The Mittog-leftler propety \& moduli
Def: A spene of sets $\left(A_{n}\right)$ is Mitteg-retter if $\forall n \quad 3 N \geq n \quad s: l$.

$$
\operatorname{Im}\left[A_{m}-A_{n}\right]=\operatorname{Im}\left[A_{N}+A_{n}\right] \quad \forall m \geq N,
$$

mixed char.
Fix a complete ${ }^{2} d r r$ speck, the graal of this tak
Main
$\overline{\text { Thm }}\left(\right.$ Kreech -M.) ut $X \int$ ghine otdiilions.
1 finitetgace be a map of stactos s.t. x_{y} Sree R
$\left(\left[X\left(R / m^{n+1}\right)\right]\right)$ i a Mittog-Leffler synewe.
Rem: Compane w/ a smooth cmemplow

$$
\varkappa
$$ $\frac{1}{\delta_{M R}}$ Formal smoothens

$\Rightarrow\left(\left[\mathcal{X}\left(R / m^{n+1}\right)\right]\right)$ his onpleetive connectity maps.

 strek of Fil. ower Spec $R,\left\{\underline{\text { Pic } x_{n / k(R)}^{0} \rightarrow \delta \text { mk }(R) \text {; smooth }}\right.$

Key ingredtler for main thm is the folloung black box:

$$
\left\{\sin B\left(R / m^{n+1}\right)\right\} \sim M . L .
$$

Elbik: Gher $\begin{array}{r}\operatorname{sun} B=X \\ 1 f . t .\end{array}$ be a mep of relemes, then $8 n_{0}, r>0$ s.t. specR s.t. $x_{\eta} \rightarrow \sin k(k)$ imosis.
if 3 Sme $R \frac{n_{m}^{n}}{n} X$ fo $n>n_{0}$ then $3 \operatorname{smR} \xrightarrow{\text { \& }} X$ s E.
$\varepsilon \equiv \varepsilon_{n} \bmod m^{n-r}$. In particaler, $\left(X\left(R / m^{n}\right)\right)$ i M.L.
(for ay $n>0$ if $\varepsilon_{m} \in X\left(R / m^{2}\right)$ extuds to $\varepsilon_{n} c_{0} X\left(R / m^{n+n_{0}+r}\right)$ it extacls to a $L \in X(\mathbb{R})$ S.t. $\left.\quad \varepsilon \equiv \varepsilon_{m y} \bmod m^{n+n_{0}}-\right]$

How to oprade this to stack? For ay. spaces $x \exists$ surs $\rightarrow x$ s.t. evey pield-raluad "litts (due to knutson). So we have (hy formel maotlins) surfeetiens $\sin A(A) \rightarrow X(A)$ ir all hoal Artionnnp. So if $\operatorname{Smu} B \xrightarrow{\pi} X \rightarrow \operatorname{Sm} R$ we can get that $\left(X\left(R / m^{n+1}\right)\right)$ is $M L$ orke $\left(\operatorname{SuB}\left(R / m^{n+1}\right)\right)$ i bine

$$
\pi\left(\operatorname{Im}\left[\operatorname{Smb} B\left(R / m^{e}\right) \rightarrow \operatorname{Sm} B\left(R / m^{j}\right)\right]\right)=\operatorname{Im}\left[X\left(R / m^{l}\right) \rightarrow x\left(R / m^{j}\right)\right] .
$$

so RHS stdilies ble LHS dees.
Same an will werk if we can ohow 3 smooth cover $x \rightarrow X$ s.t. eny field-valued it of X lifts.
Does this exist?

This？will be the ficus of the remainder of the talk
Thisis non－trivid，as illustrated in the following example
 clanifoing stale of
M⿰亻⿱丶⿻工二十⿴⿱冂一⿰丨丨丁心
wont work B / L if $S_{M L} L \underset{\mathrm{~T}_{M_{2}} \text {－tamer }}{\rightarrow M_{2}}$ ；trivial

Next try？Smek $\underset{\text { Nontrivid }}{ } B \mu_{2}$ Int then 4 exists iff

$$
\begin{aligned}
& 1 \\
& H^{2}\left(s_{m L} L, Q_{n}\right) \\
& { }_{0}^{11} 47.90 .
\end{aligned}
$$

This tells wo $H^{\prime}\left(s_{\mu L} L, \mu_{2}\right)=L^{x} L L^{\times 2}$

$$
\begin{aligned}
& \left\{\left.\begin{array}{c}
\left\{\mu_{2}-\operatorname{terporic}\right. \\
\text { over } \operatorname{sinL}
\end{array} \right\rvert\, \div\right. \\
& \text { So no fie will work } \\
& x \in L^{x} \text { then } 3 L\left(\frac{t^{\text {indetemmante }}}{z}\right) \geq L \quad\left\{\quad z \in L(z)^{x}\right. \\
& \hat{S i m l}_{1 z} \quad\left\{\text { exists when } x^{-1} z \in L(z)^{\times 2} \& \quad x \in L\right.
\end{aligned}
$$ which？deming not true b／e this wald imply in $L(\sqrt{x})(z) \quad z$ is a square z

So how? \mathbb{A}_{z}^{\prime}

$$
\begin{aligned}
& l e d z
\end{aligned}
$$

so thisin the dened cover.
Th fact this is almaup tree.
Gien $X \rightarrow S$ aly. stade.
Thm (Laumon-Monet-BGilly, Pivisi, Deshmukh)

1) 3 sinooth comind $X_{d} \rightarrow t$ s.t. wey field-valued pt of x ' X leffs.
§ whe $x_{d} \rightarrow$ s f.t.
2) If S in Nath. x / s f.t. $\{\mathcal{H}$ hes ofline stabilitws, then \exists
f.i. $x \rightarrow X$ s.t. enng fild-valued pt. liffs.

Step\#1: If
$z \quad r$
dGln-forw -
Sketch of 2) assomery
1)

"fe. atchis af ofl. stal, ane stratified by slobal quetect e tach"
Step\#2 (knseh) $3 u_{0} \subseteq U_{1} \subseteq \ldots \subseteq U_{n}=x$ s.t. $u_{i} \backslash u_{i-1} \cong\left[z_{i} l G L_{i}\right]$
ofy-opue.

Step\#3: Ure \mathcal{F}_{i} to shew only finitely many X_{d} are repuind.

$$
\omega\left(X_{\alpha} \times\left(V_{i}\right) \longrightarrow Z_{i}\right.
$$

$L^{+} x_{d} \rightarrow \varphi_{i} \downarrow$ nef smanth eney fied -valued pt of l lifts to a z_{i}.
$z_{i} \times \sqcup x_{d} \xrightarrow{b i} Z_{i}$ ung pield ralued pt. lifts, so true for gen, pts so 3 section $u_{i} \sum_{\text {denue }} z_{i}^{\prime}, ~ U X_{d}$, i.e. $u_{i} \leq \leq X X_{d \leq d^{\prime}} \times Z_{i} f$ somo $d^{\prime}>0$.

Repeat 1 gen. pts of $t_{i}>M_{i}$, this terminates after finite may steps in Maotherianty. Same ul all Zinzin. This gium

$$
X=\underset{d \subseteq 1}{\square} X_{d} \rightarrow \stackrel{t_{i}^{--}}{1} \quad \text { sit. full } \quad i=1 a^{n} 3 \text { lift. }
$$

$\Rightarrow x+x$; the doing cover.

