ − 1)
d:1−→ 1

n2 (1, na − 1), where a′ satisfies that a ≡ da′(mod n), which
fits in the following commutative diagram

C2 C2

1
dn2 (1, dna

′ − 1) 1
n2 (1, na− 1)

(x,y)7→(xd,yd)

d:1

Are there induced smoothings?
(3) Find equations for the pencil and singular fibers of the example in Figure 12. Show

that KW is big and nef for the W constructed from Figure 13.
(4) Show that Equation 3.3 holds. Verify that we have no local-to-global obstructions

to deform W constructed from Figure 13, using the add and erase principles. In
fact, you can show that π = {1} for the general fiber, using Van Kampen Theorem,
check [LP1].

(5) On the other hand, if we start with 3 or more complete singular fibers in an ellip-
tic fibration with sections, then we will find out positive obstruction. Show one
example where H2(TW ) ̸= 0 (see [RU3, Section 4]).

(6) Enriques surfaces degenerate to surfaces W with T-singularities of type 1
4d
(1, 2d−1)

only. There are many ways to do it, in [U2] you can have many. In indicated in
[U2, Section 6], they can be used to understand families of Q-Homology projective
planes with numerically trivial canonical class. Realize at least one of these one-
dimensional families as a Q-Gorenstein smoothing of some rational surface.

(7) ⋆ Sometimes, even though there are obstructions, one can construct anyway a com-
plex smoothing. For example, in the presence of some symmetry, whose quotient
has no obstructions, for details see [LP2, Theorem 3]. That is applied to a well-
known family of Horikawa surfaces. Find your own application for some other
surfaces of general type.

(8) ⋆⋆ Construct a complex simply-connected pg = 0 surface of general type with K2 ≥
5. With the strategy of Q-Gorenstein smoothings, you can start with the examples
in [RU3] for K2 = 5.

3.3. Kollár–Shepherd-Barron correspondence.
For this section, the fundamental source is [KSB, Section 3]. The main point in that

section was to prove that the components of the reduced versal deformation space of
a c.q.s. can be described in a one-to-one correspondence via "P-resolutions", and that
each deformation in a component can be obtained using Q-Gorenstein deformations
of the associated P-resolution. Behind this we have Mori theory of a family of surfaces
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over a nonsingular curve, which is explained at the very beginning of the paper [KSB,
Theorem p.301].

Let 0 < q < m be coprime integers. Let us consider the c.q.s. W := 1
m
(1, q). As

explained in the previous sections, there exists a versal deformation space Def(W ).
The infinitesimal deformations were described here [R2]. Equations for Def(W ) were
investigated here [S8].

Definition 3.6. [KSB, Definition 3.8] A P-resolution of W is a partial resolution f : W →
W such that W has only T-singularities, and KW is ample relative to f .

P-resolutions were actually defined for any quotient singularity, and for the Kollár’s
conjecture (see Remark 3.10) we would like to define it for any rational singularity,
where T-singularities may not be the only participants anymore.

Definition 3.7. [KSB, Definition 3.12] A resolution f : X → W is maximal if KX ≡
f ∗(KW )−∑i aiEi, where 0 < ai < 1, and for any proper birational morphism g : Z → X
that it is not isomorphism, we have KZ ≡ h∗(KW )−∑

j bjFj , where h = f ◦ g and some
bj ≤ 0.

Lemma 3.8. [KSB, Lemma 3.13 and 3.14] Any W admits a unique maximal resolution, and
it dominates any P-resolution of W .

Proof. They are short proofs in [KSB]. Essentially, it uses what we know about discrep-
ancies and negative definiteness of matrices of exceptional divisors. □

Thus, in particular, for a P-resolution we obtain that the exceptional divisor is a chain
of P1s and T-singularities are at the nodes in this chain.

Threefolds and deformations of surface singularities 315 

We proceed to find the P-resolutions of a fixed quotient singularity (X, P) 
which is not an RDP. 

Def in i t i on  3.12. A resolution f :  Y ~  X is maximal if K r ~  f *  Kx- -  ~, ai Ei, where 
0 < a ~ <  1, and for any proper birational morphism g: Z ~  Y that is not an 
isomorphism, we have Kz ~ h* K x - - ~  bj Fj, where h = f ~ g  and some bj < 0. 

L e m m a  3.13. A quotient ,singularity (X, P) has a unique maximal resolution. 

Proof for any resolution hi: Xi ~ X, we can write Kx, ~ 7r* K x + ~ (--1 + ~j) E~, 
J 

the Ej being the exceptional curves. If Q = Ej n Ej  + l, a :  X i + 1 -~ X i is the blow-up 
along Q and E k = a-l(Q),  then ak = ~i + ~i+ 1. Clearly, we may not blow up along 
a point lying on only one component.  Now if ~ is the minimal resolution, 
every ~ lies between 0 and I, and so to construct a maximal resolution one 
starts with the minimal resolution and successively blows up points where excep- 
tional curves meet until the quantities ~ have the property that ~ <  1 for all 
i, while if E~c~ Ej4=0, then a~+aj>__ 1. This certainly happens, and so a maximal 
resolution does exist. Moreover,  any two maximal resolutions are isomorphic 
in codimension one, and so isomorphic, since we are dealing with normal sur- 
faces. 

Lemma 3.14. Suppose that (X,P)  is a quotient singularity and that f :  Z ~ X  
is a partial resolution such that Z has only quotient singularities and K z is ample 
relative to f. Then Z is dominated by the maximal resolution X,, of  X. 

Proof Suppose that X,, does not dominate Z. Then there is a point Q~Xm 
corresponding to a curve C in Z. The multiplicity of C in Kz cannot be negative, 
by the defining property of X,,. As we saw in the proof of 3.5, we have K z ~ - E ,  
with E an effective Q-divisor. The multiplicity of C is non-negative, and so 
C is not a component  of E. Hence Supp E + f -  1 (p), so that by the connectedness 
of f l(p) there is a curve G in f - l ( p )  such that K z . G < 0 ;  this is absurd, 
and the lemma is proved. 

Example 3.15. Consider the quotient (X, P )=Spec lE[ [u ,  v ] ] / ( a ) ,  where or(u, 
v)=(qu, t/7 v), q = e x p  (2rci/19). The minimal resolution is 

1 1 / 1 9  5 / 1 9  1 2 / 1 9  

- 3  - 4  2 

where the negative integers are self-intersections and the positive numbers are 
the c~ i occurring in the proof of Lemma 3.13. Then the maximal resolution X,, 
is 

1 1 / 1 9  1 6 / 1 9  5 / 1 9  1 7 / 1 9  1 2 / 1 9  

--4- --1 - -6  --1 - -3  

and it is easy to see that the P-resolutions are Z1, Zz  and Z3, where Z 1 is 
obtained from the minimal resolution by contracting the ( - 2 )  curve (i.e. ZI 
is the R D P  model of X), Z2 is obtained from X,, by contracting all curves 

FIGURE 14. An example from [KSB].

The discrepancies in the example Figure 14 are −11
19

, −14
19

, − 7
19

from left to right. The
discrepancies in the maximal resolution are −11

19
, − 6

19
, − 1

19
, −14

19
, − 2

19
, − 7

19
. From here

one can check the existence of exactly 3 P-resolutions (as correctly stated in [KSB, Ex-
ample 3.15]):

1. Minimal resolution with the (−2)-curve contracted.
2. Minimal resolution with the (−4)-curve contracted.
3. [4] − (1) − [5, 2] which means contraction of [4] and [5, 4] from the blow-up at the

intersection between the (−3)-curve and the (−4)-curve in the minimal resolution.
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Theorem 3.9. [KSB, Theorem 3.9] There is a one-to-one correspondence between the irre-
ducible components of Def(W ) and the P-resolutions of W . In addition, the Q-Gorenstein
deformations of a P-resolution maps onto the corresponding component of Def(W ).

Remark 3.10. Kollár conjectured a bigger picture for deformations of rational singu-
larities. In [K2, Section 3] he suggested that any deformation of a two-dimensional
rational singularity should be the blow-down deformation of a Q-Gorenstein defor-
mation of some P-resolution (where, of course, the singularities that admit this type of
deformation may no longer be T-singularities). Stevens developed ideas around this
conjecture in [S7, Section 14]. Some recent preprints on this conjecture for sandwiched
singularities are [PS1, JS], which have a lot to do with the birational geometry in this
text.

How to find these P-resolutions in a more systematic way? Is it possible to count the
irreducible components of Def(W )? Which are their dimensions?

Here is when Christophersen [C2] and Stevens [S9] enter to the picture, and so the
zero continued fractions in Section 1.3. We recall that these continued fractions admit
entries which are greater than or equal to 1, without 1s it is not possible to get zero!

Let us consider the Hirzebruch-Jung continued fraction associated to 1
m
(1, q) = W

m

q
= e1 −

1

e2 − 1

. . .− 1
eℓ

,

and its dual
m

m− q
= b1 −

1

b2 − 1

. . .− 1
bs

.

We define the set of zero continued fractions

K(W ) = {[k1, . . . , ks] = 0: such that 1 ≤ ki ≤ bi}.
It turns out that there is a bijection between this set and the set of P-resolutions of W .
How? In [PPSU] it is explained a geometric way to do this, whose numerical part is the
following. Before that, we describe another one-to-one correspondence but now with
M-resolutions [BC2].

Definition 3.11. An M-resolution of W is a partial resolution f : W → W such that W
has only Wahl singularities, and KW is nef relative to f .

At the end of the day, given a P-resolution, we can obtain an M-resolution by re-
placing the singularities of type A by their minimal resolutions, and by replacing a
T-singularity 1

dn2 (1, dna− 1) by a chain of d− 1 P1s with Wahl singularities 1
n2 (1, na− 1)

at the nodes. This was explained before in the section on T-singularities. In this way, we
obtain a one-to-one correspondence between M-resolutions and P-resolutions. Again,
all deformations of W come from blowing down Q-Gorenstein deformations of an M-
resolution W [BC2].

Notation 3.12. Let [
(
n
a

)
] denote the Hirzebruch–Jung continued fraction of n2

na−1
. Cal-

culations with Wahl surfaces will use this notation to indicate self-intersections in the
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chain of rational curves in the minimal resolution of the Wahl surface. For example,
our fixed M-resolution W+ → W is represented by[(

n0

a0

)]
− (c1)−

[(
n1

a1

)]
− (c2)− . . .− (cr)−

[(
nr

ar

)]
−→ [e1, . . . , eℓ].

Here [
(
ni

ai

)
] represents the Wahl singularity pi ∈ W+ for i = 0, . . . , r, and (ci) represents

the rational curve Γi ⊂ W+ for i = 1, . . . , r, so that its proper transform in the min-
imal resolution of W+ has self-intersection −ci. The arrow −→ means that the chain
contracts to [e1, . . . , eℓ] by consecutively contracting (−1)-curves.

Remark 3.13. We have

[bs, . . . , b1]− (1)−
[(

n0

a0

)]
− (c1)−

[(
n1

a1

)]
− (c2)− . . .− (cr)−

[(
nr

ar

)]
= 0.

We use the geometric procedure in [PPSU, Cor.10.1], which interprets the zero con-
tinued fraction of the Wahl resolution as follows:

Algorithm 1 (for M-resolutions).
(0) If i1 = 1, then n0 = a0 = 1. Otherwise

n0

n0 − a0
= [b1, . . . , bi1−1].

(1) At the beginning of the M-resolution (see Notation 3.12) we have di1 Wahl chains
[
(
n0

a0

)
] as follows:[(

n0

a0

)]
− (1)−

[(
n0

a0

)]
− (1)− . . .− (1)−

[(
n0

a0

)]
︸ ︷︷ ︸

di1

−(cdi1 )− . . . .

We can blow-down the indicated (−1)-curves in the chain

[bs, . . . , b1]− (1)−
[(

n0

a0

)]
− (1)− . . .− (1)−

[(
n0

a0

)]
︸ ︷︷ ︸

di1

−(cdi1 )− . . . .

and all subsequently appearing (−1)-curves consecutively until we obtain the new
chain with the following curves:

[bs, . . . , bi1+1, bi1 − di1 , bi1−1, . . . , b1]− (cdi1 )−
[(

ndi1

adi1

)]
− . . .− (cr)−

[(
nr

ar

)]
.

(2) If bi1 − di1 = 1, then we contract this (−1)-curve and all new (−1)-curves in the
subchain [bs, . . . , bi1+1, bi1 − di1 , bi1−1, . . . , b1] until there are none.

(3) Then the original (−cdi1 )-curve becomes a (−1)-curve, and we have
ndi1

ndi1
− adi1

= [b1, . . . , bi1−1, bi1 − di1 , bi1+1, . . . , bi2−1],

if this is not 1. Otherwise, ndi1
= adi1 = 1.

(4) We now repeat starting in (1) with the di2 .
(5) We end with [ks, . . . , k1] = [. . . , bie − die , . . . , bi1 − di1 , . . .] = 0, which is the zero

continued fraction corresponding to the M-resolution.
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Example 3.14. Take m
q
= 89

33
= [3, 4, 2, 2, 4]. Take the M-resolution W → W given by[(

2

1

)]
− (1)−

[(
3

1

)]
− (2)−

[(
2

1

)]
= [4]− (1)− [5, 2]− (2)− [4] → [3, 4, 2, 2, 4].

We have m
m−q

= [2, 3, 2, 5, 2, 2], and so [2, 2, 5, 2, 3, 2, 1, 3, 4, 2, 2, 4] = 0. The element in
K(W ) corresponding to W is [2, 2, 1, 5, 1, 2] = 0. Thus d1 = 0, d2 = 1, d3 = 1, d4 = 0,
d5 = 1, and d6 = 0.

Note that [KSB, Example 3.15] admits three M-resolutions:

(3)− (4)− (2),

[(
2

1

)]
− (1)−

[(
3

1

)]
, (3)−

[(
2

1

)]
− (2).

As explained at the end of [KSB, Section 3], the dimension of the Q-Gorenstein de-
formation space of a P-resolution W → W can be computed explicitly. As these Q-
Gorenstein deformations are in bijection with the corresponding component of Def(W ),
we obtain the formula

ℓ∑
i=1

(ei − 3) + 2
s∑

i=1

bi − 2
s∑

i=1

ki − 2,

for the dimension of the component corresponding to the zero continued fraction in
K(W ) given by [k1, . . . , ks]. In particular, the difference between dimensions of any
two components corresponding to k, k′ is

2
∣∣∣ s∑
i=1

k′
i −

s∑
i=1

ki

∣∣∣.
The zero continued fraction corresponding to the minimal resolution is

[1, 2, . . . , 2, 1],

and gives the component of bigger dimension, this is the Artin component (deforma-
tions that admit a simultaneous resolution of singularities after a finite base change).

Exercises.
(1) Find all M-resolutions corresponding to the c.q.s. whose HJ continued fraction is

[2, . . . , 2︸ ︷︷ ︸
a

, 3, 2, . . . , 2︸ ︷︷ ︸
b

, 3, 2, . . . , 2︸ ︷︷ ︸
c

].

(2) What is the maximal and the minimal dimension of a component of the deforma-
tion space of a c.q.s.?

(3) ⋆ Find a characterization of c.q.s. whose deformation space is irreducible.
(4) Find a characterization of c.q.s. whose deformation space has 1

s

(
2(s−1)
s−1

)
where s is

the length of its dual fraction. This is a lot of components!
(5) For each P-resolution of a c.q.s. compute the Milnor number of a general smoothing

in the corresponding component.
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Using the computer program MNres [Z1] one can find all M-resolutions (and N-
resolutions), which will be introduced later) of the c.q.s. 1

85
(1, 49). We have

85

49
= [2, 4, 5, 2, 2],

and 85
36

= [3, 2, 3, 2, 2, 4]. This c.q.s. has a deformation space with 5 irreducible compo-
nents. For each of them, we list the corresponding: zero continued fraction, dimension
of the component and the M-resolution.

[1, 2, 2, 2, 2, 1], dimension is 10,
(2)− (4)− (5)− (2)− (2) (minimal resolution)

[2, 1, 3, 2, 2, 1], dimension is 8,
(2)− [

(
2
1

)
]− (5)− (2)− (2)

[1, 2, 3, 2, 1, 3], dimension is 6,
(2)− (4)− [

(
3
1

)
]− (2)

[2, 2, 3, 1, 2, 4], dimension is 2,
(2)− [

(
7
2

)
] (extremal P-resolution)

[3, 1, 3, 2, 1, 4], dimension is 2,
[
(
3
2

)
]− (1)− [

(
4
1

)
] (extremal P-resolution)

This is a c.q.s. that admits 2-zero continued fractions (see Theorem 1.21). These are
extremal P-resolutions, which are main protagonists in the next section.

42

https://colab.research.google.com/drive/19aOVSpunJPOiY4TTCvt8Q5D2KQOr8_t7?usp=sharing#scrollTo=9gJ2LGz5rtzn


4. W-SURFACES

4.1. Picard group, class group, and topology again.
Arbitrary degenerations of nonsingular projective surfaces over a curve germ D into

a surface with only c.q.s can always be reduced to a Q-Gorenstein smoothing of a sur-
face W with only Wahl singularities (see [HTU, Section 5]). In [K2, Theorem 3.4.2]
it is stated the following result due to various authors, among them Tsunoda, Mori,
Kawamata: Any 1-parameter degeneration of non-ruled surfaces can be modified into
a minimal model family (canonical class relatively nef) whose central fiber has only
• Wahl singularities,
• simple normal crossings singularities ({xy = 0} or {xyz = 0} in C3), and/or
• orbifold double normal crossings singularities [H5, Section 5].
That shows the relevance of this type of degenerations. Next we collect the informa-

tion on a normal projective surface W with only Wahl singularities and a Q-Gorenstein
smoothing of W over D [U4, Section 2].
Definition 4.1. A W-surface is a normal projective surface W together with a proper
deformation (W ⊂ W)→ (0 ∈ D) such that
(1) W has at most Wahl singularities;
(2) W is a normal complex 3-fold with KW Q-Cartier;
(3) the fiber W0 is reduced and isomorphic to W ;
(4) the fiber Wt is nonsingular for t ̸= 0.
The W-surface is said to be smooth if W is nonsingular.

For a W-surface the invariants q(Wt), pg(Wt), K2
Wt

, χtop(Wt) remain constant for every
t ∈ D. The fundamental group of W0 and Wt may differ (e.g. Enriques surfaces). A
W-surface is minimal if KW is nef, and so KWt is nef for all t [U4]. If a W-surface is
not minimal, then we can run explicitly the MMP relative to D, which is fully worked
out in [HTU]. It arrives at a minimal model or other outcomes, they are explained in
[U4, Section 2]. (This MMP will be elaborated in the next sections.) When KW is nef
and big, the canonical model of (W ⊂ W) → (0 ∈ D) has only T-singularities (this
means Du Val and 1

dn2 (1, dna− 1)). (Cf. [U4, Section 2] and [U3, Sections 2 and 3].)

We now go step by step from local to global. We mainly follow [W2] and [LW] for
Milnor fibers and local topological facts. Let us first consider a germ (P ∈ W ) of a
normal surface singularity. A smoothing of W comes with a Milnor fiber M , which is
just the diffeomorphism type of the smooth fiber Wt. It is a real compact 4-manifold
with boundary L, which turns out to be the link of the singularity: If (P ∈ W ) ⊂ CN ,
then the link of (P ∈ W ) is the intersection of the boundary of a ball around P with
W , and so it is a 3-dimensional manifold. The Milnor fiber has the homotopy type of a
finite CW-complex of dimension 2. In particular, it has no homology after dimension
2. For the Betti numbers

bi(M) = rank(Hi(M))

we have:
• Wahl conjectured in [W2] that b1(M) = 0 for any singularity. This was proved in

[GS]. One can easily check this for rational singularities, since in this case b1(L) = 0
(Mumford’s computation [M5, p.235]), and one has b1(M) ≤ b1(L).6

6There is some discussion on π1(M) in [GS, §4].
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• We call b2(M) the Milnor number of the corresponding smoothing. This is the num-
ber of vanishing cycles in the smoothing. It depends on the smoothing of course,
no just the singularity. We have that H2(M) has a bilinear symmetric form, and let
µ0, µ−, µ+ be the number of 0s, −1s, and +1s in a real diagonalization. Of course
b2(M) = µ0 + µ+ + µ−. By a theorem of Steenbrink [S5, Theorem 2.24] we have

µ0 + µ+ = 2pg(P ∈ W ).

Hence, µ0, µ+ do not depend on the smoothing, and, for example, if the smoothing
has Milnor number equal to zero, then (P ∈ W ) must be a rational singularity.

For example, for singularities of type An, Dn, or En we have only one type of smooth-
ing (i.e. one Milnor fiber) and b2 = n.

This operation of smoothing Y ⇝ W is a smooth surgery that can be performed
in the smooth category, think for example about the rational blowdown [FS]. (It can
actually be performed in complete generality in the symplectic category by [PS2].) We
have a continuous map of pairs

f : (W o,∪Li)→ (Y,∪Mi),

where W 0 is the complement of the singularities Pi in W , Li are the links at the Pi, and
Mi are the Milnor fibers used in the smoothing Y ⇝ W for each Pi. One can show that
this induces a commutative diagram between long exact sequences (see [TU]):

⊕
i
H2(Li)−→H2(W

o)−→H2(W )−→⊕
i
H1(Li)−→H1(W

o)−→H1(W )−→0y y ∥∥∥ y y ∥∥∥
⊕
i
H2(Mi)−→ H2(Y ) −→H2(W )−→⊕

i
H1(Mi)−→ H1(Y ) −→H1(W )−→0

We note that for c.q.s. 1
m
(1, q), its link is the Lens space defined as the quotient of

the 3-sphere S3 by the action (x, y) 7→ (µmx, µ
q
my), where µm is primitive root of 1 and

S3 ⊂ C2. We have H0(L) = H3(L) = Z, H1(L) = Z/m, and H2(L) = 0. For a Q-
Gorenstein smoothing of a Wahl singularity 1

n2 (1, na − 1) we have that the homology
of the Milnor fiber is

H0(M) = Z, H1(M) = Z/n, and H2(M) = 0.

By [LW, Lemma 5.1] we have that (in general) the morphism H1(L)→ H1(M) is onto.

Remark 4.2. Let Y ⇝ W be any smoothing. Let µi be the corresponding Milnor num-
ber from each Pi induced by the deformation, and let Ei be the exceptional divisor in
X over Pi, where X → W is the minimal resolution of singularities. We have for the
topological Euler characteristic

χtop(X) = χtop(W \ ∪iPi) +
∑
i

χtop(Ei) = χtop(Y )−
∑
i

(1 + µi) +
∑
i

χtop(Ei)

Here we are using that b1(Milnor fiber) = 0 for any normal singularity and any smooth-
ing. On the other hand we always have χ(OW ) = χ(OY ), and so

K2
Y +

∑
i

µi = K2
X +

∑
i

(
b2(Ei)− b1(Ei)

)
+ 12

∑
i

pg(Pi ∈ W )

using the Noether formula. The right hand side depends only on the singularity, and
the left on the smoothing.
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Let us assume the situation of a W-surface and the corresponding smoothing (W ⊂
W) → (0 ∈ D). In addition, assume H1(W,OW ) = H2(W,OW ) = 0. Then we have
H2(W ) = Cl(W ), H2(Y ) = Cl(Y ) = Pic(Y ), and H1(Li) is the local class group of
Pi ∈ W , see for example [K1, Prop.4.2 and 4.11]. Therefore, we obtain

0−→Pic(W o)−→Cl(W )−→⊕
i
Z/n2

i −→ H1(W
o)−→H1(W )−→0y ∥∥∥ y y ∥∥∥

0−→ Pic(Y ) −→Cl(W )−→⊕
i
Z/ni −−−→ H1(Y ) −→H1(W )−→0

In particular, from this one can read the Picard group of Y as the kernel of Cl(W )→
⊕
i
Z/ni. For any pg, this group can be thought of as a generalization of the Coble-Mukai

lattice (up to torsion) of an Enriques surface. The explicit description and applications
will be written elsewhere. For now, we finish with the example of an Enriques surface
as in [U2].

Let W be an Enriques W-surface with KW nef, i.e., the general fiber Y is an Enriques
surface. Let π : X → W be the minimal resolution of W . Kawamata proves that the
monodromy for this type of degenerations is trivial [K2, Section 2] 7, and that W can
have only singularities of type 1

4
(1, 1) [K2, Theorem 4.1] (i.e. these are the flower pot

degenerations of Persson). Let {C1, . . . , Cs} be the disjoint exceptional (−4)-curves of
π. Then

−2KX ∼ C1 + . . .+ Cs,

and so X is a Coble surface of K3 type. In this way, we have two options for X (see
[KD, Prop. 9.1.4]): it is the blow-up of either
1. an Halphen surface of index two 8 over the singularities of one reduced fiber, which

is of type II , III , IV , or In, or
2. a jacobian rational minimal elliptic fibration over the singularities of two reduced

fibers of type II , III , IV , or In.
We will only consider the case when the singular fibers are of type In, the other

situations are degenerations. Hence, for one singular fiber we have Is, and for two we
have Is1 and Is2 with s1 + s2 = s. We have that 1 ≤ s ≤ 10 by [KD, Corollary 9.1.5].
One can actually prove that such a W has no local-to-global obstructions to deform,
and that any Q-Gorenstein smoothing of it is an Enriques surface (see [U3, Theorem
4.2(0)], where there is a result for more general elliptic fibrations).

Let βi be the class of Ci in Pic(X). As in [KD, Chapter 9], we define the Coble-Mukai
lattice of X as

CM(X) := {x ∈ P̃ic(X) : x · βi = 0 for all i}
where P̃ic(X) is the lattice in Pic(X)Q generated by Pic(X) and the rational classes 1

2
βi.

By the work above, we have the short exact sequence

0→ Pic(Y )→ Cl(W )→ (Z/2)s−1 → 0.

7In fact [K2, Section 2] has various things on topology and Hodge structures for Q-Gorenstein
smoothings.

8An Halphen surface of index two is a rational elliptic surface with a multiplicity two fiber, and no
(−1)-curves in the fibers.
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(Note that for s = 1 it also works, and so Pic(Y ) ≃ Cl(W ) in that case.) From now on
we refer to [U2].

Lemma 4.3. The image of Pic(Y ) in Cl(W ) is the set of classes whose proper transform have
even intersection number with each Ci.

Theorem 4.4. The image of Pic(Y ) in Cl(W ) quotient by ⟨OY (KY )⟩ is isomorphic to CM(X).

Proof. We prove this through the pull-back morphism

π∗ : Cl(W )→ P̃ic(X).

First, the pull-back on any class in Cl(W ) is orthogonal to all βi. So we now restrict to
π∗ : Pic(Y )→ CM(X). Let D = D′ +

∑s
i=1

ai
2
βi in CM(X) with D′ not supported at the

βi, and ai ∈ Z. Then by definition D · βi = 0 and so D′ · Ci is even for all i, and so π∗ is
onto, by Lemma 4.3. If π∗(D) = D′+

∑s
i=1

ai
2
βi = 0, then π∗(2D) = 0 in Pic(X). Say that

D ̸= 0 in Pic(Y ), and so we have a numerical 2-torsion class, and this implies D ∼ KY

by Riemann-Roch on D. □

In [KD, Theorem 9.2.15], it is proved that the Coble-Mukai lattice of a Coble surface
is isomorphic to the Enriques lattice over C by a different method.

Exercises.
(1) As we saw, a surface singularity (P ∈ W ) admitting a smoothing with Milnor num-

ber equal to zero must be rational. Let X → W be its minimal resolution. Show that
the difference K2

Y −K2
X is equal to the number of exceptional curves over P . (This

is a surprising formula because in principle we would need to compute discrep-
ancies and intersections between exceptional curves.) In particular you have now
a formula for all QHD singularities in [BS], which are conjectured to be all QHD
singularities.

(2) Using the explicit Q-Gorenstein smoothing in Figure 11, compute the fundamental
group of the associated Milnor fiber for any T-singularity.

(3) An Enriques surface S can be seen as an elliptic fibration S → P1 with pg = 0 and
exactly two multiplicity 2 fibers. A computation/definition for the Coble-Mukai
lattice can be done for any elliptic fibration S → P1 with pg = 0 and exactly two
multiplicity n fibers. Try an example following the details we gave for Enriques
surfaces.

(4) ⋆ Let (P ∈ W ) be a c.q.s. and let W → W be an M-resolution with r P1s and Wahl
singularities 1

n2
i
(1, niai− 1) for i = 0, 1, . . . , r. Let M be the Milnor fiber correspond-

ing to that M-resolution. Compute H0(Y ) ≃ Z,

H1(Y ) ≃ Z/gcd(n0, . . . , nr) H2(Y ) ≃ Zr.

4.2. MMP for W-surfaces I.
Semi-stable minimal model program [KM1, Section 7] is the process to obtain a mini-

mal model for a degeneration of surfaces, this is, a birational deformation with a 3-fold
with correct singularities (terminal) and nef canonical class. If this is a degeneration of
surfaces of general type, then we obtain the unique family of canonically polarized sur-
faces from the canonical model of this minimal model. That is the whole point of the
compactification proposed by Kollár–Shepherd-Barron [KSB]. Now, for an arbitrary
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degeneration of surfaces, we would have to resolve the 3-fold family and then apply
semi-stable MMP. In the case of a W-surface we do not need to do that, we directly
work with the W-surface, obtaining in the process only W-surfaces.

The following is the working object in [KM2].

Definition 4.5. An extremal neighborhood (Γ ⊂ W) → (P ∈ W) is a proper birational
morphism between normal 3-folds F : W →W such that
(1) The canonical class KW is Q-Cartier andW has only terminal singularities.
(2) There is a distinguished point P ∈ W such that F−1(P ) consists of an irreducible

curve Γ ⊂ W .
(3) KW · Γ < 0.

Let Exc(F ) be the exceptional loci of F . An extremal neighborhood is flipping if
Exc(F ) = Γ. Otherwise, Exc(F ) is two-dimensional, and F is called divisorial.

In the flipping case, KW is not Q-Cartier. Then one attempts another type of bira-
tional modification. A flip of a flipping extremal neighborhood

F : (Γ ⊂ W)→ (P ∈ W)

is a proper birational morphism

F+ : (Γ+ ⊂ W+)→ (P ∈ W)

whereW+ is normal with terminal singularities, Exc(F+) = Γ+ is a curve, and KW+ is
Q-Cartier and F+-ample. A flip induces a birational mapW 99KW+ to which we also
refer as flip. When a flip exists then it is unique (cf. [KM1]). Mori [M4] proves that
(3-fold) flips always exist.

A general E ∈ | − KW | has only Du Val singularities [KM2]. Then a coarse clas-
sification goes like this: type A (semi-stable) and the remaining ones (exceptional).
The exceptional ones were classified in [KM2], where everything is worked out. Semi-
stable are more complicated, and they are divided into k1A and k2A. Mori completely
shows the picture for k2A in [M3]. Later in [MP], Mori and Prokhorov classified the
case k1A.

The semi-stable extremal neighborhoods can be seen as smoothings over D (see
[HTU]), and so we have a Milnor fiber Wt forW . Its second Betti number b2(Wt) ≥ 1 is
an invariant. It turns out that for our purposes (running MMP for W-surfaces) it will
be enough to consider the minimum Milnor number, i.e. b2(Wt) = 1. The following is
a definition/theorem (see [HTU, Prop. 2.1]).

Definition 4.6. Let (P ∈ W ) be a c.q.s. germ. Assume there is a partial resolution
f : W → W of W such that f−1(P ) is a smooth rational curve Γ with one (two) Wahl
singularity(ies) of W on it. Suppose KW · Γ < 0. Let (W ⊂ W) → (0 ∈ D) be a
Q-Gorenstein smoothing of X over a smooth analytic germ of a curve D. Let (W ⊂
W) → (0 ∈ D) be the corresponding blowing down deformation of W [KM2, 11.4].
The induced birational morphism (Γ ⊂ W) → (P ∈ W) is called extremal neighborhood
of type mk1A (mk2A); we denote it by mk1A (mk2A).

Definition 4.7. A P-resolution f+ : W+ → W of a c.q.s. germ (P ∈ W ) is called ex-
tremal P-resolution if f+−1

(P ) is a smooth rational curve Γ+, and W+ has only Wahl
singularities (thus at most two; cf. [KSB, Lemma 3.14]).
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Proposition 4.8. Let (Γ ⊂ W)→ (P ∈ W) be a flipping mk1A or mk2A, where (Γ ⊂ W )→
(P ∈ W ) is the contraction of Γ between the special fibers. Then there exists an extremal P-
resolution (Γ+ ⊂ W+)→ (P ∈ W ), such that the flip (Γ+ ⊂ W+)→ (P ∈ W) is obtained by
the blowing down deformation of a Q-Gorenstein smoothing of W+. The commutative diagram
of maps is

(Γ ⊂ W)

��

&&

flip
// (Γ+ ⊂ W+)

ww

��

(P ∈ W)

��

(0 ∈ D),

and restricted to the special fibers we have

(Γ ⊂ W )

&&

// (Γ+ ⊂ W+)

ww

(P ∈ W ).

Proof. [KM2, Sect.11 and Thm.13.5]. (See [M3, HTU] for explicit equations of the sur-
faces and 3-folds involved.) □

Proposition 4.9. If an mk1A or mk2A is divisorial, then (P ∈ W ) is a Wahl singularity. The
divisorial contractionW →W induces the blowing down of a (−1)-curve between the smooth
fibers ofW → D andW → D.

Proof. See [U3, Prop.2.8]. □

Next we show the numerical description of the W in an mk1A or in an mk2A (Defi-
nition 4.6), and of the W+ in an extremal P-resolution (Definition 4.7). This description
only requires toric computations on surfaces, the 3-foldsW andW+ do not play a role.
See more details in [HTU, §2].

(W → W for mk1A): Fix an mk1A with Wahl singularity 1
n2 (1, na − 1). Let n2

na−1
=

[e1, . . . , es] be its continued fraction. Let E1, . . . , Es be the exceptional curves of the
minimal resolution W̃ of W with E2

j = −ej for all j. Notice that KW · Γ < 0 and
Γ · Γ < 0 imply that the strict transform of Γ in W̃ is a (−1)-curve intersecting only one
curve Ei transversally at one point. This data will be written as

[e1, . . . , ei, . . . , es]

so that ∆
Ω
= [e1, . . . , ei−1, . . . , es] where 0 < Ω < ∆, and (P ∈ W ) is 1

∆
(1,Ω). Let βi, αi, γi

be the numbers Definition 2.12 for the singularity 1
n2 (1, na− 1). Then

∆ = n2 − βiαi Ω = na− 1− γiβi

and, if δ := βi+αi

n
, we have KW · Γ = − δ

n
< 0 and Γ · Γ = − ∆

n2 < 0.
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(W → W for mk2A): Consider now an mk2A with Wahl singularities

1

n2
0

(1, n0a0 − 1),
1

n2
1

(1, n1a1 − 1).

Let E1, . . . , Es0 and F1, . . . , Fs1 be the exceptional divisors over 1
n2
0
(1, n0a0 − 1) and

1
n2
1
(1, n1a1 − 1) respectively, such that n2

0

n0a0−1
= [e1, . . . , es0 ] and n2

1

n1a1−1
= [f1, . . . , fs1 ]

with E2
i = −ei and F 2

j = −fj . We know that the strict transform of Γ in the minimal
resolution W̃ of W is a (−1)-curve intersecting only Es0 and F1 transversally at one
point each. The data for mk2A will be written as

[e1, . . . , es0 ]− [f1, . . . , fs1 ],

and
∆

Ω
= [e1, . . . , es0 , 1, f1, . . . , fs1 ]

where 0 < Ω < ∆ and (P ∈ W ) is 1
∆
(1,Ω).

We define δ := n0a1 − n1a0
9, and so

∆ = n2
0 + n2

1 − δn0n1, Ω = (n0 − δn1)a0 + n1a1 − 1.

We have KW · Γ = − δ
n0n1

< 0 and Γ · Γ = − ∆
n2
0n

2
1
< 0.

(W+ → W ): In analogy to an mk2A, an extremal P-resolution has data

[e1, . . . , es0 ]− c− [f1, . . . , fs1 ],

so that
∆

Ω
= [e1, . . . , es0 , c, f1, . . . , fs1 ]

where −c is the self-intersection of the strict transform of Γ+ in the minimal resolution
of W+, 0 < Ω < ∆, and (P ∈ W ) is 1

∆
(1,Ω). As for an mk2A , here n′2

0

n′
0a′0−1

= [e1, . . . , es0 ]

and n′2
1

n′
1a′1−1

= [f1, . . . , fs1 ]. If a Wahl singularity (or both) is (are) actually smooth, then
we set n′

1 = a′1 = 1 and/or n′
0 = 1 and a′0 = 0. We define

δ = (c− 1)n′
0n

′
1 + n′

1a
′
0 − n′

0a
′
1,

and so ∆ = n′2
0 + n′2

1 + δn′
0n

′
1 and, when both n′

i ̸= 1,

Ω = −n′2
1(c− 1) + (n′

0 + δn′
1)a

′
0 + n′

1a
′
1 − 1.

(One easily computes Ω when one or both n′
i = 1.) We have

KW+ · Γ+ =
δ

n′
0n′

1

> 0 and Γ+ · Γ+ = − ∆

n′2
0n

′2
1

< 0.

How to compute explicitly? First we recall Mori’s algorithm to compute the numerical
data of either the flip or the divisorial contraction for any mk2A; cf. [M3].

Let us consider an arbitrary extremal neighborhood E of type mk2A with numerical
data (m, b), (n, a), so that the Wahl singularities are

1

m2
(1,mb− 1),

1

n2
(1, na− 1),

9If you want to use it in the presence of a smooth point, then we set either n1 = a1 = 1, or n0 = 1 and
a0 = 0.
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δ = ma+ nb−mn > 0, and 0 < Ω < ∆ as above. Without loss of generality, we assume
n > m. (Using the formulas for δ and ∆, it is easy to see that m ̸= n.) From this data,
Mori constructs other extremal neighborhoods E′ of type mk2A such that both E and E′

are of the same type (either flipping or divisorial), and after the birational modification
the corresponding central fibers are the same. We now explain how to find these E′,
and Mori’s criterion to know when E is flipping or divisorial.

Assume δ > 1, the case δ = 1 will be treated separately.
Let us define the recursion ζ1 = 0, ζ2 = 1, ζi+1 + ζi−1 = δζi, for i ≥ 2. We note that the

recursion defines the infinite continued fraction
δ +
√
δ2 − 4

2
= δ − 1

δ − 1

. . .

.

One can show that (
ζi+1n− ζim, ζi+1a− ζib

)
(4.1)

is a pair of positive integers for all i ≥ 1. But one can prove that there exists an integer
i0 ≥ 1 such that (

ζi+1m− ζin, ζi+1b− ζia
)

(4.2)
is a pair of positive integers only for 1 ≤ i ≤ i0−1. Precisely, we have ζi0+1m−ζi0n ≤ 0.
Two consecutive pairs of positive numbers of the form (4.1) or (4.2) above define the
two Wahl singularities of an E′, with associated numbers δ, Ω, and ∆ (same numbers
as for E). Below we will show precisely the E′. Mori [M3] proves:

Theorem 4.10. The extremal neighborhood E is of flipping type if and only if ζi0+1m−ζi0n < 0.
Otherwise (i.e. ζi0+1m− ζi0n = 0) E is of divisorial type.

We note that this procedure gives an initial E′, right before reaching the index i0. We
call it the initial mk2A associated to a given E.

From an initial mk2A E1 := E′ with Wahl singularities defined by pairs (n0, a0) and
(n1, a1) with n0 < n1, and numbers δ, ∆ and Ω, where δn0 − n1 ≤ 0. We also allow the
mk1A special case n0 = a0 = 1.

For i ≥ 1, we have the Mori recursions (see [HTU, §3.3])

n(0) = n0, n(1) = n1, n(i− 1) + n(i+ 1) = δn(i)

and a(0) = a0, a(1) = a1, a(i− 1) + a(i+1) = δa(i). When δ > 1, for each i ≥ 1 we have
an mk2A Ei with Wahl singularities defined by the pairs (n(i), a(i)), (n(i+1), a(i+1)).
We have n(i + 1) > n(i). The numbers δ, ∆ and Ω, and the flipping or divisorial type
of Ei are equal to the ones associated to E1. We call this sequence of mk2As a Mori
sequence. If δ = 1, then the initial mk2A must be flipping (by Mori’s criterion), and the
Mori sequence above gives only one more mk2A with data n2 = n1 − n0, a2 = a1 − a0
and n1, a1.

As a summary, from the numerical data of E1 we have according to δn0 − n1:
(=0) (see [HTU, Prop.3.13]) Divisorial type: then n0 = δ, n1 = δ2 = ∆, a1 = δa0 − 1 = Ω.
(<0) (see [HTU, Prop.3.15, Thm.3.20]) Flipping type: the extremal P-resolution W+ has

n′
0 = n1 − δn0, a′0 = a1 − δa0 − (c − 1)n′

0, and n′
1 = n0, a

′
1 = a0, where c − 1 ≥ 0

is the adequate multiple, and c is the self-intersection of the proper transform of Γ+

in the minimal resolution.
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In [HTU] we have the following method to compute for all extremal neighborhoods
of type mk1A. It is proved that a given exceptional neighborhood of type mk1A degen-
erates to two mk2A sharing the type, and the central fiber of the resulting birational
operation.

Proposition 4.11. [HTU, §2.3 and §3.4] Let [e1, . . . , ei, . . . , es] be the data of an mk1A with
n2

na−1
= [e1, . . . , es]. Let δ,∆,Ω be as in the above numerical description of an mk1A.

Let n2

a2
= [e1, . . . , ei−1] and n1

n1−a1
= [es, . . . , ei+1], if possible (this is, for the first i > 1, for

the second i < s). Then, there are mk2A with data

[f1, . . . , fs2 ]− [e1, . . . , es] and [e1, . . . , es]− [g1, . . . , gs1 ],

where n2
2

n2a2−1
= [f1, . . . , fs2 ],

n2
1

n1a1−1
= [g1, . . . , gs1 ], such that the corresponding cyclic quo-

tient singularity 1
∆
(1,Ω) and δ are the same for the mk1A and the mk2A. Moreover, each of the

mk2A deforms (over a smooth analytic germ of a curve) to the mk1A by Q-Gorenstein smooth-
ing up 1

n2
i
(1, niai − 1) while keeping 1

n2 (1, na− 1), and there are two possibilities: either these
three extremal neighborhoods are
(1) flipping, with the same extremal P-resolution for the flip, or
(2) divisorial, with the same (P ∈ W ).

In [HTU] we show that this a key to give a complete description which provides a
universal family for both flipping and divisorial contractions; see [HTU, §3]. A flip
which appears frequently in calculations is the following

Proposition 4.12. Let [e1, . . . , es−1, es] be an mk1A. Then it is of flipping type. Let i ∈
{1, . . . , s} be such that ei ≥ 3 and ej = 2 for all j > i. (If es > 2, then we set i = s.)

Then the data for W+ is e1 − [e2, . . . , ei − 1].

Example 4.13. (Divisorial family) Consider the Wahl singularity (P ∈ W ) = 1
4
(1, 1). So

∆ = 4 and Ω = 1, and δ = 2. Then the numerical data of any mk1A and any mk2A of
divisorial type associated to (P ∈ W ) can be read from the Mori train

[4]− [2, 2̄, 6]− [2, 2, 2, 2̄, 8]− [2, 2, 2, 2, 2, 2̄, 10]− · · ·
Notice that δ = 2. For example, [2, 2, 2, 2, 2, 2̄, 10] is an mk1A , and [2, 2̄, 6]− [2, 2, 2, 2̄, 8]
is an mk2A.

Example 4.14. (Flipping family) Let 1
11
(1, 3) be the cyclic quotient singularity (P ∈ W ).

So ∆ = 11 and Ω = 3. Consider the extremal P-resolution W+ → W defined by [4]− 3.
Here n′

1 = a′1 = 1, n′
0 = 2, a′0 = 1, δ = 3, and the "middle" curve is a (−3)-curve. Then

the numerical data of any mk1A and any mk2A associated to W+ can be read from the
Mori trains

[2̄, 5, 3]− [2, 3, 2̄, 2, 7, 3]− [2, 3, 2, 2, 2, 2̄, 5, 7, 3]− · · ·
and

[4]− [2, 2̄, 5, 4]− [2, 2, 3, 2̄, 2, 7, 4]− [2, 2, 3, 2, 2, 2, 2̄, 5, 7, 4]− · · ·
These two Mori sequences provide the numerical data of the universal antiflip of [4]−3.
For particular examples, we have that [2, 3, 2̄, 2, 7, 3] and [2, 2̄, 5, 4] are mk1A whose flips
have W+ as central fiber.

In this link there is a computer algorithm to easily compute flips, divisorial contrac-
tions, and the families of them RUN MMP [V4].
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Exercises.
(1) Prove Proposition 4.12 (The usual flip).
(2) Let 0 < a < δ be coprime numbers. Show that the Mori train for the divisorial

contractions over 1
δ2
(1, δa− 1) starts with[(

δ2

δa− 1

)]
− (1)−

[(
δ

a

)]
→ 1

δ2
(1, δa− 1).

(3) Sometimes a flipping contraction (Γ− ⊂ W−)→ (P ∈ W ) is over a Wahl singularity
(P ∈ W ). Give examples for each Wahl singularity.

(4) Let W− 99K W+ be a flip at the level of surfaces. Verify that the indices of the
singularities either stay the same or decrease (including singularities that become
smooth points), and that at least one of them strictly decreases. This is significant
to know that the MMP stops.

(5) Some Mori trains appear in nature. In [UZ1], it is proved that the color Markov
branches (see Figure 2) can be explained as Mori trains for suitable c.q.s. which
emerge deeper and deeper in the MMP as we change colors. For example, the
Markov train corresponding to 1

5
(1, 1) is precisely the Fibonacci branch. Check this

(see [UZ1, Section 7.1]).
(6) ⋆ Mori trains are formed by wagons which contain Wahl chains. To go from one

wagon to the next, we can contract the (−1)-curve representing the bar, and then
blow-up several times over one of the two nodes in the corresponding exceptional
curve, until one reaches the new Wahl chain. Find out a combinatorial algorithm at
the level of Wahl chains that constructs the Mori train. The following is an example
of the first 8 wagons of a Mori train for the P-resolution [2, 5]− 1− [3, 2, 6, 2].

[3, 2, 6, 2]
[3, 2, 2, 2̄, 7, 2, 2, 6, 2]
[3, 2, 2, 2, 5, 2̄, 2, 2, 2, 9, 2, 2, 6, 2]
[3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2̄, 7, 2, 2, 9, 2, 2, 6, 2]
[3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2̄, 2, 2, 2, 9, 2, 2, 9, 2, 2, 6, 2]
[3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2̄, 7, 2, 2, 9, 2, 2, 9, 2, 2, 6, 2]
[3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2̄, 2, 2, 2, 9, 2, 2, 9, 2, 2, 9, 2, 2, 6, 2]
[3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2̄, 7, 2, 2, 9, 2, 2, 9, 2, 2, 9, 2, 2, 6, 2]

(7) ⋆⋆ Given an mk1A or mk2A of flipping type, then the flip at the level of the surface
W+ is the Q-Gorenstein smoothing of an extremal P-resolution of some c.q.s. This
smoothing is very particular, and it is described in [HTU]. Not every smoothing
comes from a flip (or it has an anti-flip). In [HTU, Question 1.3] it is asked to classify
all Q-Gorenstein smoothings which admit a not necessarily terminal anti-flip. In the
recent thesis work of Arié Stern [S6], it is shown an answer for particular situations.
It is open in general. See [HTU, Example 3.26] for a canonical non-terminal anti-flip.

4.3. MMP for W-surfaces II.
The base for this section is [U4, Section 2]. The goal is to run MMP on a W-surface,

and to show what the ending results share an analogy with the classical (Italian) case
of a nonsingular projective surface. We recall that for nonsingular surfaces, after con-
tracting finitely many (−1)-curves, we arrive to either a unique minimal model (here
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canonical class is nef), or a geometrically ruled surface PC(F) where C is a nonsingular
curve and Fs a rank two vector bundle on C, or P2. What do we get for W-surfaces?

Let W be a W-surface. We recall that W is minimal if KW is nef (and then all smooth
fibers have KWt nef; If KW is ample, then KWt is ample for all t as well). Assume that
KW is not nef. Then (by for example [KK2, 2.1.1]) there is a K-extremal ray P1 =: Γ ⊂
W such that Γ ·KW < 0. We have the following options:

(I) If Γ2 > 0, then Pic(W ) has rank 1 and −KW is ample [KK2, 2.3.3]. Hence −KWt is
ample for any t [KM1, Prop.1.41], and so Wt is rational for any t. Moreover, the rank
1 condition implies that χtop(Wt) = 3 for all t, and so Wt is isomorphic to P2. This
type of degenerations of P2 were classified in [B5, M1, HP]. According to [HP, Cor.1.2],
the surface W must be a Q-Gorenstein deformation of a weighted projective plane
P(a2, b2, c2) where (a, b, c) satisfies the Markov equation a2 + b2 + c2 = 3abc. We will say
more at the end, and this is the connection with Section 1.2.

(II) If Γ2 = 0, then there is a fibration h : W → B with irreducible fibers and general
fiber isomorphic to P1 [KK2, 2.3.3]. Let h̃ : W̃ → B be the corresponding fibration on the
minimal resolution W̃ of W . Then, over a b ∈ B where the fiber has a Wahl singularity,
the fiber in W̃ has two possible configuration types; see [HP, Prop.7.4]. It is a simple
check that none of them is possible when the singularities are of Wahl type. Therefore,
(W ⊂ W)→ (0 ∈ D) is a smooth deformation of a geometrically ruled surface W .

(III) If Γ2 < 0, then we can apply to (W ⊂ W)→ (0 ∈ D) a birational transformation
defined by an extremal neighborhood of type mk1A or mk2A of flipping or divisorial
type [HTU, Thm.5.3]. After that we arrive to a new W-surface (W+ ⊂ W+)→ (0 ∈ D).

Remark 4.15. It turns out that minimal models are unique meaning the surface W and
all fibers are unique up to isomorphism. But the families may not be isomorphic over
D. In [U4, Prop.2.6] it is proved the uniqueness, but it is wrongly stated that families
(the 3-folds) are isomorphic. Indeed for this type of families we may have flops, and
they are produced by the situation of an M-resolution of a T-singularity. To have an
example in mind check what happens in the Atiyah flop when we see it as a family
over C. In this family one sees two ways to modify so that fibers are isomorphic but
3-folds are not. We call them Kawamata flops as they were used in [K4] to show a semi-
orthogonal decomposition of the derived category of the smoothing.

Example 4.16. Let us run MMP in the example in Figure 15. In this example, we have
a W with four Wahl singularities, whose Wahl chains are shown in the minimal reso-
lution W̃ of W . In that picture there is a curve that is negative for the canonical class.
It gives the data of a flipping mk2A, and it is the image of the (−1)-curve between the
two Wahl chains shown in Figure 16, which also shows the corresponding flip.

We then flip this curve in W to obtain a surface W+ whose minimal resolution is
shown in Figure 17. One can prove that W+ has nef canonical class [U3, Section 7].

Let us come back to the general setup.
Let W be a minimal W-surface with W indeed singular. What can we say about the

possible Wt? Let us fix the Kodaira dimension of Wt, t ̸= 0. Then:

Kodaira 0: Only Enriques surfaces Wt can appear with W singular [K2, Theorem
4.1]. These degenerations of Enriques surfaces are studied in [U2].
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Geometry & Topology, Volume 13 (2009)

FIGURE 15. The wrong example from [PPS1]

-

+

-5 -3 -2 -2 -3 -2-5-5 -2 -3

-5 -2-2-3 -4 -5 -3 -2 -3

FIGURE 16. The flip that fixes the example

FIGURE 17. Minimal resolution after the flip

Kodaira 1: Kawamata classifies all possible degenerations in [K2, Theorem 4.2]. Both
the Wt and W have an elliptic fibration compatible with the deformation. See also
[U3, Section 4] for the case when Wt is a Dolgachev surface.

Kodaira 2: Here there are just too many possibilities for Wt which has KWt big and
nef. It is not understood how to predict the existence of these degenerations. The
canonical model of W has only ADE and T-singularities, and the corresponding family
over D is a curve germ in the KSBA moduli space of surfaces of general type.
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For KW big and nef, Is it possible to classify the possible W?
Let S be a minimal model of a minimal resolution of W . Then we have the following

options for S [RU1, Prop.2.3]:

1. It is rational.
2. It is a K3 or an Enriques surface.
3. It has Kodaira dimension 1 and q(S) = 0.
4. It is of general type with q(S) = 0 (Proposition 4.17) and K2

S < K2
W .

In particular, we have singular minimal models only for regular varieties (i.e. q = 0)!
This shows a hierarchy between Wt of general type and W , which is either based on

K2
S or the Kodaira dimension of S. There are just too many and unclassifiable cases for

each alternative. Even if we fix extra invariants such as K2.
For example, if K2 = 1, then there are no surfaces of general type in the boundary.

Also singularities of W are significantly bounded, when S is not rational [RU1].

Proposition 4.17. If the surface S above is of general type, then q(S) = 0. In this way W-
surfaces of general type have no irregularity.

Proof. As always, let π : X → W be the minimal resolution of W , and let σ : X → S
the composition of blow ups from S. We have π∗(KW ) ≡ σ∗(KS) +

∑
j aiEi +

∑
j bjCj ,

where Ei are the exceptional curves for σ and Cj are the exceptional curves for π. Both
ai and bj are positive.

In this proof we will use the Albanese variety Alb(S) of S; Cf. [B1, V]. Assume
q(S) > 0. Let α : S → Alb(S) be the Albanese map. Its image can be a curve or a
surface.

Let us assume that its image is a curve. Then α : S → α(S) is a fibration into a
nonsingular curve of genus q(S) [B1, V]. Then we have a fibration X → α(S), and so
all the Ci are inside of fibers. In particular, we can rewrite π∗(KW ) ≡ σ∗(KS)+

∑
j aiEi+∑

j bjCj as

π∗(KW ) ≡ σ∗(KS) +
∑
i

∑
j

ci,jGi,j

where
∑

j Gi,j is inside of a fiber and ci,j > 0. Then we square to find 0 < K2
W =

K2
S−

∑
i Ni, where Ni ≥ 0 by Zariski’s lemma [BHPVdV, III Lemma 8.2]. But K2

W > K2
S .

Let us assume now that the image is a surface. Then we use Stein factorization for
α : S → α(S) via β : S → Y birational map, and Y → α(S) finite map. Now consider
the composition X → Y , which is a birational map and the images of the Ci must be
contracted as α(S) cannot have any rational curve. But then analog argument of the
previous paragraph works in this situation. □

Let us elaborate better the ending case when Γ2 > 0. We know that Wt must be P2.
So, one may wonder in full generality: What are all the normal degenerations of P2?

Bǎdescu [B5] initiated this quest for rational surfaces. Following ideas in [B5], Manetti
shows in [M1, Main Theorem] that if the normal degeneration has only quotient sin-
gularities, then it is a W-surface. (What about normal degenerations to other rational singu-
larities, such as generalized Wahl? Do it! See [M1, Theorem 11]). Hacking and Prokhorov
not only classify these W-surfaces, but also fully work out the case when W has Picard
number 1 and −KW is ample (with T-singularities; if we allow only Wahl singularities,
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then this can only be P2; see for example [HP, Table 1]). (Later Prokhorov [P6] did it
for log canonical singularities.)

The picture for P2 is shown in Figure 18, where in the way between two weighted
projective planes we have W s with one or two singularities (from the original weighted
projective planes). To go from one to the other one uses the mutations for solutions to
the Markov equation.

A

An (22((x,7) te (MX,Mana-1y)
(x,y)1 (mx,my)

an da M = di-primitive
=xdni . root of I

v= ydr
w= XY

r
: 1

↓

CYAY] < CA]
/

unen
(wan= un3 < 432/ WaM-dy suarr1,WiManaw

·..
·

& & Pl,P(1 ,1 ,4)
·Pla?b? (3ab-P ..

b3

a
?

·

#(22b2,c)
...

8 W =P

· [2 · P((3bc-a)2, b2, (2)
⑧

Pla?, (3ac-b), (2) ⑧

8000 a +b+c= 3abc
·...

FIGURE 18. c.q.s. degenerations of P2.

In [U4, Section 3] it is shown that we can always obtain a W-surface with birational
fibers from a smooth W-surface, by applying finitely many anti-flips and/or divisorial
contractions (up and down). In particular, in [U4] is proved that any degeneration
of P2 can be understood from a deformation of F1 into F3 (one singularity), F5 (two
singularities), or F7 (three singularities. See [U4, Figure 1] (Figure 19) for an example.

Q-Gorenstein smoothings of surfaces and degenerations of curves 9

rational fibration pi : Si → P1 with at most two singular fibers (as the one above),
where A is a (−1)-curve in one singular fiber, B and C are in the other, and F is
a general smooth fiber. In addition they must satisfy:

(1) B · KXi < 0 and C · KXi > 0.

(2) We can contract B in X and C in X to cyclic quotient singularities.

(3) The special section Γ of Si appears in one of the minimal resolutions of the
cyclic quotient singularities in (2) with Γ2 ≤ −3.

The conditions (1) and (2) ensure the existence of an mk1A or mk2A of flipping
type for the curve B. Notice that, in our case, it is of flipping type since the (−1)-
curve of the general fiber F1 degenerates to an effective Q-divisor in X containing
F . The condition (3) says that we preserve the fibration of Si, and so the strict
transform of F after the flip is again an F for Si+1. In particular we are flipping
curves only in the two special fibers.

Before continuing with the proof, we run the MMP of Theorem 3.1 in an
example.
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Figure 1. Running Theorem 3.1 on an example

Example 3.2. We take the example in [17, p.117]. There X has three Wahl
singularities 1

4 (1, 1), 1
25 (1, 4), and 1

292 (1, 29·21−1). The minimal resolution δ : S →
X gives the fibration p : S → P1 with the exceptional divisor of δ contained in two
fibers and one section Γ, where Γ2 = −10. In the upper-half corner of Figure 1, we
have the dual graph of the exceptional curves of δ together with two (−1)-curves
(one in each of the two fibers), and a fiber. The • represent the curves in the
exceptional divisor, and the numbers are the self-intersections of the curves (no
number means −1). As in [9, 20], the graph-diagram in Figure 1 shows how we
run the MMP in Theorem 3.1. First, we have the W-blow-up of a section of the
W-surface X (i.e. of the 3-fold) which intersects a point of the distinguished fiber

FIGURE 19. How to see the degeneration of P2 into P(22, 52, 292) as
coming from a deformation of F1 into F7.
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Exercises.
(1) Compute K · Γ and Γ2 for the bad curve C in Figure 15, which is used in the flip

Figure 16. Show that indeed KW+ is big and nef.
(2) Find W-surfaces where Wt is an Enriques surface, and W0 has Wahl singularities

different than 1
4
(1, 1).

(3) Let W be a W-surface with general fiber Fn. Show that after running MMP we have
either a Markov degeneration of P2 or a deformation with central fiber Fm with
m > n.

(4) ⋆ By running MMP, classify W-surfaces when W is birational to Wt for some t ̸= 0.
(5) ⋆ Show that a minimal W-surface with Wt K3 surfaces must be smooth. Show that

without the minimality condition we can have singular W-surfaces.
(6) ⋆ Given a degeneration of P2 into a surface W as in Hacking-Prokhorov, we can

blow-up a general point for all fibers and obtain a similar degeneration of F1 into
Blp(W ). Then we can run MMP starting with a unique flipping curve. This MMP is
unique, in the sense that at each step we have always a unique flip (see the example
in Figure 19). This is explained in [UZ1]. Now consider arbitrary Q-Gorenstein
degenerations of Hirzebruch surfaces with only Wahl singularities. Are there any
Markov sort of moduli spaces? Is it possible to describe the corresponding MMP?

(7) ⋆⋆ Are there normal degenerations of P2 with non quotient singularities? Find a
classification.
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Summary of MMP for W-surfaces and classic nonsingular projective surfaces.
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5. N-RESOLUTIONS

N-resolutions are the negative analogues to the M-resolutions of a cyclic quotient
singularity. They were defined in [TU] to construct interesting exceptional collections
of vector bundles in W-surfaces. We first review the basics of N-resolutions, and in the
next section, we work out exceptional collections. There are no any other applications
to N-resolution yet.

5.1. Existence and uniqueness.
Lat 0 < Ω < ∆ be coprime integers. We have the c.q.s. (P ∈ W ) = 1

∆
(1,Ω), and the

HJ continued fraction
∆

Ω
= e1 −

1

e2 − 1

. . .− 1
eℓ

,

and its dual ∆
∆−Ω

= [b1, . . . , bs]. We saw that the set of P-resolutions (Definition 3.6) is
in bijection with the zero continued fractions in

K(W ) = {[k1, . . . , ks] = 0: such that 1 ≤ ki ≤ bi},
and it is also in bijection with the set of M-resolutions (Definition 3.11). Each M-
resolution of (P ∈ W ) looks like Figure 20, and they are part of the following more
general definition.

Definition 5.1. A Wahl-resolution (Γ1 ∪ . . . ∪ Γr ⊂ W ) is a surface germ that contains a
chain of smooth projective rational curves Γ1, . . . ,Γr that are toric boundary divisors
at Wahl singularities P0, . . . , Pr (as in Figure 20), the surface is smooth elsewhere (we
also allow Pi to be smooth points). We choose a toric boundary divisor germ Γ0 at P0

complementary to Γ1 and Γr+1 at Pr complementary to Γr. In addition, we assume that
it admits a contraction (Γ1 ∪ . . . ∪ Γr ⊂ W )→ (P ∈ W ).

P
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FIGURE 20. A Wahl resolution with r curves Γi

Notation 5.2. The singularity Pi of a Wahl-resolution W has type 1
n2
i
(1, niai− 1), where

the Hirzebruch-Jung continued fraction of n2
i

niai−1
goes in the direction from Γi to Γi+1.

For smooth points, ni = ai = 1. We note that

Γ2
i +KW · Γi = −

1

n2
i

− 1

n2
i−1

for i = 1, . . . , r. Let δi := ni−1ni|KW · Γi| (a non-negative integer).
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The purpose of this section is to define the N-resolutions of (P ∈ W ) [TU]. The
set of N-resolutions will be in bijection with the set of M-resolutions, and a particular
characteristic of an N-resolution is that intersections of exceptional curves with the
canonical class are nonpositive.

Definition 5.3. Let W+ be an M-resolution of a c.q.s. (P ∈ W ). The corresponding
N-resolution W− is a Wahl-resolution of (P ∈ W ) with curves Γ̄i and singularities P̄i of
type 1

n̄2
i
(1, n̄iāi − 1) for i = 0, . . . , r such that

(1) The singularity P̄r is P0 with n̄r = n0 and ār = a0. Furthermore, for every i =
1, . . . , r, the contraction of Γ̄r−i+1 ∪ . . . ∪ Γ̄r ⊂ W− is a c.q.s isomorphic to the con-
traction of Γ1 ∪ . . . ∪ Γi ⊂ W+ . We denote that c.q.s. by 1

∆i
(1,Ωi).

(2) δ̄r−i+1 = δi for i = 1, . . . , r.
(3) −KW− is relatively nef, i.e., KW− · Γ̄i ≤ 0 for i = 1, . . . , r.

Notation 5.4. Suppose the M-resolution W+ → W corresponds to a zero-fraction

[k1, . . . , ks] ∈ K(W ).

The surface W+ contains curves Γ1, . . . ,Γr and Wahl singularities at Pi of type 1
n2
i
(1, niai−

1). We have δi = ni−1niKW+ · Γi ≥ 0 for all i = 1, . . . , r. Let di := bi − ki ≥ 0. We have
d1 + . . .+ ds = r + 1. Let di1 , . . . , die be the set of nonzero di with i1 < i2 < . . . < ie.

Proposition 5.5. The numbers δ1, . . . , δr can be computed as follows: for k = 1, . . . , e− 1,

δdi1+...+dik

ϵdi1+...+dik

= [bik+1, . . . , bik+1−1]

if ik+1 > ik + 1, or δdi1+...+dik
= 1 if ik+1 = ik + 1. All other δi are equal to 0.

In Algorithm 1 it was explained how to obtain the M-resolution corresponding to a
given zero continued fraction in K(W ).

Lemma 5.6. An N-resolution W− → W associated to the M-resolution W+ → W can be
constructed as follows. It has Wahl singularities P̄i of type 1

n̄2
i
(1, n̄iāi − 1) for i = 0, . . . , r,

which we will describe from the bottom up via ñp, ãp such that n̄r−i = ñi, ār−i = ãi for
i = 0, . . . , r. The algorithm is as follows.
• If i1 = 1 (i.e. d1 ̸= 0), then ñp = ãp = 1 for p = 0, . . . , d1 − 1. In other words, we start

with d1 smooth points.
• If i1 > 1, then ñp

ñp−ãp
= [b1, . . . , bi1−1] for p = 0, . . . , di1 − 1.

• Let q =
k∑

j=1

dij . Then ñp

ñp−ãp
= [b1, . . . , bik+1−1] for p = q, . . . , q + dik+1

− 1.

The curves Γ̄i for i = 1, . . . , r are as follows. If Γ̄i passes through one or two Wahl singular-
ities, then its proper transform in the minimal resolution is a (−1)-curve. Otherwise (i.e. no
Wahl singularities) it is a (−2)-curve.

Example 5.7. By [KSB, Ex. 3.15], the c.q.s. 1
19
(1, 7) admits three M-resolutions, where

the first M-resolution is the minimal resolution:

(3)− (4)− (2),

[(
2

1

)]
− (1)−

[(
3

1

)]
, (3)−

[(
2

1

)]
− (2).
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The corresponding N-resolutions are[(
8

3

)]
− (1)−

[(
8

3

)]
− (1)−

[(
2

1

)]
− (1),

[(
5

2

)]
− (1)−

[(
2

1

)]
,

[(
8

3

)]
− (1)−

[(
5

2

)]
− (1).

Definition 5.8. A Wahl resolution W → (P ∈ W ) is called extremal if the exceptional
divisor consists of a single curve Γ1. We have two Wahl singularities P0, P1 (which may
be smooth points). The type of Pi is 1

n2
i
(1, niai − 1) and we have

δ1 = n0n1 |KW · Γ1| and − n2
0n

2
1 Γ

2
1 = ∆ = n2

0 + n2
1 ± δ1n0n1, (5.1)

where ± is the sign of KW · Γ1. If δ1 = 0, then we have the M-resolution of ∆
Ω
= 2n2

2na−1

for some 0 < a < n coprime [BC2]. If W is an extremal M -resolution with δ1 > 0, then
W is an extremal P-resolution introduced and studied in [HTU].

It is not hard to see that an extremal M-resolution has a unique N-resolution, and
this is an initial mk2A when δ1 ̸= 0. The following is the proof taken from [TU, Lemma
2.9].

Lemma 5.9. An extremal M-resolution has a unique N-resolution.

Proof. If δ1 = 0, then we have the M-resolution of ∆
Ω

= 2n2

2na−1
for some 0 < a < n

coprime. Here N-resolution and M-resolution coincide, and there is only one index i1
and di1 = 2. If W+ is an extremal M -resolution with δ1 > 0, then we have an extremal
P-resolution of [HTU]. Here we have only two indices i1, i2. We have di1 = di2 = 1, and

[b1, . . . , bi1 − 1, . . . , bi2 − 1 . . . , bs] = 0.

We now prove that the N-resolution proposed in Lemma 5.6 is indeed an N-resolution.
We know that [bs, . . . , b1]− (1)− [

(
n̄1

ā1

)
]− (1)− [

(
n0

a0

)
] can be blown-down to [bs, . . . , bi2 −

1, bi2−1, . . . , b1] − (1) − [
(
n0

a0

)
] and that can be blown-down to [b1, . . . , bi1 − 1, . . . , bi2 −

1 . . . , bs], which is zero, and so ∆
Ω

= [
(
n̄1

ā1

)
] − (1) − [

(
n0

a0

)
]. Hence, we do get a Wahl

resolution W → W in this way.
We now check that KW · Γ < 0, where Γ is the central curve, and δ̄1 = δ1. Let pk

qk
=

[b1, . . . , bk−1], p1 = 1, p0 = q1 = 0, and q0 = −1. Then
pi1qi2 − pi2qi1

pi1qi2−1 − pi2−1qi1
= [bi2−1, . . . , bi1+1] =

δ1
ϵ′1

by [HTU, Lemma 4.2]. But, by definition, we have pi1 = n0, qi1 = n0 − a0, pi2 = n̄1,
and qi2 = n̄1 − ā1. Therefore, δ1 = n̄1a0 − n0ā1. On the other hand, a toric computation
shows that KW ·Γ = −1+

(
1− n̄1−ā1

n̄1

)
+
(
1− a0

n0

)
= − n̄1a0−n0ā1

n̄1n0
, and so KW ·Γ is negative

and δ̄1 = δ1.
Finally, for uniqueness let us consider some Wahl chain [

(
ñ1

ã1

)
] such that

[bs, . . . , b1]− (1)−
[(

ñ1

ã1

)]
− (1)−

[(
n0

a0

)]
= 0,

but then we also have [
(
ñ1

ã1

)
] − (1) − [

(
n0

a0

)
] − (1) − [bs, . . . , b1] = 0, and so [

(
ñ1

ã1

)
] is deter-

mined, being dual to the contraction of [
(
n0

a0

)
]− (1)− [bs, . . . , b1]. □

For the proof of Lemma 5.6 see [TU, Lemma 2.6].

Corollary 5.10. Every M-resolution has a unique associated N-resolution.
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Proof. We know this is true for r = 1 (extremal M-resolution). For r ≥ 2 we go by
induction on r. We have that Γ1 ∪ . . . ∪ Γr−1 is an M-resolution of 1

∆r−1
(1,Ωr−1), and so

we can apply induction for all singularities, deltas, and 1
∆i
(1,Ωi) except for n̄0, ā0. Let

∆r−1

Ωr−1
= [f1, . . . , ft]. Then we have [bs, . . . , b1] − (1) − [

(
n′
0

a′0

)
] − (1) − [f1, . . . , ft] = 0, and

this implies [
(
n′
0

a′0

)
]− (1)− [f1, . . . , ft]− (1)− [bs, . . . , b1] = 0, and so [

(
n′
0

a′0

)
] is determined

by 1
∆r−1

(1,Ωr−1) and 1
∆
(1,Ω). □

Example 5.11. As we pointed out before, using the computer program MNres [Z1],
one can find all M-resolutions and N-resolutions of any c.q.s. For example, let us again
consider 1

85
(1, 49). We have 85

49
= [2, 4, 5, 2, 2], and 85

36
= [3, 2, 3, 2, 2, 4]. This c.q.s. has

a deformation space with 5 irreducible components. For each of them, we list the
corresponding: zero continued fraction, dimension of the component, the vector of the
δi, the M-resolution, and the N-resolution.

[1, 2, 2, 2, 2, 1], dimension is 10, (0, 2, 3, 0, 0)
(2)− (4)− (5)− (2)− (2) (minimal resolution)
[
(
26
15

)
]− (1)− [

(
26
15

)
]− (1)− [

(
26
15

)
]− (1)− [

(
5
3

)
]− (1)− (2)

[2, 1, 3, 2, 2, 1], dimension is 8, (1, 7, 0, 0)
(2)− [

(
2
1

)
]− (5)− (2)− (2)

[
(
26
15

)
]− (1)− [

(
26
15

)
]− (1)− [

(
26
15

)
]− (1)− [

(
3
2

)
]− (1)

[1, 2, 3, 2, 1, 3], dimension is 6, (0, 8, 1)
(2)− (4)− [

(
3
1

)
]− (2)

[
(
26
15

)
]− (1)− [

(
19
11

)
]− (1)− (2)

[2, 2, 3, 1, 2, 4], dimension is 2, (5)
(2)− [

(
7
2

)
] (extremal P-resolution)

[
(
12
7

)
]− (1)

[3, 1, 3, 2, 1, 4], dimension is 2, (5)
[
(
3
2

)
]− (1)− [

(
4
1

)
] (extremal P-resolution)

[
(
19
11

)
]− (1)− [

(
3
2

)
]

We finish showing the N-resolution corresponding to the minimal resolution.
In general, we write the Hirzebruch-Jung continued fraction as

∆

Ω
= [2, . . . , 2︸ ︷︷ ︸

y1

, x1, 2, . . . , 2︸ ︷︷ ︸
y2

, x2, . . . , 2, . . . , 2︸ ︷︷ ︸
ye−1

, xe−1, 2, . . . , 2︸ ︷︷ ︸
ye

],

where yi ≥ 0 and xi ≥ 3 for all i. This describes the minimal resolution W+. We now
compute the N-resolution W− of W+ explicitly. The dual fraction is

∆

∆− Ω
= [y1 + 2, 2, . . . , 2︸ ︷︷ ︸

x1−3

, y2 + 3, 2, . . . , 2︸ ︷︷ ︸
x2−3

, y3 + 3, . . . , ye−1 + 3, 2, . . . , 2︸ ︷︷ ︸
xe−1−3

, ye + 2].
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We have that the di ̸= 0 are exactly in the positions of the yi. In particular, if di1 , . . . , die
are the di ̸= 0 with i1 < . . . < ie, then i1 = 1, ie is the index of the last position, and
dik = yk + 1 for all k. Note that the non zero δ̄ are computed via [2, . . . , 2︸ ︷︷ ︸

xi−3

], and so they

are equal to xi − 2. We have that the data n̄ik , āik for the distinct Wahl singularities in
the N-resolution is

n̄ik

n̄ik − āik
= [y1 + 2, 2, . . . , 2︸ ︷︷ ︸

x1−3

, y2 + 3, . . . , yk−2 + 3, 2, . . . , 2︸ ︷︷ ︸
xk−2−3

, yk−1 + 3, 2, . . . , 2︸ ︷︷ ︸
xk−1−3

]

for k > 1, and smooth point for k = 1.
Note that we have

∆ = n̄e(ye + 1) + n̄e−1(ye−1 + 1) + . . .+ n̄2(y2 + 1) + (y1 + 1). (5.2)

Indeed, let us consider the matrix

M =



ye + 2 −1
−1 2 −1

. . .
−1 2 −1

−1 ye−1 + 3 −1
. . .
−1 2 −1

−1 y1 + 2


,

whose diagonal has the sequence

{ye + 2, 2, . . . , 2︸ ︷︷ ︸
xe−1−3

, ye−1 + 3, . . . , y3 + 3, 2, . . . , 2︸ ︷︷ ︸
x2−3

, y2 + 3, 2, . . . , 2︸ ︷︷ ︸
x1−3

, y1 + 2}.

Its determinant is equal to ∆. On the other hand, we can use the linearity of the deter-
minant on its first row (ye + 2,−1, 0, . . . , 0) = (1,−1, 0, . . . , 0) + (ye + 1, 0, 0, . . . , 0), via
the sum M = M1 +M2 where M1 corresponds to the continued fraction

[1, 2, . . . , 2︸ ︷︷ ︸
xe−1−3

, ye−1 + 3, . . . , y3 + 3, 2, . . . , 2︸ ︷︷ ︸
x2−3

, y2 + 3, 2, . . . , 2︸ ︷︷ ︸
x1−3

, y1 + 2],

and det(M2) = (ye + 1)n̄e. But then det(M1) is the numerator of the continued fraction

[ye−1 + 2, . . . , y3 + 3, 2, . . . , 2︸ ︷︷ ︸
x2−3

, y2 + 3, 2, . . . , 2︸ ︷︷ ︸
x1−3

, y1 + 2],

by contracting the 1 and the consecutive 2s in the diagonal of M1. Now we use induc-
tion on e to write the claimed formula.

In the next section, we will see how to obtain the unique N-resolution from a given
M-resolution using a suitable action of the braid group, which is defined via antiflip-
ping extremal M-resolutions.

Exercises.
(1) Verify why in Definition 5.3 is necessary to have (1), (2) and (3) for uniqueness.
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(2) ⋆ Let n0, . . . , nr be the indices for an M-resolution, and n̄0, . . . , n̄r be the indices for
its N-resolution, all over the c.q.s. 1

∆
(1,Ω). Show that

∆ = n0n̄r + n1n̄r−1 + . . .+ nrn̄0.

One instance of this was shown in Equation 5.2 for the minimal resolution.

5.2. Braid group action.
Given a c.q.s. W , we will show how to connect an M-resolution W+ with its N-

resolution W− by a sequence of antiflips, which are generators of the braid group Br+1

action on the set of Wahl resolutions W → W with r + 1 Wahl singularities. We recall
that the braid group on r + 1 strands can be presented as

Br+1 = ⟨θ1, . . . , θr | θiθi+1θi = θi+1θiθi+1, θiθj = θjθi⟩,
where in the first group of relations 1 ≤ i ≤ r − 1 and in the second |i − j| ≥ 2. For
example B2 = Z. This group is torsion free, and for r ≥ 2, Br+1 contains the free group
in two generators.

We first describe the action of B2 on extremal Wahl resolutions W → W , where either
KW ·Γ1 > 0 (extremal P -resolutions), KW ·Γ1 < 0 (K-negative resolutions), or KW ·Γ1 = 0
when δ1 = 0 (K-trivial resolutions). We will refer to the action of a generator of B2 as
the right antiflip and to its inverse as the left antiflip.

A Q-Gorenstein smoothing (W ⊂ W) → (0 ∈ D) of an extremal Wahl resolution W
over a smooth curve D can be blown-down to a smoothing W → D of W . This gives
a threefold contraction W → W , which is KW-positive, KW-negative, or KW-trivial
depending on the three cases above. The antiflip is defined differently in each case.

Antiflips: K-positive case. Consider a Q-Gorenstein smoothing W+ → D of an
extremal P-resolution W+ over a smooth curve. This situation may not have an anti-
flip of type mk1Aor mk2A, this depends on the "direction" of the deformation. This
was studied in detail in [HTU]. So, when we have the correct direction, then we may
anti-flipW+ → D. We will only consider the "initial" mk2Aextremal neighborhoods as
antiflips. To differentiate them, we use left L and right R as indicated in Figure 21. We
refer to W−

0 → W as the right antiflip (or just the antiflip) of an extremal P -resolution
W+ → W and to W−

1 → W as the left antiflip.

P
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FIGURE 21. Left and right antiflips ofW+ → D
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Antiflips: K-negative case. This is what we do in a Mori train going from one
mk2Ato the next mk2A. If we move keeping P0 as shown in Figure 21 (changing W+

by a W with Γ1 ·KW < 0), then this is the right anti-flip R , otherwise we have the left
L.

¥-131
Y y
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(3)2) ( 17,10) ( 3,2)
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•
1%) (
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"

!; - → . . .I.⇒ ÷:
FIGURE 22. Anti-flips in the Mori trains of a given W+.

Antiflips: K-trivial case. Here W+ is [
(
n
a

)
]−(1)−[

(
n
a

)
] (unless n = 1 in which case it is

a (−2)-curve with two smooth points) and W = 1
2n2 (1, 2na− 1) [BC2]. The blow-down

W of a Q-Gorenstein smoothing W+ of W+ is a Q-Gorenstein smoothing of W . The
contraction W+ → W is crepant, and it can be flopped giving a threefold W ′ (which
we call an antiflip ofW+) with a central fiber W ′ ≃ W+ (see [BC2] or [K4, Section 5]),
which we call an antiflip of W+ in the K-trivial case. This is the Atiyah flop when we
have no Wahl singularities.

The following will be assumptions that we will impose on W so that we have plenty
of freedom on its deformations, and we have the "starting" point in the s.o.d.s of the
next sections. Sometimes we can relax some of the hypothesis to obtain results on more
general surfaces. We will try to indicate when that happens.

Assumption 5.12.
(1) W is a normal projective surface with Wahl singularities {P0, . . . , Pr}, smooth out-

side of them. We have a Wahl resolution Γ1 ∪ . . . ∪ Γr ⊂ W of P ∈ W , and so the
contraction of the chain Γ1, . . . ,Γr to the point P ∈ W .

(2) q(W ) = dim H1(W,OW ) = 0 and pg(W ) = dim H2(W,OW ) = 0.
(3) There is a Weil divisor Ā on W that generates the local class group Cl(P ∈ W ).

By Lemma 5.20 (at the end of this section) we can choose effective smooth divisors
Ā, ˜̄A ⊂ W such that the germ P ∈ (Ā ∪ ˜̄A) ⊂ W is etále-locally isomorphic to
0 ∈ (x = 0) ∪ (y = 0) ⊂ 1

∆
(1,Ω). Proper transforms Γ0 (resp. Γr+1) of Ā (resp. ˜̄A) in

the Wahl resolution W of W intersect the chain Γ1 ∪ . . . ∪ Γr only at P0 (resp. Pr),
where they are equivalent to toric boundaries opposite to Γ1 (resp. Γr) as in Figure
20.

(4) H2(W,TW ) = 0. By Lemma 5.21, there are no local-to-global obstructions to Q-
Gorenstein deformations of a Wahl resolution W of W or the pair (W,∆) where
∆ = Γ0 + Γ1 + . . .+ Γr + Γr+1 if (2) and (3) also hold. A general example satisfying
(4) is any W with −KW big [HP, Prop. 3.1].

We note that even rational surfaces may not satisfy Assumption 5.12 (3), see e.g.
[KKS, Examples 5.4 and 5.5]. On the other hand, rational surfaces with big KW may
not satisfy Assumption 5.12 (4), see e.g. [RU3, Sections 4 and 5].
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We will define the action of generators of Br+1 on Wahl resolutions with r + 1 sin-
gularities by treating every irreducible curve in its exceptional divisor as an extremal
Wahl resolution. Relations of the braid group are checked in Theorem 5.18.

Definition 5.13. Let W → W be a Wahl resolution with exceptional divisor Γ1∪ . . .∪Γr

and toric boundaries Γ0 and Γr+1 as in Lemmas 5.20 and 5.21. The neighborhood of
Γi ⊂ W contains a subchain [

(
ni−1

ai−1

)
] − (ci) − [

(
ni

ai

)
] of an extremal Wahl resolution. We

have a contraction W → Wi of Γi ⊂ W into a c.q.s. 1
∆Γi

(1,ΩΓi
), which has as toric

boundary the image of Γi−1 and Γi+1. By Lemma 5.21, we can choose two deforma-
tions of Wi (the same ones if the extremal resolution is a P-resolution or a K-trivial
resolution) which (1) are equisingular at singularities of Wi other than 1

∆Γi
(1,ΩΓi

), (2)
lift the boundary of Wi, and (3) smoothen 1

∆Γi
(1,ΩΓi

) as in the discussion of antiflips
of extremal Wahl resolutions in the beginning of this section. These deformations of
Wi are blow-downs of Q-Gorenstein deformations of W and another Wahl resolution
Ri(W ) → W , respectively. We call Ri(W ) the right antiflip of W → W at Γi. The left
antiflip is defined is a similar way. The singularities of Ri(W ) and Li(W ) are the same
as for W except at the positions i− 1 and i, where we have the singularities produced
by the antiflip of an extremal Wahl resolution [

(
ni−1

ai−1

)
]− (ci)− [

(
ni

ai

)
].

The following is [TU, Corollary 3.4].

Corollary 5.14. Given a sequence of Wahl resolutions W0,W1, . . . ,Wk → W with Wahl
chains Γj

0, . . . ,Γ
j
r+1 for j = 0, . . . , k, suppose Wi = Rli(Wi−1) for i = 1, . . . , k.

(1) There is a sequence of Q-Gorenstein smoothings Yi ⇝ Wi for i = 0, 1, . . . , k over smooth
curve germs Di that belong to the same component of DefP∈W .

(2) If KWi−1
· Γi−1

li
≥ 0 for i = 1, . . . , k, i.e. on every step we antiflip an extremal P-resolution

or a K-trivial resolution, then we can assume that D1 = . . . = Dk = D is the same curve in
DefP∈W and (Wi−1 ⊂ Wi−1) → (0 ∈ D) is the flip (or flop) of (Wi ⊂ Wi) → (0 ∈ D) for
all i = 1, . . . , k with respect to the contraction of Γi

li
⊂ Wi. In particular, the smooth fibers

Yi of these families are isomorphic.
Proof. (1) is clear. To prove (2), choose a Q-Gorenstein smoothing (Wk ⊂ Wk)→ (0 ∈ D)
over a smooth curve germ D with all axial multiplicities equal to 1, which exists by
Lemma 5.21. Then we apply a sequence of flips (or flops if δili = 0) to contractions of
Γi
li
⊂ Wi for i = k, k − 1, . . . , 1. □

Proposition 5.15. [[TU, Proposition 3.5]] Let W → W be a Wahl resolution with a chain
of 3 curves Γ1,Γ2,Γ3, and singularities P0, P1, P2, P3 where the type of Pi is 1

n2
i
(1, niai − 1).

Consider W ′ := R2(W ) the right antiflip of W → W at Γ2. Hence we have a Wahl resolution
W ′ → W with a chain of 3 curves Γ′

1,Γ
′
2,Γ

′
3, and singularities P ′

0 = P0, P
′
1, P

′
2 = P1, P

′
3 = P3.

Let δ′i = n′
i−1n

′
i |KW ′ · Γ′

i|. Then we have the following three situations:

(-/-): Γ2 ·KW < 0 and Γ′
2 ·KW ′ < 0.

(1) n′
1 = δ2n1 − n2, a′1 = δ2a1 − a2, n′

2 = n1, a′2 = a1, δ′2 = δ2.
(2) n′

0n
′
1 Γ

′
1 ·KW ′ = ±δ1(δ2n1−n2)+δ2n0

n1
, where ± is the sign of KW · Γ1.

(3) n′
2n

′
3 Γ

′
3 ·KW ′ = ±δ3n1−δ2n3

n2
, where ± is the sign of KW · Γ3.

(-/+): Γ2 ·KW < 0 and Γ′
2 ·KW ′ > 0. Let −c′2 be the self-intersection of the proper transform

of Γ′
2 in the minimal resolution of W ′.
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(1) n′
1 = n2 − δ2n1, a′1 = a2 − δ2a1 − (c′2 − 1)n′

1, n′
2 = n1, a′2 = a1, δ′2 = δ2, and δ′2 =

(c′2 − 1)n′
1n1 + n1a

′
1 − n′

1a1.
(2) n′

0n
′
1 Γ

′
1 ·KW ′ = ±δ1(n2−δ2n1)−δ2n0

n1
, where ± is the sign of KW · Γ1.

(3) n′
2n

′
3 Γ

′
3 ·KW ′ = ±δ3n1−δ2n3

n2
, where ± is the sign of KW · Γ3.

(+/-): Γ2 ·KW ≥ 0 and Γ′
2 ·KW ′ ≤ 0. Let −c2 be the self-intersection of the proper transform

of Γ2 in the minimal resolution of W .
(1) n′

1 = δ2n1 + n2, a′1 = δ2a1 + a2 − (c2 − 1)n2, n′
2 = n1, a′2 = a1, δ′2 = δ2.

(2) n′
0n

′
1 Γ

′
1 ·KW ′ = ±δ1(δ2n1+n2)+δ2n0

n1
, where ± is the sign of KW · Γ1.

(3) n′
2n

′
3 Γ

′
3 ·KW ′ = ±δ3n1+δ2n3

n2
, where ± is the sign of KW · Γ3.

In particular, we have in all cases that

KW · Γ1 = KW ′ · (Γ′
1 + Γ′

2) and KW ′ · Γ′
3 = KW · (Γ2 + Γ3).
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FIGURE 23. Proposition 5.15 in a picture.

A careful computation shows the following.

Lemma 5.16. Let W0 → W be a Wahl resolution. Then we have the braid relation

R2R1R2(W0) = R1R2R1(W0).

Theorem 5.17. [[TU, Theorem 3.8]] After applying r(r + 1)/2 right antiflips of curves con-
tained in the Wahl resolutions starting with W+ → W , we get the corresponding N-resolution
W− → W . On every step, we antiflip either an extremal P-resolution or a curve with δ = 0.

Theorem 5.18. [[TU, Theorem 3.9]] The operations of right antiflips Ri on Wahl resolutions
W → W with r + 1 singularities satisfy braid relations RiRj = RjRi for i > j + 1 and
RiRi+1Ri = Ri+1RiRi+1. In particular, they give the action of the braid group Br+1.

Corollary 5.19. Every Wahl resolution W → W is in the braid group orbit of a unique M -
resolution W+ → W .

Visualization problem: Given an M-resolution W+ → W with r = 2, we suppose to
have a 3-dimensional deformation space where deformations of (W+, B). Inside here,
we would have all deformations coming from all Wahl resolutions W → W . What
is literally the picture? This would be the analog of the universal antiflip of extremal
P-resolutions as in Figure 24.
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of the extremal P-resolution (on the right) for [HTU, Figure 1].

Lemma 5.20. [[TU, Lemma 3.1]] Let P ∈ W be a c.q.s. surface satisfying Assumption 5.12
(1), (3). We can choose effective, smooth divisors Ā and ˜̄A such that the germ P ∈ (Ā∪ ˜̄A) ⊂ W
is etále-locally isomorphic to the germ 0 ∈ (x = 0) ∪ (y = 0) ⊂ C2/µ∆. Proper transforms Γ0

of Ā and Γr+1 of ˜̄A in any Wahl resolution W of W intersect the chain Γ1 ∪ . . .∪Γr only at the
end-points P0 and Pr, where they give toric boundaries opposite to Γ1 (resp. Γr).

Lemma 5.21. [[TU, Lemma 3.2]] Let π : W → W be a Wahl resolution satisfying Assump-
tion 5.12.
(1) We can choose divisors Γ0 and Γr+1 as in Lemma 5.20 so that there are no local-to-global

obstructions to deformations of a pair (W,B), where B is the boundary Γ0 + Γ1 + . . . +
Γr + Γr+1, i.e. the morphism Def(W,B) →

∏
Pi∈W

DefPi∈(W,B) is smooth.

(2) If W is a Wahl resolution, then there are no local-to-global obstructions to Q-Gorenstein
deformations of W or (W,B), for example, there exists a Q-Gorenstein smoothing Y ⇝ W
with a lifting of B for any choice of axial multiplicities α0, . . . , αr.

Exercises.
(1) Typically in the examples of W-surfaces in the previous sections, one can find M-

resolutions of c.q.s. That is key to construct in the next section exceptional collec-
tions of vector bundles. Find some examples with embedded M-resolutions (not
only extremal P-resolutions).

(2) ⋆ Find a representation of the dynamical orbits of the Braid group action on an M-
resolution. For example, when the M-resolution is an extremal P-resolution, then
this is represented by the Mori trains. That is r = 1. What is the situation for r = 2?
Any r?
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6. EXCEPTIONAL COLLECTIONS OF HACKING BUNDLES

The aim of this chapter is to show how to construct exceptional vector bundles on
the nonsingular fibers Wt of a W-surface Wt ⇝ W , under certain hypotheses on the sin-
gular surface W . This is the work of Hacking [H4], we will call them Hacking bundles.
Depending on the particular geometry of W , one can actually construct exceptional
collections of these Hacking bundles on Wt. We recall that an exceptional collection
defines a semi-orthogonal decomposition of the derived category Db(Wt). This is the main
motivation, along with the desire to understand the orthogonal complement of the ex-
ceptional collection in Db(Wt). Particularly interesting are long exceptional collections,
and W-surfaces provide plenty of them.

Derived categories of algebraic varieties is a central area in algebraic geometry; see
the ICM talks by Bondal-Orlov [BO], and Kuznetsov [K2], [K3]. In particular, semi-
orthogonal decompositions and their behavior under deformations have recently at-
tracted quite a lot of attention; see for example [K1], [K3], [K4], [TU]. The works of
Kalck–Karmazyn [KK1], Kawamata [K1], Karmazyn–Kuznetsov–Shinder [KKS] de-
velop a way to express the derived categories of singular surfaces with a c.q.s. 1

∆
(1,Ω).

That was the starting point of [TU], which will be explained by the end of this chapter.
One main result from [TU] was the discovery of N-resolutions, which were ex-

plained in the previous chapter, and their application to mutations of Hacking ex-
ceptional collections. For example, under certain hypotheses, we can find on many
W-surfaces long exceptional collections that are strong. For this, it is key the use of the
birational geometry of W-surfaces.

6.1. Hacking exceptional bundles.

Definition 6.1. An exceptional vector bundle (e.v.b.) E on a projective surface Y is a
locally free sheaf such that Hom(E,E) = C, and Ext1(E,E) = Ext2(E,E) = 0.

In this way, an e.v.b. is indecomposable, rigid (no infinitesimal deformations), and
unobstructed in deformations. Given an e.v.b. E we have that its dual E∨ and E ⊗ L
are e.v.b.s, where L is a line bundle.

An exceptional vector bundle E on Y induces the semi-orthogonal decomposition
(s.o.d.) Db(Y ) = ⟨E⊥, E⟩, where E is the admissible triangulated subcategory gener-
ated by E and E⊥ = {t ∈ Db(Y ) : Hom(e, t) = 0, ∀ e ∈ E}; see [H10, §1.4]. At this point,
we should mention that conjecturally there is a strong restriction on the existence of an
e.v.b. (Folklore conjecture? see [BGL]):

Conjecture 6.2. Let Y be a nonsingular projective variety. If the canonical bundle KY is nef
and h0(Y,KY ) > 0, then X admits no non-trivial semi-orthogonal decomposition.

Since our W-surfaces Wt ⇝ W with W singular and KW nef have q = 0, we should
then consider only pg = q = 0 surfaces. Although it would be instructive to keep in
mind that a W-surface Wt ⇝ W may have pg > 0; see many examples in [RU2] for
pg = 1. Also, we note that any line bundle on a pg = q = 0 surface is exceptional.

Theorem 6.3 (Theorem 1.1 [H4]). Let (W ⊂ W)→ (0 ∈ D) be a W-surface such that
(1) W has only one Wahl singularity 1

n2 (1, na− 1), pg(W ) = q(W ) = 0, and
(2) the induced exact sequence

0→ Pic(Wt) = H2(Wt)→ Cl(W ) = H2(W )→ Z/n→ 0

is exact (see Subsection 4.1), where t ̸= 0.
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Then, possibly after a base change D → D, there exists a reflexive sheaf E (i.e. E → E∨∨ is
an isomorphism) onW such that
(a) E := E|Wt is an e.v.b. of rank n, and
(b) E0 := E|W is a torsion-free sheaf on W such that E∨∨

0 (reflexive hull) is isomorphic to the
direct sum of n copies of a reflexive rank 1 sheaf A, and the quotient E∨∨

0 /E0 is a torsion
sheaf supported at 1

n2 (1, na− 1).
IfH is a line bundle onW which is ample on the fibers, then E is slope stable with respect to
H|Wt . Moreover we have

c1(E) = nc1(A) c2(E) =
n− 1

2n

(
c21(E) + n+ 1

)
c1(E) ·KWt ≡ ±a(mod n).

There is a slight generalization of this theorem (and different construction) due to
Kawamata in [K4, Theorem 1.1]. A Hacking vector bundle on a nonsingular projective
surface Y is an e.v.b. isomorphic to some e.v.b. E as in Theorem 6.3. To construct them,
we need a W-surface with pg = q = 0 and one Wahl singularity, and the assumption (2)
in Theorem 6.3. As we saw in Subsection 4.1, this assumption is satisfied, for example,
when H1(Wt) = 0.

The construction of Hacking goes roughly as follows. Given (W ⊂ W) → (0 ∈
D), after a suitable base change and weighted blow-up, he considers a Q-Gorenstein
smoothing

(W ′ ∪ Z ⊂ Z)→ (0 ∈ D),
where the singular fiber has two components W ′ and Z. The induced birational mor-
phism W ′ → W is a partial resolution over the Wahl singularity extracting the first
curve from its minimal resolution. The surface Z is (wn + ta = uv) ⊂ P(1, na− 1, a, n).
The intersection (t = 0) = W ′∩Z is a P1, and it is a simple normal intersection except at
the unique c.q.s. in both surfaces (this is called an orbifold normal crossings singularity).
Inductively on the index n of the Wahl singularity, he produces an e.v.b. on Z of rank
n which glues along W ′ ∪ Z to An on W ′, for some divisor A, which exists because of
hypothesis (b) in Theorem 6.3. The inductive construction uses an explicit further de-
generation of Z into P(1, na− 1, a2). It is just a Q-Gorenstein smoothing of 1

a2
(1, an− 1)

keeping the other c.q.s. From P(1, na−1, a2) we have, by induction, an exceptional pair
(O, F1) where F1 is e.v.b. of rank a < n on Z. Its mutation (F∨

2 ,O) produces the e.v.b.
F2 of rank n to do the construction. All details are explained in [H4].

If E is the e.v.b. in Theorem 6.3, then by Riemann-Roch we have

2n
(
h0(E)− h1(E) + h2(E)

)
= n2(A2 − A ·KW + 1) + 1.

We recall that A2 and A ·KW are rational.

Theorem 6.4 (Theorem 6.4 [H4], Proposition 3.15 [A1]). Let S be the set of isomorphism
classes of normal surfaces W with one Wahl singularity in a W-surface P2 ⇝ W . Let T be the
set of isomorphism classes of e.v.b. E on P2 of rank > 1 modulo E 7→ E∨ and E 7→ E⊗L with
L ∈ Pic(P2).

Then Theorem 6.3 defines a bijection Φ: S → T , W 7→ E.

The bijection in Theorem 6.4 is very particular of P2, but the potential surjection of
Φ: S → T for other surfaces Wt is very interesting. Hacking vector bundles suppose
to be a replacement for the nonexistent vanishing cycles in Q-Gorenstein smoothings.
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Exercises.
(1) Let W be the contraction of the (−4)-curve in the Hirzebruch surface F4. We know

the existence of a W-surface P2 ⇝ W . Let A = P1 be the image of a fiber of F4 → P1

in W . Show that Theorem 6.3 works and with this A, obtaining an e.v.b. E of rank
2 on P2. Show that the slope of E with respect to O(1) is 1

2
. As in Theorem 6.4, one

can prove that every rank 2 e.v.b. on P2 is of the form E ⊗ O(ℓ) (or E∨ ⊗ O(ℓ), but
in this case is not necessary) for some ℓ ∈ Z.

(2) ⋆⋆ One may think that the previous exercise extends for all e.v.b. on P2. But Markov
uniqueness conjecture is present here in the equivalent form: Up to dualizing and
tensoring by line bundles, an e.v.b. on P2 is uniquely determined by its rank (con-
jectured by A. N. Tyurin [R3]).

6.2. Hacking exceptional collections.

Definition 6.5. An exceptional collection of vector bundles (e.c.) on a projective surface Y
is a collection of e.v.b. Er, Er−1, . . . , E0 such that

Extk(Ei, Ej) = 0

for all i < j and all k ≥ 0. Its length is r + 1. It is said to be strong if moreover
Extk(Ei, Ej) = 0 for all i > j, and all k > 0.

Proposition 6.6. If Er, Er−1, . . . , E0 is an e.c. on a nonsingular Y , then
• Er ⊗ L, Er−1 ⊗ L, . . . , E0 ⊗ L is an e.c. for any line bundle L.
• E∨

0 , E
∨
1 , . . . , E

∨
r is an e.c. where E∨ is the dual of E.

• E0 ⊗OY (KY ), Er, Er−1, . . . , E1 is an e.c. where KY is a canonical divisor.
• Er−1, . . . , E1, E0, Er ⊗OY (−KY ) is an e.c. where KY is a canonical divisor.

As explained in [H10, §1.4], an exceptional collection Er, Er−1, . . . , E0 on Y defines a
s.o.d. Db(Y ) = ⟨A⊥, Er, Er−1, . . . , E0, ⟩ where A is generated by Er, Er−1, . . . , E0. The
exceptional collection is full if A⊥ = ∅. There is the following conjecture by Orlov.

Conjecture 6.7. The only nonsingular projective varieties that admit a full exceptional collec-
tion are rational.

For example, any exceptional collection on a del Pezzo surface can be completed
into a full exceptional collection [KO]. Hence in a del Pezzo surface a maximal length
exceptional collection is full. On the other hand, there are rational surfaces that admit
an exceptional collection of maximal length but it is not full [K3]. What is the maximal
possible length for a given surface? We review that now, and later we will define the
maximum length.

Let Y be a nonsingular surface. An s.o.d. produces a decomposition of K0(Y ) =
K0(D

b(Y )), the Grothendieck group of Y [KKS, §4.1]. For an exceptional factor E of
the s.o.d., we have a direct sum factor K0(E) = Z of K0(Y ). In this way, the maximal
possible length is the rank of K0(Y )Q. By [F2, Corollary 18.3.2], we have an isomor-
phism between K0(Y )Q and the Chow ring of Y over Q, and so the maximum possible
length of an exceptional collection is at least χtop(Y ) when pg(Y ) = q(Y ) = 0. If the
Bloch conjecture for pg = q = 0 surfaces is true, then this maximum possible length
is χtop(Y ). (We note that the Bloch conjecture is unknown only for surfaces of general
type.) By a result of Vial, we will soon see that the topology of the surface Y restricts
even more the maximal possible length.
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Remark 6.8. If Y is rational, then we have the concrete isomorphism of groups [KKS,
Lemma 4.2]

(Rank, c1, χ) : K0(Y )→ Z⊕ Pic(Y )⊕ Z,
where Z⊕ Pic(Y )⊕ Z is called the Mukai lattice of Y .

The following proposition will be the base for the general construction of Hacking
exceptional collections from W-surfaces (see [H5, Lemma 2.5.2]).

Proposition 6.9. Let Y be a nonsingular projective surface with pg(Y ) = q(Y ) = 0. Let
{Γ1, . . . ,Γr} be a chain of nonsingular rational curves on Y . (This is, Γi · Γi+1 = 1 and
Γi · Γj = 0 for any other i ̸= j.) Then

OY (−Γr − Γr−1 . . .− Γ1), . . . ,OY (−Γ2 − Γ1),OY (−Γ1),OY

is an exceptional collection.

Proof. Since pg(Y ) = q(Y ) = 0, every line bundle on Y is exceptional. For k ≥ 1 we
have Extj(OY (−Γi . . . − Γ1),OY (−Γi+k . . . − Γ1)) = Hj(OY (−Γi+k . . . − Γi+1)) = 0 for
every j as pg(Y ) = q(Y ) = 0 and

∑i
l=1 Γl is a connected curve of arithmetic genus 0. □

Remark 6.10. The previous e.c. is dual to OY ,OY (Γ1), . . . ,OY (Γr + . . . + Γ1), which is
also e.c. The point of presenting it as in Proposition 6.9 is to put it in the exact form
that will work for W-surfaces. See discussion in [TU, §4].

Example 6.11 (Many e.c. from chains). Proposition 6.9 constructs maximal exceptional
collections of line bundles in many surfaces. Take two lines in P2. ThenO(−2),O(−1),O
is maximal length (and so full because it is a del Pezzo). In Fm we can take two fibers
of Fm → P1 and one section, and then we have a length 4 maximal collection. Simi-
larly for any toric nonsingular surface. In an Enriques surface any nonsingular rational
curve is a (−2)-curve. We have that the Picard number is 10, so we can have at most
9 curves in a chain, whose contraction is a Q-homology projective plane with K ≡ 0
and one A9 singularity. By Schütt [S4], there is a one-dimensional irreducible family
of such "A9 Enriques surfaces". One can see part of this family from W-surfaces with
W a Coble surface, see details in [U2]. Similarly for elliptic surfaces with Kodaira di-
mension 1 and pg = q = 0. One can construct W-surfaces that produce these elliptic
fibrations as general fibers Wt together with a chain of 9 P1s. The case of general type
is harder, but there are many examples of chains of P1s. If Y is of general type with
pg = q = 0, then we can have at most 9−K2

Y P1s in a chain.

Consider on K0(Y ) the Euler pairing (bilinear form)

χ(A,B) :=
∑

(−1)i exti(A,B),

where A,B ∈ K0(Y ). We define the maximum length of an exceptional collection as the
rank of Knum

0 (Y ) := K0(Y )/ kerχ (see for example [V2]). The Euler pairing allows
us to talk about numerical exceptional collections, as a test to be an actual one. A
vector bundle E is numerically exceptional if χ(E,E) = 1. A collection of vector bundles
Er, Er−1, . . . , E0 is a numerical exceptional collection (n.e.c.) if χ(Ei, Ei) = 1 for all i, and
χ(Ei, Ej) = 0 for all i < j.

In [P3], Perling proves that a n.e.c. (of exceptional objects) of maximal length can be
transformed into an n.e.c. of rank 1 objects. On the other hand, Vial [V2, Proposition 1]
shows that this last part is equivalent to having a collection of divisors that mimics the
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construction above of an e.c. from a chain of rational curves. See also [V2, Theorem 6]
for another equivalence. Using that, Vial proves the next classification theorem.

Definition 6.12. Let n ≥ 2. A Dolgachev surface Dp1,...,pn is a minimal elliptic fibration
over P1 with n multiple fibers of multiplicity pi, and geometric genus 0.

Theorem 6.13 (Theorem 3 in [V2]). Let Y be a nonsingular projective surface with pg = q =
0. Let κ(Y ) be the Kodaira dimension of Y . If Y is not minimal, then Y admits a n.e.c. of
maximal length. For Y minimal we have:
• If κ(Y ) = −∞, then Y admits a n.e.c. of maximal rank.
• If κ(Y ) = 0, then Y is an Enriques surface and its maximal possible length is 10.
• If κ(Y ) = 1, then Y is a Dolgachev surface, and it admits a n.e.c. of maximal length 12 if

and only if Y is D2,3, D2,4, D3,3 or D2,2,2.
• If κ(Y ) = 2, then Y admits a n.e.c. of maximal length.

Cho and Lee constructed in [CL] an exceptional collection of line bundles of maximal
length 12 with a phantom, i.e. it is not full, on a Dolgachev surface D2,3. In [TU, Section
8] the authors construct exceptional collections of vector bundles of maximal possible
length 10 on any Dp,q with gcd(p, q) = 1. They are all Hacking exceptional collections,
and we explain them now.

Theorem 6.14 (Theorems 5.5 and 5.8 [TU]). Let Wt ⇝ W be a W-surface such that
(1) pg(W ) = q(W ) = 0.
(2) The surface W has exactly the Wahl singularities P0, . . . , Pr (we also allow Pi to be smooth

points), and a chain of nonsingular rational curves Γ1, . . . ,Γr that are toric boundary divi-
sors Γi, Γi+1 at Pi+1. (This is as in Figure 20 without Γ0 and Γr+1.)

(3) There exists a Weil divisor A ⊂ W , which is Cartier outside of P0 and generates the local
class group Cl(P0 ∈ W ).

Then, after possibly shrinking D, there exists an e.c. Er, . . . , E0 of Hacking vector bundles on
Wt with

rank(Ei) = ni, c1(Ei) = −ni(A+ Γ1 + . . .+ Γi) ∈ H2(Wt),

where Pi =
1
n2
i
(1, niai − 1). (For Pi smooth we take ni = ai = 1.)

Definition 6.15. A Hacking exceptional collection (H.e.c.) on a nonsingular projective
surface Y is the existence of a W-surface Wt ⇝ W where Y = Wt for some t ̸= 0, and
an e.c. as in Theorem 6.14 on Y .

Remark 6.16. By Riemann–Roch, we also have c2(Ei) =
ni−1
2ni

(c1(Ei)
2 + ni + 1).

The condition (3) in Theorem 6.14 is satisfied in many cases by the next lemma.

Lemma 6.17 (Lemma 8.1 of [TU]). Let Z be a surface with only c.q.s. {Q0, . . . , Qs} of type
1
mi
(1, qi), and with H1(Z,OZ) = H2(Z,OZ) = 0. Let Zo := Z\{Q0, . . . , Qs}. If H1(Z

o,Z) =
0, then there is a short exact sequence

0→ Pic(Z)→ Cl(Z)→
s
⊕
i=0

Cl(Qi ∈ Z)→ 0,

where Cl(Qi ∈ Z) ≃ Z/miZ is the local class group of Qi ∈ Z.

As shown in [TU, §8], one can use the Seifert-Van Kampen theorem to compute
π1(W

o). If trivial, then Lemma 6.17 applies, and we have condition (3) in Theorem
6.14. See also [KKS], [KPS] for a direct relation with the vanishing of the Brauer group
Br(W ).

73



Remark 6.18. The existence of such an exceptional collection was stated in [H5, Theo-
rem 2.5.1] for dual bundles (without a proof).

Remark 6.19. Let Y be a del Pezzo surface with a full exceptional collection E ′
r, . . . , E

′
0

of vector bundles. In [H5, Theorem 2.5.3] it is stated that there exists a W-surface
Wt ⇝ W where Wt is a del Pezzo surface deformation equivalent to Y , and W is a toric
surface, such that it induces a H.e.c. deformation equivalent to E ′

r, . . . , E
′
0. By [KO],

this implies that every exceptional bundle on a del Pezzo surface arises as a Hacking
vector bundle [H5, Corollary 2.5.4].

Exercises.

(1) Reproduce the construction in Remark 6.19 via Theorem 6.14.
(2) Let n ≥ 2 be an integer. One can construct Dolgachev surfaces Dn,n (Definition 6.12;

for n = 2 they are Enriques surfaces) by means of Q-Gorenstein smoothings over
two fibers in a rational elliptic surface with sections. See, for example, [U3, Section
4], the index of the corresponding Wahl singularities is n. Take, for example, the
rational elliptic surface with 3 sections and singular fibers I9 + 3I1. Construct the
T-singularity with d = 10 and index n from this configuration and a section, so that
its Q-Gorenstein smoothing is a Dn,n. There is a 1-dimensional family that produces
a Dn,n with a chain of 9 (−2)-curves. This defines a length 10 e.c. of line bundles.
Write down the details.

(3) In [TU, §8] the authors construct a maximal length H.e.c. for all simply-connected
surface Dp,q (except for p = 2, q = 3, where the maximal possible length is 12).
The starting point is the rational elliptic surface with 3 sections and singular fibers
I9 + 3I1. Can it be done starting with rational elliptic surfaces with singular fiber
configurations 2I5 + 2I2 and I8 + 2I1 + I2? Is it possible to extend the constructed
H.e.c. of length 10 to a e.c. of length 12?

(4) For Enriques surfaces the condition (3) in Theorem 6.14 fails. Show it. On the other
hand, there are length 10 exceptional collections of line bundles. Are there e.v.b. of
rank two on Enriques surfaces? (Answer is yes; see for example [B4]. However,
they cannot be Hacking vector bundles, since when K is trivial, c1 ·K = 0 but for
Hacking bundles c1(E) ·K = ±a mod n.)

6.3. Exceptional collections and H.e.c.s. Our main reference here is [B3]. Let Y be a
nonsingular projective surface. An exceptional object in Db(Y ) is a A ∈ Db(Y ) such that
HomDb(Y )(A,A[i]) = 0 for i ̸= 0 and HomDb(Y )(A,A) = C. (We need to consider them
because operations on e.c. of vector bundles give e.c. but not necessarily of vector
bundles.) An exceptional collection Ar, . . . , A0 is a collection of exceptional objects Ai

such that HomDb(Y )(Ai, Aj[k]) = 0 for all i < j, and all k. This coincides with Definition
6.5 when the Ai are vector bundles on Y .

As we saw in Proposition 6.6, we have certain operations on exceptional collections.
The following is another operation. From an exceptional collection ⟨A,B⟩ ⊂ Db(Y ) we
can obtain two other exceptional collections ⟨B,RB(A)⟩ (right mutation of A over B),
and ⟨LA(B), A⟩ (left mutation of B over A), so that ⟨A,B⟩ = ⟨B,RB(A)⟩ = ⟨LA(B), A⟩
(see for example [B3, §2]).

For a longer exceptional collection ⟨Ar, . . . , A0⟩, the action of left and right muta-
tions induces an action of the braid group Br+1 (see Subsection 5.2) of r + 1 strands on
⟨Ar, . . . , A0⟩. Let us denote them by Ri (right mutation over the ith object) and by Li
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(left mutation over the ith object). In particular, a mutation of an e.c. is an e.c., and
they generate the same category [B3, Lemma 2.2]. Hence, we also have
• RiLi = 1.
• RiRi+1Ri = Ri+1RiRi+1 and LiLi+1Li = Li+1LiLi+1.

Rational surfaces. Exceptional collections have been studied extensively on del Pezzo
surfaces [DLP, GR, R3, G3, KO]. We start by highlighting two general results.

Let Y be a del Pezzo surface. We define the slope of a vector bundle E as µ(E) :=

−KY · c1(E)
rank(E)

.

Theorem 6.20 (2.4 Theorem [G3]). Any e.v.b. E on a del Pezzo surface is Mumford-Takemoto
stable, that is, for any coherent subsheaf 0 ̸= F ⊂ E with 0 < rank(F ) < rank(E) we have
µ(F ) < µ(E).

Theorem 6.21 (2.5 Corollary [G3]). An exceptional vector bundle E on a del Pezzo surface
Y is uniquely determined up to isomorphism by its slope c1(E)

rank(E)
∈ Pic(Y )Q.

We note that by [G3, 2.2.3 Corollary] c21(E) and rank(E) of Theorem 6.21 are coprime.

Theorem 6.22 (2.11 Corollary [KO]). Let E,F be an e.c. on a del Pezzo surface. Then
Ext2(E,F ) = 0, and at most one Exti(E,F ) ̸= 0 for some i = 0, 1.

Let E,F be vector bundles on a nonsingular projective surface Y . Then by the
Riemann-Roch theorem, we have

χ(E,F ) = χ(F,E) + rank(F )c1(E) ·KY − rank(E)c1(F ) ·KY .

Corollary 6.23. Let E,F be an e.c. on a del Pezzo surface Y . Then
(i) µ(E) ≤ µ(F ) if and only if hom(E,F ) = rank(F )rank(E)(µ(F )− µ(E)).

(ii) µ(E) ≥ µ(F ) if and only if ext1(E,F ) = rank(F )rank(E)(µ(E)− µ(F )).

Corollary 6.24. Let OY , F be an e.c. on a del Pezzo surface Y . Then
(i) 0 ≤ µ(F ) if and only if h0(Y, F ) = rank(F )µ(F ).

(ii) 0 ≥ µ(F ) if and only if h1(Y, F ) = −rank(F )µ(F ).

The following is a complete picture for e.c. on P2.

Theorem 6.25 ([GR, R3]). Up to tensoring and dualizing, every full exceptional collection
of vector bundles E2, E1, E0 on P2 can be obtained by mutating finitely many times the e.c.
O(−2),O(−1),O. The ranks of E2, E1, E0 form a Markov triple, and a mutation of E2, E1, E0

is a mutation on the corresponding Markov triple. (Thus for any Markov triple we have an e.c.
with those ranks.)

Let us show that any full e.c. is a H.e.c. For that, let (1 < a < b < c) be a Markov
triple. (The other cases, i.e. where a = 1, are simpler to describe.) Let us consider a
W-surface P2 ⇝ W with W = P(a2, b2, c2). As In Subsection 4.1, we have

0→ Pic(P2)→ Cl(W )→ Z/a⊕ Z/b⊕ Z/c→ 0.

We recall that each Z/n corresponds to the first homology group of the Milnor fiber of a
Q-Gorenstein smoothing of the Wahl singularity 1

n2 (1, nq− 1). The weighted projective
plane P(a2, b2, c2) has Wahl singularities 1

a2
(b2, c2), 1

b2
(c2, a2), and 1

c2
(b2, a2).
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Definition 6.26. Given a Markov triple (a < b < c) and x ∈ {a, b, c}, we define integers
0 < rx, wx < x as follows:
• ra ≡ b−1c (mod a), rb ≡ c−1a (mod b), and rc ≡ a−1b (mod c).
• wa ≡ 3b−1c (mod a), wb ≡ 3c−1a (mod b), and wc ≡ 3a−1b (mod c).

In our case, if x ∈ {a, b, c} (x ̸= 1), then the corresponding Wahl singularity is
1
x2 (1, xwx − 1). The following are basic properties (see for example [A1], [R3], [P4,
Cor.5.4]).

Proposition 6.27. Let x > 1 be part of a Markov triple (a < b < c), then x + wx = 3rx,
r2x ≡ −1(mod x), rca− rac = b, crb − brc = a, and arb − bra = 3ab− c.

As in [M1, Theorem 18], the minimal resolution X of W can be thought of in a partic-
ular way. The surface X is a sequence of blow-ups from a Hirzebruch surface Fm → P1,
so that the minimal resolution of 1

a2
(1, awa − 1) is contained in one fiber, the one of

1
b2
(1, bwb−1) in another fiber, and the one of 1

c2
(1, cwc−1) contains curves in both fibers

together with the strict transform of the negative curve in Fm. In this way, there are
unique (−1)-curves Γ1 and Γ2, one for each of these two special fibers respectively,
which are not part of the exceptional divisor of the minimal resolution of W .

Lemma 6.28. We can write Cl(W ) = ⟨Γ1,Γ2⟩/(a2Γ1 − b2Γ2), which is generated by the class

ζ := a′Γ1 + b′Γ2

where a′, b′ is a solution of a′b2 + b′a2 = 1. In this way Γ1 = b2ζ and Γ2 = a2ζ . We have
ζ2 = 1

a2b2c2
and −KW0 = 3abcζ .

Proof. One can show that the multiplicities of Γ1 and Γ2 in the corresponding fibers are
a2 and b2 respectively. Therefore, we have that the class group of W0 is isomorphic to
⟨Γ1,Γ2⟩ quotient by (a2Γ1 − b2Γ2), which is the relation given by the fibers. Let us find
a′Γ1 + b′Γ2 so that

⟨a′Γ1 + b′Γ2, a
2Γ1 − b2Γ2⟩ = ⟨Γ1,Γ2⟩.

For this we just solve the equation a′b2 + b′a2 = 1. The rest is a trivial check. □

Lemma 6.29. Consider Γ1 as part of a toric boundary at 1
a2
(1, awa − 1). Then we can take

A := bcd ζ

where d = ra + as, and s ∈ Z, as its complementary toric boundary, which is Cartier at the
other two singularities.

Proof. If we want αζ to be trivial at Z/b and Z/c, then b and c must divide α, as a, b, c are
coprime. If we want bcdζ to be complementary toric boundary to A at 1

a2
(b2, c2), then

we need bcda′ ≡ −1 modulo a. Using the equations

a′b2 + b′a2 = 1 and a2 + b2 + c2 = 3abc

we obtain that d = a′cb+ as, where s ∈ Z. One shows that ra ≡ a′cb modulo a. □

We have now all the hypothesis of Theorem 6.14, this is, we have the chain Γ1,Γ2 of
smooth rational curves passing as toric boundaries through the singularities, and the
existence of A. Therefore, we have the exceptional collection of vector bundles

Eb, Ec, Ea
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of ranks b, c, a respectively, such that

c1(E
∨
a ) = aA, c1(E

∨
c ) = c(A+ Γ1), c1(E

∨
b ) = b(A+ Γ1 + Γ2),

using the identification of Pic(P2) as the kernel of Cl(W ) → Z/a ⊕ Z/b ⊕ Z/c. By
Riemann-Roch c2(E

∨
x ) =

x−1
2x

(c1(E
∨
x )

2 + x+ 1).
Using Proposition 6.27 we have c1(E

∨
a ) · H = ra + as, c1(E∨

c ) · H = rc + cs, and
c1(E

∨
b ) ·H = rb + bs.

A trivial observation is that for any x ∈ {a, b, c} we have r2x ≡ −1 modulo x. There-
fore rx/x or (x− rx)/x is in the interval ]0, 1/2].

Theorem 6.30. Every full e.c. in P2 is a H.e.c.

Proof. By [R3] we have that (ra, rb, rc) (together with the ranks) determines a full excep-
tional collection on P2. □

In fact, one can prove the following (see [H5, Theorem 2.5.3]; see also [UZ2, §8]).

Theorem 6.31. Every full e.c. (of vector bundles) on a del Pezzo surface is a H.e.c.

There are various related results in [UZ2].

Remark 6.32. (Mutations) By [GR, R3], we saw that any mutation of Markov numbers
corresponds to a mutation of the corresponding full e.c. For each of them we have
W-surfaces P2 ⇝ P(a2, b2, c2) and P2 ⇝ P(a2, b2, c′2) where c′ = 3ab − c. It turns out
that these degenerations are connected by a deformation over P1, where each of them
corresponds one points in P1, and over the complement we have partial smoothings of
the singularities corresponding to c and c′ (see [H4, Example 6.3]).

Enriques surfaces. There are constructions of exceptional vector bundles on Enriques
surfaces (e.g. [Z2]), but they cannot be Hacking vector bundles. The reason is that for a
Hacking E from a W-surface Wt ⇝ W we must have KWt ·c1(E) ≡ ±a modulo n, where
1
n2 (1, na− 1) is the Wahl singularity. Therefore, KWt cannot be numerically trivial, and
so Wt cannot be an Enriques surface. In general, if n is the rank of E, then a necessary
condition is KWt · c1(E) to be coprime to n.

Dolgachev surfaces. This means the case of Kodaira dimension 1. Here we can con-
struct many H.e.c. through configurations of rational curves from elliptic fibrations.
First see [U3, Section 4] to construct Dolgachev surfaces from rational elliptic surfaces.
Then see [TU, Section 8] to see a detailed example for any simply-connected Dolgachev
surface. By Theorem 6.13, we have very few cases with maximal length.

Surfaces with big canonical class. Surfaces of general type with pg = q = 0 are harder
to construct, but there are plenty of examples via W-surfaces [LP1, PPS1, PPS2]. By
Theorem 6.13, there are always numerically maximal e.c. There are some examples
in the literature, but very little is known. Let W be a surface with no obstructions to
deform, only Wahl singularities, and KW big and nef. Then K2

W = 1, 2, 3, 4. Hence,
the maximal possible lengths are 11, 10, 9, 8 respectively, but the maximum number
of Wahl singularities is 8, 6, 4, 2 respectively. Therefore, if the recipe in Theorem 6.14
works for a maximal amount of singularities, then we would obtain that the Mukai
lattices of the complement of the H.e.c. have ranks 3, 4, 5, 6 respectively.

We end this last section stating two theorems from [TU] in relation to a semi orthogo-
nal decomposition of the 3-fold in a Q-Gorenstein smoothing and its restrictions to the
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fibers, and to certain cohomological properties of the H.e.c.s of an M-resolution and an
its N-resolution of a given c.q.s. See [TU] for notations.

Theorem 6.33 (Theorem 1.12 [TU]). Let Y ⇝ W be a Q-Gorenstein smoothing of a surface
W with only Wahl singularities satisfying Assumption 5.12 (1), (2), (3). After possibly shrink-
ing the base B, Db(W) admits a B-linear10 s.o.d. ⟨AW

r , . . . ,AW
0 ,BW⟩ compatible with respect

to restrictions to W and Y

⟨AW
r , . . . ,AW

0 ,BW ⟩ Li∗W←−−− ⟨AW
r , . . . ,AW

0 ,BW⟩ Li∗Y−−−→ ⟨AY
r , . . . ,AY

0 ,BY ⟩. (6.1)

Each AY
i is generated by the Hacking bundle Ei and and each AW

i ≃ Db(Ri-mod), where Ri

is the Kalck-Karmazyn algebra associated to Pi ∈ W . Furthermore, BW ⊂ Dperf(W).

Theorem 6.34 (Theorem 1.13 [TU]). Let W+ be an M-resolution of P ∈ W satisfying As-
sumption 5.12. Fix a Q-Gorenstein smoothing Y ⇝ W+ which is sufficiently general in its
irreducible component of the versal deformation space of W . This component also contains a
Q-Gorenstein smoothing Y ⇝ W−, where W− is the N-resolution associated to W+.
(1) Let Ēr, . . . , Ē0 be a Hacking exceptional collection on Y associated with the

N-resolution W−. This collection is strong: Extk(Ēi, Ēj) = 0 for k > 0 and i > j.
(2) In contrast, let Er, . . . , E0 be a Hacking exceptional collection on Y associated with the

M-resolution W+. Then we have Extk(Ei, Ej) = 0 for k ̸= 1 and i > j.
(3) For i = 1, . . . , r, we have Hom(Ēr+1−i, Ēr−i) ≃ Ext1(Ei, Ei−1)

∨ ≃ Cδi .

(4) The Kawamata bundle F̄ on W deforms to a vector bundle F ≃
r⊕

i=0

Ē
nr−i

i on Y . Since F

has rank ∆, we note that

∆ = n0n̄r + n1n̄r−1 + . . .+ nrn̄0.

(5) The Kalck–Karmazyn algebra R̄ = End(F̄ ) deforms to the algebra End(F ), which is heredi-
tary and Morita-equivalent to the path algebra R̂ = End(Ēr⊕ . . .⊕Ē0). The Ei correspond
to simple R̂-modules, and the Ēi correspond to the indecomposable projective R̂-modules.

An interesting fact in relation to quiver algebras is the following. Theorem 6.34
gives a large amount of admissible embeddings of derived categories Db(R̂-mod) of
acyclic quivers without relations into derived categories of smooth projective surfaces
Y (which can be chosen to be rational). (In general, the number of irreducible compo-
nents of DefP∈W is the sth Catalan number, where s is the length of the corresponding
dual continued fraction.) Although Orlov proved [O2] that the embedding always ex-
ists if dimY is sufficiently large, there are strong restrictions in the case of surfaces.
In fact, very few examples were known before [TU]. In particular, Belmans and Raed-
schelders [BR, Sect.4] asked whether there are bounds on the lengths of paths of re-
alizable quivers, and which acyclic quivers Qa,b,c with 3 vertices, where a, b, c are the
number of arrows between them, are realizable. Are they all realizable? In [TU, Prop.
6.11] It is shown that lengths of paths are unbounded. For the other, see the exercises.

Exercises.
(1) In relation to the second question of Belmans and Raedschelders [BR, Sect.4], in

[TU] the following theorem is proved.

10I.e. preserved by tensoring with a pullback of any object T ∈ Dperf(B).
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Theorem 6.35. The quiver Qa,b,c is realizable by the algebra R̂ if and only if there exists an
extremal P-resolution with Wahl singularities of indices a and b and with δ = c.

⇐ . ü:?÷
FIGURE 25. The quiver Qa,b,c for an N-resolution with two curves

The list of realizable triples (a, b, c) from this theorem with entries smaller than
or equal to 8 is:

(1, 2, 3) (1, 2, 5) (1, 2, 7) (1, 3, 4) (1, 3, 5) (1, 3, 7) (1, 3, 8) (1, 4, 5)
(1, 4, 7) (1, 5, 6) (1, 5, 7) (1, 5, 8) (1, 6, 7) (1, 7, 8) (2, 2, 4) (2, 2, 8)
(2, 3, 5) (2, 3, 7) (2, 4, 6) (2, 5, 7) (2, 6, 8) (3, 3, 3) (3, 3, 6) (3, 4, 5)
(3, 4, 7) (3, 5, 7) (3, 5, 8) (3, 7, 8) (4, 4, 8) (4, 5, 7) (5, 5, 5) (5, 6, 7)
(5, 7, 8) (7, 7, 7).

Show that all extremal P-resolutions as in Theorem 6.35 are listed as:
(0) If a = b = 1, then c = λ− 1,
(1) If a = 1 and b > 1, then c = λb− b− ϵb; If b = 1 and a > 1, then c = λa− a− ϵa,
(2) If a, b > 1, then c = (λ− 1)ab− ϵab− ϵba. In particular, gcd(a, b) always divides c.

(2) ⋆⋆ In the previous question/list we have all triples that are realizable via H.e.c. of
length 3 over a c.q.s. What happens with the resting triples (a, b, c)? For example,
what can you say about (2, 2, 2(2t+ 1))?

(3) ⋆⋆ In the case of pg = q = 0 surfaces of general type and when the Kodaira dimen-
sion is 1: Which Mukai lattices do appear for the complement of maximal possible
length H.e.c.? In the case of general type, one needs to find many examples with
the maximum possible number of Wahl singularities, and forming a chain.

(4) ⋆⋆ The associated non-commutative deformations of the Kalck-Karmazin algebra
R̄ in Theorem 6.34 are not explicit. Find them. There is now a much better way to
write down R̄ [LT], which may be useful for this question. Particularly, check the
beautiful [LT, Conjecture 1.9].
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