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ABSTRACT
A mean square error criterion is proposed in this paper to provide a system-
atic approach to approximate a long-memory time series by a short-memory
ARMA(1, 1) process. Analytic expressions are derived to assess the effect
of such an approximation. These results are established not only for the pure
fractional noise case, but also for a general autoregressive fractional moving
average long-memory time series. Performances of the ARMA(1,1) approx-
imation as compared to using an ARFIMA model are illustrated by both
computations and an application to the Nile river series. Results derived in
this paper shed light on the forecasting issue of a long-memory process.
Copyright  2001 John Wiley & Sons, Ltd.
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INTRODUCTION

In a seminal paper, Hosking (1984) observes that a long-memory process can be approximated by
an ARMA(1,1) process reasonably well when the approximating ARMA process has both roots
close to the unit circle. Although no rigorous justification of this assertion is given in his paper,
simulation studies conducted in Hosking (1984) indicate the validity of this assertion. Since then,
the idea of approximating a long-memory process by a short-memory time series has been receiving
considerable attention in the literature.

One of the main reasons for the continued interest in this problem is its practical implications.
Although long-memory processes are widely applicable in econometrics and other fields (see, for
example, Baillie, 1996), actual implementation of these models often requires intricate approximated
likelihood procedures (see, for example, Sowell, 1992; Beran, 1994; Chan and Palma, 1998). When
one wants to use a long-memory model to forecast future values, many of the traditional time series
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techniques are no longer easily applicable. Therefore, if one can identify situations where long-
memory processes can be reasonably approximated by certain short-memory ARMA models, then
one can use these approximating models to perform forecasting and the quality of these forecasts
can be assessed by usual ARMA techniques. One important advantage of ARMA models is the
existence of efficient algorithms for calculating estimates and one-step predictions. For example,
maximum likelihood calculations for ARMA processes are O(n) whereas for ARFIMA processes,
they are O�n2� (see, for example, Chan and Palma, 1998).

Motivated by a forecasting consideration given in Tiao and Xu (1993), Tiao and Tsay (1994)
proposed an adaptive scheme to approximate certain long-memory processes by an ARMA(1,1) time
series. By minimizing the l-step-ahead forecast error variance, they propose a procedure which
estimates the parameters of the approximating ARMA(1,1) model adaptively. Their simulations
show that the variance of this l-step-ahead forecast lies within a 5% margin with the optimal
forecast based on an actual long-memory model. Further discussions on adaptive procedures are
given in Tong (1997).

There are two objectives in this paper. The first studies the question of when an ARMA(1,1)
model can be used to approximate a long-memory ARFIMA model adequately. This objective is
addressed by comparing the best ARMA(1,1) forecast with the best ARFIMA(p,d,q) forecast using
the mean square criterion. The second objective of this paper is to study when the gain from using
an adaptive forecast scheme rather than a non-adaptive scheme is large. This goal is achieved by
characterizing the relationships between the parameters � and � of the ARMA(1,1) model and the
long-memory parameter d of the underlying long-memory process. This systematic characterization
not only provides an explanation of why the adaptive scheme of Tiao and Tsay (1994) works, but
also sheds light on the forecasting properties of a long-memory model based on an approximated
short-memory model as studied in Brodsky and Hurvich (1999).

This paper is organized as follows. In the next section the approximation of a simple long-memory
model, i.e. a fractional noise ARFIMA(0, d, 0) model, by an ARMA(1,1) process is first studied.
Characterizations of the relationships between the ARMA(1,1) parameters and the long-memory
parameter are given. The case of approximating a general ARFIMA(p, d, q) model is studied in the
third section. Applications of these methodologies to the Nile river data are presented in the fourth
section while conclusions are given in the final section.

APPROXIMATION OF FRACTIONAL NOISE

In this section we study in detail the mean square error of the l-step-ahead forecast and use it to
characterize the relationship between the ARMA(1,1) parameters and the long-memory parameter
d for a fractional noise model. Specifically, let fXtg be a fractional noise process satisfying

Xt D �1 � B��dεt D
1∑
jD0

 jεt�j �1�

where B is the backshift operator BXt D Xt�1, d 2 ��0.5, 0.5�, fεtg is a sequence of independent
standard normal random variables, and the coefficients f jg are given by

 j D
{
d�dC 1� Ð Ð Ð �dC j� 1�/j!, j ½ 1
1 j D 0
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Some authors distinguish the behaviour of fXtg for different values of d 2 ��0.5, 0.5�. It is well
known (see, for example, Hosking, 1981; Samorodnitsky and Taqqu, 1994; or Brockwell and Davis,
1991) that for d 2 ��0.5, 0�, the process is negative dependent and it is often referred to as an
intermediate memory process since its autocorrelation function ��k� is always negative, of order
k2d�1 as k ! 1, and

∑
k j��k�j < 1. On the other hand, for d 2 �0, 0.5�, the process is long-

memory since ��k� D O�k2d�1� as k ! 1 and
∑

k ��k� D 1. For d D 0, the process fXtg is equal
to a white-noise process. In this paper, fXtg will simply be referred to as a long-memory process
as long as d 2 ��0.5, 0.5�.

Let fYtg be an ARMA(1,1) process satisfying

Yt D 1 � �B

1 � �B
εt D

1∑
jD0

ajεt�j �2�

where � and � are parameters lying in (�1, 1), and aj D �� � ���j�1, for j ½ 1 with a0 D 1. Let
Ỹt�l� be the l-step-ahead prediction of Yt based on the history of the process fYi : i � tg given by
equation (2). Then Ỹt�l� D ∑1

jDl ajεtCl�j. Now consider the problem of forecasting a future value
of the long-memory process fXtg in (1) by the ARMA(1,1) process fYtg defined in (2). A useful
way to forecast fXtg in this context is the adaptive scheme given in Tiao and Tsay (1994) which
selects an ARMA(1,1) model fYtg that minimizes the l-step-ahead forecast error adaptively.

In order to gain a better understanding of the forecasting issue and the associated forecasting error,
we first define the following notions. Let Gl��, �� D E�XtCl � Ỹt�l��2 be defined as the mean square
error of the l-step-ahead prediction based on a selected ARMA(1,1) model fYtg. Then, for l ½ 1

Gl��, �� D E�XtCl�2 C E�Ỹt�l��
2 � 2E�XtỸt�l��

D
1∑
jD0

 2
j C

1∑
jDl

a2
j � 2

1∑
jDl

 jaj

D
1∑
jD0

 2
j C �� � ��2

1∑
jDl

�2�j�1� � 2�� � ��
1∑
jDl

 j�
j�1

D �1 � 2d�

�1 � d�2
C �� � ��2�2�l�1�

1 � �2
� 2�� � ��pl��� �3�

where pl��� D ∑1
jDl  j�

j�l for all � 2 ��1, 1�. The quantity Gl��, �� defined in equation (3) plays
an important role in understanding the relationships between the two processes fXtg and fYtg. Note
that when ��, �� is chosen to minimize Gl��, �� as a function of l, it corresponds to the adaptive
scheme proposed in Tiao and Tsay (1994). In order to see how large is the gain by using an
adaptive scheme, we first characterize the relationship between the ARMA parameters ��, �� and
the long-memory parameter d for different forecasting horizon l when an adaptive scheme is used.
This is achieved by studying the underlying behaviour of Gl��, ��. To this end, we first establish
the following lemma.

Lemma 1 For j�j < 1 and l ½ 1,

�pl����
2 � �pl�1����

2for l ½ 2 �4�
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Proof. Note that pl�1��� D  l�1 C �pl��� and  j D d�dC 1� Ð Ð Ð �dC j� 1�/j! The proof of
this lemma can be divided into four cases according to the values of � and d.

Case 1. 0 � � < 1 and 0 < d < 1
2 . In this case,  j > 0, pl��� > 0, and pl�1��� > 0. Proving

equation (4) is equivalent to proving pl��� � pl�1���, i.e.
∑1

jDl  j�
j�l � ∑1

jDl�1 j�
j�lC1, which

in turn is equivalent to showing  j �  j�1 for j ½ 2. Observe that

 j D j� 1 C d

j
 j�1

Therefore,

 j �  j�1 D d� 1

j
 j�1 �5�

As the last quantity is negative for 0 < d < 1/2, Case 1 is established.

Case 2. 0 � � < 1 and � 1
2 < d < 0. In this case,  j < 0, pl��� < 0, and pl�1��� < 0. There-

fore, in order to prove equation (4), it suffices to prove pl��� ½ pl�1���, i.e,  j ½  j�1. From
equation (5),

 j �  j�1 D [d�dC 1� Ð Ð Ð �dC j� 2�/j!][d� 1] > 0

as both d < 0 and �d� 1� < 0, proving equation (4).

Case 3. �1 < � < 0 and 0 < d < 1
2 . Although 0 <  j <  j�1 in this case, determining the sign

of pl��� is more tricky. To this end, consider

pl��� D
1∑
kD0

 2kCl�2k C
1∑
kD0

 2kClC1�
2kC1

D
1∑
kD0

� 2kCl C � 2kClC1��
2k �6�

Since �1 < � < 0 and  j > 0 in this case,

 2kCl C � 2kClC1 >  2kCl �  2kClC1 > 0

Consequently, pl��� > 0. Similarly, the same argument shows that

pl�1��� D
1∑
kD0

 2kCl�1�
2k C

1∑
kD0

 2kCl�2kC1 > 0 �7�

Therefore, to prove equation (4), it suffices to show pl�1��� ½ pl���. Taking the difference of
equations (6) and (7),

pl�1���� pl��� D
1∑
kD0

� 2kCl�1 �  2kCl��2k C
1∑
kD0

� 2kCl �  2kClC1��
2kC1

>
1∑
kD0

[� 2kCl�1 �  2kCl�� � 2kCl �  2kClC1�]�
2k �8�
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Since �1 < � in this case, the last inequality of equation (8) follows from the two facts that
 j > 0 and  j # j for d > 0. Accordingly, pl�1��� ½ pl��� if the summands in equation (8) are
non-negative. From equation (5),

 2kCl�1 �  2kCl D d�dC 1� Ð Ð Ð �dC 2k C l� 2��1 � d�/�2k C l�! �9�

Replacing l by lC 1 in this equation,

 2kCl �  2kClC1 D d�dC 1� Ð Ð Ð �dC 2kl � 1��1 � d�/�2k C lC 1�! �10�

Therefore, taking the difference of equations (9) and (10),

� 2kCl�1 �  2kCl�� � 2kCl �  2kClC1� D d�dC 1� Ð Ð Ð
ð �dC 2k C l� 2��1 � d��2 � d�/�2k C lC 1�! > 0 �11�

as 0 < d < 1/2. Hence, pl�1��� ½ pl���, establishing equation (4).

Case 4. �1 < � < 0 and �1/2 < d < 0. In this case,  j < 0 and  j >  j�1. By (6),

pl��� D
1∑
kD0

� 2kCl C � 2kClC1��
2k

<
1∑
kD0

� 2kCl �  2kClC1��
2k

< 0

as  2kCl <  2kClC1 and �1 < � < 0. Similarly, pl�1��� < 0. Therefore, proving equation (4) is
equivalent to proving pl�1��� < pl���. From equations (8) and (11), it follows that

pl�1���� pl��� <
1∑
kD0

[d�dC 1� Ð Ð Ð �dC 2k C lC 2��1 � d��2 � d�/�2k C lC 1�!]�2k

< 0,

as d < 0. Hence, pl�1��� < pl��� proving equation (4). Combining all these four cases, the proof
of Lemma 1 is completed. �

With the aid of this lemma, we are now ready to prove the main result of this section. The
next theorem states that as far as the mean square error criterion Gl��, �� is concerned, fixing an
ARMA(1, 1) model fYtg a priori and using it to predict XtCl is always inferior to choosing a
model which minimizes the l-step-ahead prediction error directly. Although intuitive, this result
quantifies the fact that when a forecasted value Ỹt�l� is used, we pay a price in the MSE. In
addition, this result demonstrates the monotonicity of Gl��l, �l� which will be used to characterize
the relationship between the parameters.

Theorem 1 Let fXtg be the long-memory process that follows equation (1) and fYtg be an
ARMA(1,1) process that follows equation (2). Then

min
�,�

E�Xt � Yt�
2 D min

�,�
E�XtCl � YtCl�2 � min

�,�
E�XtCl � Ỹt�l��

2 for all l ½ 1 �12�
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Proof. Observe that by definition, E�XtCl � YtCl�2 D E�Xt � Yt�2 for any l ½ 1. Thus we need to
show min�,� E�Xt � Yt�2 � min�,� E�XtCl � Ỹt�l��2 for all l ½ 1. Since, E�Xt � Yt�2 D ∑1

jD0  
2
j C∑1

jD0 a
2
j � 2

∑1
jD0  jaj D E�XtC1 � Ỹt�l��2 � 1, it is sufficient to show that min�,� G1��, �� �

min�,� Gl��, �� for l ½ 1. In order to show the preceding inequality, we minimize Gl��, �� D
K� �� 2�� � ��

∑1
jDl  j�

j�1 C �� � ��2�2�l�1�/�1 � �2�, first with respect to � and then with
respect to �. Here K� � D ∑1

jD0 
2
j . Differentiating with respect to �, we have

∂Gl��, ��

∂�
D 2

1∑
jDl

 j�
j�1 � 2�� � ��

1∑
jDl

�2�j�1�

Setting this equal to zero,

�� � �l� D

1∑
jDl

 j�
j�1

1∑
jDl

�2�j�1�

D �1 � �2�

1∑
jDl

 j�
j�1

�2�l�1�

where �l is the point of minimum for the Gl��, �� for every � since ∂2Gl��, ��/∂�2 D 2
∑1

jDl
�2�j�1� > 0 for � 6D 0. Define,

fl��� D Gl��, �l� D K� �� �1 � �2��pl����
2

where pl��� is defined as in Lemma 1. For j�j < 1 and l ½ 2, it follows from Lemma 1 that
pl�1���2 ½ pl���2 and hence

fl���� fl�1��� D �1 � �2��pl�1���
2 � pl���

2� ½ 0

Therefore, fl��l� ½ fl�1��l� ½ fl�1��l�1�, where �l is the value at which fl��� attains its min-
imum. Repeating this inequality for each l, we conclude that fl��l� ½ f1��1� which implies
Gl��l, �l� ½ G1��1, �1�. Therefore,

min
�,�

E�XtCl � YtCl�2 � min
�,�

E�XtC1 � Ỹt�l��
2 for all l ½ 1.

This completes the proof of Theorem 1. �
Although Theorem 1 provides a way to forecast XtCl by YtCl, it is not directly applicable in

practice because we do not observe a future value YtCl. We have to estimate YtCl by a forecasted
value Ỹt�l�. Observe that according to Theorem 1, Gl��l, �l� is an increasing function of l. In
particular, for l ½ 1,

G1��1, �1� � Gl��l, �l� �13�

By definition, since ��l, �l� minimizes the function Gl, it is clear that

Gl��l, �l� � Gl��, �� for all � and �

Copyright  2001 John Wiley & Sons, Ltd. J. Forecast. 20, 367–389 (2001)
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In particular, when we substitute the non-adaptive value ��1, �1� into the right-hand side, this last
inequality says that when l ½ 1 is fixed, it is always better to use an adaptive procedure than a non-
adaptive one. However, as suggested in Theorem 1, any approximation of YtCl would automatically
incur in estimation error. In order to assess the effect of the approximation, it would be important
to find the relationship between the long-memory parameter d and the optimal value of ��l, �l�
which minimizes the MSE Gl��, ��. Using the monotonicity of Gl given in equation (13), the next
theorem characterizes this relationship.

Theorem 2 With the same notation as in Theorem 1, the value �l that minimizes Gl��, �l� satis-

fies �l D ��pl��l�š [�pl��l��2 C 4�p0
l��l��

2]
1
2 �/�2p0

l��l�� where p0
l��� D dpl���/d� and �l > 0.

In addition, the ��l, �l� that minimizes Gl��, �� satisfies the relationship �l < �l for d > 0 and
�l > �l for d < 0.

Proof. To minimize fl��� D Gl��, �l� with respect to �, observe that

0 D dfl���

d�
D �2�1 � �2�pl���p

0
l���C 2��pl����

2

D 2pl�����pl���� �1 � �2�p0
l���� �14�

From the proof of Lemma 1, recall that pl��� > 0 for d > 0 and pl��� < 0 for d < 0. Therefore,
the solution to equation (14) is attained at �l which solves the equation

�

1 � �2
D p0

l���

pl���
, �15�

i.e. �l satisfies

�l D ��pl��l�š [�pl��l��
2 C 4�p0

l��l��
2]

1
2 �/�2p0

l��l�� �16�

To prove that �l > 0, it suffices to show that p0
l��� and pl��� have the same sign for all j�j < 1.

Since it is clear that for 0 � � < 1, p0
l��� > 0 when 0 < d < 1/2 and p0

l��� < 0 when �1/2 <
d < 0, it remains to prove that p0

l��� and pl��� have the same sign for �1 < � < 0. To this end,
we show that pl��� is an increasing function of � for 0 < d < 1/2, and pl��� is a decreasing
function of � for �1/2 < d < 0.

Let �1 < �1 < �2 < 0 be given. Observe that

pl��2�� pl��1� D
1∑
jD0

 jCl��
j
2 � �j1�

D
1∑
jD1

 jCl��2 � �1��
j�1∑
kD0

�j�1�k
2 �k1�

D ��2 � �1�
1∑
jD0

 jClC1�
j∑
kD0

�j�k2 �k1�
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D ��2 � �1�
1∑
kD0

1∑
jDk

 jClC1�
j�k
2 �k1

D ��2 � �1�
1∑
kD0

�k1

1∑
jD0

 jClCkC1�
j
2

D ��2 � �1�
1∑
kD0

�k1plCkC1��2� �17�

First, for 0 < d < 1/2, we only have to establish
∑1

kD0 �
k
1plCkC1��2� > 0. To see this, observe that

1∑
kD0

�k1plCkC1��2� D
1∑
kD0

��2k
1 plC2kC1��2�C �2kC1

1 plC2kC2��2��

D
1∑
kD0

�2k
1 �plC2kC1��2�C �1plC2kC2��2��

½
1∑
kD0

�2k
1 �plC2kC1��2�� plC2kC2��2�� ½ 0

The last inequality follows from cases 1 and 3 of Lemma 1 that for pm�1��� ½ pm��� for j�j < 1.
Second, for �1/2 < d < 0, from equation (17), it remains to show that

∑1
kD0 �

k
1plCkC1��2� < 0.

By the same token, using cases 2 and 4 of Lemma 1, we have

1∑
kD0

�k1plCkC1��2� D
1∑
kD0

�2k
1 �plC2kC1��2�C �1plC2kC2��2��

�
1∑
kD0

�2k
1 �plC2kC1��2�� plC2kC2��2�� � 0

since pm�1��� � pm��� < 0. This completes the proof of the fact that �l > 0.
Finally, notice that ��l, �l� which minimizes Gl��, �� satisfies

�l D �l � �1 � �2
l �
pl��l�

��l�l�1
�18�

Therefore, �l < �l for d > 0 as pl��� > 0 and �l > �l for d < 0 as pl��� < 0. �
As an application, we now demonstrate how a characterization between d and ��, �� can be

established. Specifically, consider � D ��pl���š [�pl����2 C 4�p0
l����

2]
1
2 �/�2p0

l����. This value
can be solved through iterative procedures such as the Newton–Raphson with a given starting
value. Recall from the definition

pl�1��� D
1∑

jDl�1

 j�
j��l�1� D  l�1 C �pl���
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therefore,
p0
l�1��� D pl���C �p0

l���

It follows from this equality and equation (15) that

p0
l���

pl���
D
(
p0
l�1���

pl���
� 1
)
��1

D p0
l�1���

pl�1���

(
pl�1���

pl�1����  l�1

)
� 1

�

As a result, we can evaluate the solution p0
l���/pl��� from this recursion iteratively. For example,

by putting l D 0 in equation (15), we have

�

1 � �2
D p0

0���

p0���
D d�1 � ���d�1

�1 � ���d
D d

1 � �

which leads to the solution � D d/1 � d. It is immediate from this expression that as d tends to
1/2, � tends to 1. Similarly, by putting l D 1 in equation (15), we obtain

�

1 � �2
D p0

1���

p1���
D d

1 � �

(
�1 � ���d

�1 � ���d � 1

)
� 1

�
�19�

For a given d, the solution to the above equation can be studied graphically by plotting the
difference of the two sides of equation (19) and locating its intersection with the axis � D 0. These
functions are plotted in Figure 1. Explicit solutions of equations (18) for � and (19) for � are
displayed in Figure 2 for l D 1. For d D 0.25, we can obtain the solutions for the values of � and
� from Figure 2. In other words, as far as the one-step-ahead forecast is concerned, for l D 1 and
d D 0.25, we observe from Figure 2 that the best ARMA(1,1) model is given by � D 0.884 and
� D 0.722. Similarly, we observe from Figure 2 that as the long-memory parameter d tends to 1/2,
the autoregressive parameter � tends to 1 and hence the moving average parameter � tends to 1
from equation (18).

In summary, Theorem 2 provides a numerical algorithm to calculate the relationship between d
and ��, �� for a given forecast horizon l. By solving equations similar to (18) and (19) numerically,
we can obtain the optimal values of � and � in terms of d. This characterization has two important
consequences. First, it provides an analytic explanation of the well-known phenomenon reported
in Hosking (1984) that as d tends to 1/2, the approximating ARMA(1,1) process would have
both parameters close to the unit circle. Second, Theorem 2 provides a means to obtain the best
approximating ARMA(1,1) model for different values of d.

APPROXIMATION OF ARFIMA PROCESSES

In this section, instead of a fractional noise model, we extend our study to the case where fXtg is
assumed to be a general ARFIMA process. Specifically, let fXtg be a ARFIMA(p, d, q) process
given by ��B�Xt D �1 � B��d��B�εt, where ��B� and ��B� are polynomials in B of pth and qth
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Figure 1. Plots of solutions of � to equation (19). These solutions are obtained by the intersections of the
plotted curves with the zero horizontal axis. The top curve starts at d D �0.45 with an increment of 0.1
moving downward, resulting in a total of 10 curves ranging from d D �0.45,�0.35, . . . , 0.35, and 0.45 with
the bottom curve being at d D 0.45

degrees respectively. We further assume that all roots of ��z� D 0, ��z� D 0 lie outside the unit disk
and ��z� and ��z� have no common zeros. Under these assumptions, fXtg can be expressed as

Xt D
1∑
jD0

#jεt�j �20�

where the coefficients f#jg are functions of the autoregressive parameters, the moving average
parameters, and the long-memory parameter d. The long-memory parameter d takes values in
(�0.5, 0.5) and εt is a sequence of independent standard normal random variables. Recall

Gl��, �� D E�XtCl � Ỹt�l��
2

D
1∑
jD0

#2
j C

1∑
jDl

a2
j � 2

1∑
jDl

#jaj for l ½ 1 �21�

Analogous to Theorem 1, there exists an ARMA(1,1) process fYtg which minimizes the mean
square error when it is used to approximate an ARFIMA(p, d, q) process fXtg. Before stating the
main result, we need to establish two lemmas.
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Figure 2. Plots of solutions of � to equation (19) (heavy line) and � to (18) (broken line) for different values
of d (horizontal axis) for l D 1

Lemma 2 For l > 1 and j�j < 1, define ql��� D ∑1
jDl #j�

j�l. Assume that

(i) j#jj # j
(ii) Every #j has the same sign for j ½ 1

(iii) j#j � #jC1j # j and
(iv)

∑1
jD0 #

2
j < 1;

then �ql����2 � �ql�1����2, for all l ½ 2 and � 2 ��1, 1�.

Proof. By (iv), ql��� is an absolutely summable power series (in �) with radius of convergence
equalling 1. So we consider two cases, � 2 [0, 1� and � 2 ��1, 0�. Let 0 � � < 1. By (ii), each #j
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has the same sign for j ½ 1. Under (i), if 0 � #j � #j�1, j ½ 2, then 0 � ql��� � ql�1���, l ½ 2.
Therefore,

�ql����
2 � �ql�1����

2 l ½ 2

On the other hand, if #j�1 � #j � 0, j ½ 2, then ql�1��� � ql��� � 0, l ½ 2. Therefore,

�ql����
2 � �ql�1����

2 l ½ 2

For �1 < � < 0, let υ D ��. First assume each #j is positive, then by (i) and (iii),

0 �
1∑
kD0

�#2kCl � #2kClC1�υ
2kC1

�
1∑
kD0

�#2kCl�1 � #2kCl�υ2kC1

�
1∑
kD0

�#2kCl�1 � #2kCl�υ2k.

This implies, for l ½ 2,

0 � ql���

D
1∑
kD0

#2kClυ2k �
1∑
kD0

#2kClC1υ
2kC1

�
1∑
kD0

#2kCl�1υ
2k �

1∑
kD0

#2kClυ2kC1

D ql�1���

Thus, �ql����2 � �ql�1����2.
Similarly, if we assume the #j’s to be negative, then by (i) and (iii), for l ½ 2,

1∑
kD0

�#2kCl � #2kCl�1�υ
2k ½

1∑
kD0

�#2kClC1 � #2kCl�υ2k

½
1∑
kD0

�#2kClC1 � #2kCl�υ2kC1

½ 0

This implies, for l ½ 2,

ql�1��� D
1∑
kD0

#2kCl�1υ
2k �

1∑
kD0

#2kClυ2kC1

�
1∑
kD0

#2kClυ2k �
1∑
kD0

#2kClC1υ
2kC1

D ql��� � 0

Hence, �ql����2 � �ql�1����2.
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Under assumptions (i) and (iii) and using the arguments in Lemma 1, �ql����2 � �ql�1����2, for
all � 2 ��1, 1� and for all l ½ 2. �

Lemma 3 Let ql��� D ∑1
jDl #j�

j�l, for l ½ 1 and � 2 ��1, 1�. Assume that

(i) j#jj # j
(ii)0 Consecutive #js have opposite signs for all j ½ 1,

(iii)0 �j#jj � j#jC1j� # j, and
(iv)

∑1
jD0 #

2
j < 1;

then �ql����2 � �ql�1����2, for all l ½ 2 and � 2 ��1, 1�.

Proof. As in Lemma 2, notice that by (iv), ql��� is an absolutely summable power series (in
�) with radius of convergence equalling 1. Let 0 � � < 1. By (ii)0, consecutive #js have opposite
signs for j ½ 1. So, under assumptions (ii)0 and (iii)0,

0 �
1∑
kD0

�j#2kClj � j#2kClC1j��2kC1

�
1∑
kD0

�j#2kCl�1j � j#2kClj��2kC1

�
1∑
kD0

�j#2kCl�1j � j#2kClj��2k

This implies that for l ½ 2 with #l positive, each #2kCl is positive and

0 � ql���

D
1∑
kD0

#2kCl�2k C
1∑
kD0

#2kClC1�
2kC1

� �
( 1∑
kD0

#2kCl�1�
2k C

1∑
kD0

#2kCl�2kC1

)
D �ql�1���

Therefore, we obtain �ql����2 � �ql�1����2. Also, when #l is negative, each #2kCl is negative and

0 � �ql���

D �
( 1∑
kD0

#2kCl�2k C
1∑
kD0

#2kClC1�
2kC1

)

�
1∑
kD0

#2kCl�1�
2k C

1∑
kD0

#2kCl�2kC1

D ql�1���
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we have �ql����2 � �ql�1����2. For �1 < � < 0, let υ D ��. By assumptions (i) and (ii)0 and for
l ½ 2, observe

1∑
kD0

j#2kCl�1jυ2k ½
1∑
kD0

j#2kCljυ2k

½
1∑
kD0

j#2kCljυ2kC1

½
1∑
kD0

j#2kClC1jυ2kC1

½ 0

This implies that for l ½ 2 and #l positive,

ql�1��� D
1∑
kD0

#2kCl�1υ
2k �

1∑
kD0

#2kClυ2kC1

� �
1∑
kD0

#2kClυ2k C
1∑
kD0

#2kClC1υ
2kC1

D �ql��� � 0

Therefore, �ql����2 � �ql�1����2. Similarly, when #l is negative, by (i) and (ii)0 we have

ql�1��� D
1∑
kD0

#2kCl�1υ
2k �

1∑
kD0

#2kClυ2kC1

½ �
1∑
kD0

#2kClυ2k C
1∑
kD0

#2kClC1υ
2kC1

D �ql��� ½ 0

This implies �ql����2 � �ql�1����2. Thus, by (i), (ii)0, and (iii)0, �ql����2 � �ql�1����2 for all � 2
��1, 1� and for all l ½ 2. �

With these lemmas, we now state the main theorem.

Theorem 3 Let fXtg be the ARFIMA(p, d, q) process following equation (20). Let fYtg be an
ARMA(1, 1) process defined in equation (22). Let Ỹt�l� be the l-step predictor based on Yt. Assume
that #j satisfies either:

(i) j#jj # j
(ii) For each fixed parameter value, each #j has the same sign for all j ½ 1

(iii) j#j � #jC1j # j
(iv)

∑1
jD0 #

2
j < 1

or
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(i) and (iv) as above,
(ii)0 for each fixed parameter value, consecutive #j has opposite sign for all j ½ 1,

(iii)0 �j#jj � j#jC1j� # j; then

min
�,�

E�Xt � Yt�
2 D min

�,�
E�XtCl � YtCl�2 � min

�,�
E�XtCl � Ỹt�l��

2 for l ½ 1.

Furthermore, the MSE is monotonic in l, i.e.

G1��1, �1� � Gl��l, �l� � GlC1��lC1, �lC1� for l ½ 1

Proof. Let ql��� D ∑1
jDl #j�

j�l, for l ½ 1. Observe that E�Xt � Yt�2 D ∑1
jD0 #

2
j C∑1

jD0 a
2
j �

2
∑1

jD0 #jaj D E�XtCl � Ỹt�l��2 � 1. So it suffices to prove min�,� G1��, �� � min�,� Gl��, ��, for
l ½ 1, where Gl��, �� is defined in equation (21).

In order to establish this inequality, we minimize Gl��, �� D K�#�� 2�� � ��
∑1

jDl #j�
j�1 C

�� � ��2�2�l�1�/�1 � �2� with respect to � and � respectively, where K�#� D ∑1
jD0 #

2
j . Differenti-

ating Gl��, �� with respect to � and equating it to zero,

�� � �l� D

1∑
jDl

#j�
j�1

1∑
jDl

�2�j�1�

D �1 � �2�

1∑
jDl

#j�
j�1

�2�l�1�
�22�

where �l is a minimum point of Gl��, �� for every � as ∂2Gl��, ��/∂�2 D 2
∑1

jDl �
2�j�1� > 0 for

� 6D 0. Define
hl��� D Gl��, �l� D K�#�� �1 � �2��ql����

2, �23�

where ql��� is defined in Lemma 2.
Using the preceding argument, we conclude that for l ½ 2, hl��� ½ hl�1��� since j�j < 1, and

from Lemmas 2 and 3 �ql����2 � �ql�1����2, i.e. �1 � �2��ql����2 � �1 � �2��ql�1����2. Thus,
hl��� ½ hl�1���, for l ½ 2 which is equivalent to �1 � �2��ql����2 � �1 � �2��ql�1����2, for l ½
2, i.e.

�ql����
2 � �ql�1����

2 for l ½ 2 as j�j < 1 �24�

Therefore, for each l ½ 2, if at � D �l the function hl��� attains its minimum, it is clear that
hl��l� ½ hl�1��l� ½ hl�1��l�1�. Repeating the inequality for each l until l D 2, we have hl��l� ½
h1��1�. This implies Gl��l, �l� ½ G1��1, �1� for l ½ 1.

By definition, E�XtCl � YtCl�2 D E�Xt � Yt�2, for any l ½ 1. Hence, min�,� E�XtCl � YtCl�2 D
min�,� E�Xt � Yt�2 � min�,� E�XtCl � Ỹt�l��2, for all l ½ 1. This completes the proof of Theo-
rem 3. �

Like Theorem 1, Theorem 3 states the intuitive fact that as far as mean square error is concerned,
forecasting XtCl by YtCl directly is always better than forecasting XtCl by a forecasted value Ỹt�l�
based on a fixed ARMA(1,1) model fYtg a priori. However, contrary to the pure fractional noise
case studied in Theorem 1, when the underlying process fXtg is an ARFIMA(p, d, q), certain
conditions on the weights #j in equation (30) need to be satisfied in order for this theorem to
hold. This result also suffers from the same drawback as Theorem 1 since the future value YtCl is
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usually not available at time t. Instead, we end up forecasting YtCl from an ARMA(1,1) model either
adaptively or non-adaptively and using this forecasted value of YtCl to approximate XtCl. As shown
in equation (13), although Theorem 3 indicates that a adaptive forecast is always better than a non-
adaptive forecast, it will be useful to find which ARMA(1,1) model provides a better approximating
model for the adaptive procedure. Theorems 1, 2 and 3 together provide a theoretical guideline to
look for the best approximating ARMA(1,1) model and quantify the relationship between d and
� and �.

Tables I–IV illustrate the differences between the adaptive and non-adaptive forecast under four
different ARFIMA(p, d, q) models for d D 0.25 and d D 0.45. The orders p, q and the parameters
�, � of these models are given in these tables which are organized as follows. The first column
consists of the length of future horizons l, the second column lists the actual forecast error variance,
denoted by &2

l , when XtCl is predicted from the generating fractional model Xt. This column
represents the smallest forecast error variance in the best scenario. The third column contains the
values of the AR parameter �l when using an ARMA(1,1) model to predict XtCl, the fourth column
is the ratio of the adaptive forecast error variance with respect to the actual forecast error variance,
while the fifth column is the ratio of the variances of the nonadaptive forecast error based on a fixed
ARMA(1,1) with respect to the actual forecast error variance. Note that these tables are computed
by minimizing the respective quantities in Theorem 3. Similar to solving for � in Theorem 2,
we use the Newton–Raphson algorithm to solve for the �l which minimizes equation (23). After
solving for �l, the value of �l is obtained from equation (22).

As can be seen, the largest gains are attained when d is close to 0.5. For a moderate value of
d, 0.25 say, the gain of using an adaptive forecast is marginal with a horizon as large as l D 20.
Depending on the goal, it may be prudent to use an adaptive scheme when the underlying model

Table I. Xt D �1 � B��d�1 � 0.725B�

1 � 0.275B
εt d D 0.45

l &2
l �l hl��l�/&2

l hl��1�/&2
l

1 1.000000 0.999230 1.116697 1.116697
2 1.000000 0.999204 1.116520 1.116523
3 1.000894 0.999176 1.115338 1.115350
4 1.002907 0.999210 1.113724 1.113726
5 1.005432 0.999273 1.111922 1.111931
6 1.008066 0.999338 1.110104 1.110162
7 1.010626 0.999398 1.108352 1.108504
8 1.013049 0.999450 1.106697 1.106982
9 1.015318 0.999495 1.105147 1.105594

10 1.017436 0.999534 1.103699 1.104332
11 1.019415 0.999568 1.102346 1.103181
12 1.021266 0.999597 1.101080 1.102131
13 1.023002 0.999623 1.099893 1.101168
14 1.024634 0.999646 1.098777 1.100283
15 1.026172 0.999666 1.097725 1.099468
16 1.027626 0.999684 1.096732 1.098714
17 1.029003 0.999700 1.095792 1.098015
18 1.030311 0.999715 1.094900 1.097365
19 1.031555 0.999728 1.094052 1.096759
20 1.032741 0.999740 1.093244 1.096193
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Table II. Xt D �1 � B��d�1 � 0.625B�

1 � 0.375B
εt d D 0.25

l &2
l �l hl��l�/&2

l hl��1�/&2
l

1 1.000000 0.989311 1.005378 1.005378
2 1.000000 0.988054 1.004985 1.005006
3 1.000381 0.986340 1.004147 1.004243
4 1.001240 0.986082 1.003660 1.003763
5 1.002290 0.986846 1.003406 1.003465
6 1.003339 0.987982 1.003258 1.003276
7 1.004307 0.989133 1.003153 1.003153
8 1.005174 0.990169 1.003064 1.003072
9 1.005945 0.991065 1.002982 1.003018

10 1.006630 0.991830 1.002906 1.002982
11 1.007241 0.992483 1.002833 1.002959
12 1.007789 0.993045 1.002763 1.002945
13 1.008284 0.993532 1.002698 1.002938
14 1.008734 0.993957 1.002635 1.002935
15 1.009144 0.994330 1.002576 1.002936
16 1.009520 0.994661 1.002521 1.002939
17 1.009866 0.994956 1.002468 1.002944
18 1.010187 0.995221 1.002418 1.002950
19 1.010484 0.995459 1.002371 1.002957
20 1.010761 0.995675 1.002326 1.002964

Table III. Xt D �1 � B��d

1 C 0.45B
εt d D 0.45

l &2
l �l hl��l�/&2

l hl��1�/&2
l

1 1.000000 0.997013 1.520834 1.520834
2 1.106439 0.996556 1.372042 1.372210
3 1.120749 0.998271 1.378889 1.381494
4 1.151715 0.998540 1.348118 1.352403
5 1.167424 0.998878 1.338657 1.346684
6 1.184162 0.999045 1.325026 1.335755
7 1.196922 0.999187 1.315915 1.329766
8 1.208712 0.999285 1.307060 1.323638
9 1.218874 0.999365 1.299718 1.319003

10 1.228104 0.999428 1.293027 1.314823
11 1.236409 0.999480 1.287102 1.311304
12 1.244013 0.999523 1.281710 1.308183
13 1.250992 0.999559 1.276808 1.305447
14 1.257451 0.999591 1.272306 1.303003
15 1.263452 0.999618 1.268155 1.300815
16 1.269057 0.999642 1.264305 1.298839
17 1.274312 0.999663 1.260720 1.297046
18 1.279256 0.999681 1.257368 1.295410
19 1.283922 0.999698 1.254223 1.293912
20 1.288340 0.999713 1.251264 1.292532
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Table IV. Xt D �1 � B��d

1 C 0.25B
εt d D 0.25

l &2
l �l hl��l�/&2

l hl��1�/&2
l

1 1.000000 0.964062 1.025366 1.025366
2 1.024414 0.939702 0.995702 0.996855
3 1.030518 0.970999 1.005703 1.005873
4 1.036246 0.976657 1.005084 1.005675
5 1.040091 0.981681 1.005591 1.006880
6 1.043151 0.984701 1.005540 1.007420
7 1.045591 0.986921 1.005474 1.007897
8 1.047612 0.988569 1.005354 1.008243
9 1.049316 0.989852 1.005223 1.008517

10 1.050780 0.990876 1.005088 1.008730
11 1.052055 0.991712 1.004955 1.008900
12 1.053179 0.992408 1.004827 1.009033
13 1.054178 0.992997 1.004706 1.009139
14 1.055075 0.993501 1.004590 1.009222
15 1.055886 0.993937 1.004481 1.009287
16 1.056624 0.994319 1.004379 1.009336
17 1.057298 0.994655 1.004282 1.009372
18 1.057918 0.994954 1.004190 1.009398
19 1.058491 0.995221 1.004104 1.009415
20 1.059022 0.995461 1.004022 1.009424

Figure 3. Nile river data
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has a substantial long-memory parameter. On the other hand, if the long-memory effect is small,
the difference of using an adaptive and a non-adaptive scheme may only be marginal when we do
a medium-term forecast.

AN EXAMPLE

As an illustration, we apply the results from the preceding sections to the well-studied Nile river
data set. Figure 3 displays the annual minimum level of the Nile river measured at the Roda gauge
from AD 622 to AD 1921. This series has been studied by a number of people detecting long-
memory behavior (see, for example, Beran, 1994). In order to compare the performance of the
forecasting techniques discussed above we fit a non-adaptive ARMA(1,1) and a ARFIMA(0, d,
0) to the data. Following Beran (1994), the fitted fractional model has d D 0.41 and &2

ε D 0.54.
Similary, the fitted non-adaptive ARMA(1,1) model has � D 0.96, � D 0.68 and &2

ε D 0.54.
From Figure 3, it is seen that the Nile river data exhibit long-range dependency as indicated in

Beran (1994). One-step-ahead predictions using a non-adaptive ARMA(1,1) model are shown in
Figure 4. Their standard deviations (see Figure 5) show a clear increase in values during periods
of missing observations. A similar behaviour is observed in the prediction standard deviations of
the ARFIMA model (see Figure 6).

Figure 4. Nile river data: predictions using a non-adaptive ARMA(1,1)
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Figure 5. Nile river data: prediction of standard deviations based on the ARMA(1,1) model used in Figure 4

In order to assess the performance of the adaptive ARMA approach for l-step forecasts, we
conduct a study similar to that of Brodsky and Hurvich (1999) for the Nile river data. Given the
large number of missing values in the later period of the series, we only consider the first period,
from AD 622 to AD 1281, which is the same time span used by Beran (1994). The estimated
parameters are d D 0.39 and &2 D 0.49 and the results of the corresponding forecasts errors are
given in Table V. In the table the first column lists the number of steps l being forecasted, the
second column lists the prediction error variance from the fitted ARFIMA model, the third column
displays the estimated parameter � for the adaptive ARMA(1,1) model based on the Brodsky and
Hurvich (1999) approach, the fourth column presents the ratio between the prediction error variance
of the adaptive ARMA and the ARFIMA model, while the fifth column displays the same ratio
between the non-adaptive ARMA(1,1) and the ARFIMA process. Observe from Table V that the
ARFIMA and the adaptive ARMA models work well for predicting the Nile river data at different
time horizons. On the other hand, the performance of the non-adaptive ARMA model is deficient,
as compared to the other two approaches. Given that an estimated value of d is close to 0.4 for
this series, the underperformance of the non-adaptive scheme is in accord with the computational
studies reported earlier.

For certain data that exhibit strong long-memory behaviour such as the Nile river data, it seems
prudent to model the data by means of an ARFIMA model or an adaptive ARMA(1,1) model
as suggested by Hosking (1984) and Tiao and Tsay (1996) respectively. When the underlying
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Figure 6. Nile river data: prediction of standard deviations based on ARFIMA

series is long, it may be desirable to fit an adaptive ARMA(1,1) model since it may often be
time consuming to fit an ARFIMA model at the initial stage. Once we have some ideas about
the approximating ARMA(1,1), Theorem 2 can be used to entertain a more focused ARFIMA
model.

CONCLUSIONS

It has been folklore among time series analysts that one can use an ARMA(1,1) to approximate
a long-memory model. The question is when and how? To answer this question, one needs a
good theoretical understanding on what is to be approximated and what are the properties of the
MSE incurred. This paper provides an answer to this type of questions and demonstrates, through
Theorems 2 and 3, a numerical algorithm to characterize the relationship between d and � and �.
This relationship is used to compute the MSE of different forecasting horizons for various ARFIMA
models. From Tables I–IV, we assess under what circumstances an adaptive forecasting scheme
gains most comparing it with a non-adaptive scheme. In addition, the Nile river data are analysed
in Table V which demonstrates the usefulness of the adaptive scheme in a real application. The
results of this paper should be of great interest to time series analysts who need to find ways to
forecast a long-memory model.
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Table V. Prediction square errors for a fitted ARFIMA(0,0.39,0)
model and an adaptive ARMA(1,1) model for the Nile river data

l &2
l �l hl��l�/&2

l hl��1�/&2
l

1 0.489247 0.871365 1.026570 1.026570
2 0.563661 0.944291 1.031044 1.015476
3 0.599606 0.955950 1.015253 1.043132
4 0.622418 0.963265 1.009925 1.069446
5 0.638804 0.969950 1.004298 1.089612
6 0.651435 0.972120 0.994832 1.103810
7 0.661629 0.971804 0.990743 1.113127
8 0.670123 0.974780 0.994277 1.118688
9 0.677371 0.977053 0.997197 1.121444

10 0.683670 0.978081 0.994325 1.122155
11 0.689225 0.979064 0.996824 1.121404
12 0.694180 0.978608 0.994412 1.119629
13 0.698644 0.978211 0.993319 1.117160
14 0.702699 0.979063 0.995893 1.114238
15 0.706408 0.979254 0.997443 1.111041
16 0.709822 0.979233 0.997333 1.107697
17 0.712980 0.979206 0.995803 1.104296
18 0.715916 0.978881 0.991033 1.100903
19 0.718657 0.978382 0.989674 1.097561
20 0.721224 0.977256 0.988964 1.094300
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