
Ejercicios Stacks

Exercise 4 (First Set):
Descent for Quasi-coherent sheaves.
The purpose of the following sequence of exercises is to prove the following:

Theorem (Grothendieck):

Let $ be a faithfully flat and quasi-compact morphism of schemes. Then the
pullback functor  which sends a quasi-coherent -
module with descent data: 

is an equivalence of categories.

This is foundational and essentially all descent-related results (e.g. Galois descent) and
more can be derived from this Theorem.

Notation:
For a descent datum of  we will use  along with an isomorphism 

 of quasi-coherent sheaves over  where  for 
 are the projections. The descent datum also satisfies the cocycle condition 

where  for  are the projections onto two coordinates from 
. 

A morphism of descent datums is a morphism of quasi-coherent sheaves  over 
with isomorphisms  and  resp. such that the following diagram commutes: 

p : S ′ → S

F ↦ p∗F S−moduletoaquasi − coherent$S ′

p∗ : Qcoh(S) → Qcoh(S ′ → S)

Qcoh(S ′ → S) F ′ ∈ Qcoh(S ′)

φ : p∗
1(F ′) → p∗

2(F ′) S ′′ = S ′ ×S S
′ pi : S ′→S ′

i = 1, 2

p∗
13(φ) = p∗

23(φ) ∘ p∗
12(φ)

pi,j : S ′′′ → S ′′ 1 ≤ i < j ≤ 3

S ′′′ = S ′ ×S S
′ ×S S

′

f : F ′ → G′ S ′

φ φ′



Proof:
Part a): Fully faithfulness:

We start by noting that for any quasi-coherent sheaf  over , we have that 
 as . This implies that if we start with a morphism 

 of quasi-coherent sheaves over , then  as well. 
So, to achieve fully faithfulness, all morphisms of canonical descent datums coming from
quasi-coherent sheaves over  must be morphisms of quasi-coherent sheaves over 
that are the same morphisms when taking pull-backs over the projections of . 
This can be summarized in the following exact sequence: 

where .

Part 1: Making the image affine:

The set  corresponds to  , i.e., the global sections of the Hom
sheaf. As it is a sheaf over the Zarisky topology on , if the exact sequence is true for any
open subset , then the statement is true over the whole of  by the sheaf property
of this sheaf and the fact that taking global sections corresponds to a left exact functor.
Thus, we can assume  for a commutative ring .

F S

p∗
1(p∗(F)) = p∗

2(p∗(F)) p1 ∘ p = p2 ∘ p

f : F → G S p∗
1(p∗(f)) = p∗

2(p∗(f))

S S ′

S ′′

q = p1 ∘ p = p2 ∘ p

Hom(F ,G) Γ(Hom(F ,G),S)

S

U ∈ S S

S = Spec(R) R



Part 2: Making the domain affine:

Now, as  is quasi-compact, the preimage on any quasi-compact subset of  is quasi-
compact. As  is affine, it is quasi-compact, thus so is  allowing us to cover it by finitely
many affine open subschemes . 
So let  be the disjoint union of the  with  being the canonical morphism, it
is quasi-compact and faithfully flat as any open immersion  is flat. We will also
consider  and  with projections  for  and note that 
is faithfully flat. and quasi-compact 
In summary, we have the following diagram: 

As fpqc morphisms for a Grothendieck Topology, it is not hard to see that  is fpqc as
well by composing coverings. 
This translates to the following diagram at the level of morphisms of quasi-coherent
sheaves: 

where all vertical arrows are injective as the pull-back functors of quasi-coherent
sheaves induced by  and  are faithful. This diagram easily implies that if the lower
sequence is exact, the upper one is as well, as any morphism of sheaves in the lower
Hom sets that is equal to 0 must come from a 0 morphism on the corresponding upper
Hom set as long as they belonged to the image of  or . 
In conclusion, as  is affine, we can assume  is affine.

Part 3: Reducing to a problem for modules:

p S

S S ′

S ′ = ⋃i S
′
i

S̄ ′ Si u : S̄ ′ → S ′

S ′
i → S ′

p̄ = f ∘ p : S̄ ′ → S S̄ ′′ = S̄ ′ ×S S̄
′ p̄i i = 1, 2 p̄

v

u v

u∗ v∗

S̄ ′ S ′ = Spec(R′)



As both  are affine, quasi-coherent modules become modules over  and . If 
and  correspond to  and  respectively, then the exact sequence we need to prove is: 

where . 
But the second and third terms can be rewritten as: 

where we are considering  and  as -modules using the morphisms from 
 to  and  respectively. But this sequence is exact if the following sequence is exact: 

as the functor  is left exact. This sequence in turn, comes from the sequence 

where the third arrow corresponds to the morphism . So, to finish, we
need to show that for any -module  the sequence 

arising from tensoring with  over the sequence with ,  and  is exact.

Part 4: End of the proof:

Let us start with the sequence: 

if we tensor by , as it is flat over  we have the following sequence: 

where  is the tensor product of three copies of  over .
In this case, we naturally have a surjective morphism  corresponding to a section 

. As  is faithfully flat over , if this second sequence with a section is exact, our
initial sequence is exact as well so we can assume we have a section  on the
first sequence, the sections satisfies . 
Let  be an element in the kernel of , this means that  in . If
we apply  to this equation we obtain 

S and S ′ R R′ M

N F G

0 → HomR(M,N) → HomR′(M ⊗R R′,N ⊗R R′)
p∗

1−p∗
2

→ HomR′′(M ⊗R R′′,N ⊗R R′′)

R′′ = R′ ⊗R R′

0 → HomR(M,N) → HomR(M,N ⊗R R′)
p∗

1−p∗
2

→ HomR(M,N ⊗R R′′)

N ⊗R R′ N ⊗R R′′ R

R R′ R′′

0 → N → N ⊗R R′ → N ⊗R R′′

HomR(M, ⋅)

0 → R → R′
p∗

1−p∗
2

→ R′′

r′ ↦ r′ ⊗ 1 − 1 ⊗ r′

R N

0 → N → N ⊗R R′ → N ⊗R R′′

N R R′ R′′

0 → R
p

→ R′
p∗

1−p∗
2

→ R′′

R′ R

0 → R′ → R′′ → R′′′

R′′′ R′ R

R′′ → R′

S ′ → S ′′ R′ R

s : R′ → R

id = s ∘ p

r′ ∈ R′ p∗
1 − p∗

2 r′ ⊗ 1 = 1 ⊗ r′ R′′

s ⊗ idR′ : R′′ → R ⊗R R′

s(r′) ⊗ 1 = s(1) ⊗ r′



but  is canonically isomorphic to  via  , thus, if we call 
, we have 

implying that  belonged to  which shows that the sequence is exact. 
Now, if we take any -module , we can tensor the exact sequence we just obtain to get
the sequence: 

as  is not necessarily flat, we cannot even state that the first arrow is injective yet. Let
us suppose we have a section  using the fact that  is faithfully flat over , in
this case the composition 

is the identity , in particular the first arrow in the former sequence is injective. The
other part of the exact sequence follows a similar argument using  over an
element  belonging to the kernel of  that shows that it
came from  via , finishing the proof of fully faithfulness.

Part b): Essential subjectivity:

Now given a descent datum  in , we will show that it is isomorphic to a
descent datum of the form  for some .

Part 1: The case with a section:

Let us assume we have a section  with , in this case we will show that
any descent datum is effective: Let  be the isomorphism on , in this
case we have a commutative diagram 

R ⊗R R′ R′ p ⊗ idR′(a ⊗ b) = p(a)b

r = s(r′) ∈ R

p(r) = r′

r′ R

R N

N → N ⊗R R′
idN⊗(p∗

1−p∗
2)

→ N ⊗R R′′

N

s : R′ → R R′ R

N ≅N ⊗R R
idN⊗p

→ N ⊗R R′ idN⊗s
→ N

idN

idN ⊗ s ⊗ idR′

∑ni ⊗ r′
i ∈ N ⊗R R′ idN ⊗ (p∗

1 − p∗
2)

N idN ⊗ p

F ′ Qcoh(S ′ → S)

p∗(F) F ∈ Qcoh(S)

s : S → S ′ p ∘ s = idS

φ : p∗
1(F ′) → p∗

2(F ′) S ′′



so we can define the morphism  and pull-back the ismorphism 
along it to obtain an isomorphism of quasi-coherent sheaves  where 

 using this handy commutative diagram 

To finish, we need to show that  is a morphism of descent datums, so it must satisfy the
following equality  . To show this, we will use the cocycle condition of ,
which states that  where  are the canonical
projections onto two coordinates. 
The equality required to have a morphism of descent datums comes from using the
morphism . We claim that after pulling back the cocycle

(idS ′ , s ∘ p) : S ′ → S ′′ φ

f : F ′ → p∗(F)

F = s∗(F ′)

f

p∗
1(f) = p∗

2(f) ∘ φ φ

p∗
13(φ) = p∗

23(φ) ∘ p∗
12(φ) pi,j : S ′′′ → S ′′

(p1, p2, s ∘ p ∘ p1) : S ′′ → S ′′′



condition over this morphism, we will obtain � Indeed, by looking at the
following diagram 

Thus, to pull-back the cocycle condition for  all the way to the leftmost copy of  we
need to pull back  along the three blue compositions which determine the domain and
range of the pull-backs for  and use that  to obtain the resultant
isomorphism over . Thus, we have

and the cocycle condition for  

becomes 

after pulling back, showing that we actually have a morphism of descent datums,
showing that we have effective descent in this case.

Part 2: Reducing the general case to a problem of modules:

Now we do not assume that we have a section for  and we would like to show
that can reduce ourselves to the case when  and  are affine, so let us assume that we
have effective descent for any fpqc cover between affine schemes. 
If  is a descent datum for , let us suppose that for any affine open subscheme ,
we have effective descent for the covering  , meaning that there is a
sheaf  over  with an isomorphism of descent datums . Now, if we take

p∗
1(f) = p∗

2(f) ∘ φ

φ S ′′

F ′

φ f = (idS ′ , s ∘ p)∗(φ)

S ′′

12 → φ : p∗
1(F ′) → p∗

2(F ′)

13 → p∗
1(f) : p∗

1(F ′) → p∗
1(F)

23 → p∗
2(f) : p∗

2(F ′) → p∗
1(F) = p∗

2(F)

φ

p∗
13(φ) = p∗

23(φ) ∘ p∗
12(φ)

p∗
1(f) = p∗

2(f) ∘ φ

p : S ′ → S

S S ′

F ′ p U ⊂ S

p̄ : S ′ ⊗S U = U ′ → U

FU U F ′|U ′ ≅p̄∗(FU)



an affine cover  of , we can arrange the sheaves  such that they are isomorphic
over the double intersections and satisfy the cocycle condition for any triple intersection
of covers, using the fact that  for all . Thus, we can glue these sheaves
�Hartshorne Ch. II Exercise 1.22� to obtain a sheaf  over  with an isomorphism 

 of descent data coming from the fully faithfulness of the canonical functor
over the fpqc cover  where  which are finite unions of affine schemes
as  is quasi-compact. 
So we conclude that it suffices to show the effective descent property over affine
schemes.

Part 3: Effective descent of modules (part A):

Now let us suppose  and . A descent datum over  is a -
module  together with an isomorphism  (here we have one
less prime as the isomorphism over  holds if and only if it does with one less copy of 
) that satisfies the cocycle condition, that we can consider over . 
Now, let us consider the canonical morphism  defined as 
and let  be  . 
To finish the proof we are going to prove the following statement: 

 descends effectively to a -module if and only if there exists a -module  that fits
into the following exact sequence: 

and the natural map  is an isomorphism. 
The only if  statement is clearly true, so let us suppose that  descends effectively
to a -module  with . Now let  be an element of  that we can
write as , in this case the isomorphism  is just 
and we can readily check that  making the sequence 

exact.

Part 3: Effective descent of modules (part B):

To finish, we need to find the module , let  viewed as a -module and
let  be the restriction to  of . In this case we clearly have an exact sequence 

so we just need to show that  as modules over . 
In the sequence above we are seeing all elements as -modules, and if we tensor by 

{Ui} S FUi

F ′|U ′
i

≅p∗
i (FUi

) i

F S

f : F ′ → p∗(F)

∐Vi → S ′ Vi = p∗(Ui)

p

S = Spec(R) S ′ = Spec(R′) S ′ R′

M ′ φ : M ′ ⊗R R′ → R′ ⊗R M ′

R′′ R′

R′′

a : M ′ → M ′ ⊗R R′ m ↦ m ⊗ 1

b : M ′ → M ′ ⊗R R′ m ↦ 1 ⊗ m ∈ R′ ⊗R M ′ ↦ φ−1(1 ⊗ m) ∈ M ′ ⊗R R′

M ′ R R K

0 → K → M ′ a−b
→ M ′ ⊗R R′

K ⊗R R′ → M ′

(⇐) M ′

R M M ⊗R R′ ≅M ′ m′ ∈ M M ′

m′ = ∑imi ⊗ r′ φ m ⊗ r′
1 ⊗ r′

2 ↦ r′
2 ⊗ m ⊗ r′

1

a(m′) = b(m′)

0 → M → M ′ a−b
→ M ′ ⊗R R′

K K ′ = ker(a − b) R′

K R K ′

0 → K → M ′ a−b
→ M ′ ⊗R R′

K ⊗R R′ ≅M ′ R′

R R′



which is faithfully flat over , we obtain an exact sequence of  modules: 

but in this case, the isomorphism  becomes 
 where  is the

canonical isomorphism defined as  giving us a descent datum
for the morphism , but this morphism has a section, so there exists an effective
descent  over  with  which also implies that . By
the last part,  also fits into an exact sequence 

and moreover, we have the following diagram with exact rows 

but the second and third vertical arrows are isomorphisms, which shows that 
 as modules over  by chasing the diagram, this concludes the proof as we

have  showing effective descent.

R R′

0 → K ⊗R R′ → M ′ ⊗R R′
(a−b)⊗idR′

→ M ′ ⊗R R′′

φ : M ′ ⊗R R′ → R′ ⊗R M ′

t ∘ (ϕ ⊗ idR′) : M ′ ⊗R R′′ → R′′ ⊗R M ′ t : R′ ⊗R M ′ ⊗R R′ → R′′ ⊗R M ′

t(r′
1 ⊗ m′ ⊗ r′

1) = r′
1 ⊗ r′

2 ⊗ m′

R′ → R′′

M̄ R′ M̄ ⊗R′ R′′ ≅M ′ ⊗R R′′ M̄ ≅M ′ ⊗R R′

M̄

0 → M̄ → M ′ ⊗R R′
(a−b)⊗idR′

→ M ′ ⊗R R′′

K ⊗R R′ ≅M̄ R′

K ⊗R R′ ≅M̄ ≅M ′ ⊗R R′


