CHARLA: EL TEOREMA DEL SUBESPACIO

HÉCTOR PASTÉN

1. Versión clásica

En lo siguiente, $\|-\|$ es la norma del máximo. También fijamos una clausura algebraica \mathbb{Q}^{alg} con una inclusión $\mathbb{Q}^{alg} \to \mathbb{C}$, de forma que se extiende el valor absoluto usual de \mathbb{Q} a \mathbb{Q}^{alg} .

Teorema 1.1 (Schmidt 1972). Sean $L_1, ..., L_n \in \mathbb{Q}^{alg}[x_1, ..., x_n]$ homogéneas de grado 1, linealmente independientes sobre \mathbb{Q}^{alg} . Sea $\epsilon > 0$. Existe un conjunto finito $H_1, ..., H_r$ de subespacios lineales propios de \mathbb{Q}^n tales que para todo punto entero $\mathbf{a} = (a_1, ..., a_n) \in \mathbb{Z}^n$ fuera de los H_j se cumple

$$\prod_{j=1}^{n} |L_j(\mathbf{a})| > \frac{1}{\|\mathbf{a}\|^{\epsilon}}.$$

Ejemplo. Sea $\alpha \in \mathbb{C}$ algebraico de grado $d \geq 2$. Las formas lineales

$$L_1(x_1, x_2) = x_1 - \alpha x_2, \quad L_2(x_1, x_2) = x_2$$

tienen coeficientes algebraicos y son linealmente independientes sobre \mathbb{Q}^{alg} . Sea $\epsilon > 0$. Entonces hay finitos $H_1, ..., H_r \subseteq \mathbb{Q}^2$ subespacios lineales propios tales que para todo $(p,q) \in \mathbb{Z}^2$ fuera de ellos se cumple

$$|(p-\alpha q)q| > \frac{1}{\max\{|p|,|q|\}^{\epsilon}}$$

es decir

$$\left|\alpha - \frac{p}{q}\right| > \frac{1}{q^2 \max\{|p|, |q|\}^{\epsilon}}.$$

Vamos a restringirnos a los puntos primitivos, es decir, con gcd(p,q) = 1. Entonces los finitos subespacios H_j solo prohiben finitos de estos puntos. Obtenemos que, salvo finitas excepciones, se cumple

$$\left|\alpha - \frac{p}{q}\right| > \frac{1}{q^2 \max\{|p|, |q|\}^{\epsilon}}.$$

Esto es el Teorema de Roth que ya hemos estudiado anteriormente en el seminario.

Observaciónes.

- La norma $\|-\|$ puede cambiarse por cualquier otra (e.g. L^2) en lugar de usar la L^{∞} .
- El teorema en el caso de puntos enteros primitivos implica el caso general.
- Salvo jugar con la elección de $\epsilon > 0$, la desigualdad del teorema es equivalente a

$$\prod_{j=1}^n \frac{|L_j(\mathbf{a})|}{\|\mathbf{a}\|} > \frac{1}{\|\mathbf{a}\|^{n+\epsilon}}.$$

pero ahora el lado izquierdo no cambia bajo proporcionalidad de a.

Date: 11 de Octubre de 2018.

Teorema 1.2 (Versión proyectiva). Sean $L_0, ..., L_n$ hiperplanos de $\mathbb{P}^n_{\mathbb{Q}^{alg}}$ definidos sobre \mathbb{Q}^{alg} en posición general (i.e. sus ecuaciones son linealmente independientes). Sea $\epsilon > 0$. Existen finitos subespacios lineales propios de \mathbb{P}^n definidos sobre \mathbb{Q} tales que fuera de ellos, todo punto racional $x \in \mathbb{P}^n(\mathbb{Q})$ cumple

$$\sum_{j=0}^{n} \lambda_{\infty}(L_j, x) < (n+1+\epsilon)h(x).$$

Recordamos que la altura de un punto racional $x \in \mathbb{P}^n(\mathbb{Q})$ es

$$h(x) = \log \max\{|x_0|, ..., |x_n|\}$$
 con $x = [x_0 : ... : x_n], x_i \in \mathbb{Z}, \gcd(x_0, ..., x_n) = 1.$

Además, para L hiperplano, $\lambda_{\infty}(L,x)$ es la función de proximidad (o función de Weil, o altura local) con respecto al lugar ∞ de \mathbb{Q} , y se define por

$$\lambda_{\infty}(L, x) = -\log \frac{|L(x_0, ..., x_n)|}{\max_{0 \le i \le n} |x_i|}, \quad x = [x_0 : ... : x_n]$$

donde $L(x_0,...,x_n)$ es una ecuación para el hiperplano L. Esta ecuación se elige y se fija; de esta forma la función $\lambda_{\infty}(L,-)$ es bien definida salvo un error acotado (que viene de la elección de una ecuación para L).

Salvo un error acotado, $\lambda_{\infty}(L,x)$ es lo mismo que

$$\log \frac{1}{\operatorname{dist}_{\infty}(L, x)} \ge 0$$
, con $\operatorname{dist}_{\infty}$ la métrica de Fubini-Study.

2. Versión general

Definición. Hiperplanos $L_1, ..., L_q$ de \mathbb{P}^n están en posición general si la intersección de cualquier subcolección de ellos tiene la dimensión esperada. Para q=n+1 es lo mismo que "linealmente independiente".

Teorema 2.1 (Schmidt, Schlickewei, Lang). Sea K campo de números, sea $S \subseteq M_K$ finito, y sean $q, n \geq 1$. Para cada $v \in S$ fijar una extension de v a K^{alg} , y sean $L_{v,1}, ..., L_{v,q}$ hiperplanos de $\mathbb{P}^n_{K^{alg}}$ en posición general. Sea $\epsilon > 0$. Existe un conjunto finito de subespacios lineales propios $H_1, ..., H_r \subseteq \mathbb{P}^n_K$ (dependiendo de todo lo anterior) tales que para todo $x \in \mathbb{P}^n(K)$ fuera de ellos se cumple

$$\sum_{v \in S} \sum_{j=1}^{q} \lambda_v(L_{v,j}, x) < (n+1+\epsilon)h_K(x).$$

Aquí, la función de proximidad se define por

$$\lambda_v(L, x) = -\log \frac{\|L(x_0, ..., x_n)\|_v}{\max_{0 \le j \le n} \|x_j\|_v}, \quad \|\alpha\|_v = \begin{cases} |\alpha|_v & \text{si } v \text{ es real o no-arquimedeano} \\ |\alpha|_v^2 & \text{si } v \text{ es complejo.} \end{cases}$$

Observaciónes.

- Las funciones de proximidad a hiperplanos están bien definidas salvo un error acotado, debido a la elección de una ecuación para el hiperplano. Además, son acotadas inferiormente.
- Podría parecer que q arbitrario es más fuerte que q = n+1 (cf. versión anterior con $K = \mathbb{Q}$). Pero la hipótesis de posición general (y un argumento de subsecuencias) permite mostrar que el resultado para q = n+1 implica el caso de q arbitrario: básicamente, un punto no puede estar v-ádicamente cerca de más de n+1 de los $L_{v,j}$ a la vez.

3. Aplicación: la ecuación S-unidad

Teorema 3.1. Sea K campo de números, $S \supseteq M_K^{\infty}$ conjunto finito de lugares. Sea $n \ge 0$ y sean $A_0, ..., A_n \in K^{\times}$. Todas salvo finitas soluciones en $O_{K,S}^{\times}$ de la ecuación

$$A_0x_0 + ... + A_nx_n = 1$$

cumplen que alguna sub-suma se anula.

Ejemplo. Si $K = \mathbb{Q}$ y $S = \{\infty, 2\}$ entonces la ecuación x + y + z = 1 tiene infinitas soluciones en \mathbb{Z}_S^{\times} , por ejemplo, $(2^k, -2^k, 1)$. Pero el teorema dice que solamente tiene finitas soluciones en \mathbb{Z}_S^{\times} sin sub-sumas nulas, como por ejemplo (2, -1/2, -1/2).

Demostración del teorema. El resultado es trivial para n=0. Vamos a suponer $n \ge 1$.

En \mathbb{P}^n_K tomamos los n+2 hiperplanos

$$L_0 = \{x_0 = 0\}$$

$$\vdots$$

$$L_n = \{x_n = 0\}$$

$$L_{n+1} = \{A_0x_1 + \dots + A_nx_n = 0\}.$$

Estos hiperplanos están en posición general.

De manera 1-1, a cada solución $u_0, ..., u_n$ en $O_{K,S}^{\times}$ asociamos el punto $u = [u_0 : ... : u_n] \in \mathbb{P}^n(K)$ con coordenadas $u_i \in O_{K,S}^{\times}$. Estos puntos cumplem que para cualquier $1 \le j_0 \le n$

$$\sum_{v \in S} \lambda_v(L_{j_0}, u) = \sum_{v \in S} -\log \frac{\|u_{j_0}\|_v}{\max_{0 \le i \le n} \|u_i\|_v}$$

$$= \sum_v -\log \frac{\|u_{j_0}\|_v}{\max_{0 \le i \le n} \|u_i\|_v} \quad \text{porque } u_i \in O_{K,S}^{\times}$$

$$= \sum_{v \in S} \log \max_{0 \le i \le n} \|u_i\|_v \quad \text{por la fórmula del producto}$$

$$= h_K(u).$$

Además, como $A_0u_0 + ... + A_nu_n = 1$ obtenemos

$$\sum_{v \in S} \lambda_v(L_{n+1}, u) = \sum_{v \in S} -\log \frac{\|A_0 u_0 + \dots + A_n u_n\|_v}{\max_{0 \le i \le n} \|u_i\|_v} = \sum_{v \in S} \log \max_{0 \le i \le n} \|u_i\|_v = h_K(u).$$

Así que para estos puntos $u \in \mathbb{P}^n(K)$ obtenemos

$$\sum_{v \in S} \sum_{j=0}^{n+1} \lambda_v(L_j, u) = (n+2)h_K(u).$$

Por el teorema del subespacio (con $\epsilon = 1/2$), estos puntos están en finitos subespacios propios. Si u no está en uno de los subespacios que corresponde a una sub-suma nula, entonces $u_j \neq 0$ para cada j y además satisface una de entre finitas relaciones del tipo

$$x_n = b_0 x_0 + \dots + b_{n-1} x_{n-1}, \quad b_j \in K^{\times}.$$

Dividiendo por $u_n \neq 0$ podemos aplicar inducción.

DEPARTAMENTO DE MATEMÁTICAS, PUC CHILE E-mail address, H. Pasten: hpasten@gmail.com