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ABSTRACT

Since the seminal works by Granger and Joyeux (1980) and Hosking

(1981), estimations of long-memory time series models have been re-

ceiving considerable attention and a number of parameter estimation

procedures have been proposed. This paper gives an overview of this

plethora of methodologies with special focus on likelihood-based tech-

niques. Broadly speaking, likelihood-based techniques can be classified

into the following categories: the exact maximum likelihood (ML) es-

timation (Sowell, 1992; Dahlhaus, 1989), ML estimates based on au-

toregressive approximations (Granger & Joyeux, 1980; Li & McLeod,

1986), Whittle estimates (Fox & Taqqu, 1986; Giraitis & Surgailis,

1990), Whittle estimates with autoregressive truncation (Beran, 1994a),

approximate estimates based on the Durbin–Levinson algorithm (Haslett

& Raftery, 1989), state-space-based maximum likelihood estimates for

ARFIMA models (Chan & Palma, 1998), and estimation of stochastic

volatility models (Ghysels, Harvey, & Renault, 1996; Breidt, Crato, & de

Lima, 1998; Chan & Petris, 2000) among others. Given the diversified
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applications of these techniques in different areas, this review aims at

providing a succinct survey of these methodologies as well as an overview

of important related problems such as the ML estimation with missing

data (Palma & Chan, 1997), influence of subsets of observations on

estimates and the estimation of seasonal long-memory models (Palma &

Chan, 2005). Performances and asymptotic properties of these techniques

are compared and examined. Inter-connections and finite sample per-

formances among these procedures are studied. Finally, applications to

financial time series of these methodologies are discussed.
1. INTRODUCTION

Long-range dependence has become a key aspect of time series modeling in a
wide variety of disciplines including econometrics, hydrology and physics,
among many others. Stationary long-memory processes are defined by au-
tocorrelations decaying slowly to zero or spectral density displaying a pole at
zero frequency. A well-known class of long-memory models is the autore-
gressive fractionally integrated moving average (ARFIMA) processes intro-
duced by Granger and Joyeux (1980) and Hosking (1981). An ARFIMA
process {yt} is defined by

FðBÞð1� BÞdyt ¼ YðBÞ�t (1)

where FðBÞ ¼ 1þ f1Bþ � � � þ fpB
p and YðBÞ ¼ 1þ y1Bþ � � � þ yqBq are

the autoregressive and moving average (ARMA) operators, respectively;
(1�B)d is the fractional differencing operator defined by the binomial ex-
pansion ð1� BÞd ¼

P1

j¼0ð
d
j ÞB

j and {et} a white noise sequence with variance
s2� : Under the assumption that the roots of the polynomials F(B) and Y(B)
are outside the unit circle and |d|o1/2, the ARFIMA(p,d,q) process is sec-
ond-order stationary and invertible. The spectral density of this process is

f ðoÞ ¼
s2�
2p

j1� eioj�2d j1� FðeioÞj�2j1�YðeioÞj2

and its ACF may be written as

gðkÞ ¼
Z p

�p
f ðoÞeiokdo (2)

Estimation of long-memory models has been considered by a large number
of authors. Broadly speaking, most of the estimation methodologies
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proposed in the literature can be classified into the time-domain and the
spectral-domain procedures. In the first group, we have the exact maximum
likelihood estimators (MLE) and the quasi maximum likelihood estimators
(QMLE), see for example the works by Granger and Joyeux (1980), Sowell
(1992) and Beran (1994a), among others. In the second group, we have for
instance, the Whittle and the semi-parametric estimators (see Fox & Taqqu,
1986; Giraitis & Surgailis, 1990; Robinson, 1995) among others.

In this article, we attempt to give an overview of this plethora of esti-
mation methodologies, examining their advantages and disadvantages,
computational aspects such as their arithmetic complexity, finite sample
behavior and asymptotic properties.

The remaining of this paper is structured as follows. Exact ML methods
are reviewed in Section 2, including the Cholesky decomposition, the
Levinson–Durbin algorithm and state-space methodologies. Section 3 dis-
cusses approximate ML methods based on truncations of the infinite au-
toregressive (AR) expansion of the long-memory process, including the
Haslett and Raftery estimator and the Beran method. Truncations of the
infinite moving average (MA) expansion of the process are discussed in
Section 4 along with the corresponding Kalman filter recursions. The spec-
trum-based Whittle method and semi-parametric procedures are studied in
Section 5. Extensions to the non-Gaussian case are also addressed in this
section. The problem of parameter estimation of time series with missing
values is addressed in Section 6 along with an analysis of the effects of data
gaps on the estimates. Section 7 discusses methodologies for estimating time
series displaying both persistence and cyclical behavior. Long-memory
models for financial time series are addressed in Section 8, while final re-
marks are presented in Section 9.
2. EXACT MAXIMUM LIKELIHOOD METHOD

Under the assumption that the process {yt} is Gaussian and has zero mean,
the log-likelihood function may be written as

LðhÞ ¼ �
1

2
log det Gy �

1

2
Y 0G�1

y Y (3)

where Y ¼ ðy1; . . . ; ynÞ
0; Gy ¼ varðY Þ and y is the model parameter vector.

Hence, the ML estimate is given by ŷ ¼ argmaxyLðhÞ:
Expression (3) involves the calculation of the determinant and the inverse

of Gy. As described next, the well-known Cholesky decomposition algorithm
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can be used to carry out these calculations. Further details can be found in
Sowell (1992). Here we give an overview of this and other related meth-
odologies for computing (3) such as the Levinson–Durbin algorithm and the
Kalman filter recursions.

2.1. Cholesky Decomposition

Since the variance–covariance matrix Gy is positive definite, it can be de-
composed as

Gy ¼ L1L
0
1

where L1 is a lower triangular matrix. This Cholesky decomposition pro-
vides the determinant detGy ¼ ðdetL1Þ

2
¼
Qn

i¼1l
2
ii; where lii denotes the ith-

diagonal element of L1. Furthermore, the inverse of Gy can be obtained as
G�1
y ¼ ðL�1

1 Þ
0L�1

1 ; where the inverse of L1 can be computed by means of a
very simple procedure, see for example Press, Teukolsky, Vetterling, and
Flannery (1992, 89ff).

Observe that while the inversion of a nonsingular square matrix n� n has
arithmetic complexity of order Oðn3Þ; the Cholesky algorithm is of order
Oðn3=6Þ; cf. Press et al. (1992, p. 34).
2.2. Levinson–Durbin Algorithm

Since for large sample sizes, the Cholesky algorithm could be inefficient,
faster methods for calculating the log-likelihood function have been devel-
oped. These numerical procedures, designed to exploit the Toeplitz structure
of the variance–covariance matrix of an second-order stationary process, are
based on the seminal works by Levinson (1947) and Durbin (1960).

Let ŷ1 ¼ 0 and ŷtþ1 ¼ ft1yt þ � � � þ ftty1 for t ¼ 1; . . . ; n� 1 be the one-
step predictors of the process {yt} based on the finite past fy1 ; . . . yt�1g;
where the partial regression coefficients ftj are given by the recursive equa-
tions

ftt ¼ gðtÞ �
Pt�1

i¼1

ft�1;igðt� iÞ

� �
=nt�1

ftj ¼ ft�1;j � fttft�1;t�j ; j ¼ 1; . . . ; n� 1

n0 ¼ gð0Þ

nt ¼ nt�1½1� f2
tt�; t ¼ 1; . . . ; n� 1
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Now, if et ¼ yt � ŷt is the prediction error and e ¼ ðe1; . . . ; enÞ
0; then e ¼

L2Y ; where L2 is the lower triangular matrix

L2 ¼

1

�f11 1

�f22 �f21 1

�f33 �f32 �f31 1

..

. ..
.

�fn�1;n�1 �fn�1;n�2 � � � �fn�1;1 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Thus, Gy may be decomposed as Gy ¼ L2DL0
2; where D ¼

diagðn0; . . . ; nn�1Þ: Consequently, det Gy ¼
Qn

j¼1nj�1 and Y 0G�1
y Y ¼ e0D�1e:

Hence, the log-likelihood function may be written as

LðhÞ ¼ �
1

2

Xn
t¼1

lognt�1 �
1

2

Xn
t¼1

e2t =nt�1

The arithmetic complexity of this algorithm is Oð2n2Þ for a linear stationary
process, see Ammar (1996). However, for some Markovian processes such as
the family of ARMA models, the Levinson–Durbin algorithm can be imple-
mented in only OðnÞ operations, see for example Section 5.3 of Brockwell and
Davis (1991). Unfortunately, ARFIMA models are not Markovian and this
reduction in operations count does not apply to them.

2.3. Calculation of Autocovariances

A critical aspect in the implementation of the Cholesky and the Levinson–
Durbin algorithms is the calculation of the ACF process. A closed form
expression for the ACF of an ARFIMA model is given in Sowell (1992).
Here, we briefly review this and other alternative methods of obtaining the
ACF of a long-memory process.

Observe that the polynomial F(B) defined in (1) can be written as

FðBÞ ¼
Yp
i¼1

ð1� riBÞ

where {ri} are the roots of the polynomial F(z�1). Assuming that all these
roots have multiplicity one, it can be deduced from (2) that

gðkÞ ¼ s2�
Xq
i¼�q

Xp
j¼1

cðiÞxjCðd; pþ i � k; rjÞ
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with cðiÞ ¼
Pminðq;q�1Þ

j¼maxð0;lÞ yjyj�l ; xj ¼ rj
Qp

i¼1ð1� rirjÞ
Q

majðrj � rmÞ
h i�1

and

cðd; h;rÞ ¼
Gð1� 2dÞGðd þ hÞ

Gð1� d þ hÞGð1� dÞGðdÞ

� ½r2pF ðd þ h; 1; 1� d þ h; rÞ þ F ðd � h; 1; 1� d � h; rÞ � 1�

where Gð�Þ is the Gamma function and F(a, b, c, x) is the Gaussian hyper-
geometric function, see (Gradshteyn & Ryzhik, 2000, Section 9.1).

An alternative method for calculating the ACF is the so-called splitting
method, see Bertelli and Caporin (2002). This technique is based on the
decomposition of the model into its ARMA and its fractional integrated
(FI) parts. Let g1ð�Þ be the ACF of the ARMA component and g2ð�Þ be the
ACF of the fractional noise. Then, the ACF of the corresponding ARFIMA
process is given by the convolution of these two functions:

gðkÞ ¼
X1

h¼�1

g1ðhÞg2ðk � hÞ

If this infinite sum is truncated tom summands, we obtain the approximation

gðkÞ �
Xm
h¼�m

g1ðhÞg2ðk � hÞ

Thus, the ACF can be efficiently calculated with a great level of precision, see
for instance the numerical experiments reported by Bertelli and Caporin
(2002) for further details.
2.4. Exact State-Space Method

Another method for computing exact ML estimates is provided by the state-
space system theory. In this Section, we review the application of Kalman
filter techniques to long-memory processes. Note that since these processes
are not Markovian, all the state space representations are infinite dimen-
sional as shown by Chan and Palma (1998). Despite this fact, the Kalman
filter equations can be used to calculate the exact log-likelihood (3) in a finite
number of steps.

Recall that a causal ARFIMA(p, d, q) process {yt} has a linear process
representation given by

yt ¼
YðBÞ

FðBÞ
ð1� BÞ�d�t ¼

X1
j¼0

jj�t�j (4)
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where jj are the coefficients of jðzÞ ¼
P1

j¼0jjz
j ¼ YðzÞFðzÞ�1

ð1� zÞ�d : An
infinite-dimensional state-space representation may be constructed as fol-
lows. From Eq. (4), a state space system may be written as

Xtþ1 ¼ FXt þH�t (5)

yt ¼ GXt þ �t (6)

where

Xt ¼ ½yðtjt� 1Þ yðtþ 1jt� 1Þ yðtþ 2jt� 1Þ . . . �0 (7)

yðtjjÞ ¼ E½ytjyj ; yj�1; . . . � (8)

F ¼

0 1 0 0 � � �

0 0 1 0 � � �

..

. ..
. . .

.

2
64

3
75; H ¼ ½j1; j2; . . . �

0; and G ¼ ½1; 0; 0; . . . �

(9)

The log-likelihood function can be evaluated by directly applying the
Kalman recursive equations in Proposition 12.2.2 of Brockwell and Davis
(1991) to the infinite-dimensional system. The Kalman algorithm is as fol-
lows: Let Ot ¼ ðoðtÞ

ij Þ be the state estimation error covariance matrix at time
t. The Kalman equations for the infinite-dimensional system are given by

X̂ 1 ¼ E½X 1� (10)

O1 ¼ E½X 1X
0
1� � E½X̂ 1X̂

0
1� (11)

Dt ¼ oðtÞ
11 þ 1 (12)

oðtþ1Þ
ij ¼ oðtÞ

iþ1;jþ1 þ jijj �
ðoðtÞ

iþ1;1 þ jiÞðo
ðtÞ
jþ1;1 þ jjÞ

oðtÞ
11 þ 1

(13)

and

X̂ tþ1 ¼ ðX̂
ðtþ1Þ

1 ; X̂
ðtþ1Þ

2 ; . . . Þ0 ¼ ðX̂
ðtþ1Þ

i Þ
0
i¼1;2;... (14)

where

X̂
ðtþ1Þ

i ¼ X̂
ðtÞ

iþ1 þ
ðyt � X̂

ðtÞ

1 ÞðoðtÞ
iþ1;1 þ jiÞ

oðtÞ
11 þ 1

(15)

ŷtþ1 ¼ GX̂tþ1 ¼ X̂
ðtþ1Þ

1 (16)
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and the log-likelihood function is given by

LðhÞ ¼ �
1

2
n log 2pþ

Xn
t¼1

log Dt þ n log s2� þ
1

s2�

Xn
t¼1

ðyt � ŷtÞ
2

Dt

( )

Although the state space representation of an ARFIMA model is infinite-
dimensional, the exact likelihood function can be evaluated in a finite
number of steps. Specifically, we have the following theorem due to Chan
and Palma (1998).

Theorem 1. Let fy1; . . . ; yng be a finite sample of an ARFIMA(p,d,q)
process. If O1 is the variance of the initial state X1 of the infinite-dimen-
sional representation (5)–(9), then the computation of the exact likelihood
function (3) depends only on the first n components of the Kalman
Eqs. (10)–(16).

It is worth noting that as a consequence of Theorem 1, given a sample of
n observations from an ARFIMA process, the calculation of the exact like-
lihood function is based only on the first n components of the state vector.
Therefore, the remaining infinitely many components of the state vector can
be omitted from the computations.

The arithmetic complexity of this algorithm is Oðn3Þ: Therefore, it is
comparable to the Cholesky decomposition but it is less efficient than the
Levinson–Durbin procedure. The Kalman approach is advisable for mod-
erate sample sizes or for handling time series with missing values. The state
space framework provides a simple solution to this problem. Note that the
Levinson–Durbin method is no longer appropriate when the series displays
missing values since the variance–covariance matrix of the incomplete data
does not have a Toeplitz structure.
2.5. Asymptotic Results for the Exact MLE

The consistency, asymptotic normality and efficiency of the MLE have
been established by Yajima (1985) for the fractional noise process and by
Dahlhaus (1989) for the general case including the ARFIMA model.

Let ĥn be the value that maximizes the exact log-likelihood where

h ¼ ðf1; . . . ;fp;f1; . . . ; yq; d;s�Þ
0

is a pþ qþ 2 dimensional parameter vector and let h0 be the true parameter.
Assume that the regularity conditions listed in Dahlhaus (1989) hold.
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Theorem 2. (Consistency) ĥn ! h0 in probability as n-N.
(Central Limit Theorem)

ffiffiffi
n

p
ðĥn � h0Þ ! Nð0;G�1ðh0ÞÞ; as n-N, where

GðhÞ ¼ ðGijðhÞÞ with

GijðhÞ ¼
1
4p

R p
�p

@ log kðo;hÞ
@yi

n o
@ log kðo;hÞ

@yj

n o
dw

and kðo; hÞ ¼ j
P1

j¼0cjðhÞe
ijoj2

(17)

(Efficency) ĥn is an efficient estimator of h0.

The next two sections discuss ML methods based on AR and MA approx-
imations.
3. AUTOREGRESSIVE APPROXIMATIONS

Since the computation of exact ML estimates is computationally highly
demanding, several authors have considered the use of AR approximations
to speed up the calculation of parameter estimates. In particular, this ap-
proach has been adopted by Granger and Joyeux (1980), Li and McLeod
(1986), Haslett and Raftery (1989), Beran (1994b), Shumway and Stoffer
(2000) and Bhansali and Kokoszka (2003), among others.

Most of these techniques are based on the following estimation strategy.
Consider a long-memory process {yt} defined by the AR(N) expansion

yt � p1ðhÞyt�1 � p2ðhÞyt�2 � � � � ¼ �t

where pj(h) are the coefficients of FðBÞY�1
ðBÞð1� BÞd : In practice, only a

finite number of observations is available, fy1; . . . ; yng; therefore the fol-
lowing truncated model is considered

yt � p1ðhÞyt�1 � � � � � pmðhÞyy�m ¼ ~�t

for motrn. The ML estimate ĥn is found by minimizing

L0ðhÞ ¼
Xn

t¼mþ1

½yt � p1ðhÞyt�1 � � � � � pmðhÞyt�m�
2

Upon this basic framework, many refinements can be made to improve the
quality of these estimates. In what follows next, we describe some of these
refinements. For simplicity, any estimator produced by the maximization of
an approximation of the Gaussian likelihood function (3) will be called
QMLE.
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3.1. Haslett–Raftery Method

The following technique was proposed by Haslett and Raftery (1989). Con-
sider the ARFIMA process (1). An approximate one-step predictor of yt is
given by

ŷt ¼ FðBÞYðBÞ�1
Xt�1

j¼1

ftjyt�j (18)

with prediction error variance

vt ¼ varðyt � ŷtÞ ¼ s2yk
Yt�1

j¼1

ð1� f2
jjÞ

where s2y ¼ varðytÞ; k is the ratio of the innovations variance to the variance
of the ARMA(p,q) process as given by Eq. (3.4.4) of Box, Jenkins, and
Reinsel (1994) and

ftj ¼ �
t

j

 !
Gðj � dÞGðt� d � j þ 1Þ

Gð�dÞGðt� d þ 1Þ
; for j ¼ 1; . . . ; t

To avoid the computation of a large number of coefficients ftj, the last term
of the predictor (18) is approximated by

Xt�1

j¼1

ftjyt�j �
XM
j¼1

ftjyt�j �
Xt�1

j¼Mþ1

pjyt�j (19)

since ftj��pj for large j, cf. Hosking (1981), where for simplicity pj denotes
pj(h) and aj�bj means that aj/bj-1, as j-N.

An additional approximation is made to the second term on the right-
hand-side of (19):

Xt�1

j¼Mþ1

pjyt�j � MpMd�1 1�
M

t

� �d
" #

ȳMþ1;t�1�M

where ȳMþ1;t�1�M ¼ 1
t�1�2M

Pt�1�M
j¼Mþ1yj : Hence, a QMLE ĥn is obtained by

maximizing

L1ðhÞ ¼ constant �
1

2
n log½ŝ2� ðhÞ�
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with

ŝ2� ðhÞ ¼
1

n

Xn
t¼1

ðyt � ŷtÞ
2

vt

The arithmetic complexity of the Haslett and Raftery method is of order
OðnMÞ: For a fixed M, the algorithm is of order OðnÞ; which is much faster
compared to the Levinson–Durbin method. Haslett and Raftery (1989)
suggest M ¼ 100: Note that, when M ¼ n; the exact ML estimated is ob-
tained. However, the arithmetic complexity in that case becomes Oðn2Þ and
no gain is obtained as compared to the Levinson–Durbin approach.

3.2. Beran Method

Beran (1994a) proposed the following version of the AR approximation
approach. Assume that the following Gaussian innovation sequence

�t ¼ yt �
X1
j¼1

pjðhÞyt�j

Since the values {yt, t r 0} are not observed, an approximate innovation
sequence {ut} can be obtained by assuming that yt ¼ 0 for t r 0,

utðhÞ ¼ yt �
Xt�1

j¼1

pjðhÞyt�j

for t ¼ 2; . . . ; n: Let rtðhÞ ¼ utðhÞ=y1 and h ¼ ðs�; f1; . . . ;fp;
y1; . . . ; yq; dÞ: Then, a QMLE for h is provided by the minimization of

L2ðhÞ ¼ 2n log ðy1Þ þ
Xn
t¼2

r2t ðhÞ

Now, by taking partial derivatives with respect to h, the minimization
problem is equivalent to solving the non-linear equationsXn

t¼2

frtðhÞ_rtðhÞ � E½rtðhÞ_rtðhÞ�g ¼ 0 (20)

where _rtðhÞ ¼
@rtðhÞ
@y1

; . . . ; @rtðhÞ@yr

� �0
:

The arithmetic complexity of this method is Oðn2Þ; that is, comparable to
the Levinson–Durbin algorithm. Unlike the Haslett and Raftery method,
the Beran approach uses the same variance for all the errors ut. Hence, its
performance may be poor for short time series.
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3.2.1. Asymptotic Behavior

The QMLE based on the AR approximations share the same asymptotic
properties with the exact MLE. The following results are due to Beran
(1994a). Let ~hn be the value that solves (20). Then,

Theorem 3. (Consistency) ~hn ! h0; in probability, as n-N.
(Central Limit Theorem)

ffiffiffi
n

p
ð~hn � h0Þ ! N ð0; G�1ðh0ÞÞ; as n-N, with

G(h0) is given in (17).
(Efficiency) ~hn is an efficient estimator of h0.
4. MOVING AVERAGE APPROXIMATIONS

A natural alternative to AR approximations is the truncation of the infinite
MA expansion of a long-memory process. The main advantage of this ap-
proach is the easy implementation of the Kalman filter recursions and the
simplicity of the analysis of the theoretical properties of the ML estimates.
Furthermore, if differencing is applied to the series, then the resulting trun-
cation has less error variance than the AR approximation.

A causal representation of an ARFIMA(p, d, q) process {yt} is given by

yt ¼
X1
j¼0

cj�t�j (21)

On the other hand, we may consider an approximate model for (21) given by

yt ¼
Xm
j¼0

cj�t�j (22)

which corresponds to a MA(m) process in contrast to the MA(N) process (21).
A canonical state space representation of the MA(m) model (22) is given by

Xtþ1 ¼ FXt þH�t

yt ¼ GXt þ �t

with

F ¼
0 Im�1

0 . . . 0

� �
; G ¼ ½1 0 0 . . . 0�; H ¼ ½c1 . . . cm�

0

Xt ¼ ½yðtjt� 1Þ; yðtþ 1jt� 1Þ; . . . ; yðtþm� 1jt� 1Þ�0

yðtþ jjt� 1Þ ¼ E½ytþjjyt�1; yt�2; . . . �
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The approximate representation of a causal ARFIMA(p, d, q) has computa-
tional advantages over the exact one. In particular, the order of the MLE
algorithm is reduced from Oðn3Þ to OðnÞ: A brief discussion about the Kalman
filter implementation of this state space system follows.
4.1. Kalman Recursions

Let the initial conditions be X̂ 1 ¼ E½X 1� and O1 ¼ E½X 1X
0
1� � E½X̂ 1X̂

0
1�:

The recursive Kalman equations may be written as follows (cf. Chan, 2002,
Section 11.3):

Dt ¼ GOtG
0 þ s2� (23)

Yt ¼ FOtG
0 þ S (24)

Otþ1 ¼ FOtF
0 þQ�YtD

�1
t Y0

t (25)

X̂ tþ1 ¼ FX̂ t þYtD
�1
t ðyt � GX̂tÞ

ŷt ¼ GX̂ t

(26)

for t ¼ 1; 2; . . . ; n; where Q ¼ var(Het), se ¼ var(et) and S ¼ cov(Het, et).
The log-likelihood function, excepting a constant, is given by

LðhÞ ¼ �
1

2

Xn
t¼1

log DtðyÞ þ
Xn
t¼1

ðyt � ŷtðyÞÞ
2

DtðyÞ

( )

where h ¼ ðf1; . . . fp; y1; . . . ; yq; d; s
2Þ is the parameter vector associated

with the ARFIMA representation (1). In order to evaluate the log-likelihood
function LðhÞ; we may choose the initial conditions X̂ 1 ¼ E½X 1� ¼ 0 and
O1 ¼ E½X 1 X

0
1� ¼ ½oði; jÞ�i; j¼1; 2; ...; where oði; jÞ ¼

P1

k¼0ciþkcjþk:
The evolution of the state estimation and its variance, Ot, is given by the

following recursive equations. Let di ¼ 1 if i 2 f0; 1; . . . ;m� 1g and di ¼ 0
otherwise. Furthermore, let dij ¼ didj : Then, the elements of Ot+1 and X̂ tþ1

in (25) and (26) are as follows:

otþ1ði; jÞ ¼ otði þ 1; j þ 1Þdij þ cicj

�
½otði þ 1; 1Þdi þ ci�½otðj þ 1; 1Þdj þ cj �

otð1; 1Þ þ 1
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and

X̂ tþ1ðiÞ ¼ X̂ tði þ 1Þdi þ
ðotði þ 1; 1Þdi þ ciÞðyt � X̂ tð1ÞÞ

otð1; 1Þ þ 1

In addition,

ŷt ¼ GX̂t ¼ X̂ tð1Þ

In order to speed up the algorithm, we can difference the series {yt} so
that the MA expansion of the differenced series converges faster. To this
end, consider the MA expansion of the differenced process

zt ¼ ð1� BÞyt ¼
X1
j¼0

jj �t�j (27)

where jj ¼ cj � cj�1: If we truncate this expansion after m components, an
approximate model can be written as

zt ¼
Xm
j¼0

jj�t�j (28)

The main advantage of this approach is that the coefficients jj converge to
zero faster than the coefficients cj do. Thus, a smaller truncation parameter
is necessary to achieve a good level of approximation.

A state space representation of this truncated model is given by, see for
example Section 12.1 of Brockwell and Davis (1991),

Xtþ1 ¼
0 Im�1

0 � � � 0

� �
Xt þ

j1

..

.

jm

2
664

3
775�t

and

zt ¼ 1 0 0 . . . 0
� 	

Xt þ �t

The Gaussian log-likelihood of the truncated model (28) may be written
as

LnðhÞ ¼
1

2n
log det Tn;mðhÞ �

1

2n
Z0

nTn;mðhÞ
�1Zn

where ½Tn;mðhÞ�r; s¼1; ... ;n ¼
R p
�p

~f m;hðoÞe
ioðr�sÞdo is the covariance matrix of

Zn ¼ ðz1 . . . znÞ
0 with ~f m;hðoÞ ¼ s2� jjmðe

ioÞj2 and jmðe
ioÞ ¼ 1þ j1e

io þ

� � � þ j1m
emio:
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In this case, the matrices involved in the truncated Kalman equations are
of order m�m. Therefore, only m2 evaluations are required for each iter-
ation and the algorithm has an order n � m2. For a fixed truncation pa-
rameter m, the calculation of the likelihood function is only of order OðnÞ for
the approximate ML method. Thus, for very large samples, it may be
desirable to consider truncating the Kalman recursive equations after m

components. With this truncation, the number of operations required
for a single evaluation of the log-likelihood function is reduced to an order
of OðnÞ:

This approach is discussed in Chan and Palma (1998), where they show
the following result.

Theorem 4. (Consistency) Assume that m ¼ nb with b40, then as n-N,
~hn;m ! h0; in probability.
(Central Limit Theorem) Suppose that m ¼ nb with bZ1/2, then as n-
N,

ffiffiffi
n

p
ð~hn;m � h0Þ ! Nð0; G�1ðh0ÞÞ;

where G(h) is given in (17).
(Efficiency) Assume that m ¼ nb with b Z 1/2, then ~hn;m; is an efficient
estimator of y0.

Observe that both AR(m) and MA(m) approximations produce algo-
rithms with arithmetic complexity of order OðnÞ: However, the quality of the
approximation is governed by the truncation parameter m. Bondon and
Palma (2005) prove that the variance of the truncation error for an AR(m)
approximation is of order Oð1=nÞ: On the other hand, it can be easily shown
that for the MA(m) case, this quantity is of order Oðn2d�1Þ: Furthermore,
when the differenced approach is used, the truncation error variance is of
order Oðn2d�3Þ:
5. WHITTLE APPROXIMATIONS

Another approach to obtain approximate ML estimates is based on the
calculation of the periodogram by means of the Fast Fourier Transform
(FFT) and the use of the Whittle approximation of the Gaussian log-
likelihood function. This approach produces fast numerical algorithms for
computing parameter estimates, since the calculation of the FFT has an
arithmetic complexity Oðn log2ðnÞÞ (cf. Press et al., 1992, p. 498).
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5.1. Whittle Approximation of the Gaussian Likelihood Function

Consider the Gaussian process Y ¼ ðy1; . . . ; ynÞ
0 with zero mean and

variance Gh. Then the log-likelihood function divided by the sample size is
given by

LðhÞ ¼ �
1

2n
log det Gy �

1

2n
Y 0G�1

y Y (29)

Observe that the variance–covariance matrix Gh can be expressed in terms of
the spectral density of the process fh( � ) as follows:

ðGhÞij ¼ ghði � jÞ

where

ghðkÞ ¼
1

2p

Z p

�p
f hðoÞ exp ðiokÞ do

In order to obtain the method proposed by Whittle (1951), two approx-
imations are made. Following the result by Grenander and Szegö (1958)
that

1

n
log det Gh !

1

2p

Z p

�p
log f hðoÞ do

as n-N, the first term in (29) is approximated by

1

2n
log det Gy �

1

4p

Z p

�p
log f hðoÞ do

On the other hand, the second term in (29) is approximated by

1

2p
Y 0G�1

y Y �
Xn
l¼1

Xn
j¼1

yl
1

4pn

Z p

�p
f �1
h ðoÞ exp ½ioðl � jÞ�do�


 �
yj

¼
1

4pn

Z p

�p
f �1
h ðoÞ

Xn
l¼1

Xn
j¼1

ylyj exp ½ioðl � jÞ�do

¼
1

4pn

Z p

�p
f �1
h ðoÞj

Xn
j¼1

yj exp ðiojÞj2do

¼
1

4p

Z p

�p

IðoÞ
f hðoÞ

do

where IðoÞ ¼ 1
n
j
Pn

j¼1ðyj � ȳÞ exp ðiojÞj2 is the periodogram of the series
{yt}. Thus, the log-likelihood function is approximated by

L3ðhÞ ¼ �
1

4p

Z p

�p
log f hðoÞdoþ

Z p

�p

IðoÞ
f hðoÞ

do

 �

(30)
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5.2. Discrete Version

The evaluation of the log-likelihood function (30) requires the calculation of
integrals. To simplify this computation, the integrals can be substituted by
Riemann sums as follows:Z p

�p
log f hðoÞdo �

2p
n

Xn
j¼1

log f hðojÞ

and Z p

�p

IðoÞ
f hðoÞ

dog �
2p
n

Xn
j¼1

IðojÞ

f hðojÞ

where oj ¼
2pj
n

are the Fourier frequencies. Thus, a discrete version of the
log-likelihood function (30) is

L4ðhÞ ¼ �
1

2n

Xn
j¼1

log f hðojÞ þ
Xn
j¼1

IðojÞ

f hðojÞ

( )

5.3. Alternative Versions

Further simplifications of the Whittle log-likelihood function can be made.
For example, by assuming that the spectral density is normalized asZ p

�p
log f hðoÞdo ¼ 0 (31)

then the Whittle log-likelihood function is reduced to

L5ðhÞ ¼ �
1

4p

Z p

�p

IðoÞ
f hðoÞ

do

with the discrete version

L6ðhÞ ¼ �
1

2n

Xn
j¼1

IðojÞ

f hðojÞ

Observe that by virtue of the well-known Szegö–Kolmogorov formula

s2� ¼ 2p exp
1

2p

Z p

�p
log f hðoÞdo

� �

the normalization (31) is equivalent to setting s2� ¼ 2p:
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5.4. Asymptotic Results

The asymptotic behavior of the Whittle estimator is similar to that of the
exact MLE. The following theorem combines results by Fox and Taqqu
(1986) and Dahlhaus (1989).

Theorem 5. Let ĥ
ðiÞ

n be the value that maximizes the log-likelihood
function LiðhÞ for i ¼ 3; . . . ; 6 for a Gaussian process {yt}. Then, under
some regularity conditions, ĥ

ðiÞ

n is consistent and
ffiffiffi
n

p
ðĥ

ðiÞ

n � h0Þ !

Nð0; G�1
h0
Þ; as n - N.

5.5. Non-Gaussian Processes

All of the above methods apply to Gaussian processes. When this
assumption in dropped, it is still possible to find well-behaved Whittle
estimates. In particular, Giraitis and Surgailis (1990) have studied the
estimates based on the maximization of the log-likelihood function L5ðhÞ

for a general class of linear processes with independent innovations.
Consider the process {yt} generated by the Wold decomposition

yt ¼
X1
j¼0

cjðhÞ�t�j

where et is an i.i.d. sequence with finite four cumulant and
P1

j¼0c
2
j ðhÞ o1:

The following result, due to Giraitis and Surgailis (1990), establishes the
consistency and the asymptotic normality of the Whittle estimate under
these circumstances.

Theorem 6. Let ĥn be the value that maximizes the log-likelihood function
L5ðhÞ: Then, under some regularity conditions, ĥn is consistent andffiffiffi
n

p
ĥn � h0

� �
! Nð0; G�1

h0
Þ; as n-N.

Note that this theorem does not assume the normality of the process.

5.6. Semi-Parametric Methods

Another generalization of the Whittle estimator is the Gaussian semi-
parametric estimation method proposed by Robinson (1995). This estima-
tion approach does not require the specification of a parametric model for
the data. It only relies on the specification of the shape of the spectral
density of the time series.
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Consider the stationary process {yt} with spectral density satisfying

f ðoÞ � Go1�2H

as o-0+, with G 2 ð0; 1Þ and H 2 ð0; 1Þ: Note that for an ARFIMA
model, the terms G and H correspond to s2=2p½yð1Þ=fð1Þ�2 and 1/2+d,
respectively. H is usually called the Hurst parameter.

Let the objective function Q(G, H) to be minimized be given by

QðG; HÞ ¼
1

m

Xm
j¼1

log Go1�2H
j þ

o2H�1
j

G
IðojÞ

( )

where m is an integer satisfying mon/2. Let (Ĝ; Ĥ) be the value that
minimizes Q(G,H). Then, under some regularity conditions of the spectral
density and

1

m
þ

m

n
! 0

as n-N, the following result due to Robinson (1995) holds:

Theorem 7. Let H0 be the true value of the Hurst parameter. The
estimator Ĥ is consistent and

ffiffiffiffi
m

p
ðĤ � Ĥ0Þ ! N 0; 1

4

� 
; as n-N.

5.7. Numerical experiments

Table 1 displays the results from several simulations comparing five ML
estimation methods for Gaussian processes: Exact MLE, Haslett and
Raftery’s approach, AR(40) approximation, MA(40) approximation and
the Whittle method. The process considered is a fractional noise
ARFIMA(0, d, 0) with three values of the long-memory parameter:
Table 1. Finite Sample Behavior of ML Estimates of ARFIMA(0, d, 0)
Models. Sample Size n ¼ 250 and Truncation m ¼ 40 for AR(m) and

MA(m) Approximations.

d Exact HR AR MA Whittle

0.40 mean 0.371210 0.372320 0.376730 0.371310 0.391760

stdev 0.047959 0.048421 0.057392 0.050048 0.057801

0.25 mean 0.229700 0.230400 0.229540 0.229810 0.221760

stdev 0.051899 0.051959 0.056487 0.051475 0.060388

0.10 mean 0.082900 0.083240 0.083910 0.084410 0.065234

stdev 0.049260 0.049440 0.052010 0.049020 0.051646
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d ¼ 0:1; 0:25; 0:4; Gaussian innovations with mean zero and variance 1 and
sample size n ¼ 250: The mean and standard deviations of the estimates are
based on 1,000 repetitions. All the simulations were carried out by means of
Splus programs, available upon request.

From this table, it seems that all estimates are somewhat downward
biased for the three values of d considered. All the estimators, excepting the
Whittle, seem to behave similarly in terms of both bias and standard error.
On the other hand, the Whittle method has less bias for d ¼ 0:4; but greater
bias for d ¼ 0:1: Besides, this procedure seems to have greater standard
error than the other estimators, for the three values of d. The empirical
parameter estimate standard deviations of all the method considered are
close to its theoretical value 0.04931.

In the next section we discuss the application of the ML estimation
methodology to time series with missing values.

6. ESTIMATION OF INCOMPLETE SERIES

The Kalman filter recursive Eqs. (23)–(26) can be modified to calculate the
log-likelihood function for incomplete series, as described in Palma and
Chan (1997). In this case, we have

Dt ¼ GOtG
0 þ s2w

Yt ¼ FOtG
0 þ S

Otþ1 ¼
FOtF

0 þQ�YtD
�1
t Y0

t yt known

FOtF
0 þQ yt missing

(

X̂ tþ1 ¼
FX̂ t þYtD

�1
t ðyt � GX̂ tÞ yt known

FX̂ t yt missing

(

Let Kn be the set indexing the observed values of the process {yt}. The
Kalman recursive log-likelihood function is given by

LðhÞ ¼ �
1

2
r log 2pþ

X
t2Kn

log Dt þ r log s2�
1

s2�

X
t2Kn

ðyt � ŷtÞ
2

Dt

( )

where r is the number of observed values and Dt ¼ oðtÞ
11 þ 1 is the variance of

the best predictor ŷt: This form of the likelihood function may be used to
efficiently calculate Gaussian ML estimates. One-step predictions and their
corresponding standard deviations are obtained directly from the recursive
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Kalman filter equations without further computation, see Palma and Chan
(1997) for details.

6.1. Effect of Data Irregularities and Missing Values on ML Estimates

To illustrate the potential dramatic effects of data irregularities such as
repeated or missing values on the parameter estimation of a long-memory
process, consider the well-known Nile river data, cf. Beran (1994b), shown
in Fig. 1. Panel (a) displays the original data. From this plot, it seems that in
several periods, the data were repeated year after year in order to complete
the series. Panel (b) shows the same series, but without those repeated values
(filtered series). This procedure has been discussed in Palma and Del Pino
(1999).

Table 2 shows the fitted parameters of an ARFIMA(0, d, 0) using an
AR(40) approximation along the Kalman filter, for both the original and
the data without repetitions.

Observe that for the original data, the estimate of the long-memory
parameter is 0.5, indicating that the model has reached the non-stationary
boundary. On the other hand, for the filtered data, the estimate of d belongs
to the stationary region. Thus, in this particular case, the presence of data
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Fig. 1. Nile River Data (622 A.D. – 1921 A.D.). Panel (a) Original Data and panel

(b) Filtered Data.



Table 2. Nile River Data: ML Estimates for the Fitted ARFIMA(0, d,
0) Model.

Series d̂ t
d̂

ŝ�

Panel (a) 0.5000 25.7518 0.6506

Panel (b) 0.4337 19.4150 0.7179

Table 3. Finite Sample Behavior of ML Estimates of ARFIMA(0, d, 0)
Processes with Missing Values. Sample Size n ¼ 250 and Truncation m ¼

40 for AR(m) and MA(m) Approximations.

d NA’s AR MA Expected stdv

0% mean 0.380470 0.374390

stdev 0.056912 0.048912 0.049312

0.40 15% mean 0.376730 0.369120

stdev 0.060268 0.055014 0.053550

30% mean 0.366650 0.363860

stdev 0.065166 0.059674 0.058935

0% mean 0.225600 0.226900

stdev 0.056810 0.052110 0.049312

0.25 15% mean 0.223500 0.224800

stdev 0.065440 0.060040 0.053550

30% mean 0.219800 0.220800

stdev 0.072920 0.062510 0.058935

0% mean 0.081145 0.081806

stdev 0.054175 0.051013 0.049312

0.10 15% mean 0.086788 0.081951

stdev 0.058106 0.052862 0.053550

30% mean 0.080430 0.081156

stdev 0.067788 0.061118 0.058935
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irregularities such as the replacement of missing data with repeated values
induces non-stationarity. On the other hand, when the missing value is
appropriately taken care of, the resulting model is stationary (cf. Palma &
Del Pino, 1999).

Table 3 displays the results fromMonte Carlo simulations of approximate
ML estimates for fractional noise ARFIMA(0, d, 0) with missing values at
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random. The sample size chosen was n ¼ 250 and the AR and MA
truncations are m ¼ 40 for both cases. The long-memory parameters are
d ¼ 0:1; 0:25; 0:40 and s2� ¼ 1: The number of missing values are 38 (15% of
the sample) and 75 (30% of the sample) and were selected randomly for each
sample.

Note that the bias and the standard deviation of the estimates seem to
increase as the number of missing values increases. On the other hand, the
sample standard deviation of the estimates seems to be close to the expected
values, for the MA approximation. For the AR approximation, these values
are greater than expected. The expected standard deviation used here isffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6=p2nn
p

; where n� is the number of observed values.
7. ESTIMATION OF SEASONAL LONG-MEMORY

MODELS

In practical applications, many researchers have found time series exhibiting
both long-range dependence and cyclical behavior. For instance, this phe-
nomenon occurs for the inflation rates studied by Hassler and Wolters
(1995), revenue series analyzed by Ray (1993), monetary aggregates con-
sidered by Porter-Hudak (1990), quarterly gross national product and ship-
ping data discussed by Ooms (1995) and monthly flows of the Nile River
studied by Montanari, Rosso, and Taqqu (2000).

Several statistical methodologies have been proposed to model this type
of data. For instance, Gray, Zhang, and Woodward (1989) propose the
generalized fractional or Gegenbauer (GARMA) processes, Porter-Hudak
(1990) discusses seasonal fractionally integrated autoregressive moving av-
erage (SARFIMA) models, Hassler (1994) introduces the flexible seasonal
fractionally integrated processes (flexible ARFISMA) and Woodward,
Cheng, and Gray (1998) introduce the k-GARMA processes. Furthermore,
the statistical properties of these models have been investigated by Giraitis
and Leipus (1995), Chung (1996), Arteche and Robinson (2000), Velasco
and Robinson (2000) and Giraitis, Hidalgo, and Robinson (2001), among
others.

A rather general class of Gaussian seasonal long-memory processes is
specified by the spectral density

f ðoÞ ¼ gðoÞjoj�a
Yr
i¼1

Ymi

j¼1

jo� oijj
�ai (32)
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where o 2 ð�p; p�; 0 � a; aio1; i ¼ 1; . . . ; r; gðoÞ is a symmetric, strictly
positive, continuous and bounded function and oij 6¼0 are known poles for
j ¼ 1; . . . ;mi; i ¼ 1; . . . ; r: To ensure the symmetry of f, it is assumed that
for any i ¼ 1; . . . ; r; j ¼ 1; . . . mi; there is one and only one 1rj0rmi such
that oij ¼ oij0 : The spectral density of many widely used models such as
SARFIMA and k-factor GARMA satisfy specification (32).

The exact ML estimation of processes satisfying (32) has been recently
studied by Palma and Chan (2005) who have established the following
result:

Theorem 8. Let ĥn be the exact MLE for a process satisfying (32) and h0
the true parameter. Then, under some regularity conditions we have
(Consistency) ĥn!ph0 as n-N. (Central limit theorem) The ML estimate,
ĥn; satisfies the following limiting distribution as n-N:

ffiffiffi
n

p
ðĥn � h0Þ !

Nð0; Gðh0Þ
�1
Þ; where G(h0) is given by (17).

(Efficiency) The ML estimate, ĥn; is asymptotically an efficient estimate
of h0.

7.1. Monte Carlo Studies

In order to assess the finite sample performance of the ML estimates in the
context of long-memory seasonal series, a number of Monte Carlo simu-
lations were conducted for the class of SARFIMA(p, d, q)� (P, ds, Q)s
models described by the following difference equation (cf. Porter-Hudak,
1990):

fðBÞFðBsÞð1� BÞdyt ¼ yðBÞYðBsÞ�t

where f�tg are standard normal random variables, fðBÞ ¼ 1� f1B� � � � �

fpB
p; FðBsÞ ¼ 1� F1B

s � � � � � FPB
sP; yðBÞ ¼ 1þ y1Bþ � � � þ yqBq;

YðBsÞ ¼ 1þY1B
s þ � � � þYQB

sQ; polynomials f(B) and y(B) have no
common zeros, F(Bs) and Y(Bs) have no common zeros, and the roots of
these polynomials are outside the unit circle.

Table 4 shows the results from simulations for SARFIMA(0, d, 0)� (0, ds,
0)s models. The estimates of d̂ and d̂s reported in columns seven and eight of
Table 4 and the estimated standard deviations displayed in the last two
columns of the table are based on 1,000 repetitions. The MLE are computed
by means of an extension to SARFIMA models of the state space repre-
sentations of long-memory processes, see Chan and Palma (1998) for details.
The theoretical values of the standard deviations of the estimated param-
eters are based on the formula (17). In general, analytic expressions for the



Table 4. Finite Sample Performance of ML Estimates of SARFIMA(0,
d, 0)� (0, ds, 0)s Models for Several Values of s, n, d and ds.

Period n d ds sðdÞ sðdsÞ d̂ d̂s ŝðd̂Þ ŝðd̂sÞ

4 1000 0.100 0.300 0.025 0.025 0.090 0.299 0.027 0.028

6 500 — 0.300 — 0.035 — 0.286 — 0.036

6 1000 0.150 0.200 0.025 0.025 0.140 0.198 0.026 0.026

6 2000 0.200 0.200 0.018 0.018 0.195 0.196 0.018 0.018

12 3000 — 0.250 — 0.014 — 0.252 — 0.016

12 1000 0.200 0.100 0.025 0.025 0.194 0.094 0.025 0.027
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integral in (17) are difficult to obtain for an arbitrary period s. For an
SARFIMA(0, d, 0)� (0, ds, 0)s model, the matrix G(h) can be written as

GðhÞ ¼
p2
6

c

c p2
6

0
@

1
A

with c ¼ 1
p

R p
�p log j2 sinðo

2
Þj

� �
log j2 sinðso

2
Þj

� �
do: An interesting feature of

the asymptotic variance of the parameters is that for an SARFIMA(0, d,
0)� (0, ds, 0)s process, the variance of d̂ is the same as the variance of d̂s:

From Table 4, note that the estimates and their standard deviations are
close to the theoretical values, for all the sample sizes and combinations of
parameters investigated.
8. HETEROSKEDASTIC TIME SERIES

Evidence of long-memory behavior in returns and/or empirical volatilities
has been observed by several authors, see for example Robinson (1991) and
references therein. Accordingly, several models have been proposed in the
econometric literature to explain the combined presence of long-range de-
pendence and conditional heteroskedasticity. In particular, a class of models
that has received considerable attention is the ARFIMA–GARCH (gener-
alized autoregressive conditional heteroskedastic) process, see for example
Ling and Li (1997). In this model, the returns have long memory and the
noise has a conditional heteroskedasticity structure. A related class of in-
teresting models is the extension of the ARCH(p) processes first introduced
by Engle (1982) to the ARCH(N) models to encompass the longer de-
pendence observed in many squared financial series. On the other hand,
extensions of the stochastic volatility processes to the long-memory case
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have produced the so-called long-memory stochastic volatility models
(LMSV). In this section, we discuss briefly some of these well-known
econometric models.
8.1. ARFIMA–GARCH Model

An ARFIMA(p,d,q)–GARCH(r,s) process is defined by the discrete-time
equation

FðBÞð1� BÞdðyt � mÞ ¼ YðBÞ�t

�jFt�1 � Nð0; htÞ

ht ¼ a0 þ
Xr
i¼1

ai�2t þ
Xs
j¼1

bjht�j

where Ft�1 is the s-algebra generated by the past observations
yt�1; yt�2; . . . :

Most econometric models dealing with long memory and heteroskedastic
behaviors are non-linear, in the sense that the noise sequence is not nec-
essarily independent. An approximate MLE ĥ is obtained by maximizing the
conditional log-likelihood

LðhÞ ¼ �
1

2n

Xn
t¼1

log ht þ
�2t
ht


 �
(33)

The asymptotic behavior of this estimate was formally established by Ling
and Li (1997). Let h ¼ ðh1; h2Þ

0; where h1 ¼ ðf1; . . . ;fp; y1; . . . ; yq; dÞ
0 is the

parameter vector involving the ARFIMA components and h2 ¼ ða0; . . . ; ar;
b1; . . . ;bsÞ

0 is the parameter vector containing the GARCH component. The
following result correspond to Theorem 3.2 of Ling and Li (1997).

Theorem 9. Let ĥn be the value that maximizes the conditional log-like-
lihood function (33). Then, under some regularity conditions, ĥn is a
consistent estimate and

ffiffiffi
n

p
ðĥn � h0Þ ! Nð0; O�1

Þ; as n-N , where
O ¼ diag(O1,O2) with

O1 ¼ E
1

ht

@�t
@h1

@�t
@h01

þ
1

2h2t

@ht
@h1

@ht
@h01

" #
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and

O2 ¼ E
1

2h2t

@ht
@h2

@ht
@h02

" #

8.2. Arch-Type Models

The ARFIMA–GARCH process described in the previous subsection is
adequate for modeling long-range dependence in returns of financial time
series. However, as described by Rosenblatt (1961) and Palma and Zevallos
(2004), the squares of an ARFIMA–GARCH process have only interme-

diate memory for d 2 ð0; 1=4Þ: In fact, for any d 2 ð0; 1=2Þ; the ACF of the
squared series behaves like k2

~d�1; where k denotes the k-th lag and ~d ¼

2d � 1=2: Consequently, the long-memory parameter of the squared series ~d
is always smaller than the long-memory parameter of the original series d,
i.e. ~dod for do1=2:

Since in many financial applications the squared returns have the same or
greater level of autocorrelation, the theoretical reduction in the memory that
affects the squares of an ARFIMA–GARCH process may not be appro-
priate in practice. This situation leads one to consider other classes of
processes to model the dependence of the squared returns directly. For
instance, Robinson (1991) proposed the following extension of the
ARCH(p) introduced by Engle (1982),

yt ¼ stxt

s2t ¼ a0 þ
X1
j¼1

ajy2t�j

which can be formally written as

y2t ¼ a0 þ nt þ
X1
j¼1

ajy2t�j (34)

where s2t ¼ E½y2t jyt�1; yt�2; . . . �; nt ¼ y2t � s2t is a martingale difference se-
quence, {xt} a sequence of independent and identically distributed random
variables and a0 a positive constant, cf. Eqs. (1.31), (1.33) and (1.35) of
Robinson (2003), respectively.

When the coefficients {aj} of (34) are specified by an ARFIMA(p,d,q)
model, the resulting process corresponds to the (fractionally integrated
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GARCH) FIGARCH(p,d,q) model which is defined by

FðBÞð1� BÞdy2t ¼ oþYðBÞnt

where o is a positive constant, cf. Baillie, Bollerslev, & Mikkelsen, (1996).
As noted by Karanasos, Psaradakis, & Sola (2004), this process is strictly
stationary and ergodic but not square integrable.

8.2.1. Estimation

Consider the quasi log-likelihood function

LðhÞ ¼ �
1

2
log ð2pÞ �

1

2

Xn
t¼1

log s2t þ
�2t
s2t


 �
(35)

where h ¼ ðo; d; f1; . . . ;fp; y1; . . . ; y1Þ: A QMLE ĥn can be obtained by
maximizing (35). But, even though this estimation approach has been widely
used in many practical applications, to the best of our knowledge, asymp-
totic results for these estimators remain an open issue. For a recent study
about this problem, see for example Caporin (2002).

8.3. Stochastic Volatility

Stochastic volatility models have been addressed by Harvey, Ruiz, and
Shephard (1994), Ghysels et al. (1996) and Breidt et al. (1998), among oth-
ers. These processes are defined by

rt ¼ stxt

and

st ¼ s exp ðvt=2Þ (36)

where {xt} is a independent, identically distributed sequence with mean zero
and variance one and {vt} is a stationary process independent of {xt}. In
particular, {vt} can be specified as a long-memory ARFIMA(p,d,q) process.
The resulting process is called LMSV model.

From (36), we can write

logðr2t Þ ¼ logðs2t Þ þ logðx2t Þ

logðs2t Þ ¼ logðs2Þ þ vt

Let yt ¼ logðr2t Þ; m ¼ logðs2Þ þ E½logðx2t Þ� and �t ¼ logðx2t Þ � E½logðx2t Þ�:
Then

yt ¼ mþ vt þ �t (37)
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Consequently, the transformed process {yt} corresponds to a stationary
long-memory process plus an independent noise.

The ACF of (37) is given by

gyðkÞ ¼ gvðkÞ þ s2�d0ðkÞ

where d0ðkÞ ¼ 1 for k ¼ 0 and d0ðkÞ ¼ 0 otherwise. Furthermore, the spec-
tral density of {yt}, fy, is given by

f yðoÞ ¼ f vðoÞ þ
s2�
2p

where fv is the spectral density of the long-memory process {vt}.
In particular, if the process {vt} is an ARFIMA(p,d,q) model

FðBÞð1� BÞdvt ¼ YðBÞZt (38)

and h ¼ ðd;s2Z;s
2
� ;f1; . . . ;fp; y1; . . . ; yqÞ

0 is the parameter vector that spec-
ifies model (38), then the spectral density is given by

f hðoÞ ¼
s2Z
2p

YðexpðioÞ
�� ��2

1� expðioÞ
�� ��2d FðexpðioÞ

�� ��2 þ s2�
2p

Breidt et al. (1998) consider the estimation of the parameter h by means of
the spectral-likelihood estimator obtained by minimizing

L7ðhÞ ¼
2p
n

Xn=2
j¼1

log f hðojÞ þ
IðojÞ

f hðojÞ


 �

where fh(o) is given by (39).
Let ĥ be the value that minimizes L7ðhÞ over the parameter space Y.

Breidt et al. (1998) prove the following result.

Theorem 10. Assume that the parameter vector h is an element of the com-
pact parameter space Y and assume that f h1 ¼ f h2 implies that h1 ¼ h2.
Let h0 be the true parameter value. Then ĥn ! h0 in probability as n-N.

Other estimation procedures for LMSV using state space systems can be
found in Chan and Petris (2000) and Section 11 of Chan (2002).



Table 5. Quasi ML Estimation of Long-Memory Stochastic Volatility
Models with an ARFIMA(0, d, 0) Specification for vt, for Different

Values of d.

d d̂ ŝZ S.D.ðd̂Þ S.D.(ŝZ)

0.10 0.0868 9.9344 0.0405 0.4021

0.25 0.2539 10.0593 0.0400 0.4199

0.40 0.4139 10.1198 0.0415 0.3773
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8.4. Numerical Experiments

The finite sample performance of the spectral-likelihood estimator is analy-
zed here by means of Monte Carlo simulations. The model investigated is
the LMSV with an ARFIMA(0,d,0) structure, s� ¼ p

� ffiffiffi
2

p
; xt follows a

standard normal distribution, sZ ¼ 10 and the sample size is n ¼ 400. The
results displayed in Table 5 are based on 1,000 replications.

From Table 5, observe that estimates of both the long-memory parameter
d and the scale parameter sZ are close to their true values. On the other hand,
the standard deviations of d̂ and ŝZ seem to be similar for all the values of d
simulated. However, to the best of our knowledge there are no formally
established results for the asymptotic distribution of these QMLE yet.
9. SUMMARY

In this article, a number of estimation techniques for long-memory time
series have been reviewed together with their corresponding asymptotic re-
sults. Finite sample behaviors of these techniques were studied through
Monte Carlo simulations. It is found that they are relatively comparable in
terms of finite sample performance. However, in situations like missing data
or long-memory seasonal time series, some approaches such as the MLE or
truncated MLE seems to be more efficient than their spectral domain coun-
terparts such as the Whittle approach.

Clearly, long-memory time series is an exciting and important topic in
econometrics as well as many other disciplines. This article does not attempt
to cover all of the important aspects of this exciting field. Interested readers
may find many actively pursued topics in this area in the recent monograph
of Robinson (2003). It is hoped that this article offers a focused and prac-
tical introduction to the estimation of long-memory time series.
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