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ABSTRACT
A physically based model for ground-level ozone forecasting is evaluated
for Santiago, Chile. The model predicts the daily peak ozone concentra-
tion, with the daily rise of air temperature as input variable; weekends and
rainy days appear as interventions. This model was used to analyse his-
torical data, using the Linear Transfer Function/Finite Impulse Response
(LTF/FIR) formalism; the Simultaneous Transfer Function (STF) method
was used to analyse several monitoring stations together. Model evaluation
showed a good forecasting performance across stations—for low and high
ozone impacts—with power of detection (POD) values between 70 and
100%, Heidke’s Skill Scores between 40% and 70% and low false alarm
rates (FAR). The model consistently outperforms a pure persistence forecast.
Model performance was not sensitive to different implementation options.
The model performance degrades for two- and three-days ahead forecast, but
is still acceptable for the purpose of developing an environmental warning
system at Santiago. Copyright  2002 John Wiley & Sons, Ltd.
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INTRODUCTION

Tropospheric ozone is a distinctive signature of today’s large cities. This pollutant is associated
with different health effects, such as increases in mortality, respiratory and asthma symptoms, days
of restricted activity and eye irritation. The short-term effects are serious enough to prompt public
authorities to require the release of information to the public or to take contingency measures when-
ever ground-level ozone reaches high levels (Elsom, 1995). For instance, the European Economic
Community has issued a Directive requiring that information be broadcast if the hourly ozone
concentration exceeds 180 (µg/m3), and that a warning should be sent to the population whenever
ozone levels exceed 360 (µg/m3).
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The ozone problem is very difficult to manage because of its linking to economic growth: the
largest impacts are associated with transportation and large industrial sources; thus it may take
several years before public policies effect improvements upon ozone levels. In the meantime, it
would be useful for local authorities to have a tool to forecast what the ozone would likely be
tomorrow, so that they can take preventive measures as needed. This problem also poses statistical
challenges to obtain good forecasting models (see, for example, Beck, 1991; Young et al., 1991).

Ozone generation in the troposphere
Ozone is not emitted by any significant anthropogenic source. It is a secondary pollutant, that is, one
produced by chemical reactions upon primary emitted pollutants such as nitrogen oxides (NOx D
NO C NO2) and volatile organic compounds (VOC). These primary pollutants (also called ozone
precursors) are emitted by industrial, commercial, residential and mobile sources; the nitrogen oxides
are mostly the product of fuel combustion, whereas VOC emissions come from transportation, use of
solvents, fuel distribution, natural sources (trees and plants), etc. As the economy grows, emissions
tend to be dominated by transportation sources, while the rest of the sources (industrial, commercial
and residential) lower their emissions by shifting to cleaner fuels. This pattern of emissions makes
the management of urban air quality a challenging task, especially in developing countries (Elsom,
1995; Fenger, 1999).

Ozone precursors are intertwined in a complex network of chemical reactions triggered by solar
radiation, so ozone concentration rises during the day, declines at sunset and is low overnight
(Seinfeld and Pandis, 1998). There is a complex relationship among daily maximum ozone impacts
and the emissions of NOx and VOC within a given area. Thus it has been found both by simulation
and by effected emission reductions that ozone tends to change (in relative terms) less than the NOx

and VOC (relative) emission reductions (Meng et al., 1997). State-of-the-science, photochemical
models are capable of simulating the different processes that determine the fate of tropospheric ozone
(Zannetti, 1990). However, these models require extensive resources for developing NOx and VOC
emission inventories (with spatial and temporal resolution), monitoring campaigns, meteorological
databases, model validation and so on (Hanna et al., 2000). Thus, while these deterministic tools
are becoming increasingly available in many cities worldwide, those capable of producing real-time
ozone forecasts are available only in a few locations.

Survey of empirical ozone forecasting models
Empirical ozone forecasting models have been developed in many cities worldwide. These models
have been usually derived from a correlation analysis between ozone, meteorological parameters
and other air pollutants. The forecasting models have used tools such as linear time series (Robeson
and Steyn, 1990; Gonzalez-Manteiga et al., 1993), linear and non-linear regression (Ryan, 1995;
Hubbard and Cobourn, 1998), discriminant analysis, cluster analysis (Noordijk, 1994), generalized
additive models (Niu, 1996; Davis and Speckman, 1999), artificial neural networks (Cannon and
Lord, 2000; Comrie, 1997; Gardner and Dorling, 1998; Kao and Huang, 2000; Melas et al., 2000;
Yi and Prybutok, 1996), and fuzzy models (Jorquera et al., 1998a). Time series models were used
extensively in the 1970s and 1980s; most of them were univariate models, and usually their perfor-
mance was not good enough to develop environmental warning systems (Myrabo et al., 1976; Aron
and Aron, 1978; McCollister and Wilson, 1975; Pryor et al., 1981, Simpson and Leyton, 1983).
There was an early attempt to apply the Kalman filter methodology (Desalu et al., 1974), but it
was not tested with real data nor was it used for air pollution forecasts.
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In the early 1990s, Young et al. (1991) introduced a comprehensive framework for analysing
time series of environmental data. They advocate an approach in which seasonal and trend com-
ponents are decomposed into quasi-orthogonal components (the so-called ‘unobserved component
time series model’) by applying forward recursive Kalman filters and the backward recursive fixed
interval smoothing (FIS) algorithm to estimate the joint trend and seasonal models. The estima-
tion of model parameters and series decomposition is achieved by the recursive, FIS algorithm
based on the state space model for the whole system. Young et al. (1997) and Young (1998)
extended this unobserved component methodology to include transfer function components and
the resulting model has similarities to the model utilized later in the present paper. Schlink et al.
(1997) and Ng and Yan (1998) have reported applications of this methodology to air quality fore-
casts.

Summarizing the literature on ozone forecasting, we can conclude that there have been few
studies focused on fair comparisons among forecasting methods, especially when real-world data
are analysed. Moreover, the lack of publicly available databases hampers efforts oriented towards
a systematic comparison among different methodologies.

Case study: Santiago, Chile
Topography, climate and economic growth have turned Santiago, Chile, into one of the most
heavily polluted cities in South America. Santiago (current population, 5.4 million) is located in a
geographically confined basin between the Andes mountains to the east, with an average altitude
of 4500 m, a parallel coastal range to the west with an average altitude near 1500 m, and the
basin is further bounded to the north and south by transversal mountain chains. The urban area
spreads on a gentle slope from 450 m in the west to 800 m to the east (see Figure 1). At this

Figure 1. Map of Santiago, Chile, showing the monitoring stations of the MACAM air quality and meteoro-
logical network. The thick lines show the urban border, and the thinner lines the major road network
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latitude (33.5 °S) the radiative transfer controls vertical mixing of the air with frequent low thermal
inversions reinforced by the cooling of low-level air in contact with the Pacific Ocean (65 miles
to the west). The climate is semi-arid with an average annual rainfall of around 350 mm (Rutllant
and Garreaud, 1995), although there is considerable inter-annual variability associated with the El
Niño and La Niña phenomena.

Santiago has highly segregated land use; there is a south-west industrial area surrounded by
low-income settlements, an old downtown area including many shops and service companies, and
a residential eastern zone. The latest urban developments have included expansion of industrial
activities on the northern side and rapid housing development in the south-east. Several million
trips are made every working day, with many passing by the downtown zone.

The prevailing winds in summer, and springtime conditions (a dry ozone season) are south-
westerly. Hence air parcels travelling from the industrial south-west collect ozone precursor emis-
sions and are then subject to strong radiation and high temperatures so ozone rises. By the time
an air parcel hits downtown (about noon), some stations record violations of the current hourly
standard of 82 ppb, and the highest impacts are measured at the north-eastern side of town between
noon and 2 pm (Jorquera et al., 1998b).

THE GROUND-LEVEL OZONE FORECASTING MODEL

The first attempts to construct an ozone forecasting model for Santiago were carried out using
artificial neural networks, with data from a downtown station (Acuña et al., 1996). Then in Jorquera
et al. (1998a) three different modelling techniques were used: linear time series, artificial neural
networks and fuzzy models, with data from a suburban, highly impacted area. Finally, the model
presented here was derived by means of a systematic simplification of the conservation equation
for an air parcel being advected by the wind across an urban area. Hence it should be applicable to
other cities as well. More details of the model derivation are given in Jorquera et al. (2000); here
we quote just the final result:

O3�t� D K C R Ð T�t� C
N∑

iD0

ω1iL
iI1�t� C N1�t�

�1�L�N1�t� D �1�L�ε1�t� �1�

T�t� D T0 C ωP

�1 � υPL�
I2�t� C N2�t�

�2�L�N2�t� D �2�L�ε2�t� �2�

where K is a constant term that represents early-morning contributions to ozone from sources upwind
of the city; R is a reduced-ozone production rate and takes into account the different mechanisms for
generation, transformation and removal of ozone; T is the daily rise in air temperature �T2 � T1�,
with T1 and T2 being the lowest and highest air temperatures recorded that day, respectively. In
equation (2), an empirical model was developed for the daily rise in air temperature (T), so that
the available meteorological information was also included in the forecast of T; in equation (2)
T0 stands for the average daily temperature rise in the ozone season (see further comments below).
In both equations L stands for the lag operator defined as LXt D Xt�1 for any discrete signal Xt.
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The models in equations (1) and (2) have a linear transfer function (LTF) structure (Pankratz,
1991), sometimes referred to as the finite impulse response (FIR) model, where the following
interventions have been added:

(a) The weekend emission reduction effect upon ozone in equation (1) was modelled as being a
binary signal defined by

I1�t� D 0 if t is a working day

D 1 if t is a weekend day �3�

(b) The rainy-day signal effecting changes on T in equation (2) was also modelled as a binary
signal defined by

I2�t� D 0 if no rainfall was recorded on day t

D 1 if any rainfall was recorded on day t �4�

A finite series of powers in L was found to be a good polynomial approximation to the transfer
function associated with the input intervention signal I1�t�; the transfer function associated with
the rainy day input signal I2�t� was better modelled as an exponentially damped response; N1�t�
and N2�t� are underlying disturbances that are modelled as ARMA processes and ε1�t� and ε2�t�
are white noises associated with the LTF models (1) and (2), respectively. Because both series are
truncated expansions in powers of L, we will refer to those expressions either as LTF or FIR models
of the physical phenomenon analysed.

Rationale for the intervention model
The weekend emissions change is an intervention that has been observed to significantly change
ozone concentrations at urban areas (Chaum et al., 1978; Cleveland et al., 1974; Cleveland and
McRae, 1978; Karl, 1978; Levitt and Chock, 1976; Pryor and Steyn, 1995). Those studies were
aimed at assessing the effect of typical weekend reductions of precursor emissions upon the high-
est ozone impacts and consequently to evaluate the effectiveness of short-term ozone abatement
strategies. Typical conclusions of those analyses were that:

(1) At downtown sites, ozone on weekends is higher than on workdays, because there are fewer
NO emissions to scavenge ozone (by way of the fast reaction NO C O3 D NO2 C O2).

(2) At suburban sites the weekend ozone impacts may or may not change significantly, and this
depends on the spatial patterns of the precursor emissions. Saturday ozone peaks tended to
show similar values to those of weekdays, and Sundays tended to be the days on which ozone
maxima showed the highest differences compared to workday levels; this means that it takes
one or two days for urban photochemistry to respond to weekend reductions.

Therefore, weekends behave differently and so this has to be taken into account within the model.
Intervention analysis provides a suitable framework for including these kind of discrete events,
within the LTF/FIR formalism (Pankratz, 1991).

In the LTF/FIR formalism, we need to have a forecast of the input variables in the ozone-
forecasting equation (1) before we can produce ozone forecasts. In this case, T is forecasted
using model (2) and then used as input for the ozone forecast. This procedure is carried out
automatically in the software environment by defining the models for ozone maximum and for
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T; in this way, the system knows that it is dealing with a stochastic input variable (T) and
not a purely deterministic input (like the binary intervention signal I1�t�). This is the rationale for
not combining equations (1) and (2) into a single expression; moreover, since T is an observed
quantity it is appropriate to keep it as such in the model structure because it brings more information
to the model-identification process.

In the derivation of model (2), we first tried simple ARIMA models for forecasting T, but the
results were poor because the univariate series for T cannot anticipate by itself weather changes, so
we need a leading meteorological input variable to improve the forecast of T. From an empirical
standpoint, whenever a low-pressure front passes by and brings rainfall, the solar radiation and
the daily temperature rise (T) are drastically reduced compared to its seasonal average T0. A
simple way of handling this meteorological effect was to take the daily precipitation records and
construct a binary intervention signal as defined by equation (4). A more refined procedure would
call for including additional variables such as the cloud cover that indicates a smoother transition
between clear skies and rainy days; however, we did not have access to this information, so we
cannot improve further on this. Likewise, we would expect higher incoming radiation (and so higher
T) to be correlated with mixing height; unfortunately this parameter has not been measured at
Santiago so we cannot include it in the ozone model. Clearly, this lack of upper air measurements
is a drawback of the proposed model, but the good performance of the forecast (see ‘Evaluation
of model forecasting’ section below) suggests that this limitation does not seem to be a serious
problem, at least for Santiago.

Other empirical studies agree with the basic model structure given by equation (1). Ryan (1995)
has found that temperature explains most of the variance in ground-level ozone in the Baltimore
metropolitan area, and that lower morning temperatures were also negatively correlated with high
ozone impacts; the same findings were reported by Hubbard and Cobourn (1998) for the Louisville,
Kentucky metropolitan area. Comrie (1997) performed statistical analyses of several cities in the
USA and found that daily maximum temperature and daily total sunshine were significant predic-
tands for ozone maxima in all cases; daily total sunshine is a surrogate for UV flux, and it should
be strongly correlated with �T2 � T1� in equation (1).

Databases used
Table I show the data sets used for model identification and forecasting. All data were taken from
the air-quality monitoring network (MACAM in Spanish) that is operated by the Ministry of Public
Health. The data consisted of hourly records of ozone, temperature, etc. at the five monitoring sites
(A, B, and C, D, M) shown in Figure 1. The sites cover mostly the downtown area, but the M
monitor is located in a north-eastern, suburban area and it has recorded the largest ozone impacts at
Santiago; this behaviour is due to that monitor’s location in the city: downwind of main sources of
ozone precursors (recall that the predominant wind direction is south-west). The daily precipitation
data were taken from the meteorological station (E in Figure 1). We chose the 1994–1996 ozone
seasons because the earlier records contained too many missing values to be used effectively. From

Table I. Data sets for model identification and forecasting

Set (stations) Period (dd/mm/yy) No. identification days No. evaluation days

1 (A,C,D,M) 1/9/94–28/4/95 190 50
2 (A,C,D,M) 1/9/95–30/4/96 190 53
3 (C,D,M) 1/9/96–31/12/96 90 32
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the available monitoring sites, we discarded station B because it is located between two busy streets,
so ozone is mostly scavenged by fresh NO emissions from vehicles, resulting in very low ozone
readings. In the winter of 1996 station A was discontinued, so it is not included in data set 3.

MODEL IDENTIFICATION

All the model identification and forecasting was carried out using the SCA Statistical System, a
proprietary software developed by Scientific Computing Associates Corp., Illinois, USA (Liu et al.,
1986). The specific version used was SCAWIN Release VI.2a-Professional, running in a Pentium-II
PC. This software comes with an expert system to identify stochastic processes, especially those that
have a strong seasonal component (Liu, 1989). The software provides an option for joint parameter
estimation and outlier adjustment; this procedure is iterative and has been described by Chen and
Liu (1993a). Two types of transfer function models can be handled:

(a) The linear transfer function (LTF) model in which equation (1) is applied to each monitoring
station’s data separately.

(b) The simultaneous transfer function method (STF) where models from several stations are jointly
estimated; in this case four models like (1) are identified simultaneously using the STF formal-
ism.

Regarding model (2) for the daily temperature rise, it is identified independently using the LTF
formalism. All model-identification methods used in this work are described below.

Methodology to identify LTF and STF models

(1) The identification of the transfer function (TF) is made following the so-called linear transfer
function (LTF) method proposed by Liu and Hanssens (1982) and detailed in Liu et al. (1986).
In this approach, the ratio of polynomials in the lag operator, ��L�/��L�, is approximated by a
finite polynomial of L with degree k. If k is sufficiently large, then the approximation of the
ratio will be reasonably good. After determining the length of the truncation, the approximating
polynomial is used to obtain the parameter estimates.

(2) The simultaneous transfer function (STF) system is identified by means of the stepwise autore-
gressive fitting. In this method, the possible presence of contemporaneous relationships among
series is detected by analysing the residual correlation matrices after fitting an autoregressive
vector time series of increasing order; cf. Liu (1991).

(3) The joint estimation and outlier detection process is carried out by following the methodology
proposed by Chen and Liu (1993a). This technique consists of three steps: (a) outlier detec-
tion, using multiple regression to take into account possible multivariate effects of outliers in
other series; (b) outlier adjustment; and (c) parameter estimation based on the adjusted series.
After step (c), the final estimates of the model are performed using maximum likelihood. Then
the final model can be used to forecast, following the methodology described by Chen and
Liu (1993b).

In addition to the above modelling options, we can also choose whether to update the estimated
parameters with all the available information up to current time index, or to keep fixed the parameters
in the values estimated with the initial calibration subset (see Table I for the number of data points
used in this study); we refer to these modelling options as PR or FP, respectively.

Copyright  2002 John Wiley & Sons, Ltd. J. Forecast. 21, 451–472 (2002)



458 H. Jorquera, W. Palma and J. Tapia

Therefore, we have used the SCAWIN software environment to select different modelling options.
In this way we can test the effectiveness of implementation (Adya and Collopy, 1998). The options
we have selected are the following:

(a) Use the LTF or the STF formalism (LTF or STF, respectively), that is, choose between methods
(1) and (2) above.

(b) Use the standard estimation or the joint parameter estimation and outlier adjustment method (F
or OF, respectively). Here we use the standard, maximum likelihood estimation (F option) or
the more elaborated, iterative outlier adjustment and estimation process detailed in method (3)
above (OF option).

(c) Use fixed parameters or re-estimate parameters after each time step (FP or PR options).

More details on this aspect are given in the ‘Evaluation of model forecasting’ section.

Results of the identification process
Initial checks were performed upon equation (1) to validate the model structure predicted by the
physical derivation. Thus application of the cross-correlation formalism (CCF) indeed showed that
the relationship between daily maximum ozone and air temperature rise was a contemporaneous
one, and no significant lags were found. The noise process was usually found to be an AR(1)
process, with an autoregressive coefficient significantly different from 1.0, a strong indication that
the relationship described by equation (1) is a stationary one, and so no data differentiation was
performed at all (Jorquera et al., 2000).

Tables II and III show the results of the model identification and diagnostics of equations (1)
and (2), respectively, for all data sets and monitoring stations analysed. These results are discussed
below.

Results for the ozone-forecasting equation (1)
First, the R parameter stands for a rate of ozone production per unit heating of the airshed, at a given
site. The values are all significant and positive, and they are ranked according to the magnitudes of
the observed ozone impacts at Santiago. Hence, station M (at which the highest ozone concentrations
have been recorded) has the largest values for R, whereas the lowest estimates of R are for station A,
at downtown. Recall that station M is located in the north-east side of Santiago and the prevailing
winds are south-westerly, so its location is the most downwind of all. Thus ozone impacts there
reflect a greater distance travelled by air parcels, longer residence times and consequently higher
ozone impacts that those recorded at the Downtown stations A, C and D (closer to transportation
sources of NOx that lower ozone impacts by way of the fast reaction NO C O3 D O2 C NO2). These
results show that the R parameter takes into account the relative positions of the monitoring stations
with respect to the major emission sources of ozone precursors in the city.

Regarding the weekend effect on reduction of ozone precursor emissions, there is a different
behaviour, both across stations and also during the period analysed. For the stations closer to
downtown (A, C and D) there is a rise in ozone in Saturdays (linked to decreasing transportation
emissions of NOx), followed by a small net effect in Sundays and then a drop on Mondays. Hence,
it seems that it takes about two days for the atmosphere to respond to the weekend reduction of
emissions, in terms of photochemical activity. For the case of the suburban station M, the behaviour
is different, because the significant changes in ozone levels occur on Sundays and Mondays, with
a significant decrease in ozone impacts. These findings are clear for data sets 1 and 2, but not
for data set 3. At present we ascribe this behaviour to a shift in spatial and temporal emission
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Table II. Model identification for equation (1) LTF method

Parameter A C D M

Data set 1

K[ppb] �9.45 (�3.19) �16.90 (�4.00) �7.53 (�2.28)
R[ppb/ °C] 3.587 (19.64) 5.339 (20.58) 3.707 (18.28) 6.187 (60.73)

ω10 6.336 (3.69) 6.339 (2.72) 4.562 (2.50)
ω11 �4.649 (�2.67) �4.621 (�1.96) �4.541 (�2.46) �7.812 (�3.08)
�1 0.214 (2.95) 0.222 (3.10) 0.207 (2.85)
�1 �0.151 (�2.07)

Data set 2

K[ppb]
R[ppb/ °C] 3.860 (41.97) 3.446 (39.41) 3.667 (25.97) 6.205 (33.59)

ω10 6.133 (2.79)
ω11 �5.898 (�2.70) �7.000 (�3.73) �14.469 (�5.58)
�1 0.646 (6.52) 0.282 (4.04) 0.873 (16.10)
�1 0.539 (4.35) 0.670 (7.57) 0.653 (12.50)

Data set 3

K[ppb]
R[ppb/ °C] NA 3.328 (36.13) 2.902 (49.14) 5.074 (37.62)

ω10 NA 7.189 (3.04)
ω11 NA
�1 NA
�1 NA �0.427 (�4.37) �0.430 (�4.59)

Notes: Values in parentheses are the t-values for the parameter estimates; blank entries mean that the parameter
was not significant and so it was not included in the model; NA means that the station did not have records for
that period. All parameters were estimated using the iterative, joint outlier detection and adjustment methodology.

Table III. Model identification for equation (2), LTF method

Parameter Data set 1 Data set 2 Data set 3

T0 [ °C] 15.76 (60.94) 16.73 (44.06) 16.81 (33.71)
ωP [ °C] �8.19 (�10.65) �6.45 (�7.02) �6.40 (�3.70)

υP 0.486 (7.03) 0.428 (3.85) 0.456 (2.53)
�1 0.345 (4.96)
�1 �0.341 (�4.85) �0.242 (�2.26)
�3 0.251 (2.47)

Notes: Values in parentheses are the t-values for the parameter estimates; blank entries
mean that the parameter was not significant and so it was not included in the model.

patterns within the city, promoted by the fast economic growth experienced during the 1990s at
Santiago. For instance, many industries (traditionally located in the south and south-west) have
been moved to the northern side of town, and there has been an explosive increase of housing units
on the eastern side, leading to increased traffic flows on Saturdays associated with shopping and
recreational activities.

The noise N1�t� associated with the LTF/FIR model (1) is modelled as an ARMA process, and
the results are usually of the form of a low-order process such as AR(1), MA(1) or ARMA(1,1)
structures. Values of the ARMA parameters are listed in Table II, and their numerical estimates
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Figure 2. Diagnostic plots for data set 2, equation (1), MACAM station D

were also checked using S-Plus version 4.5. Diagnostics tests for residues show that the models
have been successfully fitted, and Figure 2 gives a typical example for data set 2 and station D.
Thus the ARMA models fitted to the disturbances N1�t� display white-noise residuals, showing that
all the autocorrelation structure of the linear transfer disturbances has been appropriately described
by the respective ARMA models. In particular, observe that the Ljung–Box test for whiteness (first
plot from the bottom) is accepted for all lags at the 5% significance level (dotted line).

Results for the temperature rise equation (2)
The results listed in Table III show that the effect of a rainy day in Santiago is a reduction in T
of about 6–8 °C on the same day, with respect to the seasonal average T0. This means that on
rainy days the temperature rise is 50–60% of the seasonal average, that is, a significant reduction.
This effect decreases in time according to an exponential behaviour, being negligible after two to
three days. This period is characteristic of synoptic scale motions in the atmosphere, so the model
is consistent with the physics that drives air temperature dynamics.

The noise N2�t� associated with the LTF model (2) is also modelled as a low-order ARMA
process, and the results are usually of the form of an AR(1) or MA(1) structure. The exception is
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Figure 3. Diagnostic plots for equation (2), data set 3

data set 3, in which the moving average process �2�L� has a third-order term �3L3 that is significant;
this might be a consequence of the small size of the database. Figure 3 shows the diagnostics for
data set 3, and the other data sets have similar diagnostic plots. All parameter estimations were
checked running S-Plus version 4.5, confirming the numerical estimates given by the SCAWIN
software.

Results for the STF modelling of equation (1)
The results from the LTF approach suggest that there are only minor differences among the model
parameters and forecasting quality from the four stations under study. Moreover, it is possible
that by taking into account the joint information from these stations we could be able to improve
the performance of the models. Thus, we have chosen the simultaneous transfer function (STF)
methodology to build up a multivariate system, which can include the correlation structure of the
data. The idea is to test whether a multivariate model will improve upon forecasts by combining
the information gathered at all the monitoring stations. These stations differ in their spatial location
within the city, but the daily maxima of ground-level ozone are correlated among stations, because
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Table IV. Model identification for equation (1), STF method

Parameter A C D M

Data set 1

K[ppb] �9.07 (�3.22) �16.72 (�4.05) �8.34 (�2.68)
R[ppb/°C] 3.344 (18.94) 5.233 (20.43) 3.780 (19.63) 5.795 (50.95)

ω10 5.773 (3.60) 6.147 (20.43) 4.313 (2.56)
ω11 �4.693 (�2.53) �5.023 (�2.01) �4.743 (�2.54) �8.688 (�3.08)
�1 0.268 (5.45) 0.261 (5.17) 0.214 (3.46)
�1 �0.204 (�4–46)

Data set 2

K[ppb]
R[ppb/ °C] 3.654 (34.21) 3.486 (36.72) 3.522 (36.49) 6.220 (37.55)

ω10
ω11 �2.769 (�2.12) �9.813 (�4.01)
�1 0.305 (7.23) 0.450 (4.55) 0.502 (10.96)
�1 0.360 (3.95)

Data set 3

K[ppb]
R[ppb/ °C] NA 3.373 (38.29) 3.090 (42.56) 5.071 (39.72)

ω10 NA 5.974 (4.18)
ω11 NA
�1 NA
�1 NA �0.324 (�4.16)

Notes: Values in parentheses are the t-values for the parameter estimates; blank entries mean that the parameter
was not significant and so it was not included in the model; NA means that the station did not have records for
that period.

these impacts are produced by the same physical mechanism, photochemistry of VOC and NOx

emissions modulated by identical mesoscale meteorological conditions.
The results of the STF model identification are shown in Table IV. The parameter estimates

are quite similar to the values obtained by each model separately (see Table II), meaning that
the model dependency among stations is small. The differences may be ascribed to the fact that
Table II includes the more refined parameter estimates obtained by using the joint outlier detection
and adjustment estimation method, whereas the STF methodology currently does not have such an
option in the SCAWIN environment. Despite those small differences, we shall use the multivariate
model for evaluating its forecasting performance and for comparing its results with those from
other implementations of equation (1) for each station; this is described in the next section.

EVALUATION OF MODEL FORECASTING

We evaluated the proposed model given by equation (1) against a pure persistence forecast defined
by

OPP
3,tC1 D O3,t �5�

This pure persistence forecast is a common benchmark in the air pollution forecasting literature.
Usually ozone episodes are not isolated days, but rather several days of intense solar radiation,
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Table V. Forecasting models used

Code Description

PP Pure persistence forecast, given by equation (5)
FFP Forecast using equation (1), LTF model, fixed model

parameters
FPR Forecast using equation (1), LTF model, model parameters

re-estimated at each time step
OFFP Same as FFP, but with the option of joint parameter estimation

and outlier adjustment
OFPR Same as FPR, but with the option of joint parameter estimation

and outlier adjustment
STFFP Forecast using equation (1) for all monitoring stations, STF

modeling, fixed model parameters
STFPR Forecast using equation (1) for all monitoring stations, STF

modeling, model parameters re-estimated at each time step

low winds, and no precipitation; these are typical features of summertime high-pressure systems
that last several days over a given area (they are synoptic scale motions of the atmosphere). Hence
pure persistence tends to perform well in an ongoing ozone episode, and so it is a good alternative
forecast to compare against.

As we have mentioned above, there are several possible combinations of implementations of the
forecasting model (1), and Table V gives all the modelling options studied in this work, including
the pure persistence option. The joint parameter estimation and outlier adjustment method is not
available for STF models, so that the combination could not be tested here.

RESULTS OF MODEL EVALUATION

The performance of the different forecasting models was evaluated using two types of measures,
whether we considered the forecast to be continuous or categorical, respectively. For the continuous
forecast, we chose the root mean squared error (RMSE), the mean absolute error (MAE) and the
cumulative sum of errors (CUSUM); all of these have the same units as the independent variable,
in this case ozone concentrations in parts per billion (ppb). These indices will give an overall
assessment of the similarity among observed and forecasted values, an estimate of a typical forecast
error, and a quick comparison between alternative models. Nevertheless, these measures do not
necessarily reflect the behaviour of the forecast under extreme circumstances (highest and lowest
observed concentrations). To include this, we take the continuous forecast and split it into two
categories: ‘good’ and ‘bad’ air quality. The definition of what constitutes a good or bad (episodic)
day depends on the monitoring site, because ozone impacts tend to vary spatially across an urban
area. Here we loosely defined the ozone threshold as the 50th percentile of the ozone daily maxima
distribution at each station. Therefore we use indices based upon the classification displayed on
Table VI. From this contingency table we can develop several quantitative indices, but here we
focus on the following three (Wilks, 1995):

(a) The probability of detection (POD): this measures the fraction of episodes correctly forecast
by the model, and is given by the ratio POD D n11/�n11 C n12).

Copyright  2002 John Wiley & Sons, Ltd. J. Forecast. 21, 451–472 (2002)



464 H. Jorquera, W. Palma and J. Tapia

Table VI. Contingency table for assessing
episodic forecasts

Combinations Forecast yes Forecast no

Observed yes n11 n12
Observed no n21 n22

(b) Heidke’s skill score (S): this is a measure of the skill of a set of forecasts compared to the skill
of a random forecast; it is defined by

S D 2�n11n22 � n12n21�/f�n12�2 C �n21�2 C 2n11n22 C �n12 C n21��n11 C n22�g

(c) False alarm rate (FAR): this measures the tendency of the forecasting model to overpredict
episodes, and is given by the ratio FAR D n21/�n11 C n21).

For further details on these categorically derived measured, the reader is referred to Doswell et al.
(1990) and Wilks (1995).

FORECASTING RESULTS

Tables VII and VIII summarize the evaluation of the ozone-forecasting model based upon equa-
tion (1), under different modelling options. In Table VII we can see that the models are significantly
better that the pure persistence forecast. There is a significant improvement upon MAE and RMSE
when any of the implementations of model (1) is compared against the pure persistence forecast
given by equation (5). The exception is CUSUM, and this shows that a model like (1) may be
consistently under- or overestimating the ozone and still providing better forecasts (as measured by
MAE and RMSE) than a pure persistence forecast (that tends to have low values of CUSUM by
definition).

When we analyse the categorically based measures in Table VIII, it is also easy to discriminate
among competing models by using measures such as POD, S and FAR. Once again, all implemen-
tations of model (1) outperform the pure persistence forecast, in terms of higher values of POD
and S and lower values for FAR.

It seems that all variations of implementation of equation (1) yield similar results. There is
no modelling option that performs consistently above the rest. All model implementations use
essentially the same amount of information and they are all alike (linear), thus a similar behaviour
was expected.

Figure 4 shows the forecasting performance for data set number 2, station M. Figure 4(a) dis-
plays a comparison of the actually observed daily peak ozone with the different model outputs;
Figure 4(b) shows the absolute forecasting errors in each model evaluated. It can be seen in Figure 4
that all methods based upon equation (1) have a similar performance, and that all these methods
outperform the pure persistence forecast given by equation (4); the typical standard error of the
forecast is around 30 ppb for the methods applied to station M data. Similar results (not shown)
are found for the other stations, showing a consistent behaviour across monitoring stations and
also the good performance for low and high ozone impacts, that is, the models perform well under
extreme impacts. We ascribe this feature to the physical origin of equation (1) and thus to its
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Table VII. Evaluation of ozone forecasting models using continuous error measures

Set Station PP FFP FPR OFFP OFPR STFFP STFPR

(a) RMSE (ppb)

1 A 18.16 10.89 10.93 12.30 11.73 10.91 10.96
1 C 21.71 17.48 16.76 17.29 17.03 17.48 16.82
1 D 22.19 14.69 14.45 14.62 14.58 14.39 14.24
1 M 24.89 21.58 20.03 21.32 20.05 21.89 20.28
2 A 27.98 14.88 14.81 15.42 15.13 15.59 15.70
2 C 27.42 14.84 14.83 16.52 15.56 14.97 14.98
2 D 21.09 15.54 15.10 15.62 15.48 16.42 15.38
2 M 41.06 19.48 19.51 19.90 19.84 19.13 19.19
3 C 29.80 16.83 16.80 17.82 18.16 16.76 16.68
3 D 21.57 11.69 11.76 13.00 12.26 11.70 11.78
3 M 34.09 20.21 20.00 20.37 21.86 20.04 19.94

(b) MAE (ppb)

1 A 14.96 7.58 7.58 9.25 8.98 7.63 7.69
1 C 16.98 12.77 12.21 12.69 12.39 12.74 12.25
1 D 18.28 10.31 10.13 10.64 10.58 10.05 9.89
1 M 20.74 17.20 16.01 16.18 15.25 17.50 16.18
2 A 22.68 12.63 12.61 12.53 12.36 12.54 12.58
2 C 27.42 11.54 11.52 13.05 12.30 11.81 11.70
2 D 16.45 12.90 12.46 12.64 12.28 13.13 12.34
2 M 32.06 16.50 16.50 17.03 16.95 15.89 15.95
3 C 22.94 12.63 12.59 13.51 13.83 12.56 12.52
3 D 16.59 8.79 8.77 9.91 9.28 8.74 8.73
3 M 25.94 16.53 16.24 16.56 16.58 16.21 16.11

(c) CUSUM (ppb)

1 A 72.0 2.7 6.6 �145.8 �126.7 4.9 6.5
1 C 61.0 316.0 275.2 �157.6 �126.3 305.1 259.7
1 D 64.0 �191.9 �164.9 �87.4 �70.5 �177.7 �153.8
1 M 109.0 651.3 558.7 274.7 272.5 673.9 579.1
2 A 28.0 141.0 130.4 �85.2 �59.7 153.8 137.3
2 C 15.0 �107.7 �100.6 �133.3 �95.0 �155.8 �131.0
2 D 8.0 116.1 88.2 �85.0 �137.0 153.1 106.1
2 M 31.0 49.3 60.2 �3.3 13.3 35.0 46.4
3 C 6.0 �94.7 �88.5 �50.1 �69.8 �102.8 �101.2
3 D 6.0 14.7 7.6 �30.1 �51.3 8.8 1.3
3 M �14.0 �161.7 �146.8 �138.7 �137.5 �176.2 �165.6

ability to capture the most relevant (measured) variables influencing the peak ozone level; in fact,
the input variables used in model (1) are quite similar to those used in other cases reported in the
literature.

To explore the effect of increasing the forecast horizon, we compared one-, two-, and three-
steps ahead forecasts in terms of the performance indices. Table IX shows such an exercise for
data set 2 and four forecasting implementations. It is clear in Table IX that as the forecast horizon
increases, the performance deteriorates and the forecast itself becomes more conservative—because
it includes less information to make the forecast—so it tends to approach the mean of the observed
concentrations. Hence the ratio of the standard deviations of the forecast and observed concen-
trations decreases as the forecast horizon increases. However, the deterioration in the forecasting
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Table VIII. Evaluation of ozone forecasting models using categorically based indices

Set Station PP FFP FPR OFFP OFPR STFFP STFPR

(a) POD: Power of detection

1 A 0.72 0.88 0.88 0.72 0.68 0.88 0.88
1 C 0.73 0.88 0.88 0.58 0.65 0.88 0.88
1 D 0.71 0.63 0.63 0.67 0.67 0.63 0.63
1 M 0.56 1.00 1.00 1.00 0.94 1.00 1.00
2 A 0.50 0.90 0.90 0.65 0.65 0.85 0.85
2 C 0.59 0.70 0.67 0.63 0.67 0.67 0.67
2 D 0.76 0.96 0.96 0.92 0.88 0.92 0.96
2 M 0.63 0.81 0.81 0.81 0.81 0.89 0.89
3 C 0.60 0.93 0.93 0.93 0.93 0.93 0.93
3 D 0.67 1.00 1.00 1.00 1.00 0.80 0.80
3 M 0.59 0.82 0.88 0.82 0.76 0.82 0.88

(b) S: Heidke’s skill score

1 A 0.40 0.72 0.72 0.60 0.64 0.72 0.68
1 C 0.40 0.56 0.56 0.45 0.44 0.56 0.56
1 D 0.40 0.51 0.51 0.52 0.52 0.51 0.51
1 M 0.27 0.39 0.42 0.55 0.53 0.39 0.42
2 A 0.20 0.62 0.62 0.51 0.54 0.51 0.51
2 C 0.17 0.40 0.36 0.40 0.36 0.40 0.36
2 D 0.55 0.70 0.74 0.70 0.66 0.63 0.66
2 M 0.21 0.47 0.47 0.47 0.47 0.55 0.55
3 C 0.25 0.69 0.63 0.69 0.69 0.63 0.63
3 D 0.31 0.51 0.51 0.63 0.63 0.21 0.21
3 M 0.19 0.75 0.81 0.69 0.63 0.75 0.81

(c) FAR: False alarm rate

1 A 0.31 0.15 0.15 0.14 0.06 0.15 0.19
1 C 0.30 0.26 0.26 0.17 0.23 0.26 0.28
1 D 0.32 0.17 0.17 0.20 0.20 0.17 0.17
1 M 0.47 0.49 0.47 0.40 0.39 0.49 0.47
2 A 0.50 0.31 0.31 0.28 0.23 0.37 0.37
2 C 0.41 0.30 0.31 0.26 0.31 0.28 0.31
2 D 0.24 0.23 0.20 0.21 0.21 0.27 0.25
2 M 0.39 0.29 0.29 0.29 0.29 0.27 0.27
3 C 0.40 0.22 0.26 0.22 0.22 0.26 0.26
3 D 0.38 0.35 0.35 0.29 0.29 0.45 0.45
3 M 0.38 0.07 0.06 0.13 0.13 0.07 0.06

performance is not dramatic, suggesting that the ozone forecasting model could be used to obtain
reasonable multi-day forecasts.

Figure 5 shows two examples of the forecast behaviour for one-, two-, and three-steps ahead
forecasts, for stations C and M. For the sake of clarity, standard errors of the forecasts are not
shown (they are displayed in Table IX for comparison purposes) but typical values are 20 and
30 ppb for stations C and M, respectively, that is, they can be assessed by the tick marks on the
y-axis in both plots. The multistep forecasts are alike, except that the one-step-ahead forecasts tend
to enclose the other forecasts, that is, they tend to show the highest and lowest forecast values.

More work needs to be done to evaluate our proposed model with data from other cities world-
wide. Nevertheless, other studies also agree with the basic structure given by equation (1). For
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Figure 4. Performance of forecasting models for station M, data set 2; (a): comparison of actual daily peak
ozone with the forecasts from the different models evaluated; (b): comparison of absolute forecasting errors
for all models evaluated

instance, Ryan (1995) has found that maximum air temperature (T2) explains most of the variance
in peak ground ozone levels in the Baltimore metropolitan area and that the lower morning tem-
peratures (T1) were also correlated with high ozone impacts; similar findings were reported by
Hubbard and Cobourn (1998) for the Louisville, Kentucky, metropolitan area.

CONCLUSIONS

A physically based ground-level ozone-forecasting model has been identified and evaluated for
Santiago, Chile. The model is derived from a simplification of the continuity equation followed by
an air parcel that moves across an urban region.
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Figure 5. Performance of multistep forecasts for stations C and M, data set 2; (a) comparison of actual daily
peak ozone at station C with the 1,2 and 3-steps ahead forecasts from the FFP implementation of the forecasting
model; (b) the same, but for station M

The model-identification process produced parameter estimates that were similar across moni-
toring stations, and that changed slowly with time for each separate site. Parameter estimates were
quite significant, especially when the noise was a low-order moving average process. Diagnostics of
models (1) and (2) showed essentially white-noise behaviour in the residuals (see Figures 2 and 3);
hence the models are adequate for the purposes of forecasting.

In the case of the ozone model (1), weekend effects were similar to those reported in the literature,
with Saturdays showing higher ozone impacts than weekdays near downtown Santiago; Sundays
and Mondays tended to show lower ozone impacts than on weekdays, especially at the suburban,
downwind station.

Rainy days decrease 40–50% the values of the daily rise of air temperature (T), with respect
to the seasonal average. The characteristic time for these effects to fade away was 2–3 days, that
is, of the same periodicity as synoptic scale motions.
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Table IX. Evaluation of ozone forecasting models for one-, two-, and three-steps ahead forecasts

Steps ahead RMSE (ppb) MAE (ppb) CUSUM (ppb) 	Forecast/	Observed Standard error of
forecast (ppb)

(a) Station A

1 14.88 12.63 �141.0 0.734 20.31
2 15.58 13.22 �175.4 0.691 20.87
3 15.59 13.12 �183.3 0.683 21.03

(b) Station C

1 14.84 11.54 107.7 0.764 19.39
2 15.44 12.46 144.9 0.668 20.45
3 15.58 12.58 170.7 0.662 20.56

(c) Station D

1 15.54 12.90 �116.1 0.795 18.25
2 17.53 14.36 �152.8 0.763 18.83
3 18.69 15.33 �165.3 0.732 19.03

(d) Station M

1 19.48 16.50 �49.3 0.911 28.36
2 21.19 17.02 �64.4 0.840 31.16
3 21.04 17.15 �53.2 0.829 31.93

Note: Only the FFP forecast results are displayed; results for the FPR, OFFP and OFPR implementations are similar and
not shown here.

The model certainly does have limitations, for example the lack of upper air measurements (cloud
cover, mixing height) incorporated into the model. Despite this, model performance is reasonable
for out-of-sample forecasts in Santiago. We ascribe this to the persistence of wind patterns in the
city basin, which are dominated by differential heating in this confined valley (see Figure 1), and
to the high correlation between air temperature, mixing height and cloud cover. In other words,
the variables not included in the model (wind direction, cloud cover, mixing height) do not seem
to influence model performance in a significant manner. This good forecasting performance is in
agreement with models with similar input variables that have performed well in other cities abroad
(Ryan, 1995; Comrie, 1997; Hubbard and Cobourn, 1998).

One possible explanation for this reasonable model performance is that air temperature is a good
surrogate for incoming radiation and mixing height. Hence adding variables such as cloud cover
or mixing height do not add further information to the model. On the other hand, wind speed and
direction have shown to have significant effects upon ozone impacts, in regions where synoptical
motions bring in air masses from different upwind regions (Ryan, 1995; Hubbard and Cobourn,
1998). In these cases of more ‘open’ topography, the structure of the model increases in complexity
and certainly equations (1) and (2) will require improvements in order to obtain suitable forecasting
models. Nonetheless, The results of the model evaluation suggest it might be useful in other cities
to develop ozone-forecasting tools.
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Jorquera H, Pérez R, Cipriano A, Espejo A, Letelier MV, Acuña G. 1998a. Forecasting ozone daily maximum
levels at Santiago, Chile. Atmospheric Environment 32: 3415–3424.
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