Algebraie staeles ξ Exauples leectove \#3

We hove outlined the topulgical properties that we weuld like a moduli problem F : Seb ${ }^{\text {op }} \rightarrow$ Gro \rightarrow to have lohpcts $\{$ mapliins ghe), bat we want to do geometry, so they must loeally have an afforaic from.

Fix a bore sheme $S=\operatorname{Srec} R$.
Def: A ntnele F Sels $_{\operatorname{sent} \rightarrow \text { Grp } n \text { algebraic if }}$
(i) $F \underset{\longrightarrow}{\stackrel{\Delta}{\longrightarrow}} F X_{S} F$ is id nepreputble by schemes.

"The ditame letrocen F is ncheure" in al f traile
(ii) Ja mooth sumpective $U \rightarrow F$ whee $U\}$ ncheme.

$F ;$ Deligene-Mimford if $3 u \rightarrow F$ etale + sun . Sego if A
 in puper
in alutraic:
(i) Given $v i w \in \operatorname{vect}(\Gamma), \operatorname{Iscm}_{T}(v, w) \rightarrow T$;
zar. Weally on $T \equiv \operatorname{Irom}_{T}\left(\theta_{T} \theta^{\theta}, \theta_{1}^{\theta n}\right)=G L_{n, T} \rightarrow T \Rightarrow \Delta_{\text {xuph }}$
(ii) $s \xrightarrow{\theta^{\text {on }} \text { BLLn,s is moth }\{\text { smiective }}$

(2) m_{g} is an a geforaic strecl for $y \geq 2$, in peet sedibue-Mumpel.

 there clued oubschenis $Y \leftrightarrow \mathbb{P}^{5 y-6}$ s.t.
ii) Y $\rightarrow p^{55-6}$. tri-cnmmiualy

Then 3 map $\quad \mathrm{Hg} \xrightarrow{\pi} \mathrm{My}$ sendy Y $\rightarrow \mathbb{R}^{5} \mathrm{~J}^{-6} \mapsto Y$, alro

1) π i sorfective on \bar{k}-pts.

Anoler mue intringie "lised" prop exists.

$\Rightarrow \pi i$ smooth.

Propf of this will be outblud in the excreires (Maybe)
Next: the mergrabty
Quotient atack Note that $\mathrm{Hg} \rightarrow \mathrm{My}_{\mathrm{y}}$ i $\mathrm{PGGL} L_{5-6}$-invariant \&
hes PGL $L_{5 y-6}$ as fihess. So this nuggests m_{z}; the quatiat of Hg tirg P6L5g-6.

We need:

(i) Jaction $G \times T \rightarrow T$.
(ii) Jcover $S^{\prime} \rightarrow S$ s.t. $\mathrm{T} / \mathrm{s}^{\prime} \xrightarrow{\sim} \mathrm{G} / \mathrm{s}^{\prime}$

- Gass \rightarrow (trivid G trome)
- $\mathrm{C} \rightarrow \mathrm{s} \operatorname{gum}_{\text {Jachion. }}$ ame fortar men

EX: - Spee L \rightarrow Smk whe $(i: K)$ is Galors - If $V \rightarrow S$ is a veet indle then

Quotiet steds are weforl of they remenher automaphiom इ cheistraices; og

Def:
acting on \times lccheme 3
then the asociated quoticat stack (*) is deruted $[X] G$] and its S pts ave diagams

$$
\begin{aligned}
& T \xrightarrow{Q} \xrightarrow{G-\text { equivaint }} X \text { is a } \\
& \text { } G \text { Formr }^{s}
\end{aligned}
$$

G-equibaiant

maky the diopem commute.
 (or ay cyle
wheld.
fild.
objects?

All G-temn trinul/ag.ched field chovice equir to
(chesing a section)
(a G-guiv. mup $G \rightarrow X$ is the namo wo a map $\operatorname{suc}\left(\frac{e}{-} x\right.$) othen $p \cdot \operatorname{th}(-1 x$
inparticular \quad Ant $\binom{G \stackrel{p}{G} x}{\underset{s}{t} x}=\delta+f(p) \quad\{\mid[x / G](\mathbb{C})]=\begin{aligned} & \text { arbits af } x(\mathbb{C}) \\ & \text { indun } G(\mathbb{C})\end{aligned}$
Thm: If $G \rightarrow$ smote rpeschume $\Rightarrow[X / G]$ i cn alyetraic tade. Gax

$I \rightarrow X$
$\downarrow \square \perp$ beecered
$\{$ this n the set $\{g \in G \mid g \cdot p=q\} \in G \underset{(c p, q)}{\longrightarrow} X \times X \quad g \mapsto(p, g \cdot q)$
so reptile ble Aislocally cloned. [Vsiz deseet of qperigline meplimin)]
(ii) $\quad X \xrightarrow{\pi}[X / G]$ delned $G \times X \xrightarrow{m} X$ in a G-torsor!

(Check this!)

$$
\Rightarrow \pi i \text { smooth. }
$$

So them ane stach qrotiats, how do they relate to scleme- yorctes
maen they exist?
Bly problem in AG b/e this ss how moduli spenes awe anstrueted.
In many sitvations 3 map $[X / G] \rightarrow \underset{\text { sch quatuet }}{X / G}$ a/ nice properties.
This can be formalied beyond quotut itacks:
Bef: let X be an alg. stache then $X^{-\pi} \underset{\text { schem }}{x}$; a CMS if
(i) is a bjection on geom. Pts. [Same undulyng toployy]
(ii) π is initial among mops to schams. [IF x i a modulistach

Thm (Keel-Mon) If x i a seld D.M. stack 3 x alrosindes it] coars moduli opas $X \rightarrow X$.
E.g. $X=S$ Ginly S then $[X / G]=B G$ is the ntanck of G-tanors 5

Thisin algetraic. When G / S in fét $\Rightarrow B G$ in Detifne-Mumford. \Rightarrow. Wed
 $\left[\begin{array}{ll}1 / 2 / 2 C\end{array}\right]$

 stabitions only at oryin.
E.g. Civen $X, L \in f i r(X), S \in H^{0}(X, L)$, we can fin the root rack anociofed to (X,L,5)

$$
\begin{aligned}
& \text { space } \quad x \text { ispuk } \rightarrow X \cup V(s) \text { then } \\
& k \rightarrow k \text { mustleientity } B / L \text { of } 0 \text {. } \\
& \text { elsewhure me hav }
\end{aligned}
$$

rambied \& djou n

Thus a quasioluat sheaf on BG \leftrightarrows a neprerstatiar of G

E.g: $[X / G]$ a cobrent sheaf i colvert ohed F_{x} on X equipped
of a G-action s.t. it: compatible w) the action on X.
i.e. İis G-quirwiat sheal. For a V.b. This can be simplatad a G-equinenient itruefue on n v.b. V on X is the "liff" of the action: $\quad V \times G \xrightarrow{m v} V$ s.t. $V \times G \xrightarrow{m \times} V$

$$
\begin{aligned}
& f(\pi, i a) \cup \mid \pi \text { (ie } v \rightarrow X \text { equar). } \\
& X \times G \underset{m x}{m} X
\end{aligned}
$$

This n an inctance of the PRRNCIPLE The geamety of $[x / G]$; the G-equirent geometry of X.
E.g: What $n \operatorname{Pic}\left(\left[A^{\prime} / \mathbb{Z} / 2 \mathbb{E}\right]\right)$? what ane the T/22-qaivariat line buders on \mathbb{A}^{\prime} ? We have only $L \cong A^{\prime} \times \mathbb{A}^{\prime} \xrightarrow{\tilde{\sigma}} \mathbb{A}^{\prime} \times \mathbb{A}^{\prime}$

$$
(a, b) \longmapsto(-a, \bar{\theta}(b))
$$

§₹ nust be linear so $\tilde{\sigma}(h)$ can be b or $-b$ when b then we fet $L_{1} \xi-b \quad L_{2}$.
preserss the fifer V_{x} (by commutativity)
what happens here? $\quad \mathbb{L} 22=\operatorname{stch}(0) \mathrm{A}^{2}\left(L_{1}\right)_{0}$ but by
invasion on $\left(L_{2}\right)_{0}$. So $\operatorname{Pic}\left(\left[\left|A^{\prime}\right|</ 2 \tau\right]\right)=1 / \lambda L$
$L_{1} \leftrightarrow\left[\partial_{x}\right]=i d$
$L_{L} \leftrightarrow$ nertrinil et.

It feller from G-S $\left[M^{\prime} \mid(L / 2 D)\right]^{2}=\sqrt{\left(B M k\left(x^{2}\right), k\left(x^{2}\right), x^{2}\right)}$ \& in fat L_{2} dove; the "uninesese" root of $\theta_{A_{x^{2}}^{\prime}}$.

Assume char $(k)+2,3$

$$
M=[\underbrace{\left.A^{2} \cdot V(\Delta) / A_{n}\right]}_{B} \rightarrow B \alpha_{m}
$$

$x^{2}\left(B \times A^{\prime}\right)\left(\cos ,\left(A_{1}^{2}-2 x^{2}\right)^{2} k\right)$
whit ane the possible action? Note that any action $/ B$

the indued rep of $\mu_{4}\left\{\mu_{6}\right.$ to get a hor. $\operatorname{Die}(m) \rightarrow 2 / 4 R \times d / 62$
Bat in fact them is a condition, the rep's

on μ_{2} must all le the same b/e

$$
\operatorname{Hem}\left(\mu_{2}, R, G_{m i R}\right) \equiv(\mathbb{Q} / 2 L)_{R} \text { fr ky sing } R
$$

The deirm's that ϕ i an romeplrime. The achon given aboue
shom it's smjective. Why infective? obseme thet eney action, op the form
 $\wedge_{A^{\prime}}^{P_{2}}$

andt. ff ㅇ. Bined so conitom4.
Als we see that $B \times A^{\prime} \longrightarrow B \times A^{\prime}((a, b), c) \longrightarrow\left((a, b),\left(4 a^{3}+27 b^{3}\right) c\right)$; an iso. quavainat of the trinid cection to the λ^{12}-action. $\Rightarrow \operatorname{Pr}(m) \equiv 2 / 12 E$

Punchline: $M_{1,1,2[1 / 1]} \subseteq M$. Iha: Weirctiars form.
(Remp. 1) $G \xrightarrow[\Delta]{\Delta} G \times G$ in nop ble iry ubchmic spues
$[\Leftrightarrow \forall a, b \in G(T), \underline{Z a m} T(a, b) \rightarrow T$ an nepple w an ay. puw/T
2) J smooth sunection $\left.U \frac{\oint}{\text { smothe } G}\right]$
(Upl) called anatlas of a
Ide : Same as maniticis, the doeal gronety of For G can the atyentixed groanp U G $A X$ Fechence then the quotiat exits as an algetruite spue $\{X \rightarrow X / G$ in étcle. [ceered urolue finite \quad quetients $]$ nnoeth nderems $/ k=\bar{k}$

- Let $D S X$ be a cartier divicor s.t. $N_{D \mid X}=\left.O_{x}(D)\right|_{D}$ is antianple then 3 a contraction in the categong of $a y$. apaces is. $3 \bar{x}$ yaly.
- If $x \rightarrow s$ properttht ther Hilloxis $\rightarrow s$;

Examples of algutraie stacks rep'ble [clued undes tilbert" schemsi"]
(1) (i) $B G L_{n}=$ Vect $_{n} \quad T \mapsto$ gred. of vect bollenafile n

A1: Nhed to show $I=\operatorname{Igom}_{T}\left(V_{1}, V_{2}\right) \rightarrow T$ is uplele ing a neleme UT ミVV, $V_{2} \in$ Baln (T). But $I \rightarrow T$ i Zav.beally on $T \cong \operatorname{Ixm}($ oor gon $)$ $\cong G \ln$ S scheme.
$\Rightarrow \Delta: B G l_{a} \rightarrow$ BGh \times RGLn is rop'ble by flem schemen.
(ii) Tathue a mooth atlas?

$$
\begin{aligned}
& \Rightarrow \$ \text {; a smoath conver }
\end{aligned}
$$

