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Abstract The autoregressive fractionally integrated moving average (ARFIMA)
processes are one of the best-known classes of long-memory models. In the package
afmtools for R, we have implemented a number of statistical tools for analyzing
ARFIMA models. In particular, this package contains functions for parameter estima-
tion, exact autocovariance calculation, predictive ability testing and impulse response
function computation, among others. Furthermore, the implemented methods are illus-
trated with applications to real-life time series.

Keywords ARFIMA models · Long-memory time series · Whittle estimation ·
Exact variance matrix · Impulse response functions · Forecasting · R

1 Introduction

Long-memory processes, introduced by Granger and Joyeux (1980) and Hosking
(1981), are playing a key role in the time series literature and have become a useful
tool for modeling data arising in biology, economics, geophysics and many other fields,
cf. Palma (2007) and references therein. As a consequence, a number of techniques
for analyzing these processes have been developed and implemented in statistical
packages. For example, packages about long-memory processes have been developed
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in R (R Development Core Team 2012): the longmemo package produces a Whittle
estimation for fractional gaussian noise and fractional ARIMA models via an approxi-
mate MLE using the Beran (1994) algorithm and performs spectral density of fractional
gaussian noise and periodogram estimate. In addition, the fracdiff package simu-
lates ARFIMA time series, estimates ARFIMA parameters using an approximate MLE
approach (Haslett and Raftery 1989), and calculates their variances with the Hessian
method. Recently, Hyndman and Khandakar (2008) describe the forecast package
to automatically predict univariate time series via state space models with exponential
smoothing for ARIMA models. In addition, the forecast package offers a forecast func-
tion for ARFIMA models estimated using the algorithm proposed by Peiris and Perera
(1988). The afmtools package requires the polynom, hypergeo, sandwich
and the aforementioned fracdiff and longmemo packages.

Unfortunately, many of these computational implementations have important short-
comings. For instance, there is a severe lack of algorithms for calculating exact auto-
covariance functions (ACVF) of ARFIMA models, for computing precise estimator
variances, and for forecasting performance tests (Giacomini and White 2006), and
impulse response functions (Hassler and Kokoszka 2010), as well as for other aspects.
In order to circumvent some of these problems, this paper discusses the package
afmtools developed by Contreras-Reyes et al. (2011). This package aims to pro-
vide functions for computing ACVFs by means of the Sowell (1992) algorithm,
ARFIMA fitting through an approximate estimation scheme via Whittle algorithm
(Whittle 1953), asymptotic parameter estimate variances and several other tasks men-
tioned before. Hence, the aims of this paper are to analyze the afmtools package
and to illustrate its theoretical and practical performance, which complements the
existing development packages related to ARFIMA models mentioned above. Specif-
ically, we implement our findings in a meteorological application about tree ring
growth.

The remainder of this paper is structured as follows. Section 2 is devoted to describ-
ing the ARFIMA processes and their properties. This section includes an analysis of
the spectral density, autocovariance function, parameter variance-covariance matrix
estimation, impulse response function, and a model parameters estimation method. In
addition, this section provides a test for assessing the predictive ability of a time series
model. Finally, Sect. 3 addresses the performance of the functions implemented in the
afmtools package. Apart from describing the methodologies implemented in this
package, we also illustrate their applications to real-life time series data.

2 ARFIMA processes

Recent statistical literature has been concerned with the study of long-memory mod-
els that go beyond the presence of random walks and unit roots in the univari-
ate time series processes. The autoregressive fractionally integrated moving-average
(ARFIMA) process is a class of long-memory models (Granger and Joyeux 1980;
Hosking 1981), the main objective of which is to explicitly account for persistence to
incorporate the long-term correlations in the data. The general expression for ARFIMA
processes {yt } may be defined by the equation
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�(B)yt = �(B)(1 − B)−dεt , (1)

where �(B) = 1 − φ1 B − · · · − φp B p and �(B) = 1 + θ1 B + · · · + θq Bq are
the autoregressive and moving-average operators, respectively;�(B) and�(B) have
no common roots, B is the backward shift operator and (1 − B)−d is the fractional
differencing operator given by the binomial expansion

(1 − B)−d =
∞∑

j=0

�( j + d)

�( j + 1)�(d)
B j =

∞∑

j=0

η j B j , (2)

for d ∈ (−1, 1/2) and {εt } is a white noise sequence with zero mean and innovation
variance σ 2. An asymptotic approximation of

η j = �( j + d)

�( j + 1)�(d)
(3)

for large j is

η j ∼ jd−1

�(d)
, (4)

where � is the usual gamma function.

Theorem 2.1 Consider the ARFIMA process defined by (1) and assume that the poly-
nomials �(·) and �(·) have no common zeros and that d ∈ (−1, 1

2 ). Then,

(a) If the zeros of �(·) lie outside the unit circle {z : |z| = 1}, then there is a
unique stationary solution of (1) given by yt = ∑∞

j=−∞ ψ jεt− j whereψ j are the

coefficients of the following polynomial ψ(z) = (1 − z)−d�(z)/�(z).
(b) If the zeros of �(·) lie outside the closed unit disk {z : |z| ≤ 1}, then the
solution {yt } is causal.
(c) If the zeros of�(·) lie outside the closed unit disk {z : |z| ≤ 1}, then the solution
{yt } is invertible.

For a proof of Theorem 2.1, see e.g. Palma (2007). Recall that, according to the
representation theorem of Wold (1938), any stationary process is the sum of a regular
process and a singular process; these two processes are orthogonal and the decompo-
sition is unique. Thus, a stationary purely nondeterministic process may be expressed
as

yt = ψ(B)εt =
∞∑

j=0

ψ jεt− j . (5)

The spectral measure of the purely nondeterministic process (5) is absolutely
continuous with respect to the Lebesgue measure on [−π, π ], where the spectral
density of the process (1) can be written as
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f (λ) = σ 2

2π
|ψ(e−iλ)|2

= σ 2

2π
|1 − e−iλ|−2d |�(e−iλ)|2

|�(e−iλ)|2

= σ 2

2π

(
2 sin

λ

2

)−2d |�(e−iλ)|2
|�(e−iλ)|2 . (6)

where i denotes the imaginary unit. A special case of ARFIMA models is the frac-
tionally differenced process described by Hosking (1981), in which the polynomials
are�(B) = �(B) = 1 and the spectral density is given by f (λ) = σ 2

2π |1 − e−iλ|−2d .

2.1 Whittle estimation

The methodology to approximate MLE is based on the calculation of the periodogram
I (λ) by means of the fast Fourier transform (FFT); e.g., Singleton (1979), and the use
of the approximation of the Gaussian log-likelihood function due to Whittle (1953) and
by Bisaglia and Guégan (1998). Suppose that the sample vector Y = (y1, y2, . . . , yn)

is normally distributed with zero mean and autocovariance given by (11) as

γ (k − j) =
π∫

−π
f (λ)eiλ(k− j)dλ,

where f (λ) is defined as in (6) and is associated with the parameter set � of the
ARFIMA model defined in (1). The log likelihood function of the process Y is given
by

L(�) = − 1

2n
[log |�| − Y��−1Y]. (7)

where � = [γ (k − j)] with k, j = 1, ..., n. For calculating (7), two asymptotic
approximations are made for the terms log(|�|) and Y��−1Y to obtain

L(�) ≈ − 1

4π

⎡

⎣
π∫

−π
log[2π f (λ)]dλ+

π∫

−π

I (λ)

f (λ)
dλ

⎤

⎦ , (8)

as n → ∞, where I (λ) = | ∑n
j=1 y j eiλ j |2/(2πn), is the periodogram indicated

before. Thus, a discrete version of (8) is actually the Riemann approximation of the
integral and is

L(�) ≈ − 1

2n

⎡

⎣
n∑

j=1

log f (λ j )+
n∑

j=1

I (λ j )

f (λ j )

⎤

⎦ , (9)

where λ j = 2π j/n are the Fourier frequencies. Now, to find the estimator of the
parameter vector �, we use the minimization of L(�) produced by the nlm function.

123



Statistical analysis of ARFIMA models

This non-linear minimization function carries out a minimization of L(�) using a
Newton-type algorithm. Under regularity conditions according to Theorem 2.2 (see
Sect. 2.2), the Whittle estimator �̂ that maximizes the log-likelihood function given
in (9) is consistent and distributed normally (e.g. Dahlhaus 1989).

2.2 Parameter variance-covariance matrix

Here, we discuss a method for calculating the exact asymptotic variance-covariance
matrix of the parameter estimates. This is a useful tool for making statistical inferences
about exact and approximate maximum likelihood estimators, such as the Haslett and
Raftery (1989) and Whittle methods (see Sect. 2.1). An example of this calculation for
an ARFIMA(1, d, 1) model is given by Palma (2007, pp. 105–108). This calculation
method of the Fisher information matrix is an alternative to the numerical computation
using the Hessian matrix.

This proposed method is based on the explicit formula obtained by means of
the derivatives of the parameters log-likelihood gradients. From the spectral density
defined in (6), we define the partial derivatives ∇� = (∂/∂φi ) and ∇� = (∂/∂θ j ),
with i = 1, . . . , p and j = 1, . . . , q.

Theorem 2.2 Under the assumptions that yt is a stationary Gaussian sequence, the
densities f (λ), f −1(λ), ∂/∂μi f −1(λ), ∂2/∂μi∂μ j f −1(λ) and ∂3/∂μi∂μ j∂μk f −1

(λ) are continuous in (λ, μ) for a parameter set μ = {d, φ1, . . . , φp, θ1, . . . , θq};
we have the convergence in distribution for an estimated parameter μ̂ and the true
parameter μ0 about a Gaussian ARFIMA model with

√
n(μ̂n − μ0)

d−→
n→∞N (0,�−1(μ0)),

where

�(μ) = 1

4π

π∫

−π
[∇ log fμ(λ)][∇ log fμ(λ)]�dλ. (10)

For a proof of Theorem 2.2, see e.g. Palma (2007). Thus, if we consider the model
(1) with spectral density (6) where {εt } is an independent and identically distributed
N (0, σ 2), we have that the parameter variance-covariance matrix � may be calculated
in the following proposition.

Proposition 2.3 If {yt } is stationary, then

∂

∂d
log f (λ) = −log [2(1 − cos λ)],

∂

∂φu
log f (λ) =

∑p
j=1 φ j cos[λ(u − j)]

∑p
j=1

∑p
k=1 φ jφk cos[λ( j − k)] ,

∂

∂θv
log f (λ) =

∑q
j=1 θ j cos[λ(v − j)]

∑q
j=1

∑q
k=1 θ jθk cos[λ( j − k)] .

for u = 1, ..., p and v = 1, ..., q.
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Proof First, from the spectral density given in (6) we have that

log f (λ) = log

(
σ 2

2π

)
− d log [2(1 − cos λ)] + log |�(eiλ)|2 − log |�(eiλ)|2.

By Theorems 2.1 and 2.2, we observe that �(eiλ) = ∑p
j=1 φ j eiλ j , this yields

|�(eiλ)|2 =
p∑

j=1

p∑

k=1

φ jφkeiλ( j−k)

= 2
p∑

j=1

p∑

k=1

φ jφk cos[( j − k)λ],

and

∂

∂φu
|�(eiλ)|2 = 2φu +

∑

j �=u

φ j e
iλ(u− j) +

∑

k �=u

φkeiλ(u−k)

=
p∑

j=1

φ j e
iλ(u− j) +

p∑

k=1

φkeiλ(u−k)

= 2
p∑

j=1

φ j cos[(u − j)λ].

Analogously, for MA components we have that

∂

∂θv
|�(eiλ)|2 = 2

q∑

j=1

θ j cos[λ(v − j)].

Then, this implies the results for ∂/∂φu log f (λ) and ∂/∂θv log f (λ). For
∂/∂d log f (λ) is direct.

2.3 Autocovariance function

We illustrate a method to compute the exact autocovariance function for the general
ARFIMA(p, d, q) process using the Sowell algorithm. Considering the parameteri-
zations of the autocovariance function derived by writing the spectral density (6) in
terms of parameters of the model given by Sowell (1992), the autocovariance function
of a general ARFIMA(p, d, q) process is given by

γ (h) = 1

2π

2π∫

0

f (λ)e−iλhdλ. (11)
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Particularly, the autocovariance and autocorrelation functions of the fractionally
differenced ARFIMA(0, d, 0) process are given by

γ0(h) = σ 2 �(1 − 2d)

�(1 − d)�(d)

�(h + d)

�(1 + h − d)
and ρ0(h) = �(1 − d)

�(d)

�(h + d)

�(1 + h − d)
,

respectively. Then, the polynomial �(B) in (1) may be written as

�(B) =
p∏

i=1

(1 − ρi B).

Under the assumption that all the roots of φ(B) have multiplicity one, it can be
deduced from (11) that

γ (h) = σ 2
q∑

i=−q

p∑

j=1

ψ(i)ξ j C(d, p + i − h, ρ j ).

with

ξ j =
⎡

⎣ρ j

p∏

i=1

(1 − ρiρ j )
∏

k �= j

(ρ j − ρk)

⎤

⎦
−1

,

C(d, h, ρ) = γ0(h)

σ 2 [ρ2pβ(h)+ β(−h)− 1],
β(h) = F(d + h, 1, 1 − d + h, ρ),

F(a, b, c, x) = 1 + a · b

c · 1
x + a · (a + 1) · b · (b + 1)

c · (c + 1) · 1 · 2
x2 + . . .

where F(a, b, c, x) is the Gaussian hypergeometric function (e.g. Gradshteyn and
Ryzhik 2007). The term ψ(i) presented here and in Palma (2007, pp. 47–48) is a
corrected version with respect to Sowell (1992) and is

ψ(i) =
min(q,q+i)∑

k=max(0,i)

θkθk−i .

In the absence of AR parameters the formula for γ (h) reduces to

γ (h) = σ 2
q∑

i=−q

ψ(i)
�(1 − 2d)�(h + d − i)

�(1 − d)�(d)�(1 + i − d − h)
.

On the other hand, the findings of Hassler and Kokoszka (2010) describe the asymp-
totic behavior of the autocovariance function γ (h) as

γ (h) ∼ cγ |h|2d−1, (12)
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where cγ = σ 2π−1�(1 − 2d) sin(πd)
(∑∞

j=0 ψ j

)2
for large |h|. Let {y1, y2, . . . ,

yn} be a sample from the process in (1) and let y be the sample mean. The exact
variance of y is given by

Var(y) = 1

n

⎡

⎣2
n−1∑

j=1

(
1 − j

n

)
γ ( j)+ γ (0)

⎤

⎦ .

By (12) and for large n, we have the asymptotic variance formula Var(y) ∼
n2d−1cγ /d(2d + 1). Additionally, the method developed by Lieberman and Phillips
(2008) considers an infinite-order asymptotic expansion for the autocovariance func-
tion of a general stationary long-memory process.

2.4 Impulse response functions

The impulse response functions (IRF) is the most commonly used tool to evaluate
the effect of shocks on time series. Among the several approximations to compute
this, we consider the theory proposed by Hassler and Kokoszka (2010) to find the
IRF of a process {yt } following an ARFIMA(p, d, q) model. The properties of these
approximations, depend on whether the series are assumed to be stationary according
to Theorem 2.1. Under the assumption that the roots of the polynomials �(B) and
�(B) are outside the closed unit disk and d ∈ (−1, 1/2), the process {yt } is stationary,
causal and invertible. In this case, we can write yt = �(B)εt where �(B) represents
the expansion of the MA(∞) coefficients denoted as ψ j with j > 1. These coeffi-
cients satisfy the asymptotic relationship ψ j ∼ �(1) jd−1/[�(1)�(d)] as j → ∞
(Kokoszka and Taqqu 1995), where�(1) = 1+∑q

i=1 θi and�(1) = 1−∑p
i=1 φi . As

a particular case, we have that theψ j coefficients for an ARFIMA(0, d, 0) are given in
closed form byψ j = �( j +d)/[�( j +1)�(d)]. Now, from (2) and the Wold expansion
(5), the process (1) has the expansion (1 − B)−d yt = ∑∞

j=0 η j yt− j = ∑∞
j=0 R jεt− j ,

where R j is the so-called IRF and is given by

R j =
j∑

i=0

ψiη j−i . (13)

The terms η j can be represented in recursive form using (3) as η j = η j−1(1 +
(d − 1)/j), for j ≥ 1 and η0 = 1. From the asymptotic expression given in (4) and
assuming that

∑∞
j=0 ψ j < ∞, we have the following asymptotic representation

R j ∼ jd−1

�(d)

∞∑

i=0

ψi (14)

as j → ∞ and ψ j/( jd−1) −→ 0.
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2.5 Predictive ability test

One approach to compare prediction models is through their root mean square error
(RMSE). Under this paradigm and given two forecasting methods, the one that
presents the lower RMSE is the better of the two. To compare statistically the dif-
ferences of predictive ability among two proposed models, we focus here on the
evaluation paradigm proposed by White (2006, GW). This test aims to evaluate a
prediction method but not to carry out a diagnostic analysis. Therefore, it does not
consider the parametric uncertainty, which is useful if we want to compare nested
models from an ARFIMA model. The GW test attributed to Diebold and Mari-
ano (1995) is based on the differences �Li = |̂xi − yi | − |̂zi − yi |, where x̂i

and ẑi are the forecasted observations of the first and second model respectively,
for i = 1, ..., n. The null hypothesis for the GW test associated with expected
difference E[�L] of the two prediction models is H0: E[�L] = 0, whereas
the alternative is H1: E[�L] �= 0. These hypotheses are tested by means of the
statistic,

�L̂(N ) = 1

N
√
σ̂ 2

N
N

n−τ∑

i=t0

�Li ,

where N = n − τ − t0 + 1, n is the total size of the sample, τ is the prediction
horizon, and t0 is the observation at which the moving windows start. Note that under
H0, the statistic �L̂(N ) is asymptotically normal. For τ = 1, an estimator of σ̂N can
be obtained from the estimation of σ̂â from a simple regression �L̂(N ) = â + ε,
where â is the estimated intercept and ε is the error term of the simple regression
model. However, for horizons τ > 1, it is possible to apply a heteroscedasticity and
autocorrelation consistent (HAC) estimator; for example, Newey and West (1987) or
Andrews (1991).

3 Statistical software

The estimation of the fractionally, autoregressive, and moving-average parameters has
been studied by several authors (Haslett and Raftery 1989; Beran 1994; Hyndman and
Khandakar 2008). A widely used method is the approximate MLE method of Haslett
and Raftery (1989). In our study, estimation of the ARFIMA(p, d, q) model using
the corresponding Whittle method is described in Sect. 2.1 and this model is fitted by
using the arfima.whittle() function.

The implementation of the arfima.whittle() function is presented in
Sect. 3.3. In Sect. 3.1 we present some Monte-Carlo simulations to the afmtools
package for R statistical environment (R Development Core Team 2012). Later, in
Sect. 3.2, in order to test the performance of the estimators proposed in Sect. 2, we
consider an application to real-life time series.
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3.1 Monte-Carlo analysis

Figure 1 shows several simulation results assessing the performance of the Whittle
estimators of d, AR, and the MA parameters, for different ARFIMA models. These
plots include the exact and Hessian standard deviations. According to the defini-
tion of the ARFIMA model, the simulations are run in the interval (−1, 0.5) for d.
The plots show a similar behavior for the estimators with respect to the theoretical
parameters, except for the extreme values of the ARMA parameters near -1 and 1.
Consequently, the confidence intervals tend to be larger than the other values of φ
and θ parameters for plots (b) and (e). Figure 2 shows some simulation results regard-
ing the log-likelihood behavior for the cases d = {−0.9,−0.6,−0.3, 0, 0.25, 0.45}
with a rectangular grid φ × θ = (−0.9, 0.9)× (−0.9, 0.9) for the ARFIMA(1, d, 1)
model using the arfima.whittle.loglik() function. The plots present low
values of the likelihood function for the values of φ and θ closed to 0, espe-
cially for the plots (c)–(f) when d = {−0.3, 0, 0.25, 0.45}. However, the plots
(a)–(d) show high values of the likelihood function when this is evaluated for
the points near φ = −0.9 and θ = 0.9. For the plots (e)–(f), the behavior is
inverse, i.e., the likelihood function tends to be higher for values near φ = 0.9 and
θ = −0.9.

These heatmaps plots are performed by the function heatmap.2() (gplots
package) using the vectorsphi,theta, and theAmatrix, which contain the estimated
log-likelihoods in each simulation and is obtained by the instruction

R> phi = theta = seq(-0.9, 0.9, 0.2) # grid for ARMA parameters
R> d = 0.45 # fractional differential parameter
R> A = matrix(NA, length(phi), length(theta))
R> colnames(A) = phi
R> rownames(A) = theta
+
R> for (j in 1:length(phi)) {
+ for (k in 1:length(theta)) {
+ parameters = c(d, phi[j], theta[k]) # simulation:
+ sample = fracdiff.sim(n = 1000, ar = phi[j],
+ ma = theta[k], d = d) # loglikelihood estimation:
+ loglik = arfima.whittle.loglik(theta = parameters,
+ series = sample$series, nar = 1, nma = 1)
+ A[j, k] = loglik$L
+ }
+ }
+
R> heatmap.2(A, dendrogram = ’’none’’, Colv = FALSE, Rowv = FALSE,
+ col = gray(1:20/20), scale = ’’none’’, key = TRUE, density.info = ’’none’’,
+ breaks = seq(-10,10,1), trace = ’’none’’, symm = F, symkey = T,
+ symbreaks = T, main = ’’(f) d=0.45’’)
+ text(0.55, 0.9, expression(phi), ps = 2, cex = 1.5)
+ text(0.1, 0.4, expression(theta), ps = 2, cex = 1.5)

3.2 Application

We illustrate the performance of the afmtools package by applications to real-life
time series TreeRing (Statlib Data Base, http://lib.stat.cmu.edu/) displayed in Fig. 3

123

http://lib.stat.cmu.edu/


Statistical analysis of ARFIMA models

−1.0 −0.5 0.0 0.5

−
1.

0
−

0.
5

0.
0

0.
5(a)

d

E
st

im
at

ed
 d

Estimated d
Exact .sd
Hessian sd

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0(b)

φ

E
st

im
at

ed
 φ

Estimated φ
.sdExact

Hessian sd

−1.0 −0.5 0.0 0.5

−
1.

0
−

0.
5

0.
0

0.
5(c)

Theoric d

E
st

im
at

ed
 d

Estimated d
Exact .sd
Hessian sd

−1.0 −0.5 0.0 0.5

−
1.

0
−

0.
5

0.
0

0.
5

(d)

d

E
st

im
at

ed
 d

Estimated d
Exact .sd
Hessian sd

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0(e)

θ

E
st

im
at

ed
 θ

Estimated θ
Exact .sd
Hessian sd

Fig. 1 Dispersion plots between estimated and theoretical parameters of a ARFIMA(0, d, 0), b, c
ARFIMA(1, d, 0) and d, e ARFIMA(0, d, 1)

left. It is very important to analyze this kind of data because this allows us to explore
rainy and dry seasons in the study area. Hipel and McLeod (1994) have studied this
time series to determine the range of possible growths for the upcoming years of the
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Fig. 2 Log-Likelihood heatmaps for ARFIMA(1, d, 1) model using a grid φ × θ = (−0.9, 0.9) ×
(−0.9, 0.9)
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Fig. 3 Left Tree Ring Data Base. Right Illustration of the observed climatic episodes and tree ring growth.
Image source:http://summitcountyvoice.com

trees using ARMA and ARIMA models. On the other hand, this time series displays a
high persistence in its observations and has been analyzed by Palma and Olea (2010)
and Palma et al. (2013) with a locally stationary approach. The illustrated growth of
the trees represented by the number of the rings, displays a long-range dependence
of its observations along the observations for ages and seasons (see Fig. 3, right).
For these reasons, we model the Tree Ring widths time series using long-memory
models; specifically, the ARFIMA models are used to estimate, diagnose, and compare
forecasts of the number of tree rings for upcoming years.

In order to illustrate the usage of package functions, we consider a fitted
ARFIMA(1, d, 1) model. For this model, we have implemented the Whittle algo-
rithm and computed the exact variance-covariance matrix to compare with the Hessian
method. Afterward, we compare the Sowell method for computing the ACVF function
with the sample ACVF. Other functions have also been implemented and illustrated
in this section.

3.3 Whittle algorithm

To apply the Whittle algorithm to the TreeRing time series as an example, we use
the following command considering an ARFIMA(1, d, 1) model:

R> data(TreeRing)
R> y = TreeRing
R> model = arfima.whittle(series = y, nar = 1, nma = 1, fixed = NA)

Note that the option fixed (for fixing parameters to a constant value) has been
implemented. This option allows the user to fix the parameters d, φ1, or θ1, in order of
occurrence. For example, in our ARFIMA(1, d, 1)model, we can set the parameter d
to be equal to zero. Consequently, we obtain the estimation of a simple ARMA(1, 1)
model. The object model is of class arfima and provides the following features:

• estimation of d and ARMA parameters;
• standard errors obtained by the Hessian method and the respective t value and
Pr(>|t|) terms;
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• the log-likelihood function performed in the arfima.whittle.loglik()
function;

• innovation standard deviation estimated by the ratio of the theoretical spectrum;
• residuals from the fitted model.

The commands plot(), residuals(), summary(), tsdiag() and
print() have been adapted to this model class of S3 method. The summary()
option shows the estimated parameters, the Hessian standard deviations, the t-statistic,
and their respectively p values. The computation of the long-memory parameter d as
well as the autoregressive {φ1, ..., φp} and moving average {θ1, ..., θq} parameters
can be handled quickly for moderate sample sizes. Printing the model object by the
summary() function shows the items mentioned before as

R> summary(model)
$call
arfima.whittle(series = y, nar = 1, nma = 1)

$coefmat
Estimate Std. Error t value Pr(>|t|)

d 0.1058021 0.04813552 2.198004 0.02794879
phi 1 0.3965915 0.03477914 11.403142 0.00000000
theta 1 -0.2848590 0.03189745 -8.930462 0.00000000

$sd.innov
[1] 35.07299

$method
[1] ’’Whittle’’

attr(,’’class’’)
[1] ’’summary.arfima’’

3.4 Exact variance-covariance matrix

The var.afm() function shows the exact variance-covariance matrix and the stan-
dard deviations. The computation of the integrals of (10) is carried out by using
the Quadpack numeric integration method (Piessens et al. 1983) implemented in the
integrate() function (stats package). Note that the functions involved in these
integrals diverge in the interval λ = [−π, π ]. However, they are even functions with
respect to λ. Thus, we integrate over [0, π ] and then multiply the result by two.
Now, by using the central limit theorem discussed in Sect. 2.2, we can obtain the
asymptotic approximation of the estimated parameters standards errors SE(�̂)i =
(n−1[�̂−1]i i )

1/2 of an ARFIMA model, where �̂ = (d̂, φ̂1, . . . , φ̂p, θ̂1, . . . , θ̂q)

and [�̂−1]i i corresponds to the i th diagonal components of the matrix �̂
−1

for
i = {1, ..., p + q + 1}.

By using the Whittle estimators, we search for the lowest AIC (Akaike Information
Criterion, Akaike 1974) given by AIC(ω̂) = −2[log L(ω̂)− (p +q +1)] over a class
of ARFIMA models with p, q ∈ {0, 1, 2}, where ω̂ is a subset of �̂ and L(ω̂) is the
likelihood associated with ω̂. From Table 2, we can see that the fractionally differenced
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model ARFIMA(0, d, 0) has the lowest AIC. Candidate models are marked in bold in
Table 2. This table is obtained by the instruction
R> for (i in 0:2) {
R> for (j in 0:2) {
+ mod = arfima.whittle(y, nar = i, nma = j)
+ theta = c(mod$d, mod$ar, mod$ma)
+ mll = arfima.whittle.loglik(theta, series = y, nar = i, nma = j)
+ AIC = - 2 * ( mll$L - (1+i+j) )
+ coef = summary.arfima(mod)$coefmat[1, 4]
+ res = c(i, j, AIC, mod$d, coef)
+ }
+ }

Additionally, we propose a technique for obtaining the spectral density
associated with ARFIMA and ARMA processes in spectrum.arfima() and
spectrum.arma(), respectively. This is done by using the polyroot() func-
tion of the polynom package to compute the roots of the polynomials �(e−iλ) and
�(e−iλ). Both functions need the estimated ARFIMA parameters and the estimation
of the innovation standard deviation (sd.innov) given by an object of arfima
class. For the spectrum density and periodogram, see Sects. 2 and 2.1, respectively.
Since the calculation of the FFT has a numerical complexity of the order O[n log2(n)],
this approach produces a very fast algorithm to estimate the parameters. It is possi-
ble to obtain the FFT through the fft() function based on the method proposed by
Singleton (1979).

3.5 Diagnostic functions

We have also implemented a very practical function called check.parameters.
arfima(). This verifies whether the long-memory parameter d belongs to the
interval (−1, 0.5) and whether the roots of the fitted ARMA parameters lie out-
side the unit disk. This function was incorporated in the plot() command. In
the first plot of Fig. 4, we can see that the roots of the AR and MA poly-
nomials lie outside the unit disk, according to the assumptions of stationar-
ity solutions of (1) presented in Theorem 2.1 (see Sect. 2). Alternatively, the
check.parameters.arfima() that takes an arfima-class object, gives
TRUE/FALSE-type results indicating whether the parameters pass the requirement
for a stationary process.

Additionally, an adaptation of the functiontsdiag() can be found in this package.
This is implemented in an S3-type arfima class method and shows three plots for
analyzing the behavior of the residual from the fitted ARFIMA model. This function
has additional arguments such as the number of observations n for the standardized
residuals and critical p value alpha. Figure 5 illustrates these results, where, the
residuals are white noise at a confidence level of α = 0.05.

The exact Sowell autocovariance computation obtained by rho.sowell() and
the sample autocorrelation obtained by the ACF() command are applied to tree
ring time series (see Fig. 6). The function rho.sowell() requires the specifi-
cation of an object of class arfima in the object option that, by default, is NULL.
But, if object=NULL, the user can incorporate the ARFIMA parameters and the
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Fig. 4 Diagnostic Plots made by the plot() command. Left Plots of unit roots circle along with the root
provided by AR and MA polynomials and Theoretical (thick line) versus Empirical Spectrum (black points)
plot. Right ACF plots of Tree Rings and ARFIMA(1, d, 1)model residuals. The dotted lines correspond to
the {∓2/

√
n} significance level for the autocorrelations

innovation variance. Alternatively, the implemented plot option gives a graphical
result similar to the ACF() command in the sample autocorrelation. We can see the
similarity of both results for the discussed model. The ACVF implementation is
immediate but, for the calculation of the Gaussian hypergeometric functions, we use
the hypergeo() function from the hypergeo package. For values of h > 50, we
use the approximation (12) reducing considerably the computation time as compared
to the Sowell algorithm. On the other hand, the rho.sowell() function is required
by the smv.afm() function. The smv.afm() function calculates the variance of
the sample mean of an ARFIMA process. When the argumentcomp isTRUE, the exact
variance of the sample mean is calculated, and when comp is FALSE, the asymptotic
variance is calculated.

The R j function (IRF) is illustrated in Fig. 7. This decays exponentially fast, at
a rate of jd−1 because, these functions inherit the behavior of η j . This behavior is
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-
-

Fig. 5 Plots of residuals analysis from tsdiag standard command adapted to ARFIMA model residuals.
The dotted lines of the second plot correspond to the {∓2/

√
n} significance level for the autocorrelations.

The dotted line of the third plot is the probability (0.05) related to a 5 % confidence level
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typical for ARFIMA models, as reported by Hassler and Kokoszka (2010), Kokoszka
and Taqqu (1995) and Hosking (1981). Figure 7 shows some R j curves associated
with the three models considered in Table 1 for the asymptotic method by formula
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Table 1 Summary of estimated parameters for several ARFIMA models

Model Parameter Estimates Hessian Exact

FN(d) d 0.195 0.048 0.023

ARFIMA(1,d,0) d 0.146 0.048 0.038

φ 0.072 0.029 0.049

ARFIMA(0,d,1) d 0.156 0.048 0.035

θ 0.059 0.029 0.045

ARFIMA(1,d,1) d 0.106 0.048 0.063

φ 0.397 0.035 0.282

θ −0.285 0.032 0.254

(14) (labeled Asymptotic in the plot) and the counterpart method by formula (13)
(labeled Normal in the plot). Note that for a large value of j ≈ 50, both methods
tend to converge, and, the curves make an inflexion in the value j ≈ 10. Note that
the Asymptotic approximation tends to be equal to the Normal method in the
measure that the input h lag increases (see plots for h = 150 in Fig. 7). These IRFs are
available in the function ir.arfima(), with arguments h to evaluate the IRFs over
a particular h lag and, model for an object arfima.whittle. The ir.arfima()
function produces the vectors RE and RA for Normal and Asymptotic IRFs.
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Table 2 Akaike’s criterion for
several ARFIMA models with p
values obtained for the Hessian
standard deviation

p q AIC d̂ p value

0 0 −37.44 0.196 0

0 1 −35.44 0.156 0.001

0 2 −33.44 0.113 0.018

1 0 −35.44 0.146 0.002

1 1 −33.44 0.106 0.028

1 2 −31.44 0.142 0.003

2 0 −33.44 0.111 0.021

2 1 −31.44 0.130 0.007

2 2 −29.44 0.191 0

3.6 Forecasting evaluations

The GW method implemented in gw.test() for evaluating forecasts proposed by
Giacomini and White (2006) compares two vectors of predictions, x and y, provided
by two time series models and a data set p. We consider that it is relevant to imple-
ment this test to determine if the predictions produced by a time series model (e.g.,
ARFIMA) process good forecasting qualities. This test for predictive ability is of
particular interest since it considers the tau prediction horizon parameter or ahead
in the case of pred.arfima() function. Alternative methods are discussed, for
instance, by Diebold and Mariano (1995). If tau=1, the standard statistic simple
regression estimator method is used. Otherwise, for values of tau larger than 1, the
method chosen by the user is used in the method option. The available methods for
selection are described below. They include several Matrix Covariance Estimation
methods but, by default, the HAC estimator is used in the test. The user can select
between the several estimators of the sandwich package mentioned before:

• HAC: Heteroscedasticity and Autocorrelation Consistent (HAC) Covariance
Matrix Estimation by vcovHAC() function (Zeileis 2004, 2006).

• NeweyWest: Newey-West HAC Covariance Matrix Estimation by
NeweyWest() function (Newey and West 1987).

• LumleyHeagerty: Weighted Empirical Adaptive Variance Estimation by
weave() function (Lumley and Heagerty 1999).

• Andrews: Kernel-based HAC Covariance Matrix Estimation by kernHAC()
function (Andrews 1991; Andrews and Monahan 1992).

This test gives the usual results of the general test implemented in such as the GW
statistic in statistic, the alternative hypothesis in alternative, the p value
in p.value, others such as the method mentioned before in method, and the name
of the data in data.name. In some studies, the GW test is used to compare selected
models versus benchmark models such as ARMA, ARIMA, or SARIMA models (e.g.
Contreras-Reyes and Idrovo 2011). To illustrate the GW test performance, we simulate
the out-of-sample prediction exercise through moving windows for TreeRing data
sets considering the first 1124 observations and, later, forecasting 40 observations
using three models: the ARIMA(0,1,0) benchmark model, the ARFIMA(p, d, q)with
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Fig. 8 Plots of out-of-sample predictions for two models: ARIMA(0,1,0) and ARFIMA(1, d, 1) with
Haslett and Raftery estimator (HR)

MLE estimator, and the Haslett & Raftery estimator (HR) using the algorithm of
the automatic forecast() function implemented in the forecast package by
Hyndman and Khandakar (2008) algorithm. In Fig. 8, the GW test compares the out-
of-sample predictions of the ARIMA(0,1,0) and ARFIMA(p,d,q) model. It is important
to note that the goal of this test is only to compare prediction abilities between models.

Finally, we study a more general simulation, comparing the three predictors vec-
tors with 40 real observations using gw.test() function considering the hypotheses
testing alternative=“two.sided” to contrast significant differences between
predictions. In addition, we consider the four HAC estimators mentioned in the begin-
ning of this section and prediction horizon parameters τ = {2, 4, 5}. The results are
summarized in Table 3 and Fig. 8. We can see that the differences in the prediction abil-
ity between B versus. MLE and B vs. HR are significant for τ = 2 and 4 but, between
MLE and HR they are not unequal for the three considered values of τ . Given the
non-significance of the MLE-HR test p value, the MLE model is not considered in
Fig. 8. Note that when the prediction horizon increases, the difference in forecasting
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Table 3 Summary of p values of the GW test for each HAC estimator, τ = {2, 4, 5} prediction horizon
parameters and for the estimator methods B (Benchmark model), ML (ARFIMA models using Maximum
Likelihood estimator) and HR (ARFIMA models using Haslett & Raftery estimator) over 40 observations
of samples from the TreeRing data set

Estimator τ Model B ML HR

HAC 2 B – 0.001 0.001

ML 0.001 – 0.307

HR 0.001 0.307 –

4 B – 0.031 0.031

ML 0.031 – 0.559

HR 0.031 0.559 –

5 B – 0.126 0.126

ML 0.126 – 0.689

HR 0.126 0.689 –

Newey and West 2 B – 0.002 0.002

ML 0.002 – 0.005

HR 0.002 0.005 –

4 B – 0.051 0.051

ML 0.051 – 0.281

HR 0.051 0.281 –

5 B – 0.174 0.174

ML 0.174 – 0.479

HR 0.174 0.479 –

Lumley and Heagerty 2 B – 0.001 0.001

ML 0.001 – 0.486

HR 0.001 0.486 –

4 B – 0.023 0.023

ML 0.023 – 0.652

HR 0.023 0.652 –

5 B – 0.096 0.096

ML 0.096 – 0.762

HR 0.096 0.762 –

Andrews 2 B – 0.003 0.003

ML 0.003 – 0.018

HR 0.003 0.018 –

4 B – 0.041 0.041

ML 0.041 – 0.283

HR 0.041 0.283 –

5 B – 0.206 0.206

ML 0.206 – 0.456

HR 0.206 0.456 –

The p values marked in bold are lower than the probability (0.05) related to a 5 % confidence level
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performance between both models, measured in terms of mean absolute error, tends
to decrease. Consequently, the individual prediction performance of each model is not
considered by the test.

4 Conclusions

We developed the afmtools package with the goal of incrementing the necessary
utilities to analyze the ARFIMA models and, consequently, it is possible to exe-
cute several useful commands already implemented in the long-memory packages. In
addition, we have provided the theoretical results of the Whittle estimator, which were
applied to the Tree Ring data base. Furthermore, we have performed a brief simulation
study for evaluating the estimation method used herein and also have evaluated the
properties of its log-likelihood function. The numerical examples shown here illus-
trate the different capabilities and features of the afmtools package; specifically,
the estimation, diagnostic, and forecasting functions. The afmtools package would
be improved by incorporating other functions related to change-point models and tests
of unit roots, as well as other important features of the models related to long-memory
time series.
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